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Liquid-state NMR simulations of quantum many-body problems
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Recently developed quantum algorithms suggest that in principle, quantum computers can solve problems
such as simulation of physical systems more efficiently than classical computers. Much remains to be done to
implement these conceptual ideas into actual quantum computers. As a small-scale demonstration of their
capability, we simulate a simple many-fermion problem, the Fano-Anderson model, using liquid-state nuclear
magnetic resonancéMR). We carefully designed our experiment so that the resource requirement would
scale up polynomially with the size of the quantum system to be simulated. The experimental results obtained
give us an insight to the quantum control required when simulating quantum systems with NMR techniques.
The simulation of other physical systems, with different particle statistics, is also discussed.
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I. INTRODUCTION function of problem size, is in general insufficient for show-

) . ing that the desired properfg.g., the ground-state energy of
Quantum-mechanical systems provide resources to solvg given Hamiltoniancan also be obtained efficiently. In gen-
problems which are difficult to solve on classical computerseral, arguments based on the exponential size of the Hilbert
If we had a large quantum computer today, we could breakpace of the system to be simulated and the inherent quan-
cryptographic code$l], perform a variety of search algo- tum parallelism of a quantum computer are insufficient for

rithms [2,3], estimate eigenvalues of operatd®,5], or  showing that an algorithm for quantum computation effi-
simulate quantum system§]. In particular, the latter would ciently solves a problem. We pointed out in R¢8,10] that
enable a better understanding of the quantum world by erih a quantum computation it is necessary to demonstrate, in
abling analysis of complex chemical reactions or demonstrataddition to maintaining adequate accurdopise, approxi-
ing new states of matter. However, questions like “what arenations, and statistical error contrathe polynomial scaling
the physical quantum states that can be reached efficientlyf the amount of resources required to perform the three
or “what kind of physical processes can be efficiently simu-main steps of a simulation: initialization, propagation, and
lated on a quantum computer” still remain open. measurement. _

Since Richard P. Feynman conjectured that an arbitrary  SOMe quantum processes can be simulated very well and
discrete quantum system may sienulatedby any other6], efficiently on classical computers. Simulating quantum phe-

ine simulaion o quanum phencmena became a ndame T 151 2Ehes proecles el e pionen
tal problem that a quantum computer, i.e., a unllversally conge computea using Monte Carlo techniques. I% general, the
trqlled quantum system., may potentially solve In a more e]f'complexity of deterministidN-dimensional integration is of
ficient way than a classical computer. Quantum simulation IS der &N (i.e., exponential inN), where <1 is some

th‘? process of faithfully imitating a _ph_ysma_l phe_no_menonstipulated error ,andv quantifies thé smoothness of the inte-
using a quantum computer. The basic idea is to imitate the, a4 on the other hand, the expected complexity of Monte
evolut!on of a physical system by cleverly controlling th_e Carlo integration is of ordes 2, and hence independent if
levo!uthn of th? quantum computer. IAIthqugh Feyr|1mans 'Iianda (assuming that the variance of the integrand is finite
uminating conjecture seems appealing, it was only recentlyy,q re450n for introducing these statistical techniques was to
proved generally vali7—11]. Experimentally demonstrating qercome the exponential complexity of deterministic ap-

that one has umyersal control and 'ghus can quantum Imitatg, 5 ches such as the Lanczos methb@]. Realistic models
an arbitrary physical process constitutes an extremely cha-f liquid or solid“He have been simulated to experimentally

Ienglng'enterpnse. . L measured precision for a few yedfst]. Recently developed
_Itis important to notice that th? efficiencies of quantum loop-cluster algorithms allow highly efficient and informa-

simulating the evolution of a physical system and of Obtam'tive simulation of many quantum spin models of magnetism

ing the sought-after information about a physical property; 15).

must be established separately in most cases. A demonst

tion that evolution can be simulated efficien{l$,10-13,

that is, can be simulated with polynomial resources as

~ An important class of problems for which classical com-

uters have major difficulties is the simulation of interacting

ermionic systemg&lmost alllarge-scalesimulations of fer-
mions are done by the Monte Carlo methoth fact, as
noted in Refs[8,10], Feyman and others prior to him intu-
*Corresponding author. Email address: camille@iqc.ca ited this difficulty. Unless an approximation is made, the
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various quantum Monte Carlo algorithms must inevitably ) ) 5§
sample from a multivariate distributidd that has regions of i RJ (19) —e 2%
phase space where it is negative that are comparable to re- ®

R

gions where it is positivébecause the state function belongs
to the totally antisymmetric representation of the permutation )
group. In general, the nodal hypersurfaBe=0 separating J
the regions is unknowfan exception being when symmetry
considerations alone determing, imaking it impossible to
solve the problem by independently sampling from each re-
gion whereP has a definite sign. The sign problem is pro-
hibitive on a classical computer because it results in the vari- k
ance of measured quantities growing exponentially with the
number of degrees of freedom of the system. Still other ap- FIG. 1. Circuit representation of the elementary gates. The top
plications require sampling from a complex-valued distribu-picture indicates a single-qubit rotation while the bottom one indi-
tion P. This occurs, for example, if the simulation is done ascates the two-qubit Ising gate. Any quantum algorithm can be rep-
a function of real Minkowski time or if time-reversal sym- resented by a circuit composed of these elementary gstes for
metry is broken. In previous woill8,10], we have discussed example, Fig. B
how certain sign problems can be overcome using quantu
algorithms.

In this paper we describe and experimentally demonstrat

the quantum simulation of many-body problems usingg,,qamental unit of information is the quantum bitaubit
liquid-state NMR quantum information processd@IP9 5 qubit's pure state|a)=al0)+b|1) (with a,be C and [a]?

[16]. NMR simulations of other physical systems with a few . |p2=1) is a linear superposition of the logical sta{e}
degrees of freedom can be found in, for example, Refsand|1), and can be represented by the state of a two-level
[17,18. The constituents of the system may represent parguantum system such as a spin 1/2. Similarly, a pure state of
ticles with arbitrary exchange statistics and generalized Paul register ofN qubits (quantum registeris represented as
exclusion principle(such as fermions obeying Fermi statis- | >:22f51an|n>, where|n) is a product of states of each qubit
tics), spins, etc. In particular, we show how to efficiently j, then_logical basis, e.g., its binary representati@)
imitate a resonant impuritylocalized statg scattering pro- =[00---0), |1)=|00---01), [2)=]00---10), etc), and
cess in a metalwhich is made of fermions using the N1 12— < . .
nuclear spins of a transcrotonic acid molecule. This problemE”:O [2/*=1(@, € C). A quantum register can also be in a

) . . robabilistic mixture of pure states, i.e., a mixed state, which
is physically modeled by a Fano-Anderson Hamiltorigh IF; described by a dF:ansity matrip=Spp, With p
Our results show that the universal control achieved by:|ws><¢S| representing the quantum regsistes}, being inS the

liquid-state NMR QIPs enables, in principle, efficient simu- ) . .

lation of some Fermioni¢and other particle statisticsys- pure state|_z,05>, with probability p, Every density operator

tems, providing relevant information about the particularCan be erl_tten _as asum of_loroducts of the Pau.l| spl_n-1/2

phenomenon or system of stupQ]. In particular, we show operators(jra (a_—x,y,z, a!"dl‘[l_'--- N] anq the identity

how the spectrum of the Fano-Anderson Hamiltonian can pgperators’, acting on thgth qubit of the reg|ste[1§]. .
The Pauli operators can also be used to describe any uni-

determined. . . h fth . | icul
The paper is organized in the following way: In Sec. Il we tary operation acting on the state of the register. In particular,
very unitary operation can be decomposed in terms of

introduce the conventional model of quantum computatiorf . , )
and use it to describe the physics of the liquid-state NMRsingle-qubit  rotations RJ,L(”'-‘})=<9_'(‘9/2)"J#:[005(0/2)|J
setting, which can be used as a universal quantum simulator.i sin(9/2)o?,], by an angled around theu axis, and two-

In Sec. Il we present some quantum algorithms for obtain-qubit interactions such as thdsing gate R ko)

ing relevant physical properties of quantum systems satisfy:e—im/z)aiza‘;:[Cos(w/zﬂJ'|k—i sin(w/2)aloy] [21,22, defin-

ing different particle statistics, by mapping the algebras ofing g universal set of elementary gates. In Fig. 1 we show the
operators used to describe them onto the spin-1/2 algebig,antum circuit representation of these basic operations.
(conventional model In Sec. IV we mtroduc_e the Fe_rml_onlc Finally, in the conventional model of quantum computa-
Fano-Anderson model, and show how to simulate it with th&jon the measurement is assumed to be projective and is de-

liquid-state NMR QIP. The experimental implementation of s¢ribed by projectors that can also be expanded in terms of
this simulation as well as its results and the conclusions arpgy|j operators.

rT/Z) operators[20]. A more detailed description of such
methods can be found in R€fL6].
€ In the conventional model of guantum computation the

described in Secs. V and VI, respectively. Liguid-state NMR methods allow us to physically imple-
ment a slightly different version of the conventional model
Il. QUANTUM INFORMATION PROCESSING WITH or:‘ guantum computation, with rﬁs,pect to trr:e initial state apd
LIQUID-STATE NMR METHODS the measurement process. In this setup the quantum register

is represented by the average state of the nuclear spin 1/2 of
In this section we introduce liquid-state NMR quantum an ensemble of identical molecules. Since all molecules are
information processing methods, emphasizing the fact thagquivalent, in the following analysis we will first consider
they can be mathematically described in terms of P@piin-  only one of them.
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(I) tll tlg Time

FIG. 3. Circuit representation for the refocusing scheme to con-
trol J couplings. The Ising-like coupling;, between spins can be
controlled by performing flips on one of the spins at tinbgsAt;

FIG. 2. Bloch’s sphere representation of a single nuclear spinand t;=t; +At,, respectively. The effective coupling i8=a;-a,

1/2 precessing around the quantization axis determined by the eJj(At;—At,), and vanishes wheft; =At,.

ternal magnetic fieldB. The precession frequency is given by

=B, with ; the magnetic moment of thgh nucleus. Due to the  driving the evolution of the system. By cleverly designing a

chemical environment, each nucleus precesses at its own Larmgmse sequence, i.e., a succession of pulses and free evolution

frequencyy;. periods, one can easily apply two-qubit gates on the state of
the system. Indeed, the so-calkedocusing techniquéprin-

The molecule is placed in a strong magnetic fiBid)  ciple consists of performing an arbitrary Ising gate by flip-
=10 T, so that the spin of thggh nucleus precesses at its ping one of the coupled spir{sr pulse, as shown in Fig. 3.
Larmor frequencyy; (Fig. 2). In the frame rotating with the The interaction evolutions before and after the refocusing
jth spin, its qubit state can then be rotated by sending rpulse compensate leading to the effective evolution
pulses in thex-y plane at the resonant frequengy~ v;. If
the duration of this pulse iAt, the corresponding evolution Ufﬁ=

i(712) ok i QD oA i ok 2 i (A ThosAY = i@l ol

operator in the rotating frame [46] (3)
Uj=eMidt= griAlcosporsinlglo It (1)  where the effective coupling strengtfeJ; (At; - At,) is be-
whereA is the amplitude of the rf pulse anglis its phase gﬁdiet;ermmed by the difference between the duratibs

(i.e., orientation in the x-y plane(f=1). Then, one can in-

. . : e We have so far described a quantum register as consistin
duce single spin rotationg23] around any axis in the-y a g 9

I by adiusti d of nuclei of a single molecule. However, liquid-state NMR
plane by adjustingt and ¢. uses an ensemble of aboutdmolecules in a solution main-

Single-qubit rotations around the axis can be imple- ainaq ot room temperatufe=300 K). For typical values of

mented with no experimental imperfection or physical dura'the magnetic field, this thermal state is extremely mixed.

tion simply by chgnglng the phase of the abstract rOtatInQ':Iearly, this is not the usual state in which we initialize a
frame we are working with. We have then to keep track of all

: uantum computation since qubits are nearly randomly
these phase changes with respect to a reference phase a %ed. Nevertheless, known NMR methdd$] can be used
ciated with the spectrometer. Nevertheless, these phase tra |

ing calculations are linear with respect to the number o?[ prepare the so-callgpseudopure statépp,) [24]

pulses and spins, and can be efficiently done on a classical (1-¢

computer. Together with the rotations around any axis in the Pop= "N | + €ppure (4)

x-y plane, thez rotations can generate any single-qubit rota-

tion on the Bloch sphere. where pp,e IS @ density operator that describes a pure state

On the other hand, the spin-spin interactions present in thand e is a small real constarii.e., e decays exponentially
molecule allow us to perform two-qubit gates and achievewith N).
universal control. To first order in perturbation, this interac- Under the action of any unitary transformatiqh this

tion (called theJ coupling, has the form state evolves as
J.k ) ) (1 - 6)
Hjx= ‘Ajf‘Usz’; ) Ppp = UppUT = TR Ueppurdd”. (5)

wherej,k denote the corresponding pair of qubits aldis  The first term in Eq(5) did not change because the identity
their coupling strength. Under typical NMR operating condi-operator is invariant under any unitary transformation.
tions, these interaction terms are small enough to be neFherefore performing quantum computation on the ensemble
glected when performing single-qubit rotations with rf pulsesis equivalent to performing quantum computation over the
of short duration. Nevertheless, between two pulses they aiieitial state represented only e
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At the end of the computation, we measure the orthogonal (20%) = (¢>|0(t)|¢)
components of the sample polarization in thg plane, M, |+)a
=Tr(pp = 07), andM,=Tr(pi 'S 0}). Note that the in-
variant component o' does not contribute to the signal
since Tr_(m;, )=0. Because the polarization of each single
spin, M,=Tr(pp?'o)) and M}=Tr(p»"a)), precesses at its —_ I
own Larmor frequencyy;, a Fourier transformation of the | &) Ul(t)
temporal recordingcalled FID, for free induction decayf
the total magnetization needs to be performed. By doing so,
we obtain the expectation value of the polarization of each
spin (averaged over all molecules in the sample _ )

Summarizing, a liquid-state NMR setting allows us to ini- FIG. 4. Quantum netwoArK for the evaluation of the expectation
tialize a register of qubits in a pseudopure state, apply anyalue of a unitary operatad(t). The filled circle denotes a con-
unitary transformation to this state by sending controlled rftrolled operatiorti.e., UYa of Sec. I1), such thatJ(t) is applied to
pulses or by free interaction periods, and measure the expethe system only if the ancilla qubit is in the statg,.
tation value of some quantum observahbles., the spin po-
larization). Hence these systems can be used as quantupicts this algorithni10]. Since the initial state can always be

information processorQIPs. written as a linear combination of eigenstatesQpfthat is,

|d)==nval ), With |41, the eigenstates d® having eigen-
lll. SIMULATION OF PHYSICAL SYSTEMS values\,, and vy, complex coefficients, a measurement on

Feynmar{6] described a quantum computer as a universathe polarization of the ancilla qubit giveg20%(t))
reversible device governed by the laws of quantum physics=,|y,|%€"". Having the time-dependent functioft)
and capable of exactly simulating any physical system. Al=({20%(t)) for a discrete set of values, the eigenvalues,,
though he analyzed the problem of simulating physics asean in principle be obtained by performing a discrete Fourier
suming that every finite quantum-mechanical system can bgansform(DFT) [10]. Note that the determination of each
imitated exactly by another orle.g., a set of qubijd7], he  single valueS(t,) requires a different experiment.
was unsure whether this statement remained valid for the The eigenvalues\, denote the spectrum of a system

simulation of Fermionic systems. . _HamiltonianH when replacing® — H. In this case, the op-
In this section we describe how to obtain information erationU/Va can be efficiently implemente@,10,27. How-
about physical properties of any quantum many-body Systengyer methods for finding an initial state with an overtap

(Fe.rmionic, Bos<|)|nic, anyonic, eI:]by using a set of quiItS that does not vanish exponentially with increasing system
(spin 1/3 controlled by NMR techniques. A more complete ;e gre in general not known. This issue arises, for example,
description of these methods based on the existence of ongy -, trying to obtain the spectrum of the two-dimensional

to-one mappings between the algebras used to describe t'ilfﬁbbard model approachina the thermodvnamic limit
system to be simulated and the quantum comg@&gr, 2§, [10,27. PP n9 ynamicfimi

as well as indirect measurement algorithii; can be found Nevertheless, the same basic procedure can be used when

n ?r:’at\élizuv?/ov;/l?Lbz[irleoirzltze.reste din the measurement of Corinterested in obtaining dynamical correlation functions of the
relation functions of the form form G(t):<_¢|TTAiTBJ|‘/?> [i.e., U(t?:TTAiTBi in Eq. (6)_]'
where T=eMt is the time evolution operator of a time-
G(t) = (¢|U(t)|¢), (6) independent HamiltoniaH, andA;, B; are unitary operators.

R In Fig. 6 we show the circuit for an algorithm capable of
where U(t) is any time (or other continuous parameter obtaining these correlation functions after some simplifica-
-dependent unitary operator, using indirect measuremeritons[10]. The propagation step is split into three different
techniqueg8]. In addition to the qubits used to represent theparts: First, we perform a controlled operatiBfa=|0),(0|
physical system to be simulatéde., the system of qubits ®I1+|1)(1|® B;. Second, we perform the operation on the
an extra qubit calledncilla is required(Fig. 4). This qubitis  system, and third, a controlled operatigif’a=|0),(0| ® A’
used as a probe to scan the properties of the system of qubits}1).(1|® 1. Spatial correlation functions can also be ob-
It has to be initialized in the superposition state,=(|0),
+|1),)/+2 by applying the Hadamard gafi28] to the polar- (20%) = (¢~ 1P| ¢)
ized state|0),. Then, it interacts with the system of qubits, [+)a
initially in the state|¢), through a controlled unitary opera-

tion Ua=|0),(0|®1+|1),(1|® U(t). After this interaction, {_ eiQ@% I

we can show8] thatG(t)=(20%) =(o; +ioy); that means we
get the desired result by measuring the expectation values of
the ancilla qubit observableg and o,

Using the same techniques we can determine the spectrum FIG. 5. Quantum network for the evaluation of the spectrum of

of an observabl@ when choosing:J(t):e“Q‘. Figure 5 de- an observable).
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FIG. 6. Quantum network for the evaluation of the correlation
function G(t):<¢\TTAiTBj|¢>. The filled (empty circle denotes an
operation controlled by the stafg),(|0),) of the ancilla qubit. n

FIG. 7. Fermionic Fano-Anderson model. Fermions can hop be-
tween nearest-neighbor sitésxterior circle$ and between a site
and the impurity(centered circlg with hopping matrix elements

ndV/n, respectively. The energy of a fermion in the impurity is

tained when replacing the operafbby the space translation
operator. Again, this algorithm can be performed efficiently
whenever the initial statep) can be prepared efficiently.

The algorithm described above can be easily implemente
with liquid-state NMR methods, since the result of the simu-
lation is encoded in the expectation values of single qubit

observables. So far, the algorithm applies only to the simu&!€ctrons in different modds, except for the modt,, which

lation of systems described in terms of Pauli operators, suclteracts with t.he impu'rity. Thgrefore the relevant physics
as spin-1/2 systems. However, other systems with differerf®M€S from this latter interaction, and its spectrum can be
particle statistics can also be simulated with these algorithmgxaCtg; obta|2ed zy r(]hagonaﬂlzmgf?xz _Her”?'“a{]‘ matrix,
after mapping their operator algebras onto the Pauli spin-1/5¢92rdless oh and the number of fermions in the ririg..
algebra[9,11,26. In the next section we introduce the Fano- Nevertheless, its simulation in a liquid-state NMR QIP is the

Anderson model, a simple Fermionic system, and show ho{J'St St€p in quantum simulations of quantum many-body

to simulate it on a liquid-state NMR QIP using these meth-Proplems. . .
ods. d Q d In order to use the algorithms presented in Sec. Ill, and to

successfully simulate this system in an NMR QIP, we first
IV. FANO-ANDERSON MODEL need to map the Fermionic operators onto the spin-1/2

The quantum simulation of the one-dimensional Fermi-(PaUID operators. This is done by use of the following

onic Fano-Anderson model provides a starting point forJordan-ngner transformatidi26}

simulations of quantum systems with different kinds of par-

ticle statistics. b=oz b'= o3
The one-dimensional Fermionic Fano-Anderson model G, =~ 0307 Ci, =~ 070%
consists of am-sites ring with an impurity in the centésee . .
Fig. 7), where spinless fermions can hop between nearest- n’ ] : (8)
neighbors sites with hqppmg matr_lx eIe_me(nyerIap |r_1te- ] e =l -oho™ ¢ =T -obo™.
gral) 7, or between a site and the impurity with matrix ele kg~ U T LS G
i= i=

mentV/n. Taking the single-particle energy of a fermion in
the impurity to bee, and considering the translational invari- ) ] ] ]
ance of the system, the Fano-Anderson Hamiltonian can bl this language, a logical statg;) (with |0)=|7) in the
written in the wave-vector representation[8$ usual spin-1/2 notatigncorresponds to having a spinless
- fermlor) in either the.|m|.our|ty, iffi=1, orin the modek;_»,
H=S eiclo + eb'b+ V(e b+ blo ) Ry ot_herW|se. The F_erm|on|c vacuum stdﬂgc) (i.e., the state
i Bl big kg T € ko ko with no fermiong maps onto |[vac)=|1;1, - 1,.1)
(=|l1ls " lns1)). As an example, Fig. 8 shows the mapping
where the Fermionic 0peratoc$I and b’ (c, andb) create  of a particular Fermionic state far=4.
(destroy a spinless fermion in the conduction mddend in Some dynamical properties of this model can be obtained
the impurity, respectively. Here, the wave vectors &e using the quantum algorithms described in Sec. Ill. Here, we
=271/n(1=[0,...,n-1]) and the energies per mode arg ~ are primarily interested in obtaining the probability ampli-
=-2rcosk,. tude of having a fermion in mode, at timet, if initially (t
In this form, the Hamiltonian in E¢(7) is almost diagonal =0) the quantum state is the Fermi sea state \wigtfermi-
and can be exactly solved: There are no interactions betweems; that istS)zHl’\LeglclJvac) This probability is given by
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impurity FIG. 9. Quantum circuit for the evaluation &f(t) [Eq. (9)] in
1 terms of elementary gates directly implementable with liquid-state

NMR methods.

bTCL,CLJVaC) < [TitelsTads) < [0102130415) _ _

G(t) = (¢leMoe ™oy ). (12
FIG. 8. Mapping of the Fermionic product stat%cgcﬂvac),

with [vag the no-fermion or vacuum state, into the spin-1/2 and theFigure 9 shows the quantum circuit used to obt@it). It is

standard quantum computation languages, using the Jordan-Wignderived from Fig. 6 by making the following identifications:

transformation. A filled circle denotes a site occupied by a Spln|eSS1—_)e—th, Ai—>0>1(, and Bj—>o§. As we can see, the corre-

fermion, which maps into the staté) in the spin-1/2 algebra. sponding controlled 0perati0W§°>a andBIVa (Sec. Il) trans-
form into the well-known controlledet (CNOT) gates. All the
the modulus square of the following dynamical correlationunitary operations appearing in Fig. 9 were decomposed into
function: elementary NMR gatessingle qubit rotations and Ising in-
G(1) = (FS|b())b(0)|FS), (9)  teractions. In particular, the decomposition @' can be
_ found in Ref.[8]. We obtain
whereb(t)=T'b(0)T, T=e " is the time evolution operator,

and b(0)=b'. Basically, G(t) is the overlap between the oMt = Yerihoitginaoyt (13)
quantum stateb’(0)|FS), which does not evolve, and the
state b'(t)|FS), which does not vanish unless the evolvedwhere)\l(z)zé(E:\;“A2+V2), with E=(€+8k0)/21 andA=(e

state T|FS) already contains a fermion in the impurity site ~#)/2. The unitary operatdd is decomposed a&ig. 9
([b(t)]?=[b'(0)]?=0), i.e., contains the fermion which ini-

tially was in thek, mode. In terms of spin-1/2 operatdeee U= ei(W/4)0)2(e_i(ﬁ/4),,§e_i(g/2),,§,,§ i(77/4)(r;ei(71'/4)(7')];e—i(17/4)(r§
Eq. (8)], this correlation function reduces to a two-qubit
problem[8]: « e—i(77/4)(r§ei(ﬁ/2)0%0'§e—i(7r/4)aiei(77/4)05’ (14)
G(t) =(¢|TT o Tot| ), (100 with the parameterd satisfying co#9=1/V1+62, and &
=(A+VA%+VA) V.

whereT=e Mt is an evolution operator arising from the in-

: . \ The cnoT gatesAl®a and BIVa can also be decomposed
teraction terms in Eq(7), with 9 P

into elementary gates, obtaining
A%=0),(0 ® o+ (1l ® |

— € €k, \%
He Sty 02, Y12, 1 11
2727 5 % 2(0-on Uya'i)’ (1) = (T oxd (M) o505 i (TlA) oy (Tl A) o0 i (nlA) oy
and|¢)=|1,0,) in the logical basigi.e., the initial state with ~and )
one fermion in thek, mode. BPa=|0),(0| ® | +|1),(1] ® o

In order to use the quantum circuit shown in Fig. 6, all
operators in Eq(10) must be unitary. Using the symmetries
of H, such as the globadr/2 z rotation that mapga;,a))

= d(TA) T () o205 i (mlA) oy (1) g0 i () oy
(up to a phase factprTherefore we can implement the cir-
cuit of Fig. 9 and obtai5(t) using an NMR QIP by applying

—(0},~0)), leaving the staté¢) invariant (up to a phase : /
. TrolToll v =( ST o Toll y=0 and the appropriate rf pulseiSec. I). Only three qubits are re-
facton, we obtain (¢|T o, Toy|d)=(H[T oy Taoy|¢)=0 an quired for its simulation(Fig. 9: The ancilla qubita, one

<¢|?r0'i?0')1(|¢>:<¢|?r0'>l,?0')1,|¢>. Then, Eq.(10) can be writ-  qubit representing the impurity siteubit 1), and one qubit
ten in terms of unitary operators as representing th&, mode (qubit 2).
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eiHot/2 o) C Cs Cy M H, Hy
Y N R - C1|-1914.06] 405 15 7 127 | 39 6.3
A W = 5(t) Cy —18115.10{  69.9 1.3 -71] 1551 [ -06
i 4 I 1 Cs -15157.41] 732 66 | —18 163
| ot @ v | Cy —21148.90( —0.9 | 6.5 3.6
0) 2 ’ & = M 230.43] 6.9 -1.7
! I H —2370.80] 15,5
_________ Hy > —1774.47
FIG. 10. Quantum circuit for the evaluation 8¢t) [Eq. (15)]. o ) ]
The parameters\; and \, are defined in Sec. IV, andv=(e FIG. 11. The transcrotonic acid molecule is a seven-qubit reg-
+&)/2. The decomposition of the operatdiin NMR gates can be ister: Two protons, the methyl group used as a single spinf2gR
found in Fig. 9. and four'®C. The table shows in hertz the values of the chemical

shifts (on the main diagonaland theJ couplings (off-diagona)

. . . between every pair of nuclégubits.
We are also interested in obtaining the spectrum of the very pal uclegubits

HamiltonianH of Eq. (7). For this purpose we used the al- evant decoherence time of the system. The accuracy of con-
gorithm shown in Fig. 5, replacin@—H. In particular, ~trol in transcrotonic acid has been determined in R&@],

whenn=1 (one site plus the impurily Eq. (7) reduces to using an error-correcting code as a benchmark. The current
H=(e+ )/2+g with H defined in E (11) in terms of experiment can be considered as another exploration of the
€T 8K, ' g- accuracy of control, in this case examining how well we can

Pauli operators. In this case, the two eigenvaligs=1,2)  jmplement the necessary evolutions when simulating quan-
of the one-particle subspace can be extracted from the corrgsm systems with NMR techniques.

lation function(Sec. 1) In liquid-state NMR the main source of decoherence is
e i(ebor it the relaxation of the transversal polarization of the sample
S(t) =(ple™[p) = e W ple” | p), (15  due to the loss of coherence between molecules. In our set-

ding, the relevant times of this process, calleg are in the
range from several hundreds of milliseconds to more than
one second, for the different nuclei. These times fix the
i ! . : maximum number of elementary gates that can be applied to
H, it has a nonzero overlap with th_e two one-particle €19€Nhe guantum register without losing coherence. Indeed, a
states, called1P;) (see the Appendix. lower bound of the pulse duration to induce a rotation on a
Again, the operatogH“2V2 (Fig. 5) needs to be decom- single qubit is determined by the difference between the
posed into elementary gates for its implementation in amesonant frequencies of the spin to be rotated and the others
NMR QIP. Noticing thafo?,H]=[¢%,U]=0, we obtain (its chemical shift. A very short pulse having a wide excita-
' o . tion profile in the frequency domain affects several spins at
gHot2 = yghoyofizghaoiofizyteilera)oi2  (16)  the same time if their chemical shifts are small. On the other
, ) , hand, the duration of the Ising ga(®vo-qubit gaté depends
where the unitary operatdJ is decomposed as in E(L4). directly on the strength of thecoupling constants;. In our
Figure 10 shows the corresponding circuit in terms of el-setting the chemical shifts values impose pulse durations of
e_mentary gates. Again, qub|t_s 1 and 2 represent thg impurihe order of 1 ms, and thé couplings impose interaction
site and theky mode, respectivelya denotes the ancilla qu- periods of the order of 10 ms, restricting the pulse sequences
bit. Since the idea is to perform a DFT on the results obtg 3 maximum of approximately 1000 single-qubit rotations
tained from the measuremefsee the Appendixwe need to g4 100 two-qubitlsing) gates.
apply this circuit for several values of the parametéBec. Designing a pulse sequence to implement exactly the de-
). sired unitary transformation would require very long refocus-
ing schemes to cancel out all the unwanted naturally occur-
ring J couplings. Then, the overall duration of the pulse
V. EXPERIMENTAL IMPLEMENTATION sequence increases and decoherence effects could destroy
our signal. Therefore we need to find the best tradeoff be-
) ) ] o tween the ideal31] accuracy of the pulse sequence and its
For the experimental simulation of the Fermionic Fano-gyration, and neglect small couplings. For this purpose, we
Anderson model, we used an NMR QIP based on a solutiofjsed an efficient pulse sequence compiler to perform the
of trgnscrotonlc acid an_d me_thanol dissolved in acetone. Th|§h<—j$e tracking calculations and to numerically optimize the
setting has been described in Re#9]. Once the state of the elays between pulses, in order to minimize the error that we
three equivalent protons in the methyl group of the transcromtroduce into the quantum computation by neglecting small
tonic acid molecule is projected onto the spin-1/2 subspacgoyplings.
[29], this molecule can be used as a seven-qubit regiseer We now describe the parts of the pulse sequence corre-

Fig. 11). Methanol is used to perform rf-power selection andsponding to the basic steps of the quantum simulation.
accurately calibrate the rf pulses.

Two important characteristics of a molecule used for an 1. Pseudopure state preparation
NMR QIP are:(i) the accuracy of the control an() the Initially, the state of the nuclei of the transcrotonic acid
number of elementary gates we can perform within the relmolecules in solution is given by the thermal distribution

which can be obtained by measuring the polarization of th
ancilla qubit after the quantum circuit shown in Fig. 5 has
been applied. Sindeb)=]1,0,)=||,T>) is not an eigenstate of

A. Experimental protocol
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FIG. 12. Initialization pulse sequence used to transform the ini-
tial labeled pseudopure stajg,,= lCZUZCllM into the statep,;; FIG. 13. Modification of a two-qubit gate with a coupling
:0521°10M. The sequence transfers the polarization fiGgto C, strength depending on a paramdterhe variable interaction period
and flips the spin of the methyl groy. We have chosen the spin- is translated into fixed interaction periods and a single-qubit rota-
1/2 nucleiC,,C;, andM to represent the ancilla, qubit(Le., the  tion with variable angle about theaxis. Using this modified gate,
impurity), and qubit 2(i.e., theky mode, respectively. the refocusing schemes of the pulse sequences do not depend on the
parametet.

(Sec. 1. Using the methods described in REZ9] we have

prepared the labeled pseudopure stafépp) ppp Il. Thus the only difference between the pulse sequence used
=1%41831C2S11M1H21H1, where 1:%[| -0,] (i.e., 1=|1)1])  to measureS(t) for different simulation timeg; is a phase
and0=%[l +a,] (i.e.,0=[0)0]). As we will see, the statgy,, calculation that introduces no extra optimization or experi-
having the spin o€, in the o, state, is a good initial state for mental error.

our purposes.
4. Measurement

2. Initialization The result of the algorithm is encoded in the polarization

As mentioned in Sec. IV, we need only three qubits toOf the ancilla qubit(20%)=(a%)+i(ay) (Sec. Ill), which is
simulate the Fano-Anderson model. These qubits must beirectly proportional to the polarization o€, over the
well coupled to each other to decrease the duration of théample. This component precesses at @elLarmor fre-
corresponding Ising gates we apply to them. We have chosegHency vc,. To measure it, we have to perform a Fourier
the spin-1/2 nucleu€; to represent qubit {.e., the impu- transformation on the measured FID and integrate only the
rity) and the spin-1/2 nucleudl to represent qubit 2i.e.,  peak located atc,. Nevertheless, the absolute value of this
the ky modg. On the other hand, we have chosen the spinsignal is irrelevant since it depends on many experimental
1/2 nucleusC, to be the ancilla qubid, to take advantage of parameters such as the solution concentration, the probe sen-
its strong coupling with the spin-1/2 nucle@ (qubit 1).  sitivity, and the gain of the amplifier. The relevant quantity is
Since the rest of the spin&€,,Cs,H,,Hy) in the molecule its intensity relative to a reference signal given by the obser-
remain in the statd or O during the whole duration of the vation of the initial statey;,;. To get a good signal-to-noise
experiment, we need to consider only the sp@s®C;  ratio, each experimerior scan was done several times and
® M with the above identificatiop32]. the corresponding experimental data were added.

The initial state|+),®(1,0,) (Sec. IV) can be written as Moreover, to average over small magnetic fluctuations oc-
pi’mt:%[(laﬂri)lloz] in terms of Pauli operators. The ancilla curring within the duration of the whole experiment we in-
qubit is only acontrol qubitand its statei.e., its reduced terlaced scans of the reference experinieat, the measure-
density matrix becomes correlated with the rest of the qu-ment of the reference signawith scans of the actual
bits. Moreover, considering that the identity part is not ob-complete pulse sequence. To increase the spatial homogene-
servable, we useg,;=021'0? instead ofp/, as the initial ity of the field over the sample we also have inserted several
state. Its preparation was done by applying a sequence @utomated shimming periods consisting of fine tuning of
elementary gates tﬂppzlagil{ as shown in Fig. 12. small additional coils located around the sample.

3. Propagation pulse sequence B. Results

As shown in Fig. 10, the pulse sequence used for obtain-
ing S(t) [Eq. (15)] requires Ising gates with a coupling _ _ _
strength depending oh The refocusing schemes are then In the first experiment we measured the correlatlo_n func-
optimized differently and the results for different valueg of tion G(t) [Eq. (9)] for two different sets of parameters in the
cannot be directly comparable. To avoid this problem weHamiltonian of Eq.(7): &, =-2, e=-8, V=4, varyingt from
have replaced the two Ising gates by an equivalent sequenéel to 1.5 s using increments @ft=0.1s, andey,=-2, €
of elementary gates, where the dependence on the simulatierD, V=4, varyingt from 0.1 to 3.1 s withAt=0.1s. The
parametert is transferred into the angle of a single-qubit duration of the optimized pulse sequences from the begin-
rotation around the axis (Fig. 13. This virtual rotation is  ning of the initialization step to the beginning of the data
implemented through a phase tracking, as mentioned in Seacquisition, was 97 ms. In Fig. 14 we show the analytical

1. Correlation function
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FIG. 14. (Color) Real and imaginary parts of the correlation ~ F!CG- 15. (Colon Real and imaginary parts &(t), for &,,=-2,

function G(t) of Eq. (9). The top panels show the results when the €= 8, @ndV=0.5 in Eq.(7). The (black solid line corresponds to
parameters in Eq(7) are s, =-2, e=-8, V=4. The corresponding the analytic solution. The red circles correspond to the numerical

parameters\;, \,, 0 used in the quantum netwolig. 9 can be simulation (using refc_)cusing pulsg¢sand the blue circles wit_h the
determined using Eqg13) and (14). The bottom panels show the €O bars are experl_mental dagit) has been measured using the
results fors, =—2, e=0, V=4. The(blacK solid line is the analytic ~N€WOrk of Fig. 10 witha=(e+ ey )/2.

solution, the red circles are obtained by the numerical simulation

(including the refocusing pulsgsand the blue circles with the error
bars are experimental data.

Two different classes of errors affect the accuracy of the
experimental results. The firgburely experimentaltype of
error is due to the finite accuracy of the spectrometer, and the

form of G(t) [8], as well as the simulated and experimentalintrinSiC decoherence of the physical system we are working

data points. The simulated data points were obtained by glg:hThii(jssgggdbtyriﬁeOfni%Oe:r:cs:suc? tt(i)n;tihzztlir:)?rgc?rﬁtriée{/%
numerical simulation of the Hamiltonian dynamics of the full sed ?o desion thg Ulse sequence 'FI)'he numerical simulation
seven-qubit register under the optimized pulse sequencg 9 P q '

This simulation is of course inefficient but still tractable on agzctgﬁ dogf;n;'szzﬂtpégsei ?1%?utgﬂgeir:tnod;gsgutnhtetheerrof're?f t:f_
conventional desktop computer. purely

perimental ones. Thus, in our case, the good agreement be-
tween experimental results and simulations suggests that the
main contribution to errors comes from the incomplete refo-
In the second experiment we measured the funcB@h cusing in the optimization procedure. Increasing the number
of Eqg. (15) to determine the eigenvalues of HJ), for &, of refocusing pulses might have led to more accurate results
=-2, e=—-8, andV=0.5. The pulse sequence applied is theeven if they would have increased the overall duration of the
one corresponding to the quantum circuit shown in Fig. 10pulse sequences. The good agreement between experiment
with the corresponding refocusing pulses. Its duration wagnd simulation is consistent with the fact that the current
about 65 ms. We have repeated this experiment for 128 difduration of the pulse sequences are much smaller than the
ferent values of the parametefEq. (15)], from t=0.1 to  relevant relaxation time of the syste(,).
12.8 s, using increments adft=0.1 s.
In Fig. 15 we show the analytical, numerically simulated, |5()| ! : : =0
and experimental results for the evaluationsf). As men- 08 :
tioned in Sec. lll, a DFT needs to be performed in order to 06 | ;
extract the corresponding eigenvalues. In Fig. 16 we show 04 | i

2. Hamiltonian spectrum

the DFT of the experimental dataee the Appendix which o2 | ’Zf{f’;if

reveals the expected peaks at the frequency of the two eiger - e ¥

values of Eq.(7) in the one-particle sector, for the above 30 0 T 0 10 20 30
parameters. 7 (freq.)

FIG. 16. Discrete Fourier transform of the real part of the ex-
perimental data of Fig. 15. The position of the two peaks corre-

) ) ) sponds to the two eigenvalues of the Hamiltonian of Ef.for
At the experimental points, the error bars depend directly, -_5 =-g8 andv=0.5. Numbers in parentheses denote the ex-

on the signal-to-noise ratio of our experimental data, as it igict solution. The size of the dots representing experimental points is
obtained after a fit to the experimental measured FID. Theyhe error bafsee the Appendix An upper bound to the error in the
can then be reduced simply by running more scans for eacifequency domain is=0.5, which was determined by the resolution
experiment. All presented results have been obtained afteyf the spectrum due to the time sampling of the simulati8ac.
eight scans. V B).

C. Discussion
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VI. CONCLUSIONS cies: S(t)=|y|%e M+ |y,2e72t, where\; are the eigenval-

We have successfully simulated a quantum many-fermio%es of the one-particle eigenstates, definedl&y), in the

system using a liquid-state NMR based QIP. The algebrai _ : -
mapping of the operators describiramy anyonic system ec. V), and)‘i._|<.¢‘lpi>|2 (Se_c. D, with |¢)=[1115) [8].
onto the Pauli operators describing our QIP, combined WitH-|0\{vever, the liquid NMR setting used to meas®(e) ex-
indirect measurement techniques, allow us to design efficiefR€rimentally adds a set of errors that cannot be controlled,
algorithms to simulate arbitrary evolutions of many-body@nd the functior&(t) shown in Fig. 15 is no longer a contri-
anyonic systems. bution of tWO dlffe_rent frequencies only. _ _

In this work the system studied was the Fermionic Fano- AS mentioned in Sec. V B(t) was obtained experimen-
Anderson model, which can be mapped onto a two-qubitally for a discrete set of valueg=jAt, with j=[1,....M
system by use of the standard Jordan-Wigner transformatior. 128] andAt=0.1 s. Its DFT is given by
Relevant dynamical correlation functions of the fofa(t) M
f(¢|TTAiTBj\¢> can pe obtained by executing quantgm algq- ’é(m) - EE S(tj)ei . (A1)
rithms based on indirect quantum measurements, i.e., using Mi
an additional ancilla qubit. Then, the algorithms needed to ) ) )
simulate this particular system require three qubits, regard¥hereS(t) is the experimental value &(t) at timet;, and
less of the number of sites(Fig. 7). We were able to design 7= 27l/MAt (with I=[1,...,M]) are the discrete set of fre-
and run pulse sequences to implement these algorithms on &encies that contribute &t) [35]. Notice that since we are
NMR QIP based on the transcrotonic acid moledalseven- ~ evaluating the spectrum of a physicddermitian Hamil-
qubit quantum register The results obtained agree with the tonian, the imaginary part &7, is zero[36]. In Fig. 16 we

theoretical ones. To keep a constant error level, each pUIsﬁ'\owg(n) obtained from the experimental poingt;) of
sequence has been transformed such that the time paramet IS 15 I{s error bargi.e., the size of the line in the ]figu)re

t enter as a phase dependence. To shorten the duration of re calculated by considering the experimental error bars of

pulse sequence and 'decrease the_effect of decoherence ) in the following way: First, we rewrite EqA1) as

used only an approximate refocusing scheme. We numeri-"’

cally optimized these pulse sequences to minimize the errors 5 M

of the quantum simulation. These techniques allowed us to Sy => Qjj» (A2)

get very accurate results with efficiently controlled errors, j=1

since the overall duration of the pulse sequence was much. _ .

smaller than the decoherence tim?e of the gystem. with Q=M l{Re[S(tJ)]COE(mtJ')_Im[s(tj)]SLn(mtil} (rea).
Although the addition of particle-particlée.g., density- Then, the approximate standard deviatie§ of S(7) de-

density or exchangeinteractions in the Fano-Anderson pends on the errorEQ; of Q; as (considering a normal

Hamiltonian makes it, in general, nonintegrable, the quantundlistribution [37])

simulation of G(t) remains efficient, i.e., with polynomial M

complexity. The simulation of these more realistic systems T2 12

would still require bigger registers and longer pulse se- [ES] J-:El[EQ”] ' (A3)

quences, and therefore it would suffer from an increase of

systematic errors as well as decoherence effects. Neverth@n the other handzQ); is calculated a$37]

ano-Anderson model with=1 site and the impuritysee

less, quantum error correction and fault-tolerant procedures 9 2

provide, in principle, an efficient way to overcome this po- [EQ; 2= _ Qi R2+ _ Q- |2,

tential problem[33,34. We can therefore conclude that this . d R S(t))] g Im[S(t;)]

work constitutes an experimental proof of principle for effi- (A4)
cient methods to simulate quantum many-body systems with

quantum computers. whereEg andE, are the standard deviations of the real and

imaginary parts oS(t;) (see Fig. 1} respectively. Because
of experimental reasonSec. V A these errors are almost
ACKNOWLEDGMENTS constant, havingeg ~ E,~ Eg independently ot; (see Fig.
15), where Eg is taken as the largest standard deviation.
We thank J. Gubernatis for useful discussions on this subcombining Eqs(A3) and (A4), we obtain
ject. Contributions to this work by NIST, an agency of the

US government, are not subject to copyright laws. ~ ) M _ vz e
ES = | MEg”> [cos nit))[? + [sin(mt)|?] =,—ﬁ.
=1 N

APPENDIX: DISCRETE FOURIER TRANSFORM AND (A5)

PROPAGATION OF ERRORS . . ~
In our experiment,M=128 andEg~0.04, obtainingES

Theoretically, the functio®(t) of Eq.(15) is a linear com-  ~0.0035, which determines th@onstank error bars(.e.,
bination of two complex functions having different frequen- the size of the dots representing data pgistsown in Fig.
16.
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The standard deviatioB », in frequency domain is due to this error is given by the resolution of the spectrum; that is,

the resolution of the sampling tim&t. This resolution is
related to the error coming from the implementation of zhe
rotations in the refocusing proceduf€ig. 3). A bound for

En<-—2" 05 (AB)
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