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Recently developed quantum algorithms suggest that in principle, quantum computers can solve problems
such as simulation of physical systems more efficiently than classical computers. Much remains to be done to
implement these conceptual ideas into actual quantum computers. As a small-scale demonstration of their
capability, we simulate a simple many-fermion problem, the Fano-Anderson model, using liquid-state nuclear
magnetic resonancesNMRd. We carefully designed our experiment so that the resource requirement would
scale up polynomially with the size of the quantum system to be simulated. The experimental results obtained
give us an insight to the quantum control required when simulating quantum systems with NMR techniques.
The simulation of other physical systems, with different particle statistics, is also discussed.
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I. INTRODUCTION

Quantum-mechanical systems provide resources to solve
problems which are difficult to solve on classical computers.
If we had a large quantum computer today, we could break
cryptographic codesf1g, perform a variety of search algo-
rithms f2,3g, estimate eigenvalues of operatorsf4,5g, or
simulate quantum systemsf6g. In particular, the latter would
enable a better understanding of the quantum world by en-
abling analysis of complex chemical reactions or demonstrat-
ing new states of matter. However, questions like “what are
the physical quantum states that can be reached efficiently”
or “what kind of physical processes can be efficiently simu-
lated on a quantum computer” still remain open.

Since Richard P. Feynman conjectured that an arbitrary
discrete quantum system may besimulatedby any otherf6g,
the simulation of quantum phenomena became a fundamen-
tal problem that a quantum computer, i.e., a universally con-
trolled quantum system, may potentially solve in a more ef-
ficient way than a classical computer. Quantum simulation is
the process of faithfully imitating a physical phenomenon
using a quantum computer. The basic idea is to imitate the
evolution of a physical system by cleverly controlling the
evolution of the quantum computer. Although Feynman’s il-
luminating conjecture seems appealing, it was only recently
proved generally validf7–11g. Experimentally demonstrating
that one has universal control and thus can quantum imitate
an arbitrary physical process constitutes an extremely chal-
lenging enterprise.

It is important to notice that the efficiencies of quantum
simulating the evolution of a physical system and of obtain-
ing the sought-after information about a physical property
must be established separately in most cases. A demonstra-
tion that evolution can be simulated efficientlyf8,10–12g,
that is, can be simulated with polynomial resources as a

function of problem size, is in general insufficient for show-
ing that the desired propertyse.g., the ground-state energy of
a given Hamiltoniand can also be obtained efficiently. In gen-
eral, arguments based on the exponential size of the Hilbert
space of the system to be simulated and the inherent quan-
tum parallelism of a quantum computer are insufficient for
showing that an algorithm for quantum computation effi-
ciently solves a problem. We pointed out in Refs.f8,10g that
in a quantum computation it is necessary to demonstrate, in
addition to maintaining adequate accuracysnoise, approxi-
mations, and statistical error controld, the polynomial scaling
of the amount of resources required to perform the three
main steps of a simulation: initialization, propagation, and
measurement.

Some quantum processes can be simulated very well and
efficiently on classical computers. Simulating quantum phe-
nomena using stochastic approaches reduces the problem to
quadratures, which are multidimensional integrals that can
be computed using Monte Carlo techniques. In general, the
complexity of deterministicN-dimensional integration is of
order «−N/a si.e., exponential inNd, where «,1 is some
stipulated error anda quantifies the smoothness of the inte-
grand. On the other hand, the expected complexity of Monte
Carlo integration is of order«−2, and hence independent ofN
anda sassuming that the variance of the integrand is finited.
The reason for introducing these statistical techniques was to
overcome the exponential complexity of deterministic ap-
proaches such as the Lanczos methodf13g. Realistic models
of liquid or solid 4He have been simulated to experimentally
measured precision for a few yearsf14g. Recently developed
loop-cluster algorithms allow highly efficient and informa-
tive simulation of many quantum spin models of magnetism
f15g.

An important class of problems for which classical com-
puters have major difficulties is the simulation of interacting
Fermionic systemssalmost alllarge-scalesimulations of fer-
mions are done by the Monte Carlo methodd. In fact, as
noted in Refs.f8,10g, Feyman and others prior to him intu-
ited this difficulty. Unless an approximation is made, the*Corresponding author. Email address: camille@iqc.ca
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various quantum Monte Carlo algorithms must inevitably
sample from a multivariate distributionP that has regions of
phase space where it is negative that are comparable to re-
gions where it is positivesbecause the state function belongs
to the totally antisymmetric representation of the permutation
groupd. In general, the nodal hypersurfaceP=0 separating
the regions is unknownsan exception being when symmetry
considerations alone determine itd, making it impossible to
solve the problem by independently sampling from each re-
gion whereP has a definite sign. The sign problem is pro-
hibitive on a classical computer because it results in the vari-
ance of measured quantities growing exponentially with the
number of degrees of freedom of the system. Still other ap-
plications require sampling from a complex-valued distribu-
tion P. This occurs, for example, if the simulation is done as
a function of real Minkowski time or if time-reversal sym-
metry is broken. In previous workf8,10g, we have discussed
how certain sign problems can be overcome using quantum
algorithms.

In this paper we describe and experimentally demonstrate
the quantum simulation of many-body problems using
liquid-state NMR quantum information processorssQIPsd
f16g. NMR simulations of other physical systems with a few
degrees of freedom can be found in, for example, Refs.
f17,18g. The constituents of the system may represent par-
ticles with arbitrary exchange statistics and generalized Pauli
exclusion principlessuch as fermions obeying Fermi statis-
ticsd, spins, etc. In particular, we show how to efficiently
imitate a resonant impurityslocalized stated scattering pro-
cess in a metalswhich is made of fermionsd, using the
nuclear spins of a transcrotonic acid molecule. This problem
is physically modeled by a Fano-Anderson Hamiltonianf8g.
Our results show that the universal control achieved by
liquid-state NMR QIPs enables, in principle, efficient simu-
lation of some Fermionicsand other particle statisticsd sys-
tems, providing relevant information about the particular
phenomenon or system of studyf19g. In particular, we show
how the spectrum of the Fano-Anderson Hamiltonian can be
determined.

The paper is organized in the following way: In Sec. II we
introduce the conventional model of quantum computation
and use it to describe the physics of the liquid-state NMR
setting, which can be used as a universal quantum simulator.
In Sec. III we present some quantum algorithms for obtain-
ing relevant physical properties of quantum systems satisfy-
ing different particle statistics, by mapping the algebras of
operators used to describe them onto the spin-1/2 algebra
sconventional modeld. In Sec. IV we introduce the Fermionic
Fano-Anderson model, and show how to simulate it with the
liquid-state NMR QIP. The experimental implementation of
this simulation as well as its results and the conclusions are
described in Secs. V and VI, respectively.

II. QUANTUM INFORMATION PROCESSING WITH
LIQUID-STATE NMR METHODS

In this section we introduce liquid-state NMR quantum
information processing methods, emphasizing the fact that
they can be mathematically described in terms of Paulisspin-

1/2d operatorsf20g. A more detailed description of such
methods can be found in Ref.f16g.

In the conventional model of quantum computation the
fundamental unit of information is the quantum bit orqubit.
A qubit’s pure state,ual=au0l+bu1l swith a,bPC and uau2
+ ubu2=1d, is a linear superposition of the logical statesu0l
and u1l, and can be represented by the state of a two-level
quantum system such as a spin 1/2. Similarly, a pure state of
a register ofN qubits squantum registerd is represented as
ucl=on=0

2N−1anunl, whereunl is a product of states of each qubit
in the logical basis, e.g., its binary representationsu0l
;u00¯0l, u1l;u00¯01l, u2l;u00¯10l, etc.d, and
on=0

2N−1uanu2=1sanPCd. A quantum register can also be in a
probabilistic mixture of pure states, i.e., a mixed state, which
is described by a density matrixr=ospsrs, with rs
= ucslkcsu, representing the quantum register being in the
pure stateucsl, with probability ps. Every density operator
can be written as a sum of products of the Pauli spin-1/2
operatorssa

j sa=x,y,z, and j =f1,… ,Ngd and the identity
operatorsI j, acting on thej th qubit of the registerf16g.

The Pauli operators can also be used to describe any uni-
tary operation acting on the state of the register. In particular,
every unitary operation can be decomposed in terms of

single-qubit rotations Rm
j sqd=e−isq/2dsm

j
=fcossq /2dI j

− i sinsq /2dsm
j g, by an angleq around them axis, and two-

qubit interactions such as theIsing gate Rzj,zksvd
=e−isv/2dsz

j
sz

k
=fcossv /2dI jIk− i sinsv /2dsz

jsz
kg f21,22g, defin-

ing a universal set of elementary gates. In Fig. 1 we show the
quantum circuit representation of these basic operations.

Finally, in the conventional model of quantum computa-
tion the measurement is assumed to be projective and is de-
scribed by projectors that can also be expanded in terms of
Pauli operators.

Liquid-state NMR methods allow us to physically imple-
ment a slightly different version of the conventional model
of quantum computation, with respect to the initial state and
the measurement process. In this setup the quantum register
is represented by the average state of the nuclear spin 1/2 of
an ensemble of identical molecules. Since all molecules are
equivalent, in the following analysis we will first consider
only one of them.

FIG. 1. Circuit representation of the elementary gates. The top
picture indicates a single-qubit rotation while the bottom one indi-
cates the two-qubit Ising gate. Any quantum algorithm can be rep-
resented by a circuit composed of these elementary gatesssee, for
example, Fig. 3d
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The molecule is placed in a strong magnetic fieldBsẑd
.10 T, so that the spin of thej th nucleus precesses at its
Larmor frequencyn j sFig. 2d. In the frame rotating with the
j th spin, its qubit state can then be rotated by sending rf
pulses in thex-y plane at the resonant frequencynr <n j. If
the duration of this pulse isDt, the corresponding evolution
operator in the rotating frame isf16g

Uj = e−iH jDt = e−iAfcosswdsx
j +sinswdsy

j gDt, s1d

whereA is the amplitude of the rf pulse andw is its phase
si.e., orientationd in the x-y planes"=1d. Then, one can in-
duce single spin rotationsf23g around any axis in thex-y
plane by adjustingDt andw.

Single-qubit rotations around thez axis can be imple-
mented with no experimental imperfection or physical dura-
tion simply by changing the phase of the abstract rotating
frame we are working with. We have then to keep track of all
these phase changes with respect to a reference phase asso-
ciated with the spectrometer. Nevertheless, these phase track-
ing calculations are linear with respect to the number of
pulses and spins, and can be efficiently done on a classical
computer. Together with the rotations around any axis in the
x-y plane, thez rotations can generate any single-qubit rota-
tion on the Bloch sphere.

On the other hand, the spin-spin interactions present in the
molecule allow us to perform two-qubit gates and achieve
universal control. To first order in perturbation, this interac-
tion scalled theJ couplingd, has the form

Hj ,k =
Jjk

4
sz

jsz
k, s2d

where j ,k denote the corresponding pair of qubits andJjk is
their coupling strength. Under typical NMR operating condi-
tions, these interaction terms are small enough to be ne-
glected when performing single-qubit rotations with rf pulses
of short duration. Nevertheless, between two pulses they are

driving the evolution of the system. By cleverly designing a
pulse sequence, i.e., a succession of pulses and free evolution
periods, one can easily apply two-qubit gates on the state of
the system. Indeed, the so-calledrefocusing techniques’ prin-
ciple consists of performing an arbitrary Ising gate by flip-
ping one of the coupled spinssp pulsed, as shown in Fig. 3.
The interaction evolutions before and after the refocusing
pulse compensate leading to the effective evolution

Uj ,k
eff = eisp/2dsx

j
e−isJjk/4dsz

jsz
kDt2e−isx

j p/2e−isJjk/4dsz
jsz

kDt1 = e−isā/4dsz
jsz

k
,

s3d

where the effective coupling strengthā=JjksDt1−Dt2d is be-
ing determined by the difference between the durationsDt1
andDt2.

We have so far described a quantum register as consisting
of nuclei of a single molecule. However, liquid-state NMR
uses an ensemble of about 1023 molecules in a solution main-
tained at room temperatures.300 Kd. For typical values of
the magnetic field, this thermal state is extremely mixed.
Clearly, this is not the usual state in which we initialize a
quantum computation since qubits are nearly randomly
mixed. Nevertheless, known NMR methodsf16g can be used
to prepare the so-calledpseudopure statesrppd f24g

rpp =
s1 − ed

2N I + erpure, s4d

whererpure is a density operator that describes a pure state
and e is a small real constantsi.e., e decays exponentially
with Nd.

Under the action of any unitary transformationU this
state evolves as

rpp
final = UrppU

† =
s1 − ed

2N I + UerpureU
†. s5d

The first term in Eq.s5d did not change because the identity
operator is invariant under any unitary transformation.
Therefore performing quantum computation on the ensemble
is equivalent to performing quantum computation over the
initial state represented only byrpure.

FIG. 2. Bloch’s sphere representation of a single nuclear spin-
1/2 precessing around the quantization axis determined by the ex-
ternal magnetic fieldB. The precession frequency is given byn j

=m jB, with m j the magnetic moment of thej th nucleus. Due to the
chemical environment, each nucleus precesses at its own Larmor
frequencyn j.

FIG. 3. Circuit representation for the refocusing scheme to con-
trol J couplings. The Ising-like couplingJjk between spins can be
controlled by performing flips on one of the spins at timest1=Dt1
and t2= t1+Dt2, respectively. The effective coupling isā=a1−a2

=JjksDt1−Dt2d, and vanishes whenDt1=Dt2.
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At the end of the computation, we measure the orthogonal
components of the sample polarization in thex-y plane,Mx
=Trsrpp

finaloi=1
N sx

i d, andMy=Trsrpp
finaloi=1

N sy
i d. Note that the in-

variant component ofrpp
final does not contribute to the signal

since TrsIsx,y
j d=0. Because the polarization of each single

spin, Mx
j =Trsrpp

finalsx
j d and My

j =Trsrpp
finalsy

j d, precesses at its
own Larmor frequencyn j, a Fourier transformation of the
temporal recordingscalled FID, for free induction decayd of
the total magnetization needs to be performed. By doing so,
we obtain the expectation value of the polarization of each
spin saveraged over all molecules in the sampled.

Summarizing, a liquid-state NMR setting allows us to ini-
tialize a register of qubits in a pseudopure state, apply any
unitary transformation to this state by sending controlled rf
pulses or by free interaction periods, and measure the expec-
tation value of some quantum observablessi.e., the spin po-
larizationd. Hence these systems can be used as quantum
information processorssQIPsd.

III. SIMULATION OF PHYSICAL SYSTEMS

Feynmanf6g described a quantum computer as a universal
reversible device governed by the laws of quantum physics
and capable of exactly simulating any physical system. Al-
though he analyzed the problem of simulating physics as-
suming that every finite quantum-mechanical system can be
imitated exactly by another onese.g., a set of qubitsd f7g, he
was unsure whether this statement remained valid for the
simulation of Fermionic systems.

In this section we describe how to obtain information
about physical properties of any quantum many-body system
sFermionic, Bosonic, anyonic, etc.d by using a set of qubits
sspin 1/2d controlled by NMR techniques. A more complete
description of these methods based on the existence of one-
to-one mappings between the algebras used to describe the
system to be simulated and the quantum computerf9,11,26g,
as well as indirect measurement algorithmsf8g, can be found
in previous worksf8,10,27g.

In this work we are interested in the measurement of cor-
relation functions of the form

Gstd = kfuÛstdufl, s6d

where Ûstd is any time sor other continuous parameterd
-dependent unitary operator, using indirect measurement
techniquesf8g. In addition to the qubits used to represent the
physical system to be simulatedsi.e., the system of qubitsd,
an extra qubit calledancilla is requiredsFig. 4d. This qubit is
used as a probe to scan the properties of the system of qubits.
It has to be initialized in the superposition stateu+la=su0la

+ u1lad /Î2 by applying the Hadamard gatef28g to the polar-
ized stateu0la. Then, it interacts with the system of qubits,
initially in the stateufl, through a controlled unitary opera-

tion Uu1la= u0lak0u ^ I + u1lak1u ^ Ûstd. After this interaction,
we can showf8g that Gstd=k2s+

al=ksx
a+ isy

al; that means we
get the desired result by measuring the expectation values of
the ancilla qubit observablessx

a andsy
a.

Using the same techniques we can determine the spectrum

of an observableQ̂ when choosingÛstd=e−iQ̂t. Figure 5 de-

picts this algorithmf10g. Since the initial state can always be

written as a linear combination of eigenstates ofQ̂, that is,

ufl=ongnucnl, with ucnl the eigenstates ofQ̂ having eigen-
valuesln, and gn complex coefficients, a measurement on
the polarization of the ancilla qubit givesk2s+

astdl
=onugnu2e−ilnt. Having the time-dependent functionSstd
=k2s+

astdl for a discrete set of valuesti, the eigenvaluesln

can in principle be obtained by performing a discrete Fourier
transformsDFTd f10g. Note that the determination of each
single valueSstid requires a different experiment.

The eigenvaluesln denote the spectrum of a system

HamiltonianH when replacingQ̂→H. In this case, the op-
erationUu1la can be efficiently implementedf8,10,27g. How-
ever, methods for finding an initial state with an overlapgn
that does not vanish exponentially with increasing system
size are in general not known. This issue arises, for example,
when trying to obtain the spectrum of the two-dimensional
Hubbard model approaching the thermodynamic limit
f10,27g.

Nevertheless, the same basic procedure can be used when
interested in obtaining dynamical correlation functions of the

form Gstd=kfuT†AiTBjufl fi.e., Ûstd=T†AiTBj in Eq. s6dg,
where T=e−iHt is the time evolution operator of a time-
independent HamiltonianH, andAi ,Bj are unitary operators.
In Fig. 6 we show the circuit for an algorithm capable of
obtaining these correlation functions after some simplifica-
tions f10g. The propagation step is split into three different
parts: First, we perform a controlled operationBu1la= u0lak0u
^ I + u1lak1u ^ Bj. Second, we perform theT operation on the
system, and third, a controlled operationAu0la= u0lak0u ^ Ai

†

+ u1lak1u ^ I. Spatial correlation functions can also be ob-

FIG. 4. Quantum network for the evaluation of the expectation

value of a unitary operatorÛstd. The filled circle denotes a con-

trolled operationsi.e., Uu1la of Sec. IIId, such thatÛstd is applied to
the system only if the ancilla qubit is in the stateu1la.

FIG. 5. Quantum network for the evaluation of the spectrum of

an observableQ̂.
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tained when replacing the operatorT by the space translation
operator. Again, this algorithm can be performed efficiently
whenever the initial stateufl can be prepared efficiently.

The algorithm described above can be easily implemented
with liquid-state NMR methods, since the result of the simu-
lation is encoded in the expectation values of single qubit
observables. So far, the algorithm applies only to the simu-
lation of systems described in terms of Pauli operators, such
as spin-1/2 systems. However, other systems with different
particle statistics can also be simulated with these algorithms
after mapping their operator algebras onto the Pauli spin-1/2
algebraf9,11,26g. In the next section we introduce the Fano-
Anderson model, a simple Fermionic system, and show how
to simulate it on a liquid-state NMR QIP using these meth-
ods.

IV. FANO-ANDERSON MODEL

The quantum simulation of the one-dimensional Fermi-
onic Fano-Anderson model provides a starting point for
simulations of quantum systems with different kinds of par-
ticle statistics.

The one-dimensional Fermionic Fano-Anderson model
consists of ann-sites ring with an impurity in the centerssee
Fig. 7d, where spinless fermions can hop between nearest-
neighbors sites with hopping matrix elementsoverlap inte-
grald t, or between a site and the impurity with matrix ele-
mentV/În. Taking the single-particle energy of a fermion in
the impurity to bee, and considering the translational invari-
ance of the system, the Fano-Anderson Hamiltonian can be
written in the wave-vector representation asf8g

H = o
l=0

n−1

«kl
ckl

†ckl
+ eb†b + Vsck0

† b + b†ck0
d, s7d

where the Fermionic operatorsckl

† and b† sckl
and bd create

sdestroyd a spinless fermion in the conduction modekl and in
the impurity, respectively. Here, the wave vectors arekl
=2pl /nsl =f0,… ,n−1gd and the energies per mode are«kl
=−2t coskl.

In this form, the Hamiltonian in Eq.s7d is almost diagonal
and can be exactly solved: There are no interactions between

electrons in different modeskl, except for the modek0, which
interacts with the impurity. Therefore the relevant physics
comes from this latter interaction, and its spectrum can be
exactly obtained by diagonalizing a 232 Hermitian matrix,
regardless ofn and the number of fermions in the ringNe.
Nevertheless, its simulation in a liquid-state NMR QIP is the
first step in quantum simulations of quantum many-body
problems.

In order to use the algorithms presented in Sec. III, and to
successfully simulate this system in an NMR QIP, we first
need to map the Fermionic operators onto the spin-1/2
sPaulid operators. This is done by use of the following
Jordan-Wigner transformationf26g:

b = s−
1 b† = s+

1

ck0
= − sz

1s−
2 ck0

† = − sz
1s+

2

] ]

ckn−1
= sp

j=1

n

− sz
jds−

n+1 ckn−1

† = sp
j=1

n

− sz
jds+

n+1.

s8d

In this language, a logical stateu0jl swith u0l;u↑ l in the
usual spin-1/2 notationd corresponds to having a spinless
fermion in either the impurity, ifj =1, or in the modekj−2,
otherwise. The Fermionic vacuum stateuvacl si.e., the state
with no fermionsd maps onto uvaĉl= u1112¯1n+1l
s;u↓1↓2¯↓n+1ld. As an example, Fig. 8 shows the mapping
of a particular Fermionic state forn=4.

Some dynamical properties of this model can be obtained
using the quantum algorithms described in Sec. III. Here, we
are primarily interested in obtaining the probability ampli-
tude of having a fermion in modek0 at time t, if initially st
=0d the quantum state is the Fermi sea state withNe fermi-
ons; that is,uFSl=pl=0

Ne−1ckl

† uvacl. This probability is given by

FIG. 6. Quantum network for the evaluation of the correlation
function Gstd=kfuT†AiTBjufl. The filled semptyd circle denotes an
operation controlled by the stateu1lasu0lad of the ancilla qubit.

FIG. 7. Fermionic Fano-Anderson model. Fermions can hop be-
tween nearest-neighbor sitessexterior circlesd and between a site
and the impurityscentered circled, with hopping matrix elementst
andV/În, respectively. The energy of a fermion in the impurity is
e.
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the modulus square of the following dynamical correlation
function:

Gstd = kFSubstdb†s0duFSl, s9d

wherebstd=T†bs0dT, T=e−iHt is the time evolution operator,
and b†s0d=b†. Basically, Gstd is the overlap between the
quantum stateb†s0duFSl, which does not evolve, and the
stateb†stduFSl, which does not vanish unless the evolved
stateTuFSl already contains a fermion in the impurity site
(fb†stdg2=fb†s0dg2=0), i.e., contains the fermion which ini-
tially was in thek0 mode. In terms of spin-1/2 operatorsfsee
Eq. s8dg, this correlation function reduces to a two-qubit
problemf8g:

Gstd = kfuT̄†s−
1T̄s+

1ufl, s10d

whereT̄=e−iH̄t is an evolution operator arising from the in-
teraction terms in Eq.s7d, with

H̄ =
e

2
sz

1 +
«k0

2
sz

2 +
V

2
ssx

1sx
2 + sy

1sy
2d, s11d

and ufl= u1102l in the logical basissi.e., the initial state with
one fermion in thek0 moded.

In order to use the quantum circuit shown in Fig. 6, all
operators in Eq.s10d must be unitary. Using the symmetries
of H, such as the globalp /2 z rotation that mapsssx

j ,sy
j d

→ ssy
j ,−sx

j d, leaving the stateufl invariant sup to a phase

factord, we obtain kfuT̄†sx
1T̄sy

1ufl=kfuT̄†sy
1T̄sx

1ufl=0 and

kfuT̄†sx
1T̄sx

1ufl=kfuT̄†sy
1T̄sy

1ufl. Then, Eq.s10d can be writ-
ten in terms of unitary operators as

Gstd = kfueiH̄tsx
1e−iH̄tsx

1ufl. s12d

Figure 9 shows the quantum circuit used to obtainGstd. It is
derived from Fig. 6 by making the following identifications:

T→e−iH̄t, Ai →sx
1, and Bj →sx

1. As we can see, the corre-
sponding controlled operationsAu0la andBu1la sSec. IIId trans-
form into the well-known controlled-not sCNOTd gates. All the
unitary operations appearing in Fig. 9 were decomposed into
elementary NMR gatesssingle qubit rotations and Ising in-

teractionsd. In particular, the decomposition ofe−iH̄t can be
found in Ref.f8g. We obtain

e−iH̄t = Ue−il1sz
1te−il2sz

2tU†, s13d

wherel1s2d=
1
2sE7ÎD2+V2d, with E=se+«k0

d /2, andD=se
−«k0

d /2. The unitary operatorU is decomposed assFig. 9d

U = eisp/4dsx
2
e−isp/4dsy

1
e−isu/2dsz

1sz
2
eisp/4dsy

1
eisp/4dsx

1
e−isp/4dsx

2

3e−isp/4dsy
2
eisu/2dsz

1sz
2
e−isp/4dsx

1
eisp/4dsy

2
, s14d

with the parameteru satisfying cosu=1/Î1+d 2, and d
=sD+ÎD2+V2d /V.

The CNOT gatesAu0la and Bu1la can also be decomposed
into elementary gates, obtaining

Au0la = u0lak0u ^ sx
1 + u1lak1u ^ I

= eisp/4dsx
1
eisp/4dsz

1sz
a
e−isp/4dsy

1
e−isp/4dsz

1sz
a
e−isp/4dsz

1

and
Bu1la = u0lak0u ^ I + u1lak1u ^ sx

1

= eisp/4dsx
1
e−isp/4dsz

1sz
a
e−isp/4dsy

1
eisp/4dsz

1sz
a
e−isp/4dsz

1

sup to a phase factord. Therefore we can implement the cir-
cuit of Fig. 9 and obtainGstd using an NMR QIP by applying
the appropriate rf pulsessSec. IId. Only three qubits are re-
quired for its simulationsFig. 9d: The ancilla qubita, one
qubit representing the impurity sitesqubit 1d, and one qubit
representing thek0 modesqubit 2d.

FIG. 8. Mapping of the Fermionic product statec1
†c2

†c4
†uvacl,

with uvacl the no-fermion or vacuum state, into the spin-1/2 and the
standard quantum computation languages, using the Jordan-Wigner
transformation. A filled circle denotes a site occupied by a spinless
fermion, which maps into the stateu↑ l in the spin-1/2 algebra.

FIG. 9. Quantum circuit for the evaluation ofGstd fEq. s9dg in
terms of elementary gates directly implementable with liquid-state
NMR methods.
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We are also interested in obtaining the spectrum of the
HamiltonianH of Eq. s7d. For this purpose we used the al-

gorithm shown in Fig. 5, replacingQ̂→H. In particular,
when n=1 sone site plus the impurityd, Eq. s7d reduces to

H=se+«k0
d /2+H̄, with H̄ defined in Eq.s11d in terms of

Pauli operators. In this case, the two eigenvalueslisi =1,2d
of the one-particle subspace can be extracted from the corre-
lation functionsSec. IIId

Sstd = kfue−iHtufl = e−ise+«k0
dtkfue−iH̄tufl, s15d

which can be obtained by measuring the polarization of the
ancilla qubit after the quantum circuit shown in Fig. 5 has
been applied. Sinceufl= u1102l= u↓1↑2l is not an eigenstate of
H, it has a nonzero overlap with the two one-particle eigen-
states, calledu1Pil ssee the Appendixd.

Again, the operatoreiHsz
at/2 sFig. 5d needs to be decom-

posed into elementary gates for its implementation in an
NMR QIP. Noticing thatfsz

a,Hg=fsz
a,Ug=0, we obtain

eiHsz
at/2 = Ueil1sz

1sz
at/2eil2sz

2sz
at/2U†eise+«k0

dsz
at/2, s16d

where the unitary operatorU is decomposed as in Eq.s14d.
Figure 10 shows the corresponding circuit in terms of el-
ementary gates. Again, qubits 1 and 2 represent the impurity
site and thek0 mode, respectively.a denotes the ancilla qu-
bit. Since the idea is to perform a DFT on the results ob-
tained from the measurementssee the Appendixd, we need to
apply this circuit for several values of the parametert sSec.
III d.

V. EXPERIMENTAL IMPLEMENTATION

A. Experimental protocol

For the experimental simulation of the Fermionic Fano-
Anderson model, we used an NMR QIP based on a solution
of transcrotonic acid and methanol dissolved in acetone. This
setting has been described in Ref.f29g. Once the state of the
three equivalent protons in the methyl group of the transcro-
tonic acid molecule is projected onto the spin-1/2 subspace
f29g, this molecule can be used as a seven-qubit registerssee
Fig. 11d. Methanol is used to perform rf-power selection and
accurately calibrate the rf pulses.

Two important characteristics of a molecule used for an
NMR QIP are:sid the accuracy of the control andsii d the
number of elementary gates we can perform within the rel-

evant decoherence time of the system. The accuracy of con-
trol in transcrotonic acid has been determined in Ref.f30g,
using an error-correcting code as a benchmark. The current
experiment can be considered as another exploration of the
accuracy of control, in this case examining how well we can
implement the necessary evolutions when simulating quan-
tum systems with NMR techniques.

In liquid-state NMR the main source of decoherence is
the relaxation of the transversal polarization of the sample
due to the loss of coherence between molecules. In our set-
ting, the relevant times of this process, calledT2

* , are in the
range from several hundreds of milliseconds to more than
one second, for the different nuclei. These times fix the
maximum number of elementary gates that can be applied to
the quantum register without losing coherence. Indeed, a
lower bound of the pulse duration to induce a rotation on a
single qubit is determined by the difference between the
resonant frequencies of the spin to be rotated and the others
sits chemical shiftd. A very short pulse having a wide excita-
tion profile in the frequency domain affects several spins at
the same time if their chemical shifts are small. On the other
hand, the duration of the Ising gatestwo-qubit gated depends
directly on the strength of theJ-coupling constantsJjk. In our
setting the chemical shifts values impose pulse durations of
the order of 1 ms, and theJ couplings impose interaction
periods of the order of 10 ms, restricting the pulse sequences
to a maximum of approximately 1000 single-qubit rotations
and 100 two-qubitsIsingd gates.

Designing a pulse sequence to implement exactly the de-
sired unitary transformation would require very long refocus-
ing schemes to cancel out all the unwanted naturally occur-
ring J couplings. Then, the overall duration of the pulse
sequence increases and decoherence effects could destroy
our signal. Therefore we need to find the best tradeoff be-
tween the idealf31g accuracy of the pulse sequence and its
duration, and neglect small couplings. For this purpose, we
used an efficient pulse sequence compiler to perform the
phase tracking calculations and to numerically optimize the
delays between pulses, in order to minimize the error that we
introduce into the quantum computation by neglecting small
couplings.

We now describe the parts of the pulse sequence corre-
sponding to the basic steps of the quantum simulation.

1. Pseudopure state preparation

Initially, the state of the nuclei of the transcrotonic acid
molecules in solution is given by the thermal distribution

FIG. 10. Quantum circuit for the evaluation ofSstd fEq. s15dg.
The parametersl1 and l2 are defined in Sec. IV, anda=se
+«k0

d /2. The decomposition of the operatorU in NMR gates can be
found in Fig. 9.

FIG. 11. The transcrotonic acid molecule is a seven-qubit reg-
ister: Two protons, the methyl group used as a single spin-1/2f29g
and four13C. The table shows in hertz the values of the chemical
shifts son the main diagonald and theJ couplings soff-diagonald
between every pair of nucleisqubitsd.
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sSec. IId. Using the methods described in Ref.f29g we have
prepared the labeled pseudopure stateslppd rlpp

=1C41C31C2sz
C11M1H21H1, where1= 1

2fI −s2g si.e., 1= u1lk1ud
and0= 1

2fI +szg si.e.,0= u0lk0ud. As we will see, the staterlpp,
having the spin ofC1 in thesz state, is a good initial state for
our purposes.

2. Initialization

As mentioned in Sec. IV, we need only three qubits to
simulate the Fano-Anderson model. These qubits must be
well coupled to each other to decrease the duration of the
corresponding Ising gates we apply to them. We have chosen
the spin-1/2 nucleusC1 to represent qubit 1si.e., the impu-
rityd and the spin-1/2 nucleusM to represent qubit 2si.e.,
the k0 moded. On the other hand, we have chosen the spin-
1/2 nucleusC2 to be the ancilla qubita, to take advantage of
its strong coupling with the spin-1/2 nucleusC1 squbit 1d.
Since the rest of the spinssC4,C3,H2,H1d in the molecule
remain in the state1 or 0 during the whole duration of the
experiment, we need to consider only the spinsC2 ^ C1
^ M with the above identificationf32g.

The initial stateu+la ^ u1102l sSec. IVd can be written as
rinit8 = 1

2fsIa+sx
ad1102g in terms of Pauli operators. The ancilla

qubit is only acontrol qubit and its statesi.e., its reduced
density matrixd becomes correlated with the rest of the qu-
bits. Moreover, considering that the identity part is not ob-
servable, we usedrinit =sx

a1102 instead ofrinit8 as the initial
state. Its preparation was done by applying a sequence of
elementary gates torlpp=1asz

112, as shown in Fig. 12.

3. Propagation pulse sequence

As shown in Fig. 10, the pulse sequence used for obtain-
ing Sstd fEq. s15dg requires Ising gates with a coupling
strength depending ont. The refocusing schemes are then
optimized differently and the results for different values oft
cannot be directly comparable. To avoid this problem we
have replaced the two Ising gates by an equivalent sequence
of elementary gates, where the dependence on the simulation
parametert is transferred into the angle of a single-qubit
rotation around thez axis sFig. 13d. This virtual rotation is
implemented through a phase tracking, as mentioned in Sec.

II. Thus the only difference between the pulse sequence used
to measureSstd for different simulation timesti is a phase
calculation that introduces no extra optimization or experi-
mental error.

4. Measurement

The result of the algorithm is encoded in the polarization
of the ancilla qubitk2s+

al=ksx
al+ iksy

al sSec. IIId, which is
directly proportional to the polarization ofC2 over the
sample. This component precesses at theC2 Larmor fre-
quencynC2

. To measure it, we have to perform a Fourier
transformation on the measured FID and integrate only the
peak located atnC2

. Nevertheless, the absolute value of this
signal is irrelevant since it depends on many experimental
parameters such as the solution concentration, the probe sen-
sitivity, and the gain of the amplifier. The relevant quantity is
its intensity relative to a reference signal given by the obser-
vation of the initial staterinit. To get a good signal-to-noise
ratio, each experimentsor scand was done several times and
the corresponding experimental data were added.

Moreover, to average over small magnetic fluctuations oc-
curring within the duration of the whole experiment we in-
terlaced scans of the reference experimentsi.e., the measure-
ment of the reference signald with scans of the actual
complete pulse sequence. To increase the spatial homogene-
ity of the field over the sample we also have inserted several
automated shimming periods consisting of fine tuning of
small additional coils located around the sample.

B. Results

1. Correlation function

In the first experiment we measured the correlation func-
tion Gstd fEq. s9dg for two different sets of parameters in the
Hamiltonian of Eq.s7d: «k0

=−2, e=−8, V=4, varyingt from
0.1 to 1.5 s using increments ofDt=0.1 s, and«k0

=−2, e
=0, V=4, varying t from 0.1 to 3.1 s withDt=0.1 s. The
duration of the optimized pulse sequences from the begin-
ning of the initialization step to the beginning of the data
acquisition, was 97 ms. In Fig. 14 we show the analytical

FIG. 12. Initialization pulse sequence used to transform the ini-
tial labeled pseudopure staterlpp=1C2sz

C11M into the staterinit

=sx
C21C10M. The sequence transfers the polarization fromC1 to C2

and flips the spin of the methyl groupM. We have chosen the spin-
1/2 nucleiC2,C1, andM to represent the ancilla, qubit 1si.e., the
impurityd, and qubit 2si.e., thek0 moded, respectively.

FIG. 13. Modification of a two-qubit gate with a coupling
strength depending on a parametert. The variable interaction period
is translated into fixed interaction periods and a single-qubit rota-
tion with variable angle about thez axis. Using this modified gate,
the refocusing schemes of the pulse sequences do not depend on the
parametert.
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form of Gstd f8g, as well as the simulated and experimental
data points. The simulated data points were obtained by a
numerical simulation of the Hamiltonian dynamics of the full
seven-qubit register under the optimized pulse sequence.
This simulation is of course inefficient but still tractable on a
conventional desktop computer.

2. Hamiltonian spectrum

In the second experiment we measured the functionSstd
of Eq. s15d to determine the eigenvalues of Eq.s7d, for «k0
=−2, e=−8, andV=0.5. The pulse sequence applied is the
one corresponding to the quantum circuit shown in Fig. 10
with the corresponding refocusing pulses. Its duration was
about 65 ms. We have repeated this experiment for 128 dif-
ferent values of the parametert fEq. s15dg, from t=0.1 to
12.8 s, using increments ofDt=0.1 s.

In Fig. 15 we show the analytical, numerically simulated,
and experimental results for the evaluation ofSstd. As men-
tioned in Sec. III, a DFT needs to be performed in order to
extract the corresponding eigenvalues. In Fig. 16 we show
the DFT of the experimental datassee the Appendixd, which
reveals the expected peaks at the frequency of the two eigen-
values of Eq.s7d in the one-particle sector, for the above
parameters.

C. Discussion

At the experimental points, the error bars depend directly
on the signal-to-noise ratio of our experimental data, as it is
obtained after a fit to the experimental measured FID. They
can then be reduced simply by running more scans for each
experiment. All presented results have been obtained after
eight scans.

Two different classes of errors affect the accuracy of the
experimental results. The first,purely experimental, type of
error is due to the finite accuracy of the spectrometer, and the
intrinsic decoherence of the physical system we are working
with. The second type of error is due to the incomplete refo-
cusing induced by the numerical optimization scheme we
used to design the pulse sequence. The numerical simulation
of the optimized pulse sequence includes the errors of the
second class but does not take into account the purely ex-
perimental ones. Thus, in our case, the good agreement be-
tween experimental results and simulations suggests that the
main contribution to errors comes from the incomplete refo-
cusing in the optimization procedure. Increasing the number
of refocusing pulses might have led to more accurate results
even if they would have increased the overall duration of the
pulse sequences. The good agreement between experiment
and simulation is consistent with the fact that the current
duration of the pulse sequences are much smaller than the
relevant relaxation time of the systemsT2

*d.

FIG. 14. sColord Real and imaginary parts of the correlation
function Gstd of Eq. s9d. The top panels show the results when the
parameters in Eq.s7d are«k0

=−2, e=−8, V=4. The corresponding
parametersl1,l2,u used in the quantum networksFig. 9d can be
determined using Eqs.s13d and s14d. The bottom panels show the
results for«k0

=−2, e=0, V=4. Thesblackd solid line is the analytic
solution, the red circles are obtained by the numerical simulation
sincluding the refocusing pulsesd, and the blue circles with the error
bars are experimental data.

FIG. 15. sColord Real and imaginary parts ofSstd, for «k0
=−2,

e=−8, andV=0.5 in Eq.s7d. The sblackd solid line corresponds to
the analytic solution. The red circles correspond to the numerical
simulation susing refocusing pulsesd and the blue circles with the
error bars are experimental data.Sstd has been measured using the
network of Fig. 10 witha=se+«k0

d /2.

FIG. 16. Discrete Fourier transform of the real part of the ex-
perimental data of Fig. 15. The position of the two peaks corre-
sponds to the two eigenvalues of the Hamiltonian of Eq.s7d for
«k0

=−2, e=−8, andV=0.5. Numbers in parentheses denote the ex-
act solution. The size of the dots representing experimental points is
the error barssee the Appendixd. An upper bound to the error in the
frequency domain is<0.5, which was determined by the resolution
of the spectrum due to the time sampling of the simulationsSec.
V Bd.
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VI. CONCLUSIONS

We have successfully simulated a quantum many-fermion
system using a liquid-state NMR based QIP. The algebraic
mapping of the operators describingany anyonic system
onto the Pauli operators describing our QIP, combined with
indirect measurement techniques, allow us to design efficient
algorithms to simulate arbitrary evolutions of many-body
anyonic systems.

In this work the system studied was the Fermionic Fano-
Anderson model, which can be mapped onto a two-qubit
system by use of the standard Jordan-Wigner transformation.
Relevant dynamical correlation functions of the formGstd
=kfuT†AiTBjufl can be obtained by executing quantum algo-
rithms based on indirect quantum measurements, i.e., using
an additional ancilla qubit. Then, the algorithms needed to
simulate this particular system require three qubits, regard-
less of the number of sitesn sFig. 7d. We were able to design
and run pulse sequences to implement these algorithms on an
NMR QIP based on the transcrotonic acid moleculesa seven-
qubit quantum registerd. The results obtained agree with the
theoretical ones. To keep a constant error level, each pulse
sequence has been transformed such that the time parameters
ti enter as a phase dependence. To shorten the duration of the
pulse sequence and decrease the effect of decoherence we
used only an approximate refocusing scheme. We numeri-
cally optimized these pulse sequences to minimize the errors
of the quantum simulation. These techniques allowed us to
get very accurate results with efficiently controlled errors,
since the overall duration of the pulse sequence was much
smaller than the decoherence time of the system.

Although the addition of particle-particlese.g., density-
density or exchanged interactions in the Fano-Anderson
Hamiltonian makes it, in general, nonintegrable, the quantum
simulation of Gstd remains efficient, i.e., with polynomial
complexity. The simulation of these more realistic systems
would still require bigger registers and longer pulse se-
quences, and therefore it would suffer from an increase of
systematic errors as well as decoherence effects. Neverthe-
less, quantum error correction and fault-tolerant procedures
provide, in principle, an efficient way to overcome this po-
tential problemf33,34g. We can therefore conclude that this
work constitutes an experimental proof of principle for effi-
cient methods to simulate quantum many-body systems with
quantum computers.
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APPENDIX: DISCRETE FOURIER TRANSFORM AND
PROPAGATION OF ERRORS

Theoretically, the functionSstd of Eq. s15d is a linear com-
bination of two complex functions having different frequen-

cies: Sstd= ug1u2e−il1t+ ug2u2e−il2t, whereli are the eigenval-
ues of the one-particle eigenstates, defined asu1Pil, in the
Fano-Anderson model withn=1 site and the impurityssee
Sec. IVd, andli = ukf u1Pilu2 sSec. IIId, with ufl= u↓1↑2l f8g.
However, the liquid NMR setting used to measureSstd ex-
perimentally adds a set of errors that cannot be controlled,
and the functionSstd shown in Fig. 15 is no longer a contri-
bution of two different frequencies only.

As mentioned in Sec. V B,Sstd was obtained experimen-
tally for a discrete set of valuestj = jDt, with j =f1,… ,M
=128g andDt=0.1 s. Its DFT is given by

S̃shld =
1

M
o
j=1

M

Sstjdeihlt j , sA1d

whereSstjd is the experimental value ofSstd at time tj, and
hl =2pl /MDt swith l =f1,… ,Mgd are the discrete set of fre-
quencies that contribute toSstd f35g. Notice that since we are
evaluating the spectrum of a physicalsHermitiand Hamil-

tonian, the imaginary part ofS̃shld is zerof36g. In Fig. 16 we

show S̃shld obtained from the experimental pointsSstjd of
Fig. 15. Its error barssi.e., the size of the line in the figured
were calculated by considering the experimental error bars of
Sstjd in the following way: First, we rewrite Eq.sA1d as

S̃shld = o
j=1

M

Qlj , sA2d

with Qlj =M−1hRefSstjdgcosshlt jd−ImfSstjdgsinshlt jdj sreald.
Then, the approximate standard deviationES̃l of S̃shld de-
pends on the errorsEQlj of Qlj as sconsidering a normal
distribution f37gd

fES̃lg2 < o
j=1

M

fEQljg2. sA3d

On the other hand,EQlj is calculated asf37g

fEQljg2 = U ]Qlj

] RefSstjdg
U2

ER
2 + U ]Qlj

] ImfSstjdg
U2

EI
2,

sA4d

whereER andEI are the standard deviations of the real and
imaginary parts ofSstjd ssee Fig. 15d, respectively. Because
of experimental reasonssSec. V Ad these errors are almost
constant, havingER,EI,ES independently oftj ssee Fig.
15d, where ES is taken as the largest standard deviation.
Combining Eqs.sA3d and sA4d, we obtain

ES̃l = FM−2ES
2o

j=1

M

fucosshlt jdu2 + usinshlt jdu2gG1/2

=
ES

ÎM
.

sA5d

In our experiment,M =128 andES<0.04, obtainingES̃l
<0.0035, which determines thesconstantd error barssi.e.,
the size of the dots representing data pointsd shown in Fig.
16.
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The standard deviationEhl in frequency domain is due to
the resolution of the sampling timeDt. This resolution is
related to the error coming from the implementation of thez
rotations in the refocusing proceduresFig. 3d. A bound for

this error is given by the resolution of the spectrum; that is,

Ehl ø
2p

MDt
< 0.5. sA6d
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