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Classical randomized algorithms use a coin toss instruction to explore different evolutionary branches of a
problem. Quantum algorithms, on the other hand, can explore multiple evolutionary branches by mere super-
position of states. Discrete quantum random walks, studied in the literature, have nonetheless used both
superposition and a quantum coin toss instruction. This is not necessary, and a discrete quantum random walk
without a quantum coin toss instruction is defined and analyzed here. Our construction eliminates quantum
entanglement between the coin and the position degrees of freedom from the algorithm, and the results match
those obtained with a quantum coin toss instruction.
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I. MOTIVATION

Random walks are a fundamental ingredient of nondeter-
ministic algorithmsf1g, and are used to tackle a wide variety
of problems, from graph structures to Monte Carlo sam-
plings. Such algorithms have many branches, which are ex-
plored probabilistically, to estimate the correct result. A clas-
sical computer can explore only one branch at a time, so
typically the algorithm is executed several times, and the
estimate of the final result is extracted from the ensemble of
individual executions by methods of probability theory. To
ensure that different branches are explored in different ex-
ecutions, one needs nondeterministic instructions, and they
are provided in the form of random numbers. A coin toss is
the simplest example of a random number generator, and it
can be included as an instruction for a probabilistic Turing
machine.

A quantum computer can explore multiple branches in a
different manner, i.e., by using a superposition of states. The
probabilistic result can then be arrived at by interference of
amplitudes corresponding to different branches. Thus as long
as the means to construct a variety of superposed states exist,
there is noa priori reason to include a coin toss as an in-
struction for asprobabilisticd quantum Turing machine. This
is obvious enough, and indeed continuous time quantum ran-
dom walks have been studied without recourse to a coin toss
instructionf2g. Nevertheless, a coin toss instruction has been
considered necessary in construction of discrete time quan-
tum random walksssee, for instance, Refs.f3,4gd. In this
article, we demonstrate that this is a misconception arising
out of unnecessarily restrictive assumptions. We explicitly
construct a quantum random walk on a line without using a
coin toss instruction, and analyze its properties.

There also exists confusion in the literature about differ-
ent scaling behavior of discrete and continuous time quan-

tum random walk algorithmsssee again Refs.f3,4gd, because
the former have been constructed using a coin toss instruc-
tion while the latter do not contain a coin toss instruction.
Our work eliminates this confusion in the sense that scaling
behavior of discrete and continuous time quantum random
walk algorithms, both constructed without a coin toss in-
struction, would coincide. Thereafter, a quantum coin would
be an additional resource; if its inclusion can improve scaling
behavior of some quantum algorithms, that should not be a
surprise.

II. QUANTUM RANDOM WALK ON A LINE

A random walk is a diffusion process, which is generated
by the Laplacian operator in the continuum. To construct a
discrete quantum walk, we must discretize this process using
evolution operators that are both unitary and ultralocalsan
ultralocal operator vanishes outside a finite rangef5gd. To
begin with, consider the walk on a line. The allowed posi-
tions are labeled by integers, and the simplest translation
invariant ultralocal discretization of the Laplacian operator is

Hunl ~ f− un − 1l + 2unl − un + 1lg. s1d

The corresponding evolution operator is

UsDtd = expsiHDtd = 1 + iHDt + O„sDtd2
…. s2d

With a finite Dt, U has an exponential tail and so it is not
ultralocal. The evolution operator can be made ultralocal by
truncation, say by dropping theO(sDtd2) part, but then it is
not unitary. One may search for ultralocal translationally in-
variant unitary evolution operators using the ansatz

Uunl = aun − 1l + bunl + cun + 1l, s3d

but then the orthogonality constraints between different rows
of the unitary matrix make two ofha,b,cj vanish, and one
obtains a directed walk instead of a random walk.

One way to bypass this problem and construct an ultralo-
cal unitary random walk is to enlarge the Hilbert space and
add a quantum coin toss instruction, e.g.,
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U = o
n

fu↑lk↑ u ^ un + 1lknu + u↓lk↓ u ^ un − 1lknug. s4d

This modification, however, brings its own set of caveats. If
the coin state is measured at every time stepsin other words,
if the coin is classicald, one gets no improvement over the
classical random walk. With a unitary coin evolution opera-
tor, which entangles the coin state with the position state, the
quantum walk performs better than the classical walk in cer-
tain algorithms. But in this case, the final results depend on
the initial state of the coin, because quantum evolution is
reversible and not Markovian. For example, the final state
distribution of the quantum walk depends on whether the
initial coin state wasu↑l, or u↓l, or some linear combination
thereof. To get around this initial coin state sensitivity, fur-
ther algorithmic modifications such as averaging over initial
coin states, or intermittent coin measurements, or use of mul-
tiple coins, have been suggested, but they still leave a feeling
of something to be desired.

A. Getting rid of the coin

The way out of the above conundrum is familiar to lattice
field theoristsf6g. It has also been used to simulate quantum
scattering with ultralocal operatorsf7g, and to construct
quantum cellular automataf8g. In its simplest version, the
Laplacian operator is decomposed into its even and odd parts
H=He+Ho,

H ~1
¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯ − 1 2 − 1 0 0 0 ¯

¯ 0 − 1 2 − 1 0 0 ¯

¯ 0 0 − 1 2 − 1 0 ¯

¯ 0 0 0 − 1 2 − 1 ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

2 , s5d

He ~1
¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯ − 1 1 0 0 0 0 ¯

¯ 0 0 1 − 1 0 0 ¯

¯ 0 0 − 1 1 0 0 ¯

¯ 0 0 0 0 1 − 1 ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

2 , s6d

Ho ~1
¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

¯ 0 1 − 1 0 0 0 ¯

¯ 0 − 1 1 0 0 0 ¯

¯ 0 0 0 1 − 1 0 ¯

¯ 0 0 0 − 1 1 0 ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

2 . s7d

The two partsHe and Ho are individually Hermitian. They
are block diagonal with a constant 232 matrix, and so they
can be exponentiated while maintaining ultralocality. The to-
tal evolution operator can therefore be easily truncated, with-
out giving up either unitarity or ultralocality,

UsDtd = eisHe+HodDt = eiHeDteiHoDt + O„sDtd2
…

= UesDtdUosDtd + O„sDtd2
…. s8d

The quantum random walk can now be generated usingUeUo
as the evolution operator for the amplitude distribution
csn,td,

csn,td = fUeUogtcsn,0d. s9d

The fact thatUe andUo do not commute with each other is
enough for the quantum random walk to explore all possible
states. The price paid for the above manipulation is that the
evolution operator is translationally invariant along the line
in steps of 2, instead of 1.

The 232 matrix appearing inHe andHo is proportional
to s1−s1d, and so its exponential will be of the formsc1
+ iss1d, ucu2+ usu2=1. A random walk should have at least two
nonzero entries in each row of the evolution operator. Even
though our random walk treats even and odd sites differently
by construction, we can obtain an unbiased random walk, by
choosing the 232 blocks ofUe and Uo as s1/Î2ds 1 i

i 1
d. The

discrete quantum random walk then evolves the amplitude
distribution according to

Uounl =
1
Î2

funl + i un + s− 1dnlg, s10d

Ueunl =
1
Î2

funl + i un − s− 1dnlg, s11d

UeUounl =
1

2
fi un − 1l + unl + i un + 1l − un + 2s− 1dnlg.

s12d

B. Relation to the walk with a coin

Our construction of discrete quantum random walk has
exchanged the up-down coin states for the even-odd site la-
bel. In the language of lattice field theory, this strategy re-
sembles staggered fermionsf6g, while that with a coinsor
spind is akin to Wilson fermionsf9g. Indeed, an explicit re-
lation between our construction and that with a coin can be
established. Let

Csn,td ; S cs2n,td
cs2n + 1,td

D s13d

describe the amplitude distribution in a two-component no-
tation. Then Eqs.s9d ands12d are equivalent to the evolution

CsN,td = fUCgtCsN,0d, C =
1
Î2

S1 i

i 1
D , s14d

UuNl =
1
Î2

uNl +
is1

Î2
o
±

1 ± s3

2
uN 7 1l. s15d

Here, for clarity, we have denoted the basis states forC by
uNl. The symmetric coin operatorC mixes the up-down com-
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ponents ofC. The walk operatorU distributes the amplitude
equally between remaining at the same site and moving to
the neighboring sites. The projection operatorss1±s3d /2
pick out the amplitude components that move forward and
backward. Finally, the operators1 interchanges the up and
down components ofC, producing what Ref.f10g has called
the flip-flop walk.

It is also instructive to note that while the diffusion op-
eratorH has the structure of a second derivative, its two parts
He andHo have the structure of a first derivative. This split is
reminiscent of the “square root” one takes to go from the
Klein-Gordon operator to the Dirac operator. For a quantum
random walk with a coin, this feature has been used to con-
struct an efficient search algorithm on a spatial lattice of
dimension greater than 1f10,11g. Reanalysis of that problem
is in progress, without using a coin, in view of our results
f12g.

III. ANALYSIS OF THE WALK

It is straightforward to analyze the properties of the walk
in Eq. s12d using the Fourier transform:

c̃sk,td = o
n

eikncsn,td, s16d

csn,td =E
−p

p dk

2p
e−iknc̃sk,td. s17d

The evolution of the amplitude distribution in Fourier space
is easily obtained by splitting it into its even and odd parts:

c ; Sce

co
D, csk,td = fMskdgtcsk,0d, s18d

Mskd = S− ieik sink i cosk

i cosk ie−ik sink
D . s19d

The unitary matrixM has the eigenvaluesl± ;e±ivk sthis 6
sign label continues in all the results belowd,

l± = sin2 k ± i coskÎ1 + sin2 k, vk = cos−1ssin2 kd,

s20d

with the sunnormalizedd eigenvectors,

e± ~ S− sink ± Î1 + sin2 k

1
D ,

~ S 1

sink ± Î1 + sin2 k
D . s21d

The evolution of amplitude distribution then follows

c̃sk,td = eiwktc̃+sk,0d + e−iwktc̃−sk,0d, s22d

where c̃±sk,0d are the projections of the initial amplitude
distribution alonge±. The amplitude distribution in the posi-
tion space is given by the inverse Fourier transform of

c̃sk,td. While we are unable to evaluate it exactly, many
properties of the quantum random walk can be extracted nu-
merically as well as by suitable approximations.

Consider a walk starting at the origin,cosn,0d=dn,0. Its
amplitude distribution at later times is specified by

c̃o,±sk,0d =
±1

2Î1 + sin2 k
S− sink ± Î1 + sin2 k

1
D , s23d

cosn,td =
1

2p
E

−p

p dk e−ikn

Î1 + sin2 k

3 S− i sinvkt sink + cosvktÎ1 + sin2 k

i sinvkt
D .

s24d

This walk is asymmetric because our definitions treat even
and odd sites differently. We can get rid of the asymmetry by
initializing the walk ascssn,0d=sdn,0+dn,1d /Î2. The walk is
then symmetric undern↔ s1−nd, and the amplitude distribu-
tion evolves according to

c̃s,±sk,0d =
±1

2Î2s1 + sin2 kd

3 S eik − sink ± Î1 + sin2 k

1 + eik sink ± eikÎ1 + sin2 k
D , s25d

cssn,td =
1

2p
E

−p

p dk e−ikn

Î2s1 + sin2 kd

3 S i sinvktseik − sinkd + cosvktÎ1 + sin2 k

i sinvkts1 + eik sinkd + cosvkte
ikÎ1 + sin2 k

D .

s26d

Figures 1 and 2 show the numerically evaluated probability
distributions, after 32 time steps, for asymmetric and sym-
metric quantum random walks, respectively. Note that, by
construction, the distributions aftert time steps remain
within the intervalf−2t+1,2tg.

A. Asymptotic behavior of the walk

For larget, a good approximation to the distribution Eq.
s26d can be obtained by the stationary phase method, as in

FIG. 1. Probability distribution after 32 time steps for the asym-
metric quantum random walkco.
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Ref. f13g. The integral is periodic, and a sum of terms of the
form

Isn,td =E
p

p dk

2p
gskdeifsk,n,td. s27d

The highly oscillatory part of the integrand is determined by
fsk,n,td=−kn±vkt, while the remaining partgskd is
bounded. Simple algebra yields

dvk

dk
= −

2 sink
Î1 + sin2 k

, s28d

d2vk

dk2 = −
2 cosk

s1 + sin2 kd3/2, s29d

d3vk

dk3 =
4 sinks1 + cos2 kd

s1 + sin2 kd5/2 . s30d

The stationary point of the integral,k=k0, has to satisfy

a ;
n

t
= 7

2 sink0

Î1 + sin2 k0

, s31d

which has a solution only fornP f−Î2t ,Î2tg.
We now separately consider three cases.
s1d unu.Î2t. There is no stationary point in this case. For

unu=sÎ2+edt, udfskd /dku.e, and repeated integration by
parts shows that the integral falls off faster than any positive
integer power ofet.

s2d unu=Î2t. In this case, there is a stationary point of
order 2 atk0= 7sgnsndp /2. The integral is therefore propor-
tional to t−1/3. Explicitly,

cssÎ2t,td = ct−1/31S1 +
1 − i
Î2

DcosS pt
Î2

D
S1 −

1 − i
Î2

DsinS pt
Î2

D 2 , s32d

css− Î2t,td = ct−1/31 S1 −
1 − i
Î2

DcosS pt
Î2

D
S− 1 −

1 − i
Î2

DsinS pt
Î2

D 2 , s33d

c =
1

2p31/6GS1

3
D < 0.355. s34d

s3d unu,Î2t. There are two stationary points in this case,
k01P s−p /2 ,p /2d andk02=p−k01, with

sink0 = 7
n

Î4t2 − n2
, s35d

Ud2vk

dk2 U
k=k0

=
Î4t2 − 2n2s4t2 − n2d

4t3
. s36d

The integral is therefore proportional tot−1/2. In terms of the
phase

f0 = − k01n + vk0
t − sp/4d, s37d

the distribution amplitude is

cs =
1

Îts4t2 − 2n2d1/4Fcosf0Sfs1 − idn + 2tg/Î4t2 − n2

Î4t2 − 2n2/s2t + nd
D

+ i sinf0S Î4t2 − 2n2/Î4t2 − n2

fs1 − idn + 2tg/s2t + nd
DG . s38d

The smoothed probability distribution, obtained by replacing
the highly oscillatory terms by their mean values, is

ucsusmooth
2 =

4t2

pÎ4t2 − 2n2s4t2 − n2d
. s39d

fHere, then↔ s1−nd symmetry can be restored by replacing
n by sn− 1

2
d.g As shown in Fig. 2, it represents the average

behavior of the distribution very well. Its low-order moments
are easily calculated to be

E
n=−Î2t

Î2t

ucsusmooth
2 dn= 1, s40d

E
n=−Î2t

Î2t

unuucsusmooth
2 dn= t, s41d

E
n=−Î2t

Î2t

n2ucsusmooth
2 dn= 2s2 −Î2dt2. s42d

The following properties of the quantum random walk are
easily deduced from all the above results.

sad The probability distribution is double peaked with
maxima approximately at ±Î2t. The distribution falls off
steeply beyond the peaks, while it is rather flat in the region
between the peaks. With increasingt, the peaks become more
pronounced, because the height of the peaks decreases more
slowly than that for the flat region.

sbd The size of the tail of the amplitude distribution is
limited by setd−1, t−1/3, which gives Dn.=Dsetd=Ost1/3d.
On the inner side, the width of the peaks is governed by
uvk9tu

−1/2, t−1/3. For unu=sÎ2−ddt, this gives Dn,=Dsdtd
=Ost1/3d. The peaks therefore make a negligible contribution
to the probability distribution,Ost−1/3d.

FIG. 2. Probability distribution after 32 time steps for the sym-
metric quantum random walkcs. The dark curve denotes the
smoothed distribution of Eq.s39d.
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scd Rapid oscillations contribute to the probability distri-
bution sand hence to its momentsd only at subleading order.
They can be safely ignored in an asymptotic analysis, retain-
ing only the smooth part of the probability distribution.

sdd The quantum random walk spreads linearly in time,
with a speed smaller by a factor ofÎ2 compared to a directed
walk. This speed is a measure of its mixing behavior and
hitting probability. The probability distribution is qualita-
tively similar to a uniform distribution over the intervalf
−Î2t ,Î2tg. In particular, themth moment of the probability
distribution is proportional totm.

These properties agree with those obtained in Ref.f13g
for a quantum random walk with a coin-toss instruction,
demonstrating that the coin offers no advantage in this par-
ticular setup.sExtra factors of 2 appear in our results, be-
cause a single step of our walk is a product of two nearest
neighbor operatorsUe and Uo.d It is important to note that
the properties of the quantum random walk are in sharp con-
trast to those of the classical random walk. The classical
random walk produces a binomial probability distribution,
which in the symmetric case has a single peak centered at the
origin and variance equal tot.

B. The walk in presence of an absorbing wall

The escape probability of the quantum random walk can
be calculated by introducing an absorbing wall, say between
n=0 andn=−1. Mathematically, the absorbing wall can be
represented by a projection operator fornù0. The unab-
sorbed part of the walk is given by

csn,t + 1d = Pnù0UeUocsn,td

= UeUocsn,td −
1

2
dn,−1fics0,td − cs1,tdg,

s43d

with the absorption probability

Pabsstd = 1 − o
nù0

ucsn,tdu2. s44d

Figure 3 shows the numerically evaluated probability distri-
bution, in presence of this absorbing wall, after 32 time steps
and with the symmetric initial state. Comparison with Fig. 2
shows that the absorbing wall disturbs the evolution of the

walk only marginally. The probability distribution in the re-
gion close ton=0 is depleted as anticipated, while it is a bit
of a surprise that the peak height nearn=Î2t increases
slightly. As a result, the escape speed from the wall is little
higher than the spreading speed without the wall. As shown
in Fig. 4, we find that the first two time steps dominate
absorption, Ps,absst=1d=0.25 and Ps,absst=2d=0.375, with
very little absorption later on. Asymptotically, the net absorp-
tion probability approachesPs,abss`d<0.4098 for the sym-
metric walk.fWe also find, for the asymmetric walk starting
at the origin,Po,abss`d<0.2732.g This value is smaller than
the corresponding resultPabss`d=2/p for the symmetric
quantum random walk with a coin-toss instructionf14g.

Thus the part of the quantum random walk going away
from the absorbing wall just takes off at a constant speed,
hardly ever returning to the starting point. Again, this behav-
ior is in a sharp contrast to that of the classical random walk.
A classical random walk always returns to the starting point,
sooner or later, and so its absorption probability approaches
unity ast→`.

C. Comparison to the walk with a coin

The above results bring out the differences of our quan-
tum random walk construction compared to that of Refs.
f13,14g.

s1d We have absorbed the two states of the coin into the
even-odd site label at no extra cost. This is possible because,
due to its discrete symmetry, the walk with a coin effectively
uses only half the sitesse.g., for a walk starting at the origin,
the amplitude distribution is restricted to only odd sites at
odd t and only even sites at eventd. Our walk makes use of
all the sites at every instance.

s2d It can be seen from Eqs.s15d and s4d that, at every
time step,C has 50% probability to stay put at the same
location, while the walk with a coin has no probability to
remain at the same location. Yet both achieve the same
spread of amplitude distribution, as exemplified by the mo-
ments in Eqs.s40d–s42d. This means that our walk is
smoother—more directed and less of a zigzag.

s3d When the coin is considered a separate degree of free-
dom, quantum evolution entangles the coin and the walk
position. On the other hand, when the coin states are made
part of the position space, as we have done, entanglement

FIG. 3. Probability distribution after 32 time steps for the sym-
metric quantum random walk, with an absorbing wall on the left
side ofn=0.

FIG. 4. Time dependence of the probability for the symmetric
quantum random walk to remain unabsorbed, in presence of an
absorbing wall to the left ofn=0. The walk gets within a few
percent of the asymptotic escape probability in just two time steps.
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disappears completely—only superposition representing the
amplitude distribution survivesf15g. This elimination of
quantum entanglement would be a tremendous advantage in
any practical implementation of the quantum random walk,
because quantum entanglement is highly fragile against en-
vironmental disturbances while mere superposition is much
more stable. The cost for gaining this advantage is the loss of
short distance homogeneity—translational invariance holds
in steps of 2 instead of 1.

IV. EXTENSIONS AND OUTLOOK

The quantum random walk on a line is easily converted to
that on a circle by imposing periodic boundary conditions.
When the circle hasN points, the only change in the analysis
is to replace the integral overk in the inverse Fourier trans-
form by a discrete sum overk values separated by 2p /N.
Since the quantum random walk spreads essentially uni-
formly, there is not much change in its behavior. All that one
has to bear in mind is that, on a long time scale, unitary
evolution makes the walk cycle through phases of spreading
out and contracting toward the initial state.

Going beyond one dimension, the strategy of constructing
discrete ultralocal unitary evolution operators by splitting the
Hamiltonian into block-diagonal parts is applicable to ran-

dom walks on any finite-color graphf7g. One just constructs
232 block unitary matrices for each color of the graph, and
the single-time-step evolution operator becomes the product
of all the block unitary matrices. In particular, the
d-dimensional hypercubic walk can be constructed as a ten-
sor product ofd one-dimensional walks, using 2d block uni-
tary matrices.

Our results clearly demonstrate that discrete quantum ran-
dom walks with useful properties can be constructed without
a coin-toss instruction. The addition of a coin-toss instruction
may still be beneficial in specific quantum problems. A coin
is an extra resource, and there are known instances where the
addition of a coin-toss instruction makes classical random-
ized algorithms have a better scaling behavior compared to
their deterministic counterpartsf1g. One may hope for a
similar situation in the quantum case too, keeping in mind
that a careful initialization of the quantum coin state would
be a must in such cases.

A clear advantage of quantum random walks is their lin-
ear spread in time, compared to square-root spread in time
for classical random walks. So they are expected to be useful
in problems requiring fast hitting times. Some examples of
this nature have been explored in graph-theoretical and sam-
pling problemsssee Refs.f3,4g for reviewsd, and more appli-
cations need to be investigated.

f1g R. Motwani and P. Raghavan,Randomized AlgorithmssCam-
bridge University Press, Cambridge, U.K., 1995d.

f2g E. Farhi and S. Gutmann, Phys. Rev. A58, 915 s1998d.
f3g J. Kempe, Contemp. Phys.44, 307 s2003d.
f4g A. Ambainis, Int. J. Quantum Inf.1, 507 s2003d.
f5g We deliberately use the label “ultralocal” here, because “local”

physical interactions sespecially when described in the
renormalization-group frameworkd include all those that fall
off exponentially or faster with distance.

f6g L. Susskind, Phys. Rev. D16, 3031s1977d.
f7g J. L. Richardson, Comput. Phys. Commun.63, 84 s1991d.
f8g D. A. Meyer, J. Stat. Phys.85, 551 s1996d.
f9g K. Wilson, in New Phenomena in Subnuclear Physics, edited

by A. Zichichi sPlenum Press, New York, 1977d.

f10g A. Ambainis, J. Kempe, and A. Rivosh, e-print quant-ph/
0402107, Proceedings of the 16th ACM-SIAM SODAsin
pressd.

f11g A. M. Childs and J. Goldstone, Phys. Rev. A70, 042312
s2004d.

f12g A. Patel, K. S. Raghunathan, and P. Rungtasunpublishedd.
f13g A. Nayak and A. Vishwanath, e-print quant-ph/0010117.
f14g A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J.

Watrous, Proceedings of STOC’01sACM, New York, 2001d,
p. 37.

f15g Entanglement is always defined with respect to a specific divi-
sion of the whole system into its parts. If the division scheme
is altered, entanglement can change.

PATEL, RAGHUNATHAN, AND RUNGTA PHYSICAL REVIEW A 71, 032347s2005d

032347-6


