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We address the problem of nonorthogonal two-state discrimination when multiple copies of the unknown
state are available. We give the optimal strategy when only fixed individual measurements are allowed and
show that its error probability saturates the collectiveslowerd bound asymptotically. We also give the optimal
strategy when adaptivity of individual von Neumann measurements is allowedswhich requires classical com-
municationd and show that the corresponding error probability is exactly equal to the collective one for any
number of copies. We show that this strategy can be regarded as Bayesian updating.
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I. INTRODUCTION

Measurement is a central tenet of quantum mechanics. As
for any sensible theory of nature, it links abstract ideas to
reality and makes mathematical concepts truly physical. In
contrast to classical measurements, whichsideallyd have no
demolishing effect whatsoever, in the quantum realm any
attempt to acquire information from a system alters it to a
degree proportional to the gain of information. Moreover,
this gain is limitedf1g. Given a single copy of an unknown
quantum state it is usually impossible to determine it by
performing any conceivable measurement. Nevertheless, if
an increasing number of copies of such a state is available,
our knowledge of the state can also increase by the use of
various measurement strategies, and complete determination
can be achieved in the asymptotic limit when the number of
copies goes to infinity.

Measurement strategies involving multiple copies of a
quantum state fall into two categories: collective and indi-
vidual slocald, depending on whether a single measurement is
performed on all the copies as a whole or the strategy con-
sists of individual measurements, each of them performed
separately on a single copy. Since the pioneering work of
Helstromf2g and Peres and Woottersf3g, it has been repeat-
edly shown that collective strategies outperform individual
ones. This should not come as a surprise, since the latter can
be viewed as a subset of the former, which are completely
general and unconstrained. Collective measurements, how-
ever, are difficult to implement experimentally, and a great
deal of effort goes into designing optimal strategies involv-
ing only individual measurements. Common examples are
quantum tomographyf4g and slocald adaptive strategiesf5g
swhere the choice of each individual measurement is based
on the outcomes of the previousd, the two of them in the
context of quantum state estimation. The state of the art of
these approaches can only compete with collective strategies
in the asymptotic limit.

Many practical applications, however, do not require a
full determination of a state. For instance, to asses the secu-
rity of a key distribution protocol in quantum cryptography
f6g, one gives full advantage to Eve, the eavesdropper.

Hence, one usually assumes she knows the set of possible
states that will be used in a secret transmissionse.g., in the
B92 protocol f7g this set consists of two nonorthogonal
statesd, and her task is todiscriminatef8g among them. She
can follow two different approaches: use a strategy based on
quantum hypothesis testingf2g sunconclusive discrimina-
tiond, which gives the lowest probability of error, or do un-
ambiguous sor conclusived discrimination f9g—namely,
adopt a strategy that does not tolerate errors.

When the number of copies is greater than 1sas is the
case of a noncompletely attenuated laser pulse which may be
split in several identical single-photon statesd, the discussion
above concerning individual versus collective strategies be-
comes again an issue. In this paper we focus our attention on
this situation. To be more concrete, we will consider a
hypothesis-testing approach tosnonorthogonald two-state
discrimination under the assumption that we haveN identical
copies of the transmitted quantum state. We will find the best
adaptive strategy—i.e., a particular case of strategies that use
local operations and classical communicationsLOCCd, and
we will show that it is optimal regardless of the number of
copies, in the sense that its error probability and that of the
optimal collective strategy are exactly the same for anyN. A
similar result was obtained by Brody and Meisterf10g for
Bayesian updating. Our result could be seen as its extension
to general adaptive strategies. However, we will prove the
remarkable result that the whole class of adaptive strategies
has actually a single element: Bayesian updating. Related
work can be found inf11g, where the particular caseN=2 is
discussed using the information gain instead of the error
probability.

If classical communication is not allowed, we show that
optimality holds asymptotically for the fixed measurement
strategy named theunanimity vote, which we also present
here.

II. PRELIMINARIES

We will start by reviewing some known facts about two-
state discrimination, including a few technical details, which
will help us to introduce the notation.
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A. One copy

By choosing the appropriate orthonormal basis, any two
statesuc0l , uc1l swhich we will assume to be neither orthogo-
nal nor paralleld can always be written as

ucal = cosuuxl + s− 1dasinuuyl, a = 0,1, s1d

regardless of the dimension of the Hilbert spaceH they be-
long to, where the unit vectorsuxl , uyl are the elements of the
basis that span the planeP formed byuc0l , uc1l. Now, we ask
ourselves what the best measurement for discriminating be-
tween uc0l and uc1l is. It can be defined in terms of two
orthonormal vectorshuv1s0dl , uv1s1dlj, which also belong to
P, and thus can be written as

uv1sadl = cosSf0 − a
p

2
Duxl + sinSf0 − a

p

2
Duyl. s2d

In our approach, by “best measurement” we mean the
measurement that maximizes the probability of discrimina-
tion, P1=oa=0

1 qapsauad=oa=0
1 psa,ad sor equivalently the one

that minimizes the error probabilityP̄1=1−P1d. Here qa is
the prior probability of ucal being ssecretlyd transmitted,
ps0u0d andps1u1d are the conditional probabilities of obtain-
ing the outcome 0 or 1 given that the unknown state isuc0l
or uc1l, respectively, andps0,0d and ps1,1d are the corre-
sponding joint probabilities. The subindex 1 inuv1sadl and in
the probability of discrimination and error emphasizes that
so far we are dealing with just one copy of the unknown
state. Throughout this paper, boldfaced random variables will
denote the outcomes of our measurement; thus, e.g.,ps1u0d
is thesa posteriorid probability of the transmitted state being
uc1l given that the outcome of our measurement is 0. Using
elementary quantum mechanics, the conditional probabilities
psaubd can be computed to bepsaubd= ukv1sad ucblu2

=cos2ff0−ap /2−s−1dbug. The optimal measurement and
the corresponding probabilities of discrimination and error
are given by

cos 2f0 =
q0 − q1

R0
cos 2u, sin 2f0 =

q0 + q1

R0
sin 2u, s3d

P1 =
1

2
s1 + R0d, P̄1 =

1

2
s1 − R0d, s4d

whereR0=fsq0−q1d2+4q0q1sin22ug1/2. In terms of the over-
lap betweenuc0l and uc1l, defined asc;ukc0uc1lu=cos 2u,
the factorR0 can be written as

R0 = Î1 − 4q0q1c
2. s5d

In the simple case whereq0=q1=1/2, wehavef=p /4
and, thus,uvsadl=huxl+s−1dauylj /Î2, as one would expect.

B. Several copies: Collective measurements

Let us next suppose thatN copies of eitheruc0l or uc1l are
available to us. In full analogy with Eq.s1d we define

uCal = ucal^N = cosQuXl + s− 1dasinQuYl, s6d

where uXl and uYl belong to a conveniently chosen basis of
H^N. In this situation Eqs.s3d ands4d also hold if we replace
u andc with the corresponding uppercased variablesQ and
C=cos 2Q. In terms of the new basishuXl , uYl ,…j, the vec-
tors uVsadlsa=0,1d, which define the measurement on theN
copies in full analogy withuv1sadl, are also given by Eq.s2d
suppercasingv ,x, andyd. This defines acollectivemeasure-
ment, since in generaluVsadl is not a product state. We ob-
viously have C= ukC0uC1lu= ukc0uc1lNu=cN and thus con-
clude that the error probability for this optimal collective
measurement isf2g

P̄N
col =

1 −Î1 − 4q0q1c
2N

2
. s7d

Sincec,1, in the large-N limit we note that

P̄N
col . q0q1c

2N. s8d

III. INDIVIDUAL MEASUREMENTS

A. Fixed measurements

If we are only allowed to perform the same individual
measurement on each of ourN copies, one could expect that

the lowest probability of error we can achieve isP̄N
ind.hcN,

where the constanth is not relevant for the discussion here.
This belief may stem from the widespread use of the statis-
tical overlap as a measure of distinguishability; from a sta-
tistical analysis of the problem at hand, one concludes that
the probability of error is bounded bylN, wherel depends
on the specific individual measurement we are performing.
The statistical overlap is a particularly convenient choice of
l ssee belowd. Optimizing over all possible measurements
one finds thatl=c for two pure states. This bound is attained
by a majority-vote strategy: we perform the best individual
measurement, given by Eqs.s2d ands3d on each copy and get
Na times the outcomea. Once the measurement process is
complete, we decide in favor of the stateucal whose corre-
spondingNa is greatest.

However, there exist tighter bounds for the exponential
decrease of the probability of error. The best one is known as
the Chernoff boundf12g, which for the problem at hand is
given by l=minaobpsbu0dapsbu1d1−a, where 0øaø1 sthe
statistical overlap is a particular simplification of this expres-
sion obtained by settinga=1/2d. We now note that if we
assumeq0.q1, with the choice uṽs0dl= uc0l and uṽs1dl
= uc0

'l for our measurement we haveps0u0d=1,ps1u0d=0,
and ps0u1d=c2 anda=0 gives the absolute minimumsover
all measurements and over all values ofad of the sum overb

above. Thus,P̄N
ind.hc2N, as for collective measurements.

There is a simple strategy that saturates the Chernoff
bound: the unanimity vote. Let ourselves perform the mea-
surement defined byhuṽsadlj on each of ourN copies. If we
always obtain the outcome 0sN0=Nd, we claim that the un-
known state isuc0l. However, if we obtain the outcome 1
once or more than once, we decide in favor ofuc1l.
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The exact probability of error is straightforward to com-
pute as follows. Let us assume againq0.q1. If the unknown
state wereuc0l, we would make no error. If the unknown
state wereuc1l sit happens with probabilityq1d, we would
give the wrong answer only ifN0=N, which happens with
probability c2N. Hence, the probability of error would be
q1c

2N. If q1.q0, we just exchange the subscripts 0 and 1
everywhere. The error probability is then

P̄N
ind = minsq0,q1dc2N. s9d

We note that asymptoticallyP̄N
ind may be larger thanP̄N

col

only because of the prefactor minsq0,q1dùq0q1, which is not
important in most situations. This result has application in
the assessment of the security of some quantum crypto-
graphic protocolsf13g.

B. Adaptive measurements

So far, we have shown that the performance of individual
and collective strategies is essentially the same for large en-
sembles of identical states. We now show that if we are not
restricted to perform the same individual measurement on
each copy and we use the information we are gathering to
optimize these measurement step by step, the overall perfor-
mance isexactlythe same as for the optimal collective strat-
egy, regardless of the number of copies of the unknown state.
One could reach this conclusion by using the algebraic re-
sults inf14g to tradeuVsadl for a set of product states similar
to those in Eq.s11d below. We follow here a different ap-
proach since we would like to present a constructive proce-
dure within the framework of probability.

We consider the simplest scenario where we perform al-
ways von Neumann measurements on each individual copy.
The final outcomes are binary sequences or strings of length
N—e.g.,011…01. Let us denote them byx. The strategy is
designed in such a way that the last outcomesleftmost binary
digit in xd determines whether our guess isuc0l or uc1l. We
have

PN
ad= o

xPLN−1

hq0ps0xu0d + q1ps1xu1dj, s10d

where “ad” stands for adaptive,Lr is the set of binary strings
of length r, and 0x and 1x are the strings obtained by ap-
pending 0 and 1 respectively, to the left of the stringx.

Quantum mechanics tells us that the conditional probabil-
ity of obtaining the set of outcomesxPLr if the initial state
were ucbl is psx ubd= ukVsxd ucb

Nlu2, where

uVsxdl = uvsxrdl ^ uvsxr−1dl ^ ¯ ^ uvsx1dl, s11d

xk is the substring of lengthks0økø rd consisting of thek
rightmost digits ofx, and

uvsaxdl = cosSfx − a
p

2
Duxl + sinSfx − a

p

2
Duyl, s12d

in analogy with Eq.s2d. Note thatfx, the angle that defines
the measurementr +1, depends only on the list of outcomes,
x, of the previousr individual measurements. One readily

sees thatoxPLr
uVsxdlkVsxdu=1 in H^r, which implies that

o
x

psxubd = 1, s13d

as it should be. We start withr =0 sL0 contains only the
empty stringXd and setfX=f0, as defined in Eq.s3d, which
gives the optimal measurement for one copy. Forr .0,fx
will be determined by requiring optimality step by step. We
now can write

PN
ad= o

a=0

1

o
xPLN−1

psx,adukvsaxducalu2, s14d

wherepsx ,ad is the joint probabilities ofucal being transmit-
ted and we obtaining thespartiald outcome listx. Namely,
psx ,ad=qapsx uad=qaps=1

r ukvsxsd ucalu2 sassuming xPLrd.
Equations14d can be written in terms of the anglesu andfx
using Eqs.s1d and s12d. Maximizing overfx, we obtain

cos 2fx =
psx,0d − psx,1d

Rsxd
c, s15d

where

Rsxd = Îfpsx,0d + psx,1dg2 − 4psx,0dpsx,1dc2, s16d

and we also have

sin 2fx =
psx,0d + psx,1d

Rsxd
sin 2u. s17d

Substituting back in Eq.s14d we obtain

PN
ad=

1

2
+

1

2 o
xPLN−1

Rsxd, s18d

where we have used thatoxpsx ,ad=qa, which follows from
Eq. s13d. Equationss15d, s16d, ands18d are analogous to Eqs.
s3d and s4d. Actually, the latter can be seen as a particular
case of the former if we definepsX ,ad=qa sthis definition is
sensible, since the empty binary string means that no mea-
surement has yet been performedd.

Having set up this framework, one can prove our main
result. Namely, that this adaptive strategy gives exactly the
same error probability as the optimal collective one for any
N. A straightforward calculation yields

psax,bd =
psx,bd

2
H1 + s− 1da+b

3
psx,bd + s1 − 2c2dpsx,b % 1d

Rsxd J , s19d

where% stands for sum mod 2, and one can prove by induc-
tion the relation

q0q1c
2rfpsx,0d + psx,1dg2 − psx,0dpsx,1d = 0, s20d

for xPLr, which is obviously satisfied forr =0.
Using this relation in Eq.s16d and recalling again that

oxpsx ,ad=qa, we finally have the resultP̄N
ad= P̄N

col, whereP̄N
col

is the exact error probabilitys7d.
It is not difficult to show that
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cos 2fx = s− 1dircÎ 1 − 4q0q1c
2r

1 − 4q0q1c
2r+2 , s21d

wherei r is the leftmost digit inxPLr and we have used that
sgnfpsx ,0d−psx ,1dg=s−1dir fnote that sgnsq0−q1d=s−1di0g.

We immediately realize that the actual dependence of the
individual measurementr +1 on previous outcomes is ex-
tremely simple: it is just a function of therth outcome—i.e.,
of i r—rather than a function of the whole binary sequencex.
In this sense, the optimal one step adaptive scheme is “Mar-
kovian.” It is thus convenient to change the notation and
definefr ;fx , uvr+1sadl= uvsaxdl, for xPLr. Equations12d
becomes

uvr+1sadl = cosSfr − a
p

2
Duxl + sinSfr − a

p

2
Duyl, s22d

where the subscriptr +1 refers to the measurement on copy
r +1 anda=0, 1 is the corresponding outcome. Equations2d
is a particular case of this equation.

C. Bayesian updating interpretation

Finally, we would like to show that the adaptive strategy
we have presented has a natural interpretation as Bayesian
updatingswe refer tof10g for an alternative point of viewd.
This, along with the results of the previous section, proves
that Bayesian updating is theuniquesolution to the recursion
relationss19d that define the best adaptive strategy.

Note that our knowledge of the system, which changes
after each measurement, is encoded in thea posterioriprob-
abilities of ucal being the unknown stategiven thata specific
outcome has occurred when performing the measurement on,
say, therth copy. We will show below that thesea posteriori

probabilities can be identified withPr
ad and P̄r

ad. Assuming
this for the time being, we might be tempted to take a Baye-
sian point of view and usePr

ad to update our prior probabili-
ties for the next measurement. Hereafter, we drop the super-
script “ad” to further simplify the notation.

Suppose we have got the first copy of the unknown state.
Our optimal measurement will be defined byf0 in Eq. s3d. If
we obtain the outcomei1=0, we will update our priors using
the ruleq0→ps0u0d=P1, and we will use again Eq.s3d to
optimize the measurement on the second copyfsimilarly, if
the first outcome isi1=1, we will view ps1u1d=P1 as our
prior q1 for the second measurementg. Hence, the second

measurement is defined by cos 2f1=s−1di1cuP1− P̄1u
s1−4P1P̄1c

2d−1/2, and we obtain that the discriminationser-
rord probability after the second measurement isP2=

f1+s1−4P1P̄1d1/2g /2 (P̄2=f1−s1−4P1P̄1d1/2g /2). This up-
dating of the prior probabilities can be carried out step by
step until we run out of copies. At stepr we will have

cos 2fr = s− 1dir
uPr − P̄ru

Rr
c, s23d

where by analogy withRsxd, we have definedRr =

s1−4PrP̄rc
2d1/2, and we obtain

Pr+1 = s1 + Rrd/2. s24d

This leads to the recursion relation

Rr+1 = Î1 − s1 − Rr
2dc2, s25d

whose solution can readily be seen to beRr

=f1−4q0q1c
2r+2g1/2, and we again find thatP̄N

ad= P̄N
col.

We still need to show that thea posteriori probabilities
indeed coincide withPr. It suffices to prove it for the case
r =1, where this statement amounts toP1=ps0u0d=ps1u1d.
This result follows from the obvious formula

P1 = ps0u0dps0d + ps1u1dps1d, s26d

wherepsbd is the probability of obtaining the outcomeb, if
the “detailed balance” relation

ps0u0d = ps1u1d s27d

holds for the optimal scheme. Let us prove this is the case.
Using Bayes formula we can cast Eq.s27d as

ukv1s0duc0lu2q0

ps0d
=

ukv1s1duc1lu2q1

ps1d
. s28d

We further note that the probabilities of obtaining the out-
come a can simply be written aspsad=obukv1sad ucblu2qb.
Therefore, Eqs.s27d and s28d are equivalent to

ukv1s0duc1lu2q1

ukv1s0duc0lu2q0
=

ukv1s1duc0lu2q0

ukv1s1duc1lu2q1
. s29d

This, in terms, is equivalent to

sq0 − q1dsin 2f cos 2u = sq0 + q1dcos 2f sin 2u, s30d

which obviously holds for the optimal strategyfsee Eq.s3dg
and concludes the proof.

IV. CONCLUDING REMARKS

In summary, multiple-copy two-state discrimination strat-
egies based on individual measurements can be as good as
the best collective ones. For fixed measurements, this state-
ment holds only asymptotically. By relaxing this constrain
and allowing Bayesian updating, which is arguably the sim-
plest, easiest to implement, adaptive strategy, the statement
holds forany finite number of copies. Furthermore, our ap-
proach provides very simple recursion relationsfe.g., Eqs.
s23d–s25dg or even closed-form expressionsfe.g. Eq.s21d;
recall the change of notationfr =fxg for the anglesfr defin-
ing the optimal von Neumann measurements and the dis-
crimination and error probabilities.

Finally, we would like to point out that the general adap-
tive setup of Sec. III B, where measurements are allowed to
depend on histories or lists of outcomessrather than just the
very last outcomed, has a unique solution which can be re-
garded as Bayesian updating. Despite all this generality, the
optimal solution is as simple as can be.
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