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Quantum random walks do not need a coin toss
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Classical randomized algorithms use a coin toss instruction to explore different evolutionary branches of a
problem. Quantum algorithms, on the other hand, can explore multiple evolutionary branches by mere super-
position of states. Discrete quantum random walks, studied in the literature, have nonetheless used both
superposition and a quantum coin toss instruction. This is not necessary, and a discrete quantum random walk
without a quantum coin toss instruction is defined and analyzed here. Our construction eliminates quantum
entanglement between the coin and the position degrees of freedom from the algorithm, and the results match
those obtained with a quantum coin toss instruction.
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I. MOTIVATION tum random walk algorithmésee again Ref$3,4]), because

) ) the former have been constructed using a coin toss instruc-
Random walks are a fundamental ingredient of nondetergo \while the latter do not contain a coin toss instruction.

ministic algorithmg 1], and are used to tackle a wide variety o work eliminates this confusion in the sense that scaling
of problems, from graph structures to Monte Carlo samyehavior of discrete and continuous time quantum random
plings. Such algorithms have many branches, which are exgalk algorithms, both constructed without a coin toss in-
p_Iored probabilistically, to estimate the correct result. A clas-stryction, would coincide. Thereafter, a quantum coin would
sical computer can explore only one branch at a time, sg an additional resource; if its inclusion can improve scaling

typically the algorithm is executed several times, and th&enavior of some quantum algorithms, that should not be a
estimate of the final result is extracted from the ensemble °§urprise.

individual executions by methods of probability theory. To
ensure that different branches are explored in different ex-
ecutions, one needs nondeterministic instructions, and they Il. QUANTUM RANDOM WALK ON A LINE

are p_rovided in the form of random numbers. A coin toss is_ A random walk is a diffusion process, which is generated
the S|mplest example Of. a rand_om number generator, ar_1d By the Laplacian operator in the continuum. To construct a
can be included as an instruction for a probabilistic Turingyis.rete quantum walk, we must discretize this process using

machine. evolution operators that are both unitary and ultraldeal

. A quantum computer can explore mult|_p_le branches in Jjltralocal operator vanishes outside a finite raf§g. To
different manner, i.e., by using a superposition of states. Th egin with, consider the walk on a line. The allowed posi-

probabilistic result can then be arrived at by interference o ions are labeled by integers, and the simplest translation

amplitudes corresponding to d|f_ferent branches. Thus as Ion.ﬁllvariant ultralocal discretization of the Laplacian operator is
as the means to construct a variety of superposed states exist,

there is noa priori reason to include a coin toss as an in- e _

struction for a(probabilistio quantum Turing machine. This HIn) > [=In = 1)+ 2In} = n + 1], @

is obvious enough, and indeed continuous time quantum rafrpe corresponding evolution operator is

dom walks have been studied without recourse to a coin toss

instruction[2]. Nevertheless, a coin toss instruction has been U(AY) = exgiHAD) = 1 +iHAt + O((At)?). )
considered necessary in construction of discrete time quan-

tum random walks(see, for instance, Ref$3,4]). In this  \ith a finite At, U has an exponential tail and so it is not
article, we demonstrate that this is a misconception arisingtrajocal. The evolution operator can be made ultralocal by
out of unnecessarily restrictive assumpt.lons. .We exP'_'C'“ytruncation, say by dropping th®((At)?) part, but then it is
construct a quantum random walk on a line without using g4t ynitary. One may search for ultralocal translationally in-

coin toss instruction, and analyze its properties. __variant unitary evolution operators using the ansatz
There also exists confusion in the literature about differ-

ent scaling behavior of discrete and continuous time quan- Un)y=ajn- 1) +bjn) + ¢jn+ 1) (3)

but then the orthogonality constraints between different rows
*Also at Supercomputer Education and Research Centre, India@f the unitary matrix make two ofa,b,c} vanish, and one
Institute of Science, Bangalore-560012, India. Electronic addresbtains a directed walk instead of a random walk.
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U= 11 @ n+ ¢+ [ In=1Xn[].  (4) U(At) = Hertodt = ghedtgodt + O((At)?)
n

= Uo(ADU,(At) + O((A1)?). (8)
This modification, however, brings its own set of caveats. IfThe uantum random walk can now be generated Ui
the coin state is measured at every time stether words, d 9

) . ; . as the evolution operator for the amplitude distribution
if the coin is classical one gets no improvement over the

classical random walk. With a unitary coin evolution opera-'/'(n’t)’

tor, which entangles the coin state with the pqsition stqte, the #(n,t) =[UU,J'(n,0). 9)
quantum walk performs better than the classical walk in cer- ) )
tain algorithms. But in this case, the final results depend od N fact thatU, andU, do not commute with each other is
the initial state of the coin, because quantum evolution i€nough for the quantum random walk to explore all possible
reversible and not Markovian. For example, the final statéStates. The price paid for the above manipulation is that the
distribution of the quantum walk depends on whether the_evolutlon oper_ator is translationally invariant along the line
initial coin state wag?), or ||), or some linear combination N Steps of 2, instead of 1. _ _
thereof. To get around this initial coin state sensitivity, fur- 1€ 2X2 matrix appearing irH, andH, is proportional
ther algorithmic modifications such as averaging over initialt® (1~o1), and so its exponential will be of the forel
coin states, or intermittent coin measurements, or use of multisoy), [c[*+[s?=1. A random walk should have at least two

tiple coins, have been suggested, but they still leave a feelingonzero entries in each row of the evolution operator. Even
of something to be desired. though our random walk treats even and odd sites differently

by construction, we can obtain an unbiased rgndqm walk, by
choosing the X 2 blocks ofU, andU, as (1/12)(};). The
A. Getting rid of the coin discrete quantum random walk then evolves the amplitude

The way out of the above conundrum is familiar to lattice diStribution according to

field theoristd 6]. It has also been used to simulate quantum 1

scattering with ultralocal operators’], and to construct Uoln) = —=[Im +iln+ (- 1)M], (10
guantum cellular automati@]. In its simplest version, the V2

Laplacian operator is decomposed into its even and odd parts

H=H+H 1 ,
e Udn) = 0l +iln - (- D7), (11)
\r
-1 2 -1 0 O O -- 1
0 -1 2 -1 0 0 - Uelqlr) = ZLiln= 1)+ [m) +ijn+ 1) = |+ 2(- 1)),
He 0 0 -1 2 -1 0 -
(12)
o o o -1 2 -1--
B. Relation to the walk with a coin
Our construction of discrete quantum random walk has
-11.. 0 0 O O - exchanged the up-down coin states for the even-odd site la-
0 0 1 -1 0 0 bel. In the language of lattice field theory, this strategy re-
H, o . () sembles staggered fermiop], while that with a coin(or
6 0 -11 0 O - spin) is akin to Wilson fermiong9]. Indeed, an explicit re-
0 0 0 0O 1 —-1--- lation between our construction and that with a coin can be
established. Let
p(2n,t) )
Y(n,t) = 13
(n.9 <¢(2n+1,t) (13
c 1 -1 0 0 0 describe the amplitude distribution in a two-component no-
6 -11 0 0 O0- tation. Then Eqs(9) and(12) are equivalent to the evolution
Ho = ()
° 0O 0 0 1 -1 0- 1/1 ]
0O 0 0 -1 1 O - W(N,t) =[UC]"W(N,0), C:’_E<i 1), (19
v

The two partsH, and H, are individually Hermitian. They 1 ioq
are block diagonal with a constant<2 matrix, and so they UIN) = E|N> + 32
can be exponentiated while maintaining ultralocality. The to- -
tal evolution operator can therefore be easily truncated, withHere, for clarity, we have denoted the basis statesifdry
out giving up either unitarity or ultralocality, IN). The symmetric coin operat@ mixes the up-down com-

1i0’3

IN T 1). (15)
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ponents of’. The walk operatot) distributes the amplitude
equally between remaining at the same site and moving to .12
the neighboring sites. The projection operat@tstos)/2 0.1
pick out the amplitude components that move forward and < 0.08
backward. Finally, the operatar; interchanges the up and §°0_06
down components o, producing what Ref.10] has called
the flip-flop walk. 0.04
It is also instructive to note that while the diffusion op- W
eratorH has the structure of a second derivative, its two parts W T TR
H andH, have the structure of a first derivative. This split is n

reminiscent of the “square root” one takes to go from the L ,
Klein-Gordon operator to the Dirac operator. For a quantum FI_G. 1. Probability distribution after 32 time steps for the asym-
random walk with a coin, this feature has been used to conM€tic quantum random walk,.
struct an efficient search algorithm on a spatial lattice of_
dimension greater than[10,11]. Reanalysis of that problem y(k,t). While we are unable to evaluate it exactly, many
is in progress, without using a coin, in view of our results properties of the quantum random walk can be extracted nu-
[12]. merically as well as by suitable approximations.

Consider a walk starting at the origigi,(n,0)= 4. Its

amplitude distribution at later times is specified by
I1l. ANALYSIS OF THE WALK

~ +1 —sink+\1 +sirfk
It is straightforward to analyze the properties of the walk Yo +(K,0) = ok (23
in Eq. (12) using the Fourier transform: 2V1 +sirfk 1
Wk, =2 eXyin,t), 16 1 (" dken
i) = 2 e n.y (16) ) = =

2w ) _\1+sirfk

7 Ak e (—i sinayt sink + coswytV1 + sirf k)

wn.y = J_,T 27 wkt). (7 8 i sin oyt '

The evolution of the amplitude distribution in Fourier space (24

is easily obtained by splitting it into its even and odd parts: This walk is asymmetric because our definitions treat even
and odd sites differently. We can get rid of the asymmetry by

= (%), Pk, t) = [M(K) ]k, 0), (18)  initializing the walk asy(n, 0)=(8, 0+ dn,1)/ V2. The walk is
o then symmetric under« (1-n), and the amplitude distribu-

tion evolves according to

M = (— ieksink icosk ) 19 ‘1
“\ icosk iesink/’ P (K, 0) = ————
_ Vol 22(1 + sirt k)
The unitary matrixM has the eigenvalues, = e*'“« (this = o —
sign label continues in all the results bellpw e~ sink+ V1 +sifk (25)
. . — _ 1+€eXsink+eky1 +sirfk/’
A, =sirfk+icoskyl +sirfk, wg=cos(sirfk),
(20) 1 (™ dkekn
with the (unnormalized eigenvectors, 27 ) . \2(1 +sirf k)
(— sink+ V1 + sir? k) " ( i sinw,t(e - sink) + coswty1 + sirf k )
S ) o K K= |-
- 1 i sinw,t(1 +€e* sink) + coswte®V1 + sirf k
(26)
1
o ( ) —n’-) (21 Figures 1 and 2 show the numerically evaluated probability
sink+ V1 +sirtk distributions, after 32 time steps, for asymmetric and sym-
The evolution of amplitude distribution then follows metric quantum random walks, respectively. Note that, by
B B B construction, the distributions after time steps remain
Wk, t) = ey, (k,0) + e Widy_(k, 0), (22)  within the interval[-2t+1, 2].
where 3. (k,0) are the projections of the initial amplitude A. Asymptotic behavior of the walk
distribution alonge,. The amplitude distribution in the posi- For larget, a good approximation to the distribution Eq.

tion space is given by the inverse Fourier transform of(26) can be obtained by the stationary phase method, as in
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FIG. 2. Probability distribution after 32 time steps for the sym-

metric quantum random wallgs. The dark curve denotes the
smoothed distribution of Eq39).

Ref.[13]. The integral is periodic, and a sum of terms of the

form

I(n,t) = f %I:_g(k)e“b(k*“*t). 27)

The highly oscillatory part of the integrand is determined by

¢(k,n,t)=—knt wt, while the remaining partg(k) is
bounded. Simple algebra yields

% _ 2 sink 28)
dk  V1+sirfk’
d? 2 cosk
= - 210302 (29)
dk® (1 +sirfk)
Boy _4 sin k(l. + cc:jzk) (30
di (1 +sirf k)
The stationary point of the integrdd=kg, has to satisfy
n 2 sinkg
=—-= F ——, 31
a= +V—1+sir?ko (3D

which has a solution only fon e [—\s"it,\@t].
We now separately consider three cases.

(1) |n|> \2t. There is no stationary point in this case. For
In|=(\2+e)t, |dp(k)/dk>¢, and repeated integration by
parts shows that the integral falls off faster than any positive

integer power oOfet.

(2) In|]=v2t. In this case, there is a stationary point of

order 2 atky= + sgn(n)=«/2. The integral is therefore propor-

tional tot™3. Explicitly,
(1 1-i )C ( 7Tt>
\J”2 V 2

'ps( \"Et,t) =ct?3 (

d(— \2t,1) = et
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1 1
c F(—) ~ 0.355.

T o3l \3 (34)

(3 |n|< \2t. There are two stationary points in this case,
ko]_ S (_’77/2 ,77/2) and k02: m— ko]_, with

n
sinky= ¥ ——, 35)
ko \4t? — n? (
d?wy VA2 - 2n?(4t? - n?)
= 3 (36)
di® |, 4t

The integral is therefore proportional to"2. In terms of the
phase

$o= Kot + wy t = (7/4), (37
the distribution amplitude is
1 [(1—i)n+ 2t)/\a2 - n?
Ye= Jt(a? - 2n2) V4 { COS%( Va2 - 2n?/(2t + n) )
ST | S

The smoothed probability distribution, obtained by replacing
the highly oscillatory terms by their mean values, is

4t?
VA2 — 2n2(4t2 - n?)

| ‘/’s| gmooth: (39)
[Here, then«< (1-n) symmetry can be restored by replacing
n by (n—%).] As shown in Fig. 2, it represents the average
behavior of the distribution very well. Its low-order moments
are easily calculated to be

\2t
J _ [#ddmoonin=1, (40
n=—2t
V2t )
|7 lpizatin=t. (1)
n=-y2t
V2t , _
f 0 amoonfin=2(2 = V2)t%. (42)
n=—y2t

The following properties of the quantum random walk are
easily deduced from all the above results.

(8 The probability distribution is double peaked with
maxima approximately at w2t. The distribution falls off
steeply beyond the peaks, while it is rather flat in the region
between the peaks. With increasinghe peaks become more
pronounced, because the height of the peaks decreases more
slowly than that for the flat region.

(b) The size of the tail of the amplitude distribution is
limited by (et)™*~t"13, which gives An. =A(et)=0(t¥3).

On the inner side, the width of the peaks is governed by
|wpt| Y2~ 713 For |n|=(y2-8)t, this gives An_=A(&)
=O(t'3). The peaks therefore make a negligible contribution
to the probability distributionQ(t™/3).
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FIG. 4. Time dependence of the probability for the symmetric
qguantum random walk to remain unabsorbed, in presence of an
absorbing wall to the left oh=0. The walk gets within a few
percent of the asymptotic escape probability in just two time steps.

FIG. 3. Probability distribution after 32 time steps for the sym-
metric quantum random walk, with an absorbing wall on the left
side ofn=0.

(c) Rapid oscillations contribute to the probability distri-
bution (and hence to its momentsnly at subleading order.
They can be safely ignored in an asymptotic analysis, retai
ing only the smooth part of the probability distribution.

(d) The quantum random walk spreads linearly in time
with a speed smaller by a factor o2 compared to a directed
walk. This speed is a measure of its mixing behavior an
hitting probability. The probability distribution is qualita-
tively similar to a uniform distribution over the interval
—\s’Zt,\s“?t]. In particular, themth moment of the probability
distribution is proportional ta™.

walk only marginally. The probability distribution in the re-
ngion close ton=0 is depleted as anticipated, while it is a bit
of a surprise that the peak height neax\2t increases
slightly. As a result, the escape speed from the wall is little
"higher than the spreading speed without the wall. As shown
d’n Fig. 4, we find that the first two time steps dominate
absorption, P ;pt=1)=0.25 and Pg 4,{t=2)=0.375, with
very little absorption later on. Asymptotically, the net absorp-
tion probability approacheBg 5p{*)=~0.4098 for the sym-
metric walk.[We also find, for the asymmetric walk starting

These properties agree with those obtained in RES] at the origin,PO,?bgoo)zO.2732] This value is smaller thgn
for a quantum random walk with a coin-toss instruction, e corresponding resulPapd=)=2/m for the symmetric
demonstrating that the coin offers no advantage in this parduantum random walk with a coin-toss instructjdr].
ticular setup.(Extra factors of 2 appear in our results, be- ~1hus the part of the quantum random walk going away
cause a single step of our walk is a product of two nearedfom the absorbing wall just takes off at a constant speed,
neighbor operatort), and U,.) It is important to note that _hardly ever returning to the starting point. Again, this behav-
the properties of the quantum random walk are in sharp corl® IS in a sharp contrast to that of the classical random walk.
trast to those of the classical random walk. The classicaf* classical random walk always returns to the starting point,
random walk produces a binomial probability distribution, SCONer or later, and so its absorption probability approaches

which in the symmetric case has a single peak centered at tH#Nty ast—x.

origin and variance equal to
C. Comparison to the walk with a coin

B. The walk in presence of an absorbing wall The above results bring out the differences of our quan-

The escape probability of the quantum random walk ca tum random walk construction compared to that of Refs.

: 4 ) 13,14
be_: calculat_ed by mtroducmg an absorbing vyall, say betweerL (1) We have absorbed the two states of the coin into the
n=0 andn=-1. Mathematically, the absorbing wall can be

represented by a projection operator for0. The unab- even-odd site label at no extra cost. This is possible because,
o due to its discrete symmetry, the walk with a coin effectively
sorbed part of the walk is given by . . .
uses only half the site®.qg., for a walk starting at the origin,

PNt +1) = P—oUUi(n,t) the amplitude distribution is restricted to only odd sites at
1 oddt and only even sites at evepn Our walk makes use of
=U U, (nt) = =8 _[ig(0,t) = (1,0)], all the sites at every instance.
U,y 27" g0 - (1.0 (2) It can be seen from Eq$15) and (4) that, at every

(43) time step,¥ has 50% probability to stay put at the same
location, while the walk with a coin has no probability to

with the absorption probability remain at the same location. Yet both achieve the same
: ) spread of amplitude distribution, as exemplified by the mo-
Pabs(t)‘l_gowm'm : (44) ments in Egs.(40)—(42). This means that our walk is

smoother—more directed and less of a zigzag.

Figure 3 shows the numerically evaluated probability distri- (3) When the coin is considered a separate degree of free-
bution, in presence of this absorbing wall, after 32 time stepslom, quantum evolution entangles the coin and the walk

and with the symmetric initial state. Comparison with Fig. 2 position. On the other hand, when the coin states are made
shows that the absorbing wall disturbs the evolution of thepart of the position space, as we have done, entanglement
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disappears completely—only superposition representing thdom walks on any finite-color graghf]. One just constructs
amplitude distribution survive$15]. This elimination of 22X 2 block unitary matrices for each color of the graph, and
quantum entanglement would be a tremendous advantage the single-time-step evolution operator becomes the product
any practical implementation of the quantum random walkof all the block unitary matrices. In particular, the
because quantum entanglement is highly fragile against erd-dimensional hypercubic walk can be constructed as a ten-
vironmental disturbances while mere superposition is muclsor product ofd one-dimensional walks, usingidblock uni-
more stable. The cost for gaining this advantage is the loss dary matrices.
short distance homogeneity—translational invariance holds Our results clearly demonstrate that discrete quantum ran-
in steps of 2 instead of 1. dom walks with useful properties can be constructed without
a coin-toss instruction. The addition of a coin-toss instruction
may still be beneficial in specific quantum problems. A coin
is an extra resource, and there are known instances where the
The quantum random walk on a line is easily converted taaddition of a coin-toss instruction makes classical random-
that on a circle by imposing periodic boundary conditions.ized algorithms have a better scaling behavior compared to
When the circle habl points, the only change in the analysis their deterministic counterpartsl]. One may hope for a
is to replace the integral ovédrin the inverse Fourier trans- similar situation in the quantum case too, keeping in mind
form by a discrete sum ovek values separated byzZN.  that a careful initialization of the quantum coin state would
Since the quantum random walk spreads essentially unbe a must in such cases.
formly, there is not much change in its behavior. All that one A clear advantage of quantum random walks is their lin-
has to bear in mind is that, on a long time scale, unitaryear spread in time, compared to square-root spread in time
evolution makes the walk cycle through phases of spreadintpr classical random walks. So they are expected to be useful
out and contracting toward the initial state. in problems requiring fast hitting times. Some examples of
Going beyond one dimension, the strategy of constructinghis nature have been explored in graph-theoretical and sam-
discrete ultralocal unitary evolution operators by splitting thepling problemssee Refs[3,4] for reviews, and more appli-
Hamiltonian into block-diagonal parts is applicable to ran-cations need to be investigated.
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