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We discuss the problem of determining whether the state of several quantum mechanical subsystems is
entangled. As in previous work on two subsystems we introduce a procedure for checking separability that is
based on finding state extensions with appropriate properties and may be implemented as a semidefinite
program. The main result of this work is to show that there is a series of tests of this kind such that if a
multiparty state is entangled this will eventually be detected by one of the tests. The procedure also provides
a means of constructing entanglement witnesses that could in principle be measured in order to demonstrate
that the state is entangled.
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I. INTRODUCTION

Entanglement has long been recognized as one of the cen-
tral features of quantum mechanics and has been a primary
focus of research in quantum information science over recent
years because of its central role in phenomena such as tele-
portation, quantum cryptography and violation of Bell in-
equalitiesf1g. A common theme of theoretical research is the
notion that entanglement is a resource that often makes it
possible to acomplish tasks that cannot be performed in
analogous classical scenarios. However, much of this intu-
ition is based on our theoretical understanding of pure states
of two separated systems. For mixed states and for states of
many separated systems much less is known. In this paper
we address the question of how to determine whether a given
mixed state of several subsystems is entangled.

Entangled states of separated quantum systems, atoms or
photons for example, are those that cannot be prepared by
local operations and classical communication. In order to
prepare entangled states it is necessary to have a non-trivial
coherent interaction between the different subsystems. As a
result a stater of N subsystems defined in̂i=1

N HAi
, is said to

be fully separablef2g or simply separable, that is not en-
tangled, if it can be written as

r = o
i

pi ^
j=1

N

uci
sAjdlkci

sAjdu, s1d

where theuci
sAjdl are state-vectors on the spacesHAj

and pi

.0, oipi =1. If such a decomposition does not exist, the state
cannot be prepared by local operations and classical commu-
nication between the parties and is termed entangled. The
so-calledseparability problemarises from the fact that even
for the case of two parties, and even given complete infor-
mation about the matrix elements of the density operator of
the system, it is difficult to determine whether such a decom-
position as a mixture of product pure states exists. Much of
the difficulty arises because density matrices can generally
be decomposed into many different ensembles of pure states.

The separability problem for bipartite systems has re-
ceived much attention and we refer the reader to one of the
several reviewsf3–5g. However, as a result of recent work by
Gurvits on the computational complexity of the problemf6g
it is extremely unlikely that any completely satisfactory so-
lution can exist. Since Gurvits showed that the separability
problem for a given bipartite mixed state is in the complexity
class NP-HARD, it is extremely unlikely that any algorithm
that checks whether a quantum state is entangled can be per-
formed with an amount of computation that is polynomial in
the dimension of the Hilbert spaces involved.

The worst case complexity of the problem is not the end
of the story. There are simple, efficiently computable, tests
that can establish the entanglement of a large subset of states.
The most well known of these is the positive partial trans-
pose or Peres-Horodecki criterionf7–9g. This simply re-
quires making an appropriate rearrangement of the matrix
elements ofr, corresponding to transposing one of the par-
ties, and checking that the resulting matrix is positive. In
f10g we proposed a hierarchy of separability criteria that can
be thought of as a generalization of this condition but which
can only be checked by solving a semidefinite program. We
subsequently showed, based on earlier workf11,12g, that this
series of tests was complete in the sense that any entangled
state of two subsystems would eventually be detected by one
of the tests in our hierarchyf13g. Another attractive feature
of these conditions is that if a given test successfully identi-
fies that the state of interest is entangled it also constructs an
observable, known as an entanglement witness, that could in
principle be measured in order to demonstrate this entangle-
ment experimentally.

Semidefinite programs are members of a class of convex
optimizations that may be solved with arbitrary accuracy in
polynomial timef14,15g. By identifying the separability cri-
teria in f10,13g as semidefinite programs it was possible to
assess the computational difficulty of the criteria and to con-
struct entanglement witnesses when the criteria successfully
determine that a given state is entangled. Techniques from
convex optimization are being applied increasingly fre-
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quently in quantum information, notable examples include
f16–20g.

A. Overview of results and relation to other work

In this paper we study the problem of deciding whether a
given state is fully separable or not, extending our results
from the bipartite case to the case of an arbitrary number of
parties. One might think that an approach to the problem of
determining whether a given multiparty state is entangled
would be to consider the different ways that the subsystems
can be collected into two groups and determine whether the
resulting bipartite states are entangled. In fact, all pure en-
tangled states will result in a bipartite entangled state for
some grouping into two parties. As a result, the reduced den-
sity matrix for some subset of the systems will have nonzero
entropy thus showing that the state is entangled. Indeed
checking the reduced density matrix for each party will suf-
fice for any pure state. It is clearly possible to determine
efficiently whether or not a pure state is entangled in this
way. For mixed states, however, no such solution is possible.
There are entangled states that are separable whenever the
parties are arranged into two groups, as was first shown by
an example constructed from unextendible product bases
f21g. The multipartite separability problem cannot be re-
duced to a series of bipartite separability problems. In gen-
eral it is possible to classify states based on their separability
when theN particles are grouped into any numberkøN of
groups. This classification was developed in detail by Dür
and collaboratorsf22,23g. The full structure of multipartite
entanglement is more complicated than in the bipartite case,
including states such as the the GHZ and W states of three
qubitsf24g that cannot be interconverted by local operations
and classical communication. In this work we will not con-
sider we will not distinguish among these different kinds of
entanglement only whether the state is entangled.

Despite the extra difficulty of the multiparty case much of
the structure of the bipartite separability problem is un-
changed. There is a nice discussion of work on the multi-
party separability problem in the review by Terhalf3g. A
particularly important observation is that the set of fully
separable states forms a compact convex set in the state
space. In the bipartite case the separating hyperplane theo-
rem of convex analysis guarantees that a state is entangled if
and only if there is an observable known as an entanglement
witness that detects this entanglementf8,9g. Entanglement
witnesses are observables that have a positive expectation
value for every separable state and a negative expectation
value for some entangled state. Just as in the bipartite case
the separating hyperplane theorem guarantees that if a mul-
tiparty stater is entangled then there is an observableW with
a negative expectation value TrfWrg,0 but a positive ex-
pectation value for all fully separable statesf25g. This con-
vexity structure and the resulting entanglement witnesses ex-
actly mirror the bipartite separability problem.

Checking whetherr is separable is equivalent to checking
whether an entanglement witness exists. In the bipartite case
this reduces to a problem that may be stated in terms of
polynomial inequalities since entanglement witnesses map

onto positive semidefinite bihermitian forms. The multipar-
tite separability problem may still be phrased as quantified
polynomial inequalities:

∀ Wf∀ PprodTrfPprodWg ù 0 ⇒ TrfrWg ù 0g, s2d

where Pprod= ^ jPj is a pure product state andPj
= ucsAjdlkcsAjdu a rank one projector onHAj

. By writing the
condition TrfPprodWgù0 in terms of the components of the
variousucsAjdl it is clear that the polynomials that arise in the
multipartite case are no longer bi-Hermitian but multihermi-
tian; that is Hermitian in the sets of variables corresponding
to each of the subsystems. If this proposition is satisfied then
r is fully separable.

Problems that can be written in terms of quantified poly-
nomials inequalities of a finite number of variablessthe com-
ponents ofW, ucsAjdld are known as semialgebraic problems.
Semialgebraic problems are known to bedecidableby the
Tarski-Seidenberg decision proceduref26g which provides
an explicit algorithm to solve the separability problem in all
cases and therefore to decide whetherr is entangled. Exactly
the same is true of the bipartite problem but as we noted in
f13g, exact techniques in algebraic geometry that could be
used to solve the separability problem scale very poorly with
the number of variables and tend not to perform well in
practice except for very small problem instances. Such gen-
eral methods of algebraic geometry have, however, been ap-
plied to the separability problemf27g and related problems
f28g.

As we noted above there are efficient procedures that, like
the PPT test, demonstrate that a state is entangled in many
cases. In general, algorithms that are able to solve in poly-
nomial time many but not all problem instances of a compu-
tationally hard problem are not excluded by complexity
theory seven presuming thatPÞNPd. In fact in f29g one of
us showed that for all semialgebraic problems it is possible
to construct a series of semidefinite programs that are able to
solve large classes of problem instances. A direct application
of those techniques would lead to a complete hierarchy of
efficiently computable separability criteria such that every
entangled state would be detected at some level in the hier-
archy. However, the most obvious version of this would re-
sult from writing all the variables and parameterssthe state,
the coefficients ofW and so ond in terms of their real and
imaginary parts and treating the resulting problem involving
real polynomials as a question in real algebraic geometry, to
which the methods off29g apply directly. The resulting se-
quences of criteria would be difficult to interpret in terms of
the original quantum mechanical problem structure. In this
paper we show how to construct a complete series of multi-
party separability criteria that, while falling in the general
scheme off29g, may be phrased directly in terms of quantum
mechanical states and observables.

A recent series of papers has considered a slightly differ-
ent setting for both the bipartite and multipartite separability
problemsf30–32g. Brandão and Vianna point out that the
separability problem is an example of a class of convex op-
timizations known as robust semidefinite programs. Al-
though robust semidefinite programs, just as semialgebraic
problems, are computationally difficult there are also well
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studied relaxations that are able to address certain problem
instances. Brandão and Vianna show that both deterministic
algorithms that are able to solve some problem instancesf30g
and probabilistic algorithms that give correct answers with
some probabilityf31g can provide tractable approaches to the
separability problem, at least in low dimensions.

The tests we consider are an obvious generalization of
f13g to the multiparty case. As such they revolve around the
question of whether certain symmetric state extensions exist
for r. The general problem of when a global state is consis-
tent with a given set of reduced density matrices for various
overlapping subsystems of a multipartite quantum system
has a long history. The importance of this general state ex-
tension problem was emphasised by Werner inf33,34g. A
simple example is to specify that two systemsA andB are in
some entangled pure state and thatB and a third systemC
have a reduced density matrix that is also this same pure
entangled state. That this specification of reduced states is
inconsistent with any quantum state for the whole systemA,
B, C is known in quantum information as the monogamy of
pure state entanglementf35g; given that two quantum sys-
tems are in a pure entangled state it is not possible for either
one to be entangled with a third system. Mixed entangled
states also tend to be monogamous; Werner used the viola-
tion of Bell inequalities for certain mixed bipartite entangled
statesr to rule out the existence of a state ofA, B, C where
the reduced states of bothA, B and C, B are r f34g. This
logic can be reversed; the existence of such a global state on
A, B, C implies that there is a local hidden variable descrip-
tion for certain Bell experiments onr f36g and this construc-
tion can readily be extended to multiparty casesf36,37g. The
connection between this consistency problem for reduced
states and the bipartite separability problem which is central
to f10,13g is in fact made in a brief comment inf2g. Using
the techniques off10,13g all of the state extension problems
resulting from specifying sets of reduced density matrices
and asking if this specification is consistent with a global
mixed state can be phrased as semidefinite programs, a fact
has important implications for practical calculations.

The question of when a specification of reduced states for
a quantum system is consistent with a global state for the
system was raised again inf38g. Subsequent work has fo-
cussed on when a set of one-party reduced density matrices
is consistent with apure state of the joint system for some
number of qubits or qutritsf39–42g. The situation when two-
party reduced density matrices are specified for mixed states
of three quantum systems is considered inf42g. In each of
these cases it is possible to derive necessary conditions for
compatibility based on the eigenvalues of the reduced den-
sity matrices. Very recent work by Jones and Lindenf43g
shows that the general question of when a set of reduced
states is consistent with a pure quantum state for the whole
system is expressible as a specific problem in real algebraic
geometry. This seems to be a very significant difference to
the version of the problem in which the joint state is allowed
to be mixed since most interesting classes of problems in real
algebraic geometry prove to be computationally hard while
semidefinite programs may be solved in polynomial time.
Seef29g for a discussion of this point and algorithms that
solve problems in real algebraic geometry using semidefinite

programming. In other important recent progress on state
extension problems, Linden and Woottersf44g have shown
that the reduced density matrices of a certain fraction of the
parties of a generic multiparty pure state completely deter-
mine the state; the bounds on this fraction have been signifi-
cantly improved inf43g.

Another very important instance of this state extension
problem, termed by Coleman theN-representability problem
f45g, has been much studied in physical chemistry over a
long period sfor recent discussions and references see
f46–48gd. TheN-representability problem poses the question
of which two-body reduced density matrices are consistent
with a valid global state ofN fermions. The antisymmetriza-
tion of the fermion wavefunction requires that all two-
particle reduced density matrices be the same and the global
state be antisymmetric to swapping particles. The reason for
interest in this problem is that the ground state energy of an
interacting fermion system can be written in terms of the
two-body reduced density matrix if only two-body interac-
tions occur in the Hamiltonian. A lot of information about the
ground states of molecular systems could be found if trac-
table conditions forN-representability existed. A similar
connection between state extension problems and the ground
states of spin systems with local interactions was also
noted by Wernerf34g. In the tradition of work on this prob-
lem in physical chemistry necessary conditions for
N-representability are often found in terms of conditions on
the particle and hole correlations and it has recently been
realized that these in turn may be able to be expressed as
semidefinite programsf48–50g.

The key idea of this paper is to propose a sequence of
state extensions that must exist if a given multiparty quantum
stater is separable. Like all state extension problems these
may be expressed as semidefinite programs. The key result is
the determination that this sequence of tests is complete in
the sense that it can in principle detect all entangled states.
This is achieved by an inductive argument in the number of
parties. Likef13g this argument depends on the strengthened
version of the quantum de Finetti theorem proven inf11,12g.

The rest of the paper is structured as follows. In Sec. II we
introduce the separability criteria we will consider. As dis-
cussed in Sec. III these can be checked by solving a
semidefinite program and we show how to use the theory of
semidefinite programming to construct entanglement wit-
nesses forr whenever one of the criteria showsr to be
entangled. The central result that a given series of separabil-
ity criteria is complete in the sense that any entangled state
will be detected by some test in the series is proven in Sec.
IV. In Sec. V we explicitly consider the example of Bennett
et al. f21g of a completely bound entangled state where no
PPT test or bipartite separability test would suffice to dem-
onstrate that the state is entangled. Finally, we conclude in
Sec. VI.

II. MULTIPARTITE SEPARABILITY CRITERIA

Let r be aN-partite state defined in̂ i=1
N HAi

, where the
different partiesAi are represented by Hilbert spacesHAi

of
dimensiondAi

respectively. LetnW =sn1, . . . ,nNd be a vector of
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positive integers greater than or equal to one. We will say
that a staternW defined in^ i=1

N HAi

^ni, which can be viewed as
the original space supplemented bysni −1d copies of party
Ai, is a locally symmetric extension (LSE) ofr, if it satisfies
the following two properties.

s1d rnW =Vi,tsidrnWVi,tsid ∀ i ,1ø i øN, and∀ tsidPSni
, with

Vi,tsid = S^
j=1

i−1

1Aj

^njD ^ Ptsid ^ S ^
j=i+1

N

1Aj

^njD , s3d

whereSni
is the group of permutations ofni objects andPtsid

is the operator that applies the permutationtsidPSni
to theni

copies of partyAi.
s2d r=TrhA

1
^n1−1

¯A
N
^nN−1jfrnWg.

The first property means thatrnW remains invariant whenever
we permute the copies of a certain party. Due to this sym-
metry, we do not need to specify which copies ofAi are we
tracing over in the second property. Furthermore, we can
define a PPT locally symmetric extensionsPPTLSEd, by re-
quiring rnW to remain positive semidefinite under any possible
partial transposition.

We will now show that we can use this definition to gen-
erate a family of separability criteria. It is very easy to see
that any fully separable state has LSE for any vectornW. This
can be seen froms1d, since the state

rnW = o pi ^
j=1

N

suci
sAjdlkci

sAjdud^ni s4d

clearly has the required properties. Moreover, the state ins4d
is obviously PPT, since it is fully separable. We have then the
property that any fully separable state has PPTLSE to any
number of copies of its parties. This observation can be used
to generate a family of separability criteria. Any state that
fails to have a PPTLSE for some number of copiesmust be
entangled.

For any vectornW that represents the number of copies of
the different parties, we can construct a separability criterion
by just asking the question of whether the stater has a
PPTLSE to that particular number of copies. Thus, we can
construct a countably infinite family of separability criteria.
This is similar to the situation in the bipartite case discussed
in f13g. However, in the multipartite case, these criteria can-
not be all ordered in a hierarchical structure, although they
have a naturalpartial order. For example, if a state has a
PPTLSE tonW copies, then it clearly has PPTLSE tokW copies,
for all kW that satisfyki øni , ∀ i, since we can construct such
an extension by tracingsni −kid copies of partyAi, 1ø i øN.
This property of the extensions is mapped into the partial
order ofN-tuples given by

kW a nW ⇔ ki ø ni, ∀ i,1 ø i ø N. s5d

Conversely, if a state does not have a PPTLSE tokW copies,
which means it is entangled, then it cannot have PPTLSE to
nW copies, for anynW satisfyingkW anW. However, there does not
seem to be any relationship between the existence of
PPTLSE to number of copies whose vectors are not related
by the partial orders5d.

In the following section we will discuss the semidefinite
programs that determine whether a state has a PPTLSE. By
using the duality theory of semidefinite programs we will
show how to construct entanglement witnesses in cases
where a PPTLSE fails to exist.

III. SEPARABILITY CRITERIA AS SEMIDEFINITE
PROGRAMS AND ENTANGLEMENT WITNESSES

The techniques off10,13g allow us to determine whether a
given PPTSE exists by solving a semidefinite programming
feasibility problem. Such problems amount to deciding
whether there exists a positive matrix subject to given affine
constraints. We will not dwell on the details here which are
essentially identical tof10,13g.

We begin by noting that the state extensions4d satisfies a
stronger property than invariance under swapping the copies
of the different Hilbert spaces. Let us denote the symmetric
subspace ofk copies ofHAi

by SymksAid. Let pk
sid be the

projectors onto these subspaces. Then the PPTLSE of Eq.s4d
has support on the tensor product of these symmetric sub-
spaces Symn1sA1d ^ ¯ ^ SymnNsANd. For all i the PPTLSE
of Eq. s4d satisfiespni

sidrnWpni

sid=rnW. More economically we may

define a projectorpnW =pipni

sid onto the subspacê iSymnisAid.
Since the extension must remain positive under all pos-

sible partial transpositions, we need to impose a whole set of
positivity constraints onrnW. We will write then

rnW
TS ù 0, s6d

where we useS to represent any subset of the tensor factors
in ^ i=1

N HAi

^ni that yields an independent partial transpose, in-
cluding the empty set, which we will associate with not ap-
plying any partial transposition.

To summarize the conditions onrnW, for a givennW we must

find rnW

subject to rnW
TS ù 0 ∀ S
pnWrnWpnW = rnW

TrhA
1
^n1−1

¯A
N
^nN−1jfrnWg = r.

s7d

Both of the equalities above can be written in terms of a
finite number of trace constraints by writing them in terms of
an explicit basis for Hermitian matrices as inf13g. So the
partial trace conditions onrnW define an affine subset of ma-
trices on^ i=1

N HAi

^ni and if a positive symmetric state exten-
sion exists this subset will intersect with the cone of positive
semidefinite matrices. Determining whether the intersection
is empty is a semidefinite programming feasibility problem.

We may now apply the duality theory of semidefinite pro-
grams to find the dual optimizationf14g. This optimization
proves to be a search for an entanglement witnessZ. The
dual optimization is written in terms of matrix variablesZS
acting on ^ i=1

N HAi

^ni sone matrix for each distinct partial
transposed andZ is defined in terms of these. The optimiza-
tion is then
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minimize TrfZrg
subject to ZS ù 0 ∀ S

pnWsZ ^ 1dpnW = pnWSoS ZS
TSDpnW .

s8d

Note thatZ is an observable on the physical Hilbert space
^ iHAi

and the identity1 acts on the duplicate copies of dif-
ferent partieŝ i=1

N HAi

^sni−1d. Thus the differentZS are observ-

ables on the same space as the state extensionsrnW, ^ i=1
N HAi

^ni.
We will show that this dual optimization answers the ques-
tion of the existence of a PPTLSErnW equally well and has
the added benefit that when such an extension does not exist
the optimal solution is an entanglement witness.

Suppose that someZ! satisfying these constraints exists
and has TrfZ!rg,0 and yet there is also a PPTLSErnW. Then

TrfZ!rg = TrfsZ! ^ 1drnWg

= TrFpnWSoS ZS
TSDpnWrnWG

= o
S

TrfZSrnW
TSg ù 0,

which is a contradiction. The first line follows from the fact
that rnW is an extension forr, the second line from the sym-
metry ofr and the constraints onZ. The third again uses the
symmetry ofr and the property of partial transposes that
TrfXTSYg=TrfXYTSg. Finally positivity results from the re-
quirement that bothrnW and the differentZS are positive
semidefinite. If such an observableZ! exists thenr cannot
have a PPTLSErnW and thusr must be entangled. Equally all
separable statess do have have a PPTLSEsnW given by Eq.
s4d and as a result TrfZ!sgù0. ThereforeZ! is an entangle-
ment witness. As in the bipartite case discussed inf13g these
entanglement witnesses have interesting algebraic properties
that relate them to the general methods off29g. Since the
details are essentially identical to the bipartite case we refer
the interested reader to these two references.

This leaves the possibility that the optimum of the dual
semidefinite programs8d is positive and yet no PPTLSErnW

exists. As in the bipartite case this possibility must be ex-
cluded by appealing to strong dualityf13g. Broadly speaking
when no PPTLSE exists the existence of an entanglement
witness of the formZ! is guaranteed by the separating hy-
perplane theorem of convex analysis applied to an appropri-
ate convex set associated with the feasibility problems7d.
However, in order to apply this theorem we must check that
this set is in fact closed. In our case this may be determined
by checking thatZ=1.0 satisfies the constraints of the dual
semidefinite programs8d. For full details of this argument
see Appendix B off13g. We may conclude that when no
PPTLSE exists we may use the dual semidefinite program to
construct an entanglement witness and equally that the opti-
mum of the dual program can only be positive if a PPTLSE
exists.

These two equivalent semidefinite programs can be
implemented numerically using exactly the techniques de-
scribed inf13g and we will not dwell on these details here.
Once again it is important to implement the optimizations in

a way that preserves the symmetries, making use of the fact
that rnW can be restricted to lie on the symmetric subspace
^ iSymnisAid. For a fixed number of parties and a fixednW the
computation required to solve the two semidefinite programs
will scale polynomially with the Hilbert space dimensions
involved. Also for a fixed number of parties and fixed Hilbert
space dimensions the computation required to perform the
tests will scale as some polynomial of the components ofnW.
In this case the number of inequivalent partial transposes will
be limited very greatly by the symmetry between the differ-
ent copies of the subspacesAi. Unfortunately as the number
of parties increases the number of inequivalent partial trans-
pose tests will increase very rapidly. However the tests will
be of use even if only a restricted subset of the possible
partial transposessa restricted subset of the possibleS in the
above formulasd are actually used. The number of inequiva-
lent partial transposes is related to the number of possible
partitions ofN quantum systems and is discussed inf23g.

IV. COMPLETENESS OF THE FAMILY OF TESTS

Each test described in the previous section gives a neces-
sary condition for separability of a multipartite state. We
have discussed how these tests can be stated as semidefinite
programs, which implies that there are efficient algorithms to
solve them. In this section we will show that this family of
criteria is also complete, in the sense that any mutipartite
entangled state will be detected by some test. We will actu-
ally prove a stronger result; a weaker family of tests is al-
ready complete. The proof is based on the completeness of
the bipartite hierarchy of testsf11–13g, and the properties of
the Quantum de Finetti representationf51g.

Theorem 1 (multipartite completeness). Let r be a multi-
partite mixed state in̂ i=1

N HAi
, such thatr has locally sym-

metric extensionssLSEd rnWk
for its first sN−1d parties, asso-

ciated with the vectorsnWk=sk,k, . . . ,k,1d , ∀ kù1. Thenr
is fully separable.

Moreover, there are unique conditional probability densi-
ties PlsvAl

uvAl−1
, . . . ,vA1

d, 1ø l øN−1, and a unique func-
tion l :DA1

3 ¯ 3DAN−1
→DAN

, where DAi
is the space of

states inHAi
, such that

r =E
D1

N−1
S ^

i=1

N−1

vAi
D ^ lAN

svA1
, . . . ,vAN−1

d

3 Pi=1
N−1PisvAi

uvAi−1
, . . . ,vA1

ddvAi
, s9d

swith eD1
N−1 meaningeDA1

¯eDAN−1
d.

Proof. The proof is by induction in the number of parties.
The proof of the caseN=2 is theorem 1 inf13g.

Let us assume the result holds forN−1. Let r in ^ i=1
N HAi

have the LSE mentioned in the statement of the theorem.
Consider the splitA1−sA2, . . . ,ANd of the N parties and re-
gardr as a bipartite state. Consider the LSE ofr associated
with the vectornWk. Then, by tracing outsk−1d copies ofHAi

,
2ø i øN, we obtain a state inHA1

k
^ s^ i=2

N HAi
d that is invari-

ant under permutations of the copies ofHA1
and yieldsr

when we tracesk−1d copies ofHA1
. Hence,r has SE to any
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number of copies ofA1, and applying the result of the bipar-
tite case, we can write

r =E
DA1

vA1
^ ssvA1

dP1svA1
ddvA1

, s10d

wheressvA1
d is a uniquestate in^ i=2

N HAi
, andP1svA1

d is a
uniqueprobability density on the space of statesDA1

. Our
strategy will be to construct a family of LSEs for the states
ssvA1

d and invoke the inductive hypothesis to conclude that
they are separable.

Now, consider the state inHA1
^ s^ i=2

N−1HAi

^kd ^ HAN
de-

fined by

rs1,k,. . .,k,1d = TrA1
^sk−1dfrnWk

g. s11d

Note thatrnWk
exists by hypothesis but need not be unique. We

will impose the further condition onrnWk
that for all m.k

there is an LSErnWm
for r such that

TrhA1
^m−k

¯AN−1
^m−kjfrnWm

g = rnWk
. s12d

ThusrnWk
itself has symmetric extensions to larger numbers of

copies of the different parties.1

It is not difficult to see that if we consider again the bi-
partite split A1−sA2, . . . ,ANd, the staters1,k,. . .,k,1d has sym-
metric extensions to any number of copies ofHA1

. For ex-
ample, if we want a symmetric extension tom copies,m
øk, we can take

TrA1
^sk−mdfrnWk

g s13d

swhere TrA1
^0 means not taking any traced, and if m.k we

take

TrhA2
^m−k

¯AN−1
^m−kjfrnWm

g. s14d

Thus we have thatrs1,k,. . .,k,1d has symmetric extensions to
any number of copies ofHA1

, so applying the bipartite result
again we can write

rs1,k,. . .,k,1d =E
DA1

vA1
^ ssk,. . .,k,1dsvA1

dPsk,. . .,k,1dsvA1
ddvA1

,

s15d

where both the statessk,. . .,k,1dsvA1
d in s^ i=2

N−1HAi

^kd ^ HAN
and

the probability densityPsn2,. . .,nN−1,1dsvA1
d defined onDA1

are
unique.

If we trace outsk−1d copies ofHAi
, 2ø i øN−1, in s15d,

we obtain

r =E
DA1

vA1
^ TrhA2

^k−1
¯AN−1

^k−1jfssk,. . .,k,1dsvA1
dg

3 Psk,. . .,k,1dsvA1
ddvA1

. s16d

If we compares10d and s16d, we can use the uniqueness of
the decomposition to conclude that

ssvA1
d = TrhA2

^k−1
¯AN−1

^k−1jfssk,. . .,k,1dsvA1
dg, ∀ k ù 1,

s17d

and

Psk,. . .,k,1dsvA1
d = P1svA1

d. s18d

For eachvA1
, the statessvA1

d is a state in̂ i=2
N HAi

. We claim
that this state has locally symmetric extensions for the first
sN−2d parties that are associated with vectors ofN−1 com-
ponents of the formnWk=sk,k, . . . ,k,1d, ∀ kù1.

Equations17d proves the existence of the extensions. To
prove the symmetry, we use Eq.s15d and uniqueness of the
decomposition. First note that, by hypothesis, we can state
that

rs1,k,. . .,k,1d = Vi,tsidrs1,k,. . .,k,1dVi,tsid, s19d

which holds∀ i, 2ø i ø sN−1d, and∀ tsidPSk, since these
symmetry requirements are implied by the symmetry prop-
erties ofrnWk

. Note that the permutation operators ins19d act
only on partiesA2 through AN−1. If we apply s19d to both
sides ofs15d, we obtain

rs1,k,. . .,k,1d =E
DA1

vA1
^ fVi,tsidssk,. . .,k,1dsvA1

dVi,tsidg

3 P1svA1
ddvA1

. s20d

But comparings20d with s15d, and using again the unique-
ness of the decomposition, we have

ssk,. . .,k,1dsvA1
d = Vi,tsidssk,. . .,k,1dsvA1

dVi,tsid. s21d

So the extensions ofssvA1
d have the required symmetry.

We can now apply the inductive hypothesis tossvA1
d and

conclude that this state must be fully separable and in fact

ssvA1
d =E

D2
N−1

S ^
i=2

N−1

vAi
D ^ lAN

svA1
, . . . ,vAN−1

d

3 Pi=2
N−1PisvAi

uvAi−1
, . . . ,vA1

ddvAi
. s22d

Combinings10d with s22d we finally get

r =E
D1

N−1
S ^

i=1

N−1

vAi
D ^ lAN

svA1
, . . . ,vAN−1

d

3 Pi=1
N−1PisvAi

uvAi−1
, . . . ,vA1

ddvAi
, s23d

showing that the stater is fully separable.h.
This result generates a sequence of separability criteria

labeled by the integerk. Since the existence of a LSE for
somek1 implies the existence of a LSE for allk2, k2øk1,
then we have that this sequence has a hierarchichal structure,

1It may not be immediately obvious that this is possible. Suppose
not; then for allnWk LSE rnWk

there is somem.k such that there is no
nWm LSE satisfyings12d. Take anynWm LSE rnWm

and consider the state
TrhA1

^m−k
¯AN−1

^m−kjfrnWm
g; it is clear that this state is anWk LSE for r

which is a contradiction.
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similar to the one introduced for the bipartite case inf13g.
We note that this sequence of state extensions is exactly the
one considered inf37g in context of finding local hidden
variable theories for multipartite statesr. This shows that,
exactly as inf36g, these local hidden variable theories can
only give a local realistic description of Bell experiments
having an arbitrary number of detector settings for the two
observers when the states of interest are separable. However,
applying this particular hierarchy of tests is not the best prac-
tical tool to detect entanglement of multipartite states.

From theorem 1 we have the following corollary.
Corollary 1. A multipartite mixed stater in ^ i=1

N HAi
has

PPTLSE to any number of copies of its firstsN−1d parties, if
and only if r is fully separable.

Proof. If r is fully separable, it has a decomposition of the
form s1d and hence we can construct the PPTLSE given by
s4d. On the other hand, ifr has PPTLSE to any number of
copies of its firstsN−1d parties, in particular it has PPTLSE

to extensions associated with the vectorsnk
W =sk,k, . . . ,k,1d,

∀ kù1. Since any PPTLSE is also a LSE, according to theo-
rem 1 r must be fully separable.h sNote that we could
replace PPTLSE by LSE in the statement of corollary 1 and
still recover the same result.d

Corollary 1, although equivalent to theorem 1, seems to
be less practical, since we require the existence of many
more PPTLSE. However, since the existence of any PPTLSE
is anecessarycondition for separability, its nonexistence is a
sufficientcondition for entanglement. The advantage of an
application of these results based on corollary 1 rather than
on theorem 1, lies in the fact that we might be able to show
entanglement by searching for a PPTLSE to one extra copy
of oneof the parties instead of one extra copy ofall parties.
In terms of the resources needed to implement this might
amount to a huge saving. For example, if we have a state in
2^ 4^ 4, it is much easier to search for a PPTLSE to 3
copies of the first party, than it would be to search for a
PPTLSE to one copy of each of the parties. Corollary 1 gives
us the chance of choosing a more economical way of testing
for entanglement. We will see later on, when we discuss a
particular example, that this approach can be very useful.

In f25g the multipartite separability problem was dis-
cussed in terms of linear maps positive on products states.
Every multipartite entanglement witness can be transformed
into such a linear map and our result has implications for the
characterization of these maps. Inf13g we characterized
strictly positive maps as those that are completely positive
when composed with one of a class of maps onto the sym-
metric subspace of some number of copies of the output
space of the linear map. An exactly similar characterization
of the adjoint of a linear map strictly positive on product
states is possible based on theorem 1. Since the only differ-
ence is extending notation off13g to the multipartite case we
will not give an explicit discussion.

V. EXAMPLE

Here we consider the example of a complete bound en-
tangled three qubit state constructed by Bennettet al. from
an unextendible product basisf21g.

In the example, we look for one-copy extensions of one of
the parties, i.e., the case wherenW =s2,1,1d. Equivalently,
from the dual viewpoint, we look for witnessesZ satisfying
the conditions of the dual semidefinite programs8d.

A. A 2‹2‹2 state from UPBs

We apply the results to a 2̂2^ 2 tripartite state, first
proposed inf21g. This entangled state is constructed using
unextendible product basessUPBsd, and has the very inter-
esting property of being separable for every possible biparti-
tion of the three parties. The state has the following expres-
sion:

r =
1

4
S1 − o

j=1

4

uc jlkc juD , s24d

where

c1 = u0,1, +l, c2 = u1, + ,0l,

c3 = u + ,0,1l, c4 = u− ,− ,− l,

and u± l=su0l± u1ld /Î2. After solving the SDP, we easily ar-
rive at a witness whose matrix representation is given below:

Z = 3
1 − 1 − 1 1 − 1 1 1 − 1

− 1 4 1 0 1 3 − 1 1

− 1 1 4 3 1 − 1 0 1

1 0 3 4 − 1 1 1 − 1

− 1 1 1 − 1 4 0 3 1

1 3 − 1 1 0 4 1 − 1

1 − 1 0 1 3 1 4 − 1

− 1 1 1 − 1 1 − 1 − 1 1

4 . s25d

It can be verified that TrfZrg=−3
8 ,0, but Z is non-

negative in all product states. This is certified by an identity,
obtained from the solution of the SDP, that expressesZ in
terms of a set of matricesZS and shows that the conditions of
the dual programs8d are satisfied.

We see that it is possible to demonstrate thatr is en-
tangled by looking for an extension to only a single extra
copy of one of the subsystemsfnW =s2,1,1dg so long as we
require that the extension has positive partial transposes.
This highlights the fact that the hierarchy involving
PPTLSEs can be much more powerful than the hierarchy that
looks for LSEs without requiring positivity of the partial
transposes of the state extension. In our example, sincer is
separable when considered as a bipartite state resulting from
any bipartition of the three parties, locally symmetric exten-
sions ofr exist fornW =sk,1 ,1d with anyk, although we know
from the completeness theorem that LSEs forr cannot exist
for nW =sk,k,1d for all k.

VI. CONCLUSIONS

In this paper we have discussed separability criteria for
multipartite quantum states based on the existence of exten-
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sions of the state to a larger space consisting of several cop-
ies of each of the subsystems. The symmetric extensions we
consider always exist if the state is separable but do not
necessarily exist for entangled states. We showed that multi-
partite entangled states will eventually fail one of these tests
and in this case we constructed an entanglement witness us-
ing the duality theory of semidefinite programming.

It would be enlightening to better understand the physical
significance of these symmetric extensions. It can be said
that they highlight a version of the monogamy of entangle-
ment for mixed states; if a group of entangled systems are in
a strongly entangled state it is hard for them to share the
same entanglement with other systems. Another interpreta-
tion carries over from the bipartite case, the symmetric state
extensions, if they exist, provide local hidden variable de-
scriptions for large classes of possible multiparty Bell experi-
ments. This is discussed much more fully inf36,37g.

Other questions for further study include the behavior of
our tests under local operations and classical communication.
Unlike the positive partial transpose test it is not clear that
the property of having a symmetric extension to a given
number of copies of the subsystems is preserved under local
operations and classical communication. Certainly the tests
we construct are invariant under local unitary operations but,
just as in the bipartite casef13g, there are state transforma-
tions that may be achieved with some probability by local
operations and classical communication that can convert a
state having a symmetric state extension into one that does

not. A sequence of tests for entanglement that was invariant
under local operations and classical communication would
point to the existence of many sets of states, other than the
positive partial transpose states and the separable states, that
are closed under local operations and classical communica-
tion and this could have interesting consequences for quan-
tum information theory. Another important open question is
the problem of finding explicit product state decompositions
for separable states. As they exist at the moment our tests
only provide definitive answers when the state of interest
turns out to be entangled. A more powerful procedure would
be able to detect separable states and construct product state
decompositions when this is possible.
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