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We consider collective decoherence for the quantum Shor algorithm. A quantum computer which interacts
with its environment is modeled by a spin-1/2 chain interacting with harmonic oscillators at a given tempera-
ture. We calculate the nondiagonal matrix elements of the density matrix which are important for implemen-
tation of the quantum Shor algorithm, and study the decay rate and the Lamb phase shift for these elements. It
is shown that the probability of superdecoherence in the quantum Shor algorithm is extremely small. The
conditions for preserving quantum entanglement are formulated.

DOI: 10.1103/PhysRevA.71.032346 PACS numberssd: 03.67.Lx, 75.10.Jm

I. INTRODUCTION

The problem of the decoherence of entangled states is
well known as one of the major obstacles in quantum infor-
mation processingf1,2g. In the simplest model of decoher-
ence first considered inf3g, every qubit independently inter-
acts with its own environment. It was first pointed out inf4g
that in many situations one faces the opposite case: all qubits
interact with the same environment. This case is commonly
called collective decoherencesCDd. In the semiclassical ap-
proach, CD appears if the size of a quantum register is
smaller than the correlation length of the bath: in this case all
qubits experience the same fluctuation of the bath. In particu-
lar, it was shown inf4g that CD causes the phenomena of
superdecoherence and subdecoherence: the decoherence
sharply increases for one group of the nondiagonal elements
of the density matrix and completely disappears for another
group. Since then CD has been largely studied theoretically
f5–11g. Experimental studies of CD in application to
quantum-information processing have been reported for op-
tical systemsf12g, ion trapsf13g, and nuclear magnetic reso-
nancesNMRd in liquids f14–16g. The simplest experimental
implementation of CD is NMR in a uniform magnetic field,
which fluctuates in time in magnitude and directionf16g.
There are mainly two factors that contribute to the decoher-
ence of an entangled state. The first factor is a decrease of
the magnitude of the nondiagonal density matrix elements
f4g. This factor is referred as “decay,” “damping,” or “phase
damping.” The second factor is the relative phase shift be-
tween the nondiagonal matrix elements caused by the envi-
ronmentf7g. This factor does not affect the moduli of the
matrix elements. However, it may destroy the quantum inter-
ference as well as the phase damping. This factor is referred
to as the “Lamb shift” or “Lamb phase shift.” Note that the
collective Lamb shift is a unitary evolution, which may in-
duce entanglement between the qubits.

The powerful error-correction codes first suggested in
f17,18g are based on the assumption that the most probable
errors occur independently to one or a few qubits. For the
case of CD other approaches have been suggested. One of
them, first proposed inf4g and later developed inf5–8g, re-
lies on the use of subdecoherence. A logical qubit is repre-

sented by a group of physical qubits in such a way that the
states of the logical qubits are free from decoherence
sdecoherence-free subspacesd. In particular, it was shown
that universal quantum computation is possible within
decoherence-free subspaces. The other more abstract ap-
proach first introduced inf9g proposes to represent informa-
tion in terms of the conserved quantities of the quantum
system, which are not affected by noisesnoiseless sub-
systemsd. However, both decoherence-preventive schemes
require additional computation resources and complexity.
Consequently, it is important to discuss ways to preserve
entanglement without application of complicated
decoherence-preventive schemes.

In this paper, we consider the implementation of the quan-
tum Shor algorithmsQSAd in the presence of CD. In the
second section, we introduce an extremely simplified scheme
of the QSA. We identify the nondiagonal elements of the
density matrix that are important for QSA implementation in
our scheme. In the third section, we consider both the decay
and the Lamb shift of those matrix elements. Our statistical
analysis demonstrates that the probability of superdecoher-
ence in the QSA is extremely small. We formulate conditions
for preserving quantum entanglement in our QSA scheme.

II. SIMPLE SCHEME FOR QSA IMPLEMENTATION

In this section, we describe a simple scheme for QSA
implementation which we will use to analyze CD. As an
example, we consider the decomposition of the numberN
=15 in a quantum computersQCd with 4 qubits in the firstn
register, and 4 qubits in the secondfsnd register.

s1d One selects a coprime number, sayc=7.
s2d A QC computes the function

fsnd = cnsmod Nd = 7nsmod 15d. s1d

After this, a measurement on thefsnd register is performed
and some valuef0 is obtained, e.g.,f0=7. After the compu-
tation the state of the QC is
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uCl =
1

ÎD
o
n=0

D−1

un, fsndl =
1

4
hu0,1l + u1,7l + u2,4l + u3,13l

+ u4,1l + ¯ + u15,13lj, s2d

and after the measurement the state of the QC is

uCl = fsT0/Dd1/2go
n

8unl = s1/2dhu1l + u5l + u9l + u13lj.

HereD=24 is the number of basis states in then register;on8
indicates that the sum is taken over the valuesn, 0ønøD
−1, which satisfy the equationfsnd= f0, T0 is the period of
the functionfsnd, and we use decimal notation to express the
states of then and fsnd registers.

s3d The QC performs a discrete Fourier transform in then
register. The new state of the QC is

uCl = sT0
1/2/Ddo

k=0

D−1

o
n
8 expsi2pkn/Ddukl. s3d

Quantum interference selects the values ofk that are associ-
ated with the period of the functionfsnd and eliminates all
other values ofk. In our case, a QC selects the valuesk
=0,4,8,12. As anexample, fork=1 we have

o
n
8 exps2pni/16d = 0. s4d

s4d Measurement of the state of then register reveals one
of the selected valuesk=0,4,8,12.

s5d After multiple repetition of steps 1–4 one takes the
fractionsD /k for selected values ofk sin the lowest terms,
for nonzero values ofkd and finds the periodT0=4 which is
the maximum numerator in the fractionsD /k.

s6d One computes the greatest common divisorsGCDd

GCDscT0/2 ± 1;Nd = GCDs49 ± 1;15d, s5d

which, in our case, provides both factors 3 and 5.
In order to describe the decoherence, we reformulate steps

2 and 3 in the QSA scheme in terms of the density matrixr.
After the second step, the state of the QC is described by the
density matrix

r = sT0/Ddo
n,n8

8unlkn8u, s6d

where 0øn,n8øD−1, and fsnd= fsn8d= f0. After the third
step, the density matrix of the QC becomes

r = sT0/D
2d o

k,k8=0

D−1

o
n,n8

8 exph2piskn− k8n8d/Djuklkk8u. s7d

In this equation, the sum of the diagonal matrix elements

sT0/D
2do

k=0

D−1

o
n,n8

8 expf2piksn − n8d/Dguklkku s8d

describes the probabilities of measurement at step 4. Equa-
tion s8d selects the same values ofk as Eq.s3d.

Next, we make a major simplification. We assume that the
time for implementation of each step in the QSA scheme is

negligible, i.e., each step is decoherence-free. In this case,
the decoherence occurs between the steps 2 and 3, and be-
tween the steps 3 and 4. However, the decoherence between
the steps 3 and 4 does not influence the results of measure-
ment in step 4 which depends only on the values of the
diagonal elements of the density matrix. Thus, only the de-
coherence between the steps 2 and 3 is important. Note that
the nondiagonal terms in Eq.s6d can be written as

unlkn ± pT0u, p = 1,2, . . . . s9d

To implement the QSA one only needs to preserve the non-
diagonal termss9d between steps 2 and 3.

III. CD IN THE QSA

We now consider the simple model of CD first introduced
in f4g. The qubits are described by effective spin-1/2 opera-
tors. The environment is represented by a system of oscilla-
tors with continuously distributed frequencies. We analyze
the interaction between the environment and thez compo-
nent of the effective spin. Thus, our model does not include
a spin relaxation, i.e., exchange of energy with the environ-
ment. We assume this system of environmental oscillators to
be initially in thermal equilibrium. The Hamiltonian of the
QC and environment is

H = o
q

vqsaq
†aq + 1/2d + o

j

I jzo
q

slqaq
† + H.c.d + V0 + V.

s10d

Herevq is the frequency of theqth oscillator,aq
† andaq are

the creation and annihilation operators,I jz is the operator of
the z component of thej th spin,lq is the constant of inter-
action between spins and theqth oscillator, the operatorV0
describes the Zeeman interaction of spins with the permanent
magnetic field which points in thez direction, and the per-
manent interactions between thez components of the spins
sit can be, for example, the Ising interactiond, the operatorV
describes the interactions that provide implementation of the
QSA sit can be either the interaction between the spins of the
QC and the pulses of the external field or short-time interac-
tion between the spins caused by the action of the external
field pulsesd, and we put"=1. sNote that in the “ideal case”
permanent interactions in the QC are absent, i.e.,V0=0.d In
this model, the basis computational statesun, fskdl are the
eigenstates of the Hamiltonian whenV=0. The interaction
between the spins and the environment destroys the quantum
superposition of the basis states.

First, we transfer to the interaction representation

Hintstd = expsiH0tdH1 exps− iH0td, s11d

whereH0 is the first term in Eq.s10d andH1 is the second
term. Using the relations

expsja†ada† exps− ja†ad = a†ej,

expsja†ada exps− ja†ad = ae−j, s12d

we obtain from Eq.s11d
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Hintstd = o
j

I jzo
q

slqe
ivqtaq

† + H.c.d. s13d

Next, we compute the evolution operator

U = T̂ expH− iE
0

t

HintstddtJ . s14d

Dividing the integration intervals0,td into small intervalsDt
and using the well-known expression for operatorsA andB
with the commutatorfA,Bg,

eA+B = e−fA,Bg/2eAeB, s15d

we obtain from Eqs.s14d and s15d

U = p
m.k

expH−
Dt2

2
fHintstmd,HintstkdgJ

3expH− iE
0

t

HintstddtJ , s16d

where

fHintstmd,Hintstkdg = − 2iSo
j

I jzD2o
q

ulqu2 sinvqstm − tkd.

s17d

Finally, we can write the expression forU in the form

U = p
m.k

expHiDt2So
j

I jzD2o
q

ulqu2 sinvqstm − tkdJ
3expH2o

j

I jzo
q

flqhqstdaq
† − H.c.gJ , s18d

hqstd =
1 − expsivqtd

2vq
.

Note that the first factor in this expression does not contain
the operatorsa† anda.

After the second step in the QSA scheme the density ma-
trix of the QC and environment can be represented as

rstd = sT0/Ddo
n,n8

8Ures0dunlkn8uU†. s19d

Hereres0d is the initial density matrix of the environment

res0d = p
q

f1 − exps− vq/Tdgexpf− svq/Tdaq
†aqg, s20d

where we putkB=1.
The process of decoherence in the QC is caused by en-

tanglement between the thermal environment and the QC.
The reduced density matrix of the QC can be represented as

sT0/Ddo
n,n8

8re
nn8unlkn8u, s21d

wherere
nn8 is the environmental factor,

re
nn8 = TrH p

m.k

expF− iDt2Iz
2sndo

q

ulqu2 sinvqstm − tkdG
3expF2Izsndo

q

flqhqstdaq
† − H.c.gGres0d

3 p
m.k

expFiDt2Iz
2sn8do

q

ulqu2 sinvqstm − tkdG
3expF− 2Izsn8do

q

flqhqstdaq
† − H.c.gGJ . s22d

Here Izsnd is the spinz component in the stateunl, and
Iz
2snd=fIzsndg2. Direct computation of the trace in Eq.s22d

results in the following expressionf4,7g:

re
nn8 = exphiastdfIz

2snd − Iz
2sn8dgjexph− bstdfIzsnd − Izsn8dg2j,

s23d

where

astd = Dt2 o
m.k

o
q

ulqu2 sinvqstm − tkd

= o
q

ulqu2E
0

t

dt8E
0

t8
dt9 sinvqst8 − t9d

= o
q

ulqu2

vq
2 svqt − sinvqtd, s24d

bstd = 2o
q

ulqhqstdu2 cothsvq/2Td.

Here we take the limitDt→0.

The first factor in the expression forre
nn8 describes the

Lamb phase shift, and the second factor describes the decay
of the off-diagonal matrix elements. The Lamb phase shift is
zero for a single spin and is equal toastd for two spins. The
decay of the nondiagonal matrix element for a single spin is
determined by the valuebstd. Expressions23d describes the
phenomenon of superdecoherence for the decay rate if the
differencefIzsnd− Izsn8dg2 is close to its maximum possible
valueL2, whereL is the number of qubits in then register.
Correspondingly, it describes a superdecoherence for the
Lamb phase shift if the differenceuIz

2snd− Iz
2sn8du is close to

L4/4.
The expressions forastd and bstd can be rewritten in

terms of the dispersion relationdq/dv and the density of
statesGsvd:

astd =E dv k2svd
vt − sinsvtd

v2 ,

bstd = 2E dv k2svd
sin2svt/2d

v2 cothS v

2T
D ,

k2svd = ulsvdu2Gsvd
dq

dv
.

Now we should recall that the only nondiagonal matrix
elements that are important for the QSA are given by Eq.s9d.
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Thus, we should find the probability distribution for the val-
uesDIz andDIz

2,

DIz = Izsn0 + pT0d − Izsn0 + p8T0d,

DIz
2 = Iz

2sn0 + pT0d − Iz
2sn0 + p8T0d, p , p8, s25d

where n0 is the minimum value ofn; sn0+pT0d and sn0

+p8T0d count all other values ofn that correspond to a given
value of the functionfsnd.

Suppose that a QC is to factor a large numberN. Typi-
cally, the periodT0 of the functionfsnd is large. We choose
randomly a numberT0 and a numbern0,T0. Then, we com-
pute the values ins25d for the states un0+pT0l and
un0+p8T0l. In our computer simulations we consider two
cases: the number of qubits in then register isL=100 and
300. For the first case, we randomly choose the valueT0
,7.931028 and for the second caseT0,1.331089. For
each value ofT0 we choose an arbitrary value ofn0 sn0

,T0d and computeDIz and DIz
2 for p,p8ø10. Then we

repeat the computations for other values ofT0 andn0. Figure
1 shows the probability distribution forDIz. Figure 2 shows
the probability distribution forDIz

2. One can see that the
probability of superdecoherence in the QSA is extremely
small. As an example, forL=300 the ratio sDIz/Ld2 is
smaller than 0.0256, and the ratio 4DIz

2/L2 is smaller than
0.019 with the probabilitys1−10−4d.

Next, we discuss the conditions for preserving quantum
entanglement in the QSA. We denote the time interval be-
tween steps 2 and 3 of our QSA schemesthe characteristic
time of computationd by t0. Suppose thatP0 is the acceptable
probability of the QSA failing. From the probability distribu-
tions we can estimate the boundary valuesDIz0 and DIz0

2

which satisfy the conditions

PsuDIzu . DIz0d , P0, PsuDIz
2u . DIz0

2 d , P0. s26d

Then the conditions for preserving the quantum entangle-
ment in our QSA scheme can be formulated as

bst0dsDIz0d2 , P0, ast0dDIz0
2 , P0. s27d

From these conditions we can derive the requirements for the
valuesbst0d and ast0d. As an example, forL=300 andP0

=10−4 we obtain

bst0d , 4 3 10−8, ast0d , 2 3 10−7. s28d

As an example of a simple estimation let us assume that
aboutM =10 low-frequency phonon modes cause the collec-
tive decoherence in a solid-state spin QC. If the size of the
sample L,1 cm and the speed of elastic wavesc
,500 m/s, then the phonon’s frequency isvq/2p<c/L
<50 kHz. We assume that the distribution of the phonon
frequencies has a widthDv, which is small compared to the

FIG. 1. The probability distributionPsDIzd for L=100 sdashed
lined, and forL=300 ssolid lined with 10 000 trials.

FIG. 2. The probability distributionPsDIz
2d for L=100 and 300

with 10 000 trials.
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average frequencykvql=v. Let us take a temperatureT
@v, e.g., T=1 mK, the interaction constantlq!v, e.g.,
lq<l=10−6v, and consider a relatively large computation
time vt0, Dvt0@1. From Eq.s24d we estimate the functions
ast0d andbst0d:

ast0d < 5 3 10−6t0, bst0d < 8 3 10−9. s29d

One can see that the parameterb does not depend ont0 and
satisfies the first inequalitys28d. From the second inequality
s28d we obtain the requirement for the computation timet0:
t0,0.04 s.

IV. CONCLUSION

We discuss CD in the QSA without application of
decoherence-preventive methods. We analyze a simple QSA

scheme and estimate those nondiagonal density matrix ele-
ments that are important for QSA implementation. Next, we
consider CD for these matrix elements taking into account
both the decay and the Lamb phase shift. We show that the
probability of the superdecoherence in the QSA is extremely
small. Finally, we formulate the conditions required for pre-
serving quantum entanglement in our QSA scheme.
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