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Collective decoherence of the superpositional entangled states in the quantum Shor algorithm
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We consider collective decoherence for the quantum Shor algorithm. A quantum computer which interacts
with its environment is modeled by a spin-1/2 chain interacting with harmonic oscillators at a given tempera-
ture. We calculate the nondiagonal matrix elements of the density matrix which are important for implemen-
tation of the quantum Shor algorithm, and study the decay rate and the Lamb phase shift for these elements. It
is shown that the probability of superdecoherence in the quantum Shor algorithm is extremely small. The
conditions for preserving quantum entanglement are formulated.
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I. INTRODUCTION sented by a group of physical qubits in such a way that the

The problem of the decoherence of entangled states i&fates of the logical qubits are free from decoherence
well known as one of the major obstacles in quantum infor-(decoherence-free subspace particular, it was shown
mation processingl,2]. In the simplest model of decoher- that universal quantum computation is possible within
ence first considered i8], every qubit independently inter- decoherence-free subspaces. The other more abstract ap-
acts with its own environment. It was first pointed ou{4)  proach first introduced if9] proposes to represent informa-
that in many situations one faces the opposite case: all qubition in terms of the conserved quantities of the quantum
interact with the same environment. This case is commonlgystem, which are not affected by noigeoiseless sub-
called collective decoherenc¢€D). In the semiclassical ap- Systems However, both decoherence-preventive schemes
proach, CD appears if the size of a quantum register igequire additional computation resources and complexity.
smaller than the correlation length of the bath: in this case alConsequently, it is important to discuss ways to preserve
qubits experience the same fluctuation of the bath. In particuentanglement ~ without  application of complicated
lar, it was shown in4] that CD causes the phenomena of decoherence-preventive schemes.
superdecoherence and subdecoherence: the decoherencdn this paper, we consider the implementation of the quan-
sharply increases for one group of the nondiagonal elementsm Shor algorithm(QSA) in the presence of CD. In the
of the density matrix and completely disappears for anothegecond section, we introduce an extremely simplified scheme
group. Since then CD has been largely studied theoreticallpf the QSA. We identify the nondiagonal elements of the
[5-11. Experimental studies of CD in application to density matrix that are important for QSA implementation in
guantum-information processing have been reported for opsur scheme. In the third section, we consider both the decay
tical systemg12], ion traps[13], and nuclear magnetic reso- and the Lamb shift of those matrix elements. Our statistical
nance(NMR) in liquids [14—16. The simplest experimental analysis demonstrates that the probability of superdecoher-
implementation of CD is NMR in a uniform magnetic field, ence in the QSA is extremely small. We formulate conditions
which fluctuates in time in magnitude and directipt6].  for preserving quantum entanglement in our QSA scheme.
There are mainly two factors that contribute to the decoher-
ence of an entangled state. The first factor is a decrease of
the magnitude of the nondiagonal density matrix elements Il. SIMPLE SCHEME FOR QSA IMPLEMENTATION
[4]. This factor is referred as “decay,” “damping,” or “phase ) ) ] )
damping.” The second factor is the relative phase shift be- N this section, we describe a simple scheme for QSA
tween the nondiagonal matrix elements caused by the envitPlementation which we will use to analyze CD. As an
ronment[7]. This factor does not affect the moduli of the €xample, we consider the decomposition of the nuntiber
matrix elements. However, it may destroy the quantum inter= 15 in @ quantum computéQC) with 4 qubits in the firsn
ference as well as the phase damping. This factor is referré@gister, and 4 qubits in the secofich) register.
to as the “Lamb shift’ or “Lamb phase shift.” Note that the (1) One selects a coprime number, say7.
collective Lamb shift is a unitary evolution, which may in- (2 A QC computes the function
duce entanglement between the qubits.

The powerful error-correction codes first suggested in —n -

[17,18 are based on the assumption that the most probable f() =c¥modN) =7%(mod 15. @)
errors occur independently to one or a few qubits. For the

case of CD other approaches have been suggested. OneAdter this, a measurement on ttién) register is performed
them, first proposed if4] and later developed if6—8], re- and some valué, is obtained, e.g.f;=7. After the compu-
lies on the use of subdecoherence. A logical qubit is repretation the state of the QC is
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D-1

=23 )= 11105+ 1,7 + 2.4+ (3,13
VD n=0 4
+|4,0)+ -+ +(15,13}, (2

and after the measurement the state of the QC is
W) = [(TY/D)212 [ = (1/2{]1) +[5) +[9) +[13)}.
n

!

HereD=2%is the number of basis states in theegister;>,
indicates that the sum is taken over the valne§<n<D
-1, which satisfy the equatiofin)=f,, T, is the period of

PHYSICAL REVIEW A 71, 032346(2005

negligible, i.e., each step is decoherence-free. In this case,
the decoherence occurs between the steps 2 and 3, and be-
tween the steps 3 and 4. However, the decoherence between
the steps 3 and 4 does not influence the results of measure-
ment in step 4 which depends only on the values of the
diagonal elements of the density matrix. Thus, only the de-
coherence between the steps 2 and 3 is important. Note that
the nondiagonal terms in E¢6) can be written as

,p=12,.... 9

To implement the QSA one only needs to preserve the non-
diagonal termg9) between steps 2 and 3.

InYn+ pT,

the functionf(n), and we use decimal notation to express the

states of then and f(n) registers.

(3) The QC performs a discrete Fourier transform inthe

register. The new state of the QC is
D-1

|W) = (TX2ID) >, > expli2mkn/D)|k).

k=0 n

()

Quantum interference selects the valuek tifiat are associ-
ated with the period of the functiof(n) and eliminates all
other values ofk. In our case, a QC selects the values
=0,4,8,12. As arexample, fork=1 we have

> exp(27ni/16) = 0.

n

(4)

(4) Measurement of the state of theegister reveals one

of the selected valuds=0,4,8,12.

(5) After multiple repetition of steps 1-4 one takes the

fractionsD/k for selected values df (in the lowest terms,
for nonzero values df) and finds the period,=4 which is
the maximum numerator in the fractiobs k.

(6) One computes the greatest common divi€€D)

GCD(c™?+1;:N)=GCD(49+1;15, (5)

which, in our case, provides both factors 3 and 5.

Ill. CD IN THE QSA

We now consider the simple model of CD first introduced
in [4]. The qubits are described by effective spin-1/2 opera-
tors. The environment is represented by a system of oscilla-
tors with continuously distributed frequencies. We analyze
the interaction between the environment and theompo-
nent of the effective spin. Thus, our model does not include
a spin relaxation, i.e., exchange of energy with the environ-
ment. We assume this system of environmental oscillators to
be initially in thermal equilibrium. The Hamiltonian of the
QC and environment is

H=2 ogajag+1/2)+ 21,2 (\@h +H.c) + Vo + V.
q i q

(10

Here w, is the frequency of theth oscillator,aa anda, are

the creation and annihilation operators,is the operator of

the z component of thgth spin, A is the constant of inter-
action between spins and tlggh oscillator, the operatov
describes the Zeeman interaction of spins with the permanent
magnetic field which points in the direction, and the per-
manent interactions between thecomponents of the spins

In order to describe the decoherence, we reformulate steqﬁ can be, for example, the Ising interactipthe operatoV
2 and 3 in the QSA scheme in terms of the density matrix qescribes the interactions that provide implementation of the
After the second step, the state of the QC is described by th§ga (it can be either the interaction between the spins of the

density matrix

p=(To/D) X' InXn’
n,n’
where O<n,n’<D-1, andf(n)=f(n")=f,. After the third
step, the density matrix of the QC becomes
D-1
p=(Ty/D? > > expl2ai(kn—k'n")/DHkXK'|. (7)

k,k'=0n,n’

: (6)

In this equation, the sum of the diagonal matrix elements

D-1

(Ty/D?) >, > exp 2mik(n—n')/D]|k)K|

k=0 '

)

QC and the pulses of the external field or short-time interac-
tion between the spins caused by the action of the external
field pulse$, and we puti=1. (Note that in the “ideal case”
permanent interactions in the QC are absent, Yg=0.) In
this model, the basis computational staesf(k)) are the
eigenstates of the Hamiltonian wh&h=0. The interaction
between the spins and the environment destroys the quantum
superposition of the basis states.

First, we transfer to the interaction representation

Hint(t) = eXF(iHot)Hl eXF(_ |H0t), (11)

whereH,, is the first term in Eq(10) and 7, is the second
term. Using the relations

exp(éa'a)a’ exp(- £ata) = alef,

describes the probabilities of measurement at step 4. Equa-

tion (8) selects the same values loas Eq.(3).

Next, we make a major simplification. We assume that the

exp(¢aa)aexp(- éa'a) = aet, (12)

time for implementation of each step in the QSA scheme isve obtain from Eq(11)
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Hi®) = 3 1,3 (\g&dtal + H.c). (13) o = Tr{ 11 exp[— IAPI2()S [Ngf2 Sin wg(t - tk)]
i q m>k q
Next, we compute the evolution operator Xexp[ZIz(n)E RYTXGEWS H.C.]]pe(O)
t
Uu=T exp{— if 'Him(T)dT}. (14) xI1 exp[|A72I2(n )2 [Agl? sin wqtn, tk)]
0 m>k

Dividing the integration interval0,t) into small intervalsA 7
and using the well-known expression for operatarand B
with the commutatofA, B],

Xexp[— 2,03 gl - H.c.]} } (22)
q

Here 1,(n) is the spinz component in the stat@), and
Ii(n)=[lz(n)]2. Direct computation of the trace in E¢R2)

e,A+B — e_[A’B]/ZeAeB, (15)
results in the following expressidd,7]:
we obtain from Eqs(14) and (15) , ) ) )
72 pa" = explia()[12(n) — 15(n") Jrexp(— BH)[1(n) - 1,(n")]%},
U= 11 exp - 7[Him(tm),Him(w]} (23)
m=k : where
xexp{— i fo Himu)dr}, (16) a(t) =A7 2 2 [\l sin wg(tn — t
m>k q
t ’
where =2 g f dt’ f t dt’ sin wq(t’ —t")
[t Hin(8)] = = 2i(2 | ,-2)22 INal? Sin gt = ). o
P =3 P sineg), (24)

(17) o

Finally, we can write the expression forin the form

u=T1I exp{lATZ<Ellz) S, Ing2 sinagty —tk)}

m>k

B(t) =22 [Nq7q(1)]? coth(wg/2T).
q

Here we take the limia7— 0.

The first factor in the expression fgf" describes the
Lamb phase shift, and the second factor describes the decay
of the off-diagonal matrix elements. The Lamb phase shift is

Xexp{ZE 11,2 [Ngmq(D)a) - H.C.]}, (19)
J q

1 - exiwgt) zero for a single spin and is equal 4¢t) for two spins. The
7y(t) = z—wq— decay of the nondiagonal matrix element for a single spin is

q

determined by the valug(t). Expression23) describes the

Note that the first factor in this expression does not contaiPhenomenon of superdecoherence for the decay rate if the
the operators’ anda.

difference[l,(n)—1,(n")]? is close to its maximum possible

After the second step in the QSA scheme the density mavalue L%, whereL is the number of qubits in the register.
trix of the QC and environment can be represented as Correspondingly, it describes a superdecoherence for the
Lamb phase shift if the differendé?(n)—12(n’)| is close to
p(t) = (T/D) 2 "Upe(0)[n)(n’|UT, (19 LY4.
nn’ The expressions fow(t) and B(t) can be rewritten in
terms of the dispersion relatiotq/dw and the density of

statesG(w):
a(t) = f do &

: ) sir(wt/2) )’<£)
B(t)—Zde (w)— cot 1)

Here p.(0) is the initial density matrix of the environment

pe(0) = [ ] [1 - exp~ wy/T)lexd - (wg/Tajagl, (20) sm(wt)
q

where we pukg=1

The process of decoherence in the QC is caused by en-
tanglement between the thermal environment and the QC.
The reduced density matrix of the QC can be represented as

(To/D) >/ 2" [ny(n’],

nn’

d
() = |)\(a))|2G(w)d—q.
w

(21)

Now we should recall that the only nondiagonal matrix

wherepnn is the environmental factor, elements that are important for the QSA are given by(Ex.
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FIG. 1. The probability distributiorP(Al,) for L=100 (dashed

line), and forL=300 (solid line) with 10 000 trials. 0.06 | L=300

Thus, we should find the probability distribution for the val-

uesAl, andAl?,
0.04 | .

Al,=1(ng+ pTo) = I,(g +p'To), P
AIZ=15ng+ pTo) ~ 15(ng + p'To), p<p’, (25 002 | ]

where ny is the minimum value ofn; (ny+pTy) and (ng

+p'Tp) count all other values af that correspond to a given

value of the functiorf(n). 0

Suppose that a QC is to factor a large numNerTypi- -400 -200 0 , 200 400
cally, the periodT, of the functionf(n) is large. We choose Alz

randomly a numbet, and a numbeny,<T,. Then, we com-
pute the values in(25 for the states|ny+pTy, and
[ng+p’To). In our computer simulations we consider two
cases: the number of qubits in theregister isL=100 and
300. For the first case, we randomly choose the vdlye P(Al] > Al < Po,  P(AIZ>AIZ) <P,. (26)
<7.9%x 10?8 and for the second casB,<1.3x 10?°. For
each value ofT, we choose an arbitrary value of (ng
<T,) and computeAl, and Al for p<p’<10. Then we
repeat the computations for other valuesTgfandn,. Figure Blto) (Al )% < Py, a(to)A|§o< Po. (27)
1 shows the probability distribution fakl,. Figure 2 shows ) .
the probability distribution forA|§' One can see that the From these conditions we can derive the requirements for the
probability of superdecoherence in the QSA is extremelyaluesB(ty) and a(ty). As an example, fot. =300 andP
small. As an example, foL.=300 the ratio(Al,/L)? is =10 we obtain
smaller than 0.0256, and the ratic¥/L? is smaller than 3 7
0.019 with the probability1-107). 4 Bllo) <4 X107, alty) <2X 107 (28)
Next, we discuss the conditions for preserving quantum As an example of a simple estimation let us assume that
entanglement in the QSA. We denote the time interval beaboutM =10 low-frequency phonon modes cause the collec-
tween steps 2 and 3 of our QSA scheftige characteristic tive decoherence in a solid-state spin QC. If the size of the
time of computatiohby ty. Suppose tha®, is the acceptable sample L~1 cm and the speed of elastic waves
probability of the QSA failing. From the probability distribu- ~500 m/s, then the phonon’s frequency dg/2m~c/L
tions we can estimate the boundary valuds, and AI§O ~50 kHz. We assume that the distribution of the phonon
which satisfy the conditions frequencies has a widthw, which is small compared to the

FIG. 2. The probability distributiorP(Ali) for L=100 and 300
with 10 000 trials.

Then the conditions for preserving the quantum entangle-
ment in our QSA scheme can be formulated as
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average frequencywy)=w. Let us take a temperaturé  scheme and estimate those nondiagonal density matrix ele-
>w, e.g., T=1 mK, the interaction constant;<w, e.g., ments that are important for QSA implementation. Next, we

A\q=\=10"°w, and consider a relatively large computation consider CD for these matrix elements taking into account
time wty, Awty> 1. From Eq.(24) we estimate the functions both the decay and the Lamb phase shift. We show that the

a(ty) and B(to): probability of the superdecoherence in the QSA is extremely
small. Finally, we formulate the conditions required for pre-
alt) =5 X 107%, Bty ~8x 107°. (290 serving quantum entanglement in our QSA scheme.
One can see that the paramegedoes not depend o and
satisfies the first inequalit{28). From the second inequality ACKNOWLEDGMENTS
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