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We investigate the king’s problem of the measurement of operatorsnWk·sW sk=1, 2, 3d instead of the three
Cartesian componentssx,sy, andsz of the spin operatorsW . Here,nWk are three-dimensional real unit vectors.
We show the condition over three vectorsnWk to ascertain the result for measurement of any one of these
operators.
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I. INTRODUCTION

In the context of giving the method for inferring the out-
come for measurement of any one of three Cartesian compo-
nents of spin with certainty, Vaidman, Aharonov, and Albert
f1g introduced the problem which became known later as the
king’s problem of a spin-12 particle.

Step 1. Alice sends a spin-1
2 particle to Bob.

Step 2. Bob chooses any observable ofsx,sy, and sz,
and measures it for the particle received to obtain the result
bs=±1d. After that, Bob sends the particle back to Alice.

Step 3. Alice carries out some measurements for the par-
ticle, before Bob tells her which observable was chosen.
From this information and the result of the measurement,
Alice infers the valueb with certainty.

The solution using an entangled state of two particles was
given in that paper.

Three operatorssx,sy, andsz are complete in the sense
that the density matrix under consideration is uniquely deter-
mined from the probabilities for finding the eigenstates of
these operators. In addition to completeness, these operators
are mutually complementary, namely, the eigenstates of each
operator of them form mutually unbiased basessMUBd,

zkb,eWxub8,eWylz = zkb,eWyub8,eWzlz = zkb,eWzub8,eWxlz =
1
Î2

,

where ub ,eWxl , ub ,eWyl, and ub ,eWzl are eigenstates with eigen-
valuebs=±1d for observablessx,sy, andsz, respectively.

When we try to extend this to the problem in
D-dimensional Hilbert space, at leastD+1 noncommuting
observables are required for complete state determinations,
so that we needD+1 mutually unbiased bases. However,
only when the dimension of the Hilbert space is prime power
areD+1 mutually unbiased bases obtainedf2g, and we have
some evidence that the number of MUB is less thanD+1 for
the case whereD is not equal to prime powerf3–6g. For this
reason, the solutions for the king’s problem in prime power
dimensional Hilbert spacesf7–9g are found.

Ben-Menahemf10g investigated a more general case for a
spin-12 particle where three observablesnWk·sW sk=1, 2, 3d are
used in step 2, instead ofsx,sy, andsz, and Alice makes a
projective measurement in step 3. HerenWk is a real unit vec-
tor and is linearly independent of but not orthogonal to each

other. These operators are complete, but a collection of or-
thonormal bases formed by the eigenstates of these operators
is not MUB.

In this paper, we consider the same case as he did except
that the POVM measurement is made at step 3. Our method
is simpler than his, although we obtain the same results.
Comparison will be made in Sec. III.

II. MODIFIED KING’S PROBLEM

We try to find the solution for the modified king’s prob-
lem which is obtained by exchanging three observables
sx,sy, andsz in the original king’s problem fornWk·sW sk=1,
2, 3d, following the procedure in the Introduction.

Step 1. Alice prepares the entangled stateuC0l of two
particles with spin1

2,

uC0l =
1
Î2

su + 1,eWzl ^ u− 1,eWzl − u− 1,eWzl ^ u + 1,eWzld,

whereu±1,eWzl is an eigenstate of the operatorsz with eigen-
values ±1. Since this state is a singlet state and invariant
under the rotation, we can representuC0l in the same form
by using the eigenstatesu±1,nWkl with eigenvalues ±1 of the
operatornWk·sW ,

uC0l =
1
Î2

su + 1,nWkl ^ u− 1,nWkl − u− 1,nWkl ^ u + 1,nWkld.

Alice sends the second particle to Bob.
Step 2. Bob chooses any one of three observables

nWk·sW sk=1, 2, 3d. Bob gets the valueb from the measure-
ments of it and sends this particle back to Alice. Then, Alice
has two particles which are in the state,

u− b,nWkl ^ ub,nWkl =
1
Î2

sunWkl − buC0ld, s2.1d

where unWkl is given by a linear combination whose coeffi-
cients are equal to components of the vectornWk,

unWkl = snkdxuXl + snkdyuYl + snkdzuZl,

and uXl , uYl, and uZl are defined by

uXl =
i

Î2
su + 1,eWzl ^ u + 1,eWzl + u− 1,eWzl ^ u− 1,eWzld,
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uYl =
1
Î2

su + 1,eWzl ^ u + 1,eWzl − u− 1,eWzl ^ u− 1,eWzld,

uZl =
1
Î2

su + 1,eWzl ^ u− 1,eWzl + u− 1,eWzl ^ u + 1,eWzld.

Step 3. In this step, it is assumed that Alice makes a
POVM measurement, because a POVM measurement is
more general than a projective measurement. We can adopt
the same strategy as the original king’s problem if there is a
POVM set such that, for eachk sk=1, 2, 3d, the expectation
value of an element of the POVM set in one of the two states
u−b ,nWkl ^ ub ,nWklsb= ±1d is equal to zero and the expectation
values of the same element in the other are not equal to zero.
Since the most general POVM set like this needs 8=23 ele-
ments, as is shown in Table I, we consider the king’s problem
in which Alice’s measurement is described by the POVM set
hEKsK=A,B,… ,Hdj,

o
K=A

H

EK = 14, s2.2d

EK ù 0sK = A,B,…,Hd, s2.3d

where14 is an identity operator on the Hilbert space of the
two particles under consideration and the expectation values
of the elementsEK for the state in Alice’s hand are given in
Table I. It is clear that Alice can infer the valueb with
certainty. For example, when Alice gets the outcome related
to POVM elementEA and is told that Bob chose the observ-
ablenW1·sW , Alice says thatb=−1 since the probability for the
outcome related to POVM elementEA of a measurement
performed on the stateu−1,nW1l ^ u+1,nW1l corresponding to
b= +1 is zero. Similarly, for other cases, Alice can infer
correctb.

Now we find the POVM sethEKsK=A,B,… ,Hdj. First,
we consider the operatorEA. As the operatorEA is positive,
we can have the operatoraA such that

EA = aA
†aA.

From Table I, this operatoraA should satisfy three condi-
tions,

aAsu− 1,nW1l ^ u + 1,nW1ld =
1
Î2

aAfunW1l − s+ 1duC0lg = 0,

aAsu− 1,nW2l ^ u + 1,nW2ld =
1
Î2

aAfunW2l − s+ 1duC0lg = 0,

aAsu− 1,nW3l ^ u + 1,nW3ld =
1
Î2

aAfunW3l − s+ 1duC0lg = 0,

where we used Eq.s2.1d. As three statesunWkl−s+1duC0l sk
=1, 2, 3d are linearly independent of each other in four-
dimensional Hilbert space owing to a linear independence of
three vectorsnWk, using statekC0u+ok=1

3 sSsAdM−1dkknWku or-
thogonal to these three states, the operatoraA is written in the
form

aA = uFAlSkC0u + o
k=1

3

sSsAdM−1dkknWkuD , s2.4d

where uFAl is an undetermined state from these conditions,
SsAd is a three-dimensional real vector

SsAd = s+ 1, + 1, + 1d,

andM is a 333 matrix whosesi , jd component is given by
the inner product betweennW i andnW j and is invertible because
three vectorsnW i are linearly independent of each other. Thus
we get POVM elementEA,

EA = aA
†aA = CASuC0l + o

k=1

3

sSsAdM−1dkunWklD
3SkC0u + o

k=1

3

sSsAdM−1dkknWkuD ,

whereCA is a non-negative constant,

CA =
1

2
kFAuFAl.

Similarly, EK is restricted to the form

EK = CKSuC0l + o
k=1

3

sSsKdM−1dkunWklD
3SkC0u + o

k.l=1

3

sSsKdM−1dkknWkuD sK = A,B,C,…,Hd,

s2.5d

where three-dimensional vectorssSsKddk are given by

TABLE I. The probability for the outcome related toKsK=A,… ,Hd.

Bob’s choice b A B C D E F G H

nW1·sW +1 0 0 nonzero nonzero nonzero nonzero 0 0

nW1·sW −1 nonzero nonzero 0 0 0 0 nonzero nonzero

nW2·sW +1 0 nonzero 0 nonzero nonzero 0 nonzero 0

nW2·sW −1 nonzero 0 nonzero 0 0 nonzero 0 nonzero

nW3·sW +1 0 nonzero nonzero 0 nonzero 0 0 nonzero

nW3·sW −1 nonzero 0 0 nonzero 0 nonzero nonzero 0
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SsBd = s+ 1,− 1,− 1d, SsCd = s− 1, + 1,− 1d,

SsDd = s− 1,− 1, + 1d, SsEd = s− 1,− 1,− 1d,

SsFd = s− 1, + 1, + 1d, SsGd = s+ 1,− 1, + 1d,

SsHd = s+ 1, + 1,− 1d.

From the conditions2.2d of the POVM set, the constantsCK
satisfy the equations

o
K=A

H

CK = 1, s2.6d

o
K=A

H

CKsSsKddl = 0, s2.7d

o
K=A

H

CKsSsKddksSsKddl = sMdkl. s2.8d

In order to get these equations, we used the expansion of an
identity matrix in a sethufC0l , unWkl sk=1,2,3dj,

14 = uC0lkC0u + o
k,l

3

unWklsM−1dklknW lu.

From these equationss2.6d–s2.8d, we have seven indepen-
dent equations for eight variablesCK,

sCA + CEd + sCB + CFd + sCC + CGd + sCD + CHd = 1,

sCA + CEd − sCB + CFd − sCC + CGd + sCD + CHd = nW1 ·nW2,

sCA + CEd − sCB + CFd + sCC + CGd − sCD + CHd = nW1 ·nW3,

sCA + CEd + sCB + CFd − sCC + CGd − sCD + CHd = nW2 ·nW3,

sCA − CEd + sCB − CFd − sCC − CGd − sCD − CHd = 0,

sCA − CEd − sCB − CFd + sCC − CGd − sCD − CHd = 0,

sCA − CEd − sCB − CFd − sCC − CGd + sCD − CHd = 0,

s2.9d

and we get a solution with one parameterr,

CA =
1

8
s1 + r + nW1 ·nW2 + nW1 ·nW3 + nW2 ·nW3d,

CB =
1

8
s1 + r − nW1 ·nW2 − nW1 ·nW3 + nW2 ·nW3d,

CC =
1

8
s1 + r − nW1 ·nW2 + nW1 ·nW3 − nW2 ·nW3d,

CD =
1

8
s1 + r + nW1 ·nW2 − nW1 ·nW3 − nW2 ·nW3d,

CE =
1

8
s1 − r + nW1 ·nW2 + nW1 ·nW3 + nW2 ·nW3d,

CF =
1

8
s1 − r − nW1 ·nW2 − nW1 ·nW3 + nW2 ·nW3d,

CG =
1

8
s1 − r − nW1 ·nW2 + nW1 ·nW3 − nW2 ·nW3d,

CH =
1

8
s1 − r + nW1 ·nW2 − nW1 ·nW3 − nW2 ·nW3d.

Unfortunately, since the coefficientCK is non-negative, all
three unit vectorsnWk which are linearly independent of each
other are not permitted. However, we can easily see that we
get this POVM set if linearly independent unit vectors
nWk,sk=1, 2, 3d satisfy the following inequality:

1 . unW1 ·nW2u + unW2 ·nW3u + unW3 ·nW1u, s2.10d

and it is clear that there are three vectorsnWk satisfying this
inequality. When we express the solutionCK with different
forms,

CA =
1

16
hunW1 + nW2 + nW3u2 + 2r − 1j,

CB =
1

16
hu− nW1 + nW2 + nW3u2 + 2r − 1j,

CC =
1

16
hunW1 − nW2 + nW3u2 + 2r − 1j,

CD =
1

16
hunW1 − nW2 − nW3u2 + 2r − 1j,

CE =
1

16
hunW1 + nW2 + nW3u2 − 2r − 1j,

CF =
1

16
hu− nW1 + nW2 + nW3u2 − 2r − 1j,

CG =
1

16
hunW1 − nW2 + nW3u2 − 2r − 1j,

CH =
1

16
hunW1 − nW2 − nW3u2 − 2r − 1j,

we can find the necessary and sufficient condition which
guarantees that these variablesCK are non-negative,

unW1 ± nW2 ± nW3u ù 1, s2.11d

for all combinations of signs in front of the second and the
third terms of the left-hand side.
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III. DISCUSSION AND SUMMARY

In this paper, we considered the modified king’s problem
that Bob chooses any one from three observablesnWk·sW , in-
stead ofsx,sy, andsz, and that he makes measurement of it
in step 2. We showed that, if linearly independent unit vec-
torsnWk satisfy the inequalitys2.11d, Alice can infer the result
of Bob’s measurement from the outcome for the measure-
ment of POVM EKsK=A,B,… ,Hd and the information of
Bob’s choice with certainty.

Ben-Menahemf10g considered the same model with pro-
jective measurement in step 3 and concluded that no in-
equalities were imposed onnW l ·nWk beyond the geometric ones.
He derived the equations for the coefficientsbA of expansion
for an initially prepared state in eigenstates of the observable
Alice measures in the final step,

o
A

dA = 1,

o
A

eA
sldeA

skddA = nW l ·nWk,

wheredA= ubAu2 and eA
sld, which is a factor related to Alice’s

strategy, takes ±1. The first equation is the normalization
condition for an initially prepared state. ReplacingdA andeA

sld

with CK and Sl
sKd, respectively, we can see that these equa-

tions become the same as Eqs.s2.6d and s2.8d we solved in
Sec. II, although the physical meaning ofdA is different from
that of CK. It is shown that the vectorsnW l have to satisfy our
inequalitiess2.11d from these equations and the positivity
condition fordA. For uok=1

3 nWku, we have

So
k=1

3

nWkD ·So
l=1

3

nW lD = o
k,l=1

3

o
A

eA
sldeA

skddA,

= o
A
So

l=1

3

eA
sldDSo

k=1

3

eA
skdDdA,

ù o
A

dA = 1.

Here we used the inequalities

Uo
l=1

3

eA
sldU ù 1, dA ù 0.

Similarly, other inequalities are obtained. Indeed, after te-
dious but not difficult calculation, we can see that our in-
equalitiess2.11d for vectorsnWk are equivalent to positivity
conditions fordA. If the conclusion in his paperf10g were
right, any three vectorsnWk would satisfy our inequalities
s2.11d. However, it is not difficult for us to find configuration
of three vectorsnW l which do not satisfy our inequalities.
When, as these vectorsnWk, we choose vectors obtained by
rotating three vectors on thex-y plane, such that the angles
between each other are equal to 2p /3, by a small angle
toward thez axis, the inner products become

nW1 ·nW2 = −
1

2
+ d12,

nW2 ·nW3 = −
1

2
+ d23,

nW3 ·nW1 = −
1

2
+ d31sd12 + d23 + d31 , 1d

and we get

snW1 + nW2 + nW3d · snW1 + nW2 + nW3d = d12 + d23 + d31 , 1.

Owing to the completeness of the observablenWk·sW , we
considered the case where three unit vectorsnWk are linearly
independent. We investigate the king’s problem defined by
three vectorsnWk that are linearly dependent but that are not
parallel. Without losing the generality, it is supposed that the
vectorsnWk satisfy

nW3 = xnW1 + ynW2sx,y Þ 0d. s3.1d

As these vectors are unit vectors, we have

sx ± yd2 = 1 − 2xysnW1 ·nW2 7 1d or sx ± yd2 Þ 1. s3.2d

We return to the condition foraK defined byEK=aK
†aK,

aK„u− sSsKddk,nWkl ^ usSsKddk,nWkl…

=
1
Î2

aKfunWkl − sSsKddkuC0lg = 0. s3.3d

Using Eq.s3.1d, we have

hsSsKdd3 − xsSsKdd1 − ysSsKdd2jaKuC0l = 0 or aKuC0l = 0.

Here we used Eq.s3.2d. The conditions3.3d is rewritten in
the equations

aKuC0l = 0,

aKunW1l = aKunW1l = 0.

Therefore, we can express allEK in the stateunW13nW2l or-
thogonal to statesuC0l , unW1l, and unW2l,

EK = CKunW1 3 nW2lknW1 3 nW2u.

However, the sethEKj is not POVM becauseoK=A,B,…,HEK

Þ14. Thus there is no solution to the king’s problem in this
case.

Can we reduce the number of elements of the POVM set
from eight to four like the original problem? In Eq.s2.9d of
the previous section, substituting zero into the variables
CE,CF ,CG, andCH, we have the equations

CA + CB + CC + CD = 1,

CA − CB − CC + CD = nW1 ·nW2,

CA − CB + CC − CD = nW1 ·nW3,

CA + CB − CC − CD = nW2 ·nW3,

CA + CB − CC − CD = 0,

CA − CB + CC − CD = 0,
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CA − CB − CC + CD = 0.

If and only if these unit vectorsnWk are orthogonal to each
other, the solution exists to the above equations and a differ-
ent elementEK of the POVM set in this solution extracts a
different state of an orthonormal basis in four-dimensional
Hilbert space of two spin-12 particles. Thus the modified
king’s problem results in the original one. WhenCA,CB,CC,
and CD are zero, we can get the same result. We can show
that there is no solution to the equations for other cases,

when three vectorsnWk are linearly independent, after tedious
but not difficult calculations.

We had the solution for the king’s problem using three
observables which are complete but not mutually comple-
mentary for spin-12 particle. However, we have not discussed
the problems such thatsid Bob chooses any one of two ob-
servables,sii d Alice uses another entangled state, andsiii d the
dimension of the Hilbert space is larger than 2.

We will discuss the king’s problem for these cases else-
where.
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