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Multiple-copy two-state discrimination with individual measurements
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We address the problem of nonorthogonal two-state discrimination when multiple copies of the unknown
state are available. We give the optimal strategy when only fixed individual measurements are allowed and
show that its error probability saturates the collecfifeaver) bound asymptotically. We also give the optimal
strategy when adaptivity of individual von Neumann measurements is allom@dh requires classical com-
munication and show that the corresponding error probability is exactly equal to the collective one for any
number of copies. We show that this strategy can be regarded as Bayesian updating.
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I. INTRODUCTION Hence, one usually assumes she knows the set of possible

Measurement is a central tenet of quantum mechanics. A&ates that will be used in a secret transmiss@g., in the
for any sensible theory of nature, it links abstract ideas td392 Protocol [7] this set consists of two nonorthogonal
reality’ and makes mathematical concepts truly physical. Ii$tate$, and her task is taiscriminate[8] among them. She
contrast to classical measurements, whideally) have no  can follow two different approaches: use a strategy based on
demolishing effect whatsoever, in the quantum realm anyguantum hypothesis testini] (unconclusive discrimina-
attempt to acquire information from a system alters it to ation), which gives the lowest probability of error, or do un-
degree proportional to the gain of information. Moreover,ambiguous (or conclusivg discrimination [9}—namely,
this gain is limited[1]. Given a single copy of an unknown adopt a strategy that does not tolerate errors.
quantum state it is usually impossible to determine it by When the number of copies is greater thaifas is the
performing any conceivable measurement. Nevertheless, {fase of a noncompletely attenuated laser pulse which may be
an increasing number of copies of such a state is availableplit in several identical single-photon statethe discussion
our knowledge of the state can also increase by the use @bove concerning individual versus collective strategies be-
various measurement strategies, and complete determinatieemes again an issue. In this paper we focus our attention on
can be achieved in the asymptotic limit when the number ofhis situation. To be more concrete, we will consider a
copies goes to infinity. hypothesis-testing approach tmonorthogonal two-state

Measurement strategies involving multiple copies of adiscrimination under the assumption that we hbhieentical
quantum state fall into two categories: collective and indi-copies of the transmitted quantum state. We will find the best
vidual (local), depending on whether a single measurement i@daptive strategy—i.e., a particular case of strategies that use
performed on all the copies as a whole or the strategy conlocal operations and classical communicatia®CC), and
sists of individual measurements, each of them performewve will show that it is optimal regardless of the number of
separately on a single copy. Since the pioneering work ofopies, in the sense that its error probability and that of the
Helstrom[2] and Peres and Woottel3], it has been repeat- optimal collective strategy are exactly the same for B
edly shown that collective strategies outperform individualsimilar result was obtained by Brody and Meisf&0] for
ones. This should not come as a surprise, since the latter cdayesian updating. Our result could be seen as its extension
be viewed as a subset of the former, which are completeljo general adaptive strategies. However, we will prove the
general and unconstrained. Collective measurements, howemarkable result that the whole class of adaptive strategies
ever, are difficult to implement experimentally, and a greathas actually a single element: Bayesian updating. Related
deal of effort goes into designing optimal strategies involv-work can be found in11], where the particular cad¢=2 is
ing only individual measurements. Common examples aréliscussed using the information gain instead of the error
guantum tomographj4] and (local) adaptive strategies]  probability.
(where the choice of each individual measurement is based If classical communication is not allowed, we show that
on the outcomes of the previgushe two of them in the optimality holds asymptotically for the fixed measurement
context of quantum state estimation. The state of the art oftrategy named thenanimity vote which we also present
these approaches can only compete with collective strategidre.
in the asymptotic limit.

Many practical applications, however, do not require a Il. PRELIMINARIES
full determination of a state. For instance, to asses the secu- We will start by reviewing some known facts about two-
rity of a key distribution protocol in quantum cryptography state discrimination, including a few technical details, which
[6], one gives full advantage to Eve, the eavesdroppemvill help us to introduce the notation.
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A. One copy [W2) =[42)*" = cosO|X) + (- 1)%sin O] Y), (6)

By choosing the appropriate orthonormal basis, any tWoyhere|X) and|Y) belong to a conveniently chosen basis of
statedy), |1/1) (which we will assume to be neither orthogo- 3N |, this situation Eqs(3) and(4) also hold if we replace
nal nor parallel can always be written as 6 andc with the corresponding uppercased varialfesnd

_ s _ C=cos ®. In terms of the new basigX),|Y),...}, the vec-
|2 = cosdlx) + (- Dsindly), a=0,1, @) tors|Q2(a))(a=0, 1), which define the measurement on thie

regardless of the dimension of the Hilbert spatghey be-  COPies in full analogy witthw, (@), are also given by Eq2)
long to, where the unit vectof), y) are the elements of the (UPPercasingo,x, andy). This defines ollectivemeasure-
basis that span the plafieformed by| o), |i4,). Now, we ask ~ Ment, since in generaf)(a)) is not a product state. We ob-
ourselves what the best measurement for discriminating bedously have C=[(Wo|W1)|=[(io|1)"|=c" and thus con-
tween |¢) and |¢,) is. It can be defined in terms of two clude that the error probability for this optimal collective
orthonormal vectorg|w;(0)),|w;(1))}, which also belong to measurement iE2]

, and thus can be written as [ —TY]
F 11 - 490,

P = (7)
(@) = c05<¢ a”) )+ sin(¢ a”) ). (2 ’
w = -—a—- -—a— .
' 0 72 ° %2 Sincec< 1, in the largeN limit we note that
I h, by “best t th .
n our approach, by “best measurement” we mean the S ®)

measurement that maximizes the probability of discrimina-
tion, P,=31 g.p(ala)==1_,p(a,a) (or equivalently the one

that minimizes the error probabilit;=1-P,). Hereq, is IIl. INDIVIDUAL MEASUREMENTS
the prior probability of|,) being (secretly transmitted,

p(0|0) andp(1|1) are the conditional probabilities of obtain-
ing the outcome 0 or 1 given that the unknown statg/is If we are only allowed to perform the same individual
or |¢n), respectively, ang(0,0) and p(1,1) are the corre- measurement on each of oNrcopies, one could expect that

sponding joint probabilities. The subindex 1|in(a)) and in  the lowest probability of error we can achieveA=~ ,cV,
the probability of discrimination and error emphasizes thaivhere the constany is not relevant for the discussion here.
so far we are dealing with just one copy of the unknownThis belief may stem from the widespread use of the statis-
state. Throughout this paper, boldfaced random variables wilical overlap as a measure of distinguishability; from a sta-
denote the outcomes of our measurement; thus, B(3l0) tistical analysis of the problem at hand, one concludes that
is the (a posterior) probability of the transmitted state being the probability of error is bounded by, where\ depends
ly) given that the outcome of our measurement is 0. Usingn the specific individual measurement we are performing.
elementary quantum mechanics, the conditional probabilitieFhe statistical overlap is a particularly convenient choice of
p(alb) can be computed to bep(alb)=[w;(@)|¢)> N (see below Optimizing over all possible measurements
=coS[¢po—am/2—(-1)°6]. The optimal measurement and one finds thak =c for two pure states. This bound is attained
the corresponding probabilities of discrimination and errorby a majority-vote strategy: we perform the best individual
are given by measurement, given by Eq®) and(3) on each copy and get
N, times the outcome. Once the measurement process is
Oo— 01 ) Jo+Ql . complete, we decide in favor of the stdtg) whose corre-
COS 2o = Ry CoS 2, sin 2= Ry sin26, (3)  gpondingN, is greatest.
However, there exist tighter bounds for the exponential
. 1 decrease of the probability of error. The best one is known as
_= D _ =1 _ the Chernoff bound12], which for the problem at hand is
Py = 2(1 R Pu= 2(1 Ro), “@ given by A=min,2,p(b|0)*p(b|1)1~*, where O<a<1 (the
statistical overlap is a particular simplification of this expres-
whereRy=[(do—qy)?+4do0;Sin*26]"/2 In terms of the over-  sjon obtained by setting=1/2). We now note that if we
lap between ) and|yy), defined axc= (Y| ¥1)|=cos ¥,  assumeqy,>q,;, with the choice|®(0))=|y) and (1))

A. Fixed measurements

the factorR, can be written as =]y ) for our measurement we hay#0|0)=1,p(1]0)=0,

[ andp(0|1)=c? and «=0 gives the absolute minimurover

Ro = V1 — o0, ¢%. (5)  all measurements and over all valuesafof the sum oveb

In the simple case wherg,=q;=1/2, wehave ¢=m/4  above. ThusPR‘= 7c™, as for collective measurements.
and, thus|w(a))={|x)+(-1)3y)}/\2, as one would expect. There is a simple strategy that saturates the Chernoff

bound: the unanimity vote. Let ourselves perform the mea-
surement defined bfjw(a))} on each of ouN copies. If we
always obtain the outcome (MNy=N), we claim that the un-

Let us next suppose thaltcopies of eithefiy) or |4,) are  known state ig¢). However, if we obtain the outcome 1
available to us. In full analogy with Eq1) we define once or more than once, we decide in favorf).

B. Several copies: Collective measurements
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The exact probability of error is straightforward to com- sees thaEXELr|Q(x)><Q(x)|:1 in H®", which implies that
pute as follows. Let us assume aggy® q;. If the unknown
state wer€|y), we would make no error. If the unknown 2 p(xjb) =1, (13
state were|y;) (it happens with probabilityg;), we would x
give the wrong answer only iNy=N, which happens with a5 it should be. We start with=0 (£, contains only the
probability ¢?N. Hence, the probability of error would be empty string@) and setg = ¢, as defined in Eq(3), which
.. If d1>0p, we just exchange the subscripts 0 and 1gives the optimal measurement for one copy. For0, ¢,
everywhere. The error probability is then will be determined by requiring optimality step by step. We
now can write

PR’ = min(do,ay)c™. 9) )
We note that asymptoticall!l may be larger thamPg® PF=2> X px,alw@)|y? (14)
only because of the prefactor niig,q;) = qoq;, Which is not a=0xeLn-1

important in most situations. This result has application inyherep(x,a) is the joint probabilities ofi,) being transmit-
the assessment of the security of some quantum cryptQgq and we obtaining the(partia) outcome listx. Namely,
graphic protocol§13]. P(x,8) =0aP(x|@) =GalTL, (w(Xg) [ g)*  (assuming x e L)).
Equation(14) can be written in terms of the anglésand ¢,
B. Adaptive measurements using Egs(1) and(12). Maximizing over¢,, we obtain

So far, we have shown that the performance of individual coSs 2p, = Mc (15)
and collective strategies is essentially the same for large en- R(x)
sembles of identical states. We now show that if we are no\S\/here
restricted to perform the same individual measurement on
each copy and we use the information we are gathering to R(x) = \[p(x,0) + p(x,1)]> - 4p(x,0)p(x,1)c?, (16)
optimize these measurement step by step, the overall perfor-
mance isexactlythe same as for the optimal collective strat- @hd we also have
egy, regardless of the number of copies of the unknown state. . p(x,0) + p(x,1) .
One could reach this conclusion by using the algebraic re- sin 2¢, = R—sm 26. (17)
sults in[14] to trade|()(a)) for a set of product states similar (x)
to those in Eq.(11) below. We follow here a different ap- Substituting back in Eq(14) we obtain
proach since we would like to present a constructive proce- 11
dure within the framework of probability. pﬁd: 4= 2 R(X), (18)

We consider the simplest scenario where we perform al- 2 2, 0,
ways von Neumann measurements on each individual cop‘%

. : : vhere we have used thatp(x,a)=q,, which follows from
The final outcomes are binary sequences or strings of leng ) a
N—e.g.,011...01 Let us denote them by. The strategy is g.(13). Equationg15), (16), and(18) are analogous to Egs.

. ; . 3) and (4). Actually, the latter can be seen as a particular
designed in such a way that the last outcqfeétmost binar ( 4 . . T
digitgin x) determines \)//vhether our guess/i#) o | ). Wey case of the former if we defing(@,a)=q, (this definition is

sensible, since the empty binary string means that no mea-

have
surement has yet been performed
PY'= 2 {qop(0x|0) +a;p(1x|1)}, (10) Having set up this framework, one can prove our main
xeLn-1 result. Namely, that this adaptive strategy gives exactly the

same error probability as the optimal collective one for any

where “ad” stands for adaptivé, is the set of binary strings N. A straightforward calculation yields

of lengthr, andOx and 1x are the strings obtained by ap-
pending 0 and 1 respectively, to the left of the string
Quantum mechanics tells us that the conditional probabil-
ity of obtaining the set of outcomese £, if the initial state b+ (1 - 22 bo 1
were |i,) is p(x|b) =[(Q(x) | yp)|?, where o P.D) + (1 - 2)p(x.b & )}, (19)

R(x)
10(x)) = |0(X)) ® |o(X-1)) ® -+ @ |w(x)), (11) :
where® stands for sum mod 2, and one can prove by induc-
X is the substring of lengtk(0<k=r) consisting of thek  tion the relation

rightmost digits ofx, and
’ ’ QoS Tp(x,0) + pix, 2~ p(x,0p(x, D=0,  (20)
|w(ax)) = co{ by — a7—T> x) + sin( by — az)|y>, (12)  for x € £,, which is obviously satisfied far=0.
2 2 Using this relation in Eq(16) and recalling again that

in analogy with Eq(2). Note thate,, the angle that defines S,p(x,a)=q,, we finally have the resuR2%=PS, wherePg®
the measurememtt+ 1, depends only on the list of outcomes, is the exact error probability7).
X, of the previousr individual measurements. One readily It is not difficult to show that

plax,b) = —p();’ 2l { 1+(- 1P
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(21)

i 1 - 4900:¢”
=(-1" —_—
cos 2p, = (= 1)'rcy/ 1 - 49,0,07

wherei, is the leftmost digit inx € £, and we have used that

sgrip(x,0)—~p(x,1)]=(-1)' [note that sgft,—0a;) =(-1)'].
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We immediately realize that the actual dependence of the

individual measurement+1 on previous outcomes is ex-

tremely simple: it is just a function of theh outcome—i.e.,
of i,—rather than a function of the whole binary sequerce

Pr1=(1+R)/2. (24)
This leads to the recursion relation
R
R.1=V1-(1-R)c?, (25)
whose solution can readily be seen to bB

=[1-4000,¢%*2]¥2, and we again find thaed®=Pg.
We still need to show that tha posteriori probabilities

In this sense, the optimal one step adaptive scheme is “Maindeed coincide withP,. It suffices to prove it for the case
kovian.” It is thus convenient to change the notation and'=1, where this statement amounts Rg=p(0|0)=p(1|1).

define ¢, = ¢y, |w;+1(a))=|w(ax)), for x e L,. Equation(12)
becomes

|wren(8)) = coe(qsr - a§>|x> ¥ sin( b a§)|y>, (22)

where the subscript+1 refers to the measurement on copy

r+1 anda=0, 1 is the corresponding outcome. Equati@h
is a particular case of this equation.

C. Bayesian updating interpretation

Finally, we would like to show that the adaptive strategy
we have presented has a natural interpretation as Bayesian

updating(we refer to[10] for an alternative point of viey

This, along with the results of the previous section, proves

that Bayesian updating is thaiquesolution to the recursion
relations(19) that define the best adaptive strategy.

Note that our knowledge of the system, which changes

after each measurement, is encoded inatposterioriprob-

This result follows from the obvious formula

P, =p(00)p(0) + p(1[1)p(1), (26)

wherep(b) is the probability of obtaining the outconi if
the “detailed balance” relation

p(0|0) = p(1]1)

holds for the optimal scheme. Let us prove this is the case.
Using Bayes formula we can cast HG7) as

(27)

[(1(0) |00l _ w1(D)]y)|?qy
p(0) p(1) '
We further note that the probabilities of obtaining the out-
comea can simply be written ap(a)==[{w1(a) | i)|°Ap-
Therefore, Eqs(27) and (28) are equivalent to

(28)

Kew1(0)gn)|Pas _ [Ke1(D)]yio)Pa0

= . 29
abilities of |14,y being the unknown stagiven thata specific K10)[¢)’d0  Key(D)|y)l?as 29
outcome has occurred when performing the measurement on, This. in terms. is equivalent to
say, therth copy. We will show below that theseposteriori ' ' a
probabilities can be identified witP® and P Assuming (0o — Gu)SiN 266 COS 2= (o + 0y)COS 25 Sin 26, (30)

this for the time being, we might be tempted to take a Baye-
sian point of view and usé’fd to update our prior probabili- which obviously holds for the optimal stratefsee Eq(3)]
ties for the next measurement. Hereafter, we drop the supesnd concludes the proof.
script “ad” to further simplify the notation.

Suppose we have got the first copy of the unknown state.

Our optimal measurement will be defined #yin Eq. (3). If
we obtain the outcomig =0, we will update our priors using
the ruleqy,— p(0|0)=P,, and we will use again Eq3) to
optimize the measurement on the second dagiyilarly, if
the first outcome is;=1, we will view p(1|1)=P; as our
prior g, for the second measuremégntence, the second
measurement is defined by cog2(-1)"ic|P;- Py
(1-4P,P,c»™2, and we obtain that the discriminatigar-
ror) probability after the second measurement Rg=
[1+(1-4P,P)Y2]/2 (Py=[1-(1-4P,P1)Y?]/2). This up-

IV. CONCLUDING REMARKS

In summary, multiple-copy two-state discrimination strat-
egies based on individual measurements can be as good as
the best collective ones. For fixed measurements, this state-
ment holds only asymptotically. By relaxing this constrain
and allowing Bayesian updating, which is arguably the sim-
plest, easiest to implement, adaptive strategy, the statement
holds forany finite number of copies. Furthermore, our ap-
proach provides very simple recursion relatidesy., Egs.
(23)25)] or even closed-form expressiofs.g. Eq.(21);
recall the change of notatiap, = ¢, | for the anglesp, defin-

dating of the prior probabilities can be carried out step bying the optimal von Neumann measurements and the dis-

step until we run out of copies. At stepwe will have

i |Pr B Er|
cos 2p, = (- 1)''—c, (23

R

where _by analogy withR(x), we have definedR =
(1-4P,P,c?)¥2, and we obtain

crimination and error probabilities.

Finally, we would like to point out that the general adap-
tive setup of Sec. Il B, where measurements are allowed to
depend on histories or lists of outcomather than just the
very last outcomg has a unique solution which can be re-
garded as Bayesian updating. Despite all this generality, the
optimal solution is as simple as can be.
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