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Detecting multipartite entanglement
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We discuss the problem of determining whether the state of several quantum mechanical subsystems is
entangled. As in previous work on two subsystems we introduce a procedure for checking separability that is
based on finding state extensions with appropriate properties and may be implemented as a semidefinite
program. The main result of this work is to show that there is a series of tests of this kind such that if a
multiparty state is entangled this will eventually be detected by one of the tests. The procedure also provides
a means of constructing entanglement witnesses that could in principle be measured in order to demonstrate
that the state is entangled.
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I. INTRODUCTION The separability problem for bipartite systems has re-

: ceived much attention and we refer the reader to one of the
Entanglement has long been recognized as one of the cen- ;
veral review$3-5]. However, as a result of recent work by

tral features of quantum mechanics and has been a prima urvits on the computational complexity of the problés
focus of research in quantum information science over recenl. . o iremel unlikpel that an ccfm Ie)t/el satiSfactor so-
years because of its central role in phenomena such as telg- y y y P y y

portation, quantum cryptography and violation of Bell in- ution can exist. Since Gurvits showed that the separability

equalitieg 1]. A common theme of theoretical research is theproblem for a given bipartite mixed state is in the complexity

notion that entanglement is a resource that often makes lass NP-HARD, it is extremely “”""e_'y that any algorithm
at checks whether a quantum state is entangled can be per-

possible to acomplish tasks that cannot be performed i ormed with an amount of computation that is polynomial in
analogous classical scenarios. However, much of this intut- e dimension of the Hilbert s %ces involved poly
ition is based on our theoretical understanding of pure stateg ' Sp "

The worst case complexity of the problem is not the end

of two separated systems. For mixed states and for states o; the story. There are simple, efficiently computable, tests

wsgﬁgrigiﬁgd Sgiﬁmsofmg\? t(l)egztlesrnlf]?noe\’vvr\:hé?htef}'z p;’:\l/p \at can establish the entanglement of a large subset of states.
q 9VE&Phe most well known of these is the positive partial trans-

mixed state of several subsystems is entangled. gse or Peres-Horodecki criteridii—9]. This simply re-
Entangled states of separated quantum systems, atoms R ; . ) Ply .
ires making an appropriate rearrangement of the matrix

photons for example, are those that cannot be prepared b ements ofp, corresponding to transposing one of the par-

local operations and classical communication. In order t ies, and checking that the resulting matrix is positive, In
prepare entangled states it is necessary to have a non-tnvagfo] we proposed a hierarchy of separability criteria that can

coherent interaction between the different subsystems. As 7 . . .
. N . . be thought of as a generalization of this condition but which
result a statg of N subsystems defined 2, , is said to : s
) i’ can only be checked by solving a semidefinite program. We
be fully ;eparable[z] or simply separable that is not en- subsequently showed, based on earlier waidk12, that this
tangled, if it can be written as series of tests was complete in the sense that any entangled
N state of two subsystems would eventually be detected by one
p=2p ® el all (1)  of the tests in our h_ierarcrﬁm]. Another attractive feature
i =l of these conditions is that if a given test successfully identi-
fies that the state of interest is entangled it also constructs an
where the|yi") are state-vectors on the spadég andp,  observable, known as an entanglement witness, that could in
>0, 2;p,=1. If such a decomposition does not exist, the staterinciple be measured in order to demonstrate this entangle-
cannot be prepared by local operations and classical commuent experimentally.
nication between the parties and is termed entangled. The Semidefinite programs are members of a class of convex
so-calledseparability problemarises from the fact that even optimizations that may be solved with arbitrary accuracy in
for the case of two parties, and even given complete inforpolynomial time[14,15. By identifying the separability cri-
mation about the matrix elements of the density operator oferia in[10,13 as semidefinite programs it was possible to
the system, it is difficult to determine whether such a decomassess the computational difficulty of the criteria and to con-
position as a mixture of product pure states exists. Much oétruct entanglement witnesses when the criteria successfully
the difficulty arises because density matrices can generallgetermine that a given state is entangled. Techniques from
be decomposed into many different ensembles of pure statesonvex optimization are being applied increasingly fre-
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quently in quantum information, notable examples includeonto positive semidefinite bihermitian forms. The multipar-
[16-20. tite separability problem may still be phrased as quantified
polynomial inequalities:

A. Overview of results and relation to other work 0 WO Pprog T PprodW]1 =00 Tr[pW]=0],  (2)

In this paper we study the problem of deciding whether avhere P,,;=®;P; is a pure product state and
given state is fully separable or not, extending our results|#A)) %] a rank one projector orMA By writing the
from the bipartite case to the case of an arbitrary number ofondition T[Ppde]>O in terms of the components of the
parties. One might think that an approach to the problem ofarious|y/*) it is clear that the polynomials that arise in the
determining whether a given multiparty state is entanglednultipartite case are no longer bi-Hermitian but multihermi-
would be to consider the different ways that the subsystemgan; that is Hermitian in the sets of variables corresponding
can be collected into two groups and determine whether they each of the subsystems. If this proposition is satisfied then
resulting bipartite states are entangled. In fact, all pure enp is fully separable.
tangled states will result in a bipartite entangled state for Problems that can be written in terms of quantified poly-
some grouping into two parties. As a result, the reduced demomials inequalities of a finite number of variablése com-
sity matrix for some subset of the systems will have nonzergonents ofW,|44)) are known as semialgebraic problems.
entropy thus showing that the state is entangled. Indeedemialgebraic problems are known to tecidableby the
checking the reduced density matrix for each party will suf-Tarski-Seidenberg decision procedd@s] which provides
fice for any pure state. It is clearly possible to determinean explicit algorithm to solve the separability problem in all
efficiently whether or not a pure state is entangled in thiscases and therefore to decide whethés entangled. Exactly
way. For mixed states, however, no such solution is possiblehe same is true of the bipartite problem but as we noted in
There are entangled states that are separable whenever {h], exact techniques in algebraic geometry that could be
parties are arranged into two groups, as was first shown bysed to solve the separability problem scale very poorly with
an example constructed from unextendible product basegie number of variables and tend not to perform well in
[21]. The multipartite separability problem cannot be re-practice except for very small problem instances. Such gen-
duced to a series of bipartite separability problems. In general methods of algebraic geometry have, however, been ap-
eral it is possible to classify states based on their separabilitylied to the separability problefi27] and related problems
when theN particles are grouped into any numbdesN of  [2g].
groups. This classification was developed in detail by Dir As we noted above there are efficient procedures that, like
and collaborator$22,23. The full structure of multipartite the PPT test, demonstrate that a state is entangled in many
entanglement is more complicated than in the bipartite caseases. In general, algorithms that are able to solve in poly-
including states such as the the GHZ and W states of thregomial time many but not all problem instances of a compu-
qubits[24] that cannot be interconverted by local operationstationally hard problem are not excluded by complexity
and classical communication. In this work we will not con- theory (even presuming tha® # NP). In fact in[29] one of
sider we will not distinguish among these different kinds ofus showed that for all semialgebraic problems it is possible
entanglement only whether the state is entangled. to construct a series of semidefinite programs that are able to

Despite the extra difficulty of the multiparty case much of solve large classes of problem instances. A direct application
the structure of the bipartite separability problem is un-of those techniques would lead to a complete hierarchy of
changed. There is a nice discussion of work on the multiefficiently computable separability criteria such that every
party separability problem in the review by TerH&]. A entangled state would be detected at some level in the hier-
particularly important observation is that the set of fully archy. However, the most obvious version of this would re-
separable states forms a compact convex set in the staggilt from writing all the variables and parametéitse state,
space. In the bipartite case the separating hyperplane thefhe coefficients oW and so oh in terms of their real and
rem of convex analysis guarantees that a state is entangledithaginary parts and treating the resulting problem involving
and only if there is an observable known as an entanglemenial polynomials as a question in real algebraic geometry, to
witness that detects this entanglemédy9]. Entanglement which the methods of29] apply directly. The resulting se-
witnesses are observables that have a positive expectatiguences of criteria would be difficult to interpret in terms of
value for every separable state and a negative expectatiafe original quantum mechanical problem structure. In this
value for some entangled state. Just as in the bipartite caggiper we show how to construct a complete series of multi-
the separating hyperplane theorem guarantees that if a mybarty separability criteria that, while falling in the general
tiparty statep is entangled then there is an observablevith scheme 0f29], may be phrased directly in terms of quantum
a negative expectation value[Wp]<0 but a positive ex- mechanical states and observables.

pectation value for all fully separable sta{@s]. This con- A recent series of papers has considered a slightly differ-
vexity structure and the resulting entanglement witnesses exnt setting for both the bipartite and multipartite separability
actly mirror the bipartite separability problem. problems[30-32. Branddo and Vianna point out that the

Checking whethep is separable is equivalent to checking separability problem is an example of a class of convex op-
whether an entanglement witness exists. In the bipartite cag@imizations known as robust semidefinite programs. Al-
this reduces to a problem that may be stated in terms othough robust semidefinite programs, just as semialgebraic
polynomial inequalities since entanglement witnesses maproblems, are computationally difficult there are also well
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studied relaxations that are able to address certain probleprogramming. In other important recent progress on state
instances. Brand&o and Vianna show that both deterministiextension problems, Linden and Wootté¢#gl] have shown
algorithms that are able to solve some problem instaj8@s that the reduced density matrices of a certain fraction of the
and probabilistic algorithms that give correct answers withparties of a generic multiparty pure state completely deter-
some probability31] can provide tractable approaches to themine the state; the bounds on this fraction have been signifi-
separability problem, at least in low dimensions. cantly improved inf43].

The tests we consider are an obvious generalization of Another very important instance of this state extension

[13] to the multiparty case. As such they revolve around the, ohiem, termed by Coleman tierepresentability problem
question of whether certain symmetric state extensions exi ;45] has been much studied in physical chemistry over a
for p. The general problem of when a global state is consisI '

tent with a.ai t of reduced densit i ‘ >™Tong period (for recent discussions and references see
ent with a given Set of reduced density matrices for variou 46-48). The N-representability problem poses the question
overlapping subsystems of a multipartite quantum syste

has a long history. The importance of this general state ex2! Which two-body reduced density matrices are consistent
tension problem was emphasised by Wernef38,34. A vylth a valid globa_l state olN fermllons. Thg antisymmetriza-
simple example is to specify that two systemandB are in tion of the fermion wavefunction requires that all two-
some entangled pure state and tBaand a third systenC particle redqced dens_,lty matrices be the_same and the global
have a reduced density matrix that is also this same pur_@tate be_ant|§ymmetr|c to swapping particles. The reason for
entangled state. That this specification of reduced states [gterest in this problem is that the ground state energy of an
inconsistent with any quantum state for the whole system Interacting fermion system can be written in terms of the
B, C is known in quantum information as the monogamy oftwo-body reduced density matrix if only two-body interac-
pure state entangleme[85]; given that two quantum sys- tions occur in the Hamiltonian. A lot of information aboqt the
tems are in a pure entangled state it is not possible for eithgfround states of molecular systems could be found if trac-
one to be entangled with a third system. Mixed entangledab|e cqndltlons forN-represente_lblhty existed. A similar
states also tend to be monogamous; Werner used the viol§ONNection between state extension problems and the ground
tion of Bell inequalities for certain mixed bipartite entangled Statés of spin systems with local interactions was also
statesp to rule out the existence of a state&fB, C where ~ hoted by Wernef34]. In the tradition of work on this prob-
the reduced states of bo#y B and C, B are p [34]. This lem in physical chemistry necessary conditions for
logic can be reversed; the existence of such a global state d¥rrepresentability are often found in terms of conditions on
A, B, C implies that there is a local hidden variable descrip-the .partlcle and holg correlations and it has recently been
tion for certain Bell experiments gn[36] and this construc- réalized that these in turn may be able to be expressed as
tion can readily be extended to multiparty cag@,37. The ~ Semidefinite programg8-5Q.
connection between this consistency problem for reduced The key idea of this paper is to propose a sequence of
states and the bipartite separability problem which is centra$tate extensions that must exist if a given multiparty quantum
to [10,13 is in fact made in a brief comment {2]. Using  Statep is separable. Like all state extension problems these
the techniques of10,13 all of the state extension problems May be expressed as semidefinite programs. The key result is
resulting from specifying sets of reduced density matriceshe determination that this sequence of tests is complete in
and asking if this specification is consistent with a globalthe sense that it can in principle detect all entangled states.
mixed state can be phrased as semidefinite programs, a fathis is achieved by an inductive argument in the number of
has important implications for practical calculations. parties. Like[13] this argument depends on the strengthened
The question of when a specification of reduced states foyersion of the quantum de Finetti theorem proveflib, 12
a quantum system is consistent with a global state for the The restof the paper is structured as follows. In Sec. Il we
system was raised again [88]. Subsequent work has fo- mtroducg the separability criteria we will consider. As.d|s-
cussed on when a set of one-party reduced density matric€§'Ssed in Sec. Il these can be checked by solving a
is consistent with gure state of the joint system for some Semidefinite program and we show how to use the theory of
number of qubits or qutritE39—43. The situation when two- semidefinite programming to constrqct .entanglement wit-
party reduced density matrices are specified for mixed statdd€Sses forp whenever one of the criteria showsto be
of three quantum systems is considered4g]. In each of 'entar'lgle'd.'The central 'result that a given series of separabil-
these cases it is possible to derive necessary conditions fé¥ Criteria is complete in the sense that any entangled state
compatibility based on the eigenvalues of the reduced denVill be detected by some test in the series is proven in Sec.
sity matrices. Very recent work by Jones and Lindd8] IV. In Sec. V we explicitly consider the example of Bennett
shows that the general question of when a set of reducegft @ [21] of a completely bound entangled state where no
states is consistent with a pure quantum state for the wholBPT test or bipartite separability test would suffice to dem-
system is expressible as a specific problem in real algebrafnstrate that the state is entangled. Finally, we conclude in
geometry. This seems to be a very significant difference teec. VI.
the version of the problem in which the joint state is allowed
to be mixed since most interesting classes of problemsinreal ||, MULTIPARTITE SEPARABILITY CRITERIA
algebraic geometry prove to be computationally hard while
semidefinite programs may be solved in polynomial time. Let p be aN-partite state defined im{l,7,, where the
See[29] for a discussion of this point and algorithms that different partiesA; are represented by Hilbert spacks, of
solve problems in real algebraic geometry using semidefinitelimensiond,, respectively. Lefi=(n4, ... ,ny) be a vector of
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positive integers greater than or equal to one. We will say In the following section we will discuss the semidefinite
that a statep; defined in®iN:1H§_“i, which can be viewed as programs that determine whether a state has a PPTLSE. By
the original space supplemenfed by-1) copies of party Uusing the duality theory of semidefinite programs we will
A, is alocally symmetric extension (LSE) pfif it satisfies ~Show how to construct entanglement witnesses in cases
the fo”owing two propertiesl Where a PPTLSE fails to eXiSt.
(1) pﬁ=Vi’T(i)pﬁVi’7(i) Oi,1<i<N, andO T(l) € S1i' with
IIl. SEPARABILITY CRITERIA AS SEMIDEFINITE

V, i) = <|®11§J_nj) ® HT(i) ® ( (g linj), (3) PROGRAMS AND ENTANGLEMENT WITNESSES
' i= ] i=i ]
= = The techniques df10,13 allow us to determine whether a
where§, is the group of permutations of objects andl;)  given PPTSE exists by solving a semidefinite programming
is the operator that applies the permutatitn € S, to then, feasibility problem. Such problems amount to deciding
copies of partyA. ' whether there exists a positive matrix subject to given affine
2) p:Tr{Aignl—l._,Aﬁanl}[pﬁ]_ constraints. We will not dwell on the details here which are

The first property means thak remains invariant whenever €SSentially identical 110,13. o
we permute the copies of a certain party. Due to this sym- V& Pegin by noting that the state extensignsatisfies a

metry, we do not need to specify which copiesfofare we stronger_ property_ than invariance under swapping the copi_es
tracing over in the second property. Furthermore, we canf the different H|I.bert spaces. Let us denote tr(liga symmetric
define a PPT locally symmetric extensitPPTLSH, by re- ~ Subspace ok copies of 7, by Synf(A). Let m,’ be the
quiring p;; to remain positive semidefinite under any possibleProjectors onto these subspaces. Then the PPTLSE ¢#Eq.
partial transposition. has support on the tensor product of these symmetric sub-

We will now show that we can use this definition to gen-spaces Syi(A) ® - -- @ SyniN(Ay). For alli the PPTLSE
erate a family of separability criteria. It is very easy to seeof Eq.(4) SatiSﬁeSﬂ'gi)pﬁ’TTSi):Pﬁ- More economically we may

that any fully separable state has LSE for any veatcFhis define a projectomﬁ=Hin) onto the subspace;SynTi(A).
can be seen frol), since the state . . i . .
) Since the extension must remain positive under all pos-

. (AN Ay, sible partial transpositions, we need to impose a whole set of
pi=> Pij@fl(wi P T)E (4)  positivity constraints omps. We will write then
clearly has the required properties. Moreover, the staté)in p}s =0, (6)

is obviously PPT, since it is fully separable. We have then the
property that any fully separable state has PPTLSE to anwhere we uses to represent any subset of the tensor factors
number of copies of its parties. This observation can be useith ®i“i1H§i”i that yields an independent partial transpose, in-

to generate a family of separability criteria. Any state thatcluding the empty set, which we will associate with not ap-
fails to have a PPTLSE for some number of copi@sst be  plying any partial transposition.

entangled To summarize the conditions g, for a giveni we must
For any vectom that represents the number of copies of

the different parties, we can construct a separability criterion find Pi

by just asking the question of whether the statdas a . Ts

PPTLSE to that particular number of copies. Thus, we can subject to pi*=0 U S )

construct a countably infinite family of separability criteria. TEPATT = Pr

This is similar to the situation in the bipartite case discussed _

in [13]. However, in the multipartite case, these criteria can- Triagnt.agnvlpal = p.

not be all ordered in a hierarchical structure, although they . ] )
have a naturapartial order. For example, if a state has a Both of the equalities above can be written in terms of a
PPTLSE tori copies, then it clearly has PPTLSEKRaopies, finite number of trace constraints by writing them in terms of

for all k that satisfyk,<n;, i, since we can construct such an prlicit basis fqr Hermitian.matrices.as [B3]. So the
an extension by traclin(n“ k.)' copies of partyh, 1<i <N partial trace conditions op; define an affine subset of ma-
i K ip LST<N.

This property of the extensions is mapped into the partial > O.n®‘=1ﬁ“i and |f.a.posmve symmetric state exten-
order ofN-tuples given by sion exists this su_bset will intersect with the cone of positive
semidefinite matrices. Determining whether the intersection
K<fiek=<n, Oil<i<N. (5) is empty is a semidefinite programming feasibility problem.
We may now apply the duality theory of semidefinite pro-
Conversely, if a state does not have a PPTLSKE twpies, grams to find the dual optimizatiori4]. This optimization
which means it is entangled, then it cannot have PPTLSE tproves to be a search for an entanglement witnesshe
fi copies, for anyi satisfyingk < fi. However, there does not dual optimization is written in terms of matrix variablg
seem to be any relationship between the existence cicting on ®iN:1H}?ini (one matrix for each distinct partial
PPTLSE to number of copies whose vectors are not relatettansposgandZ is defined in terms of these. The optimiza-
by the partial order5). tion is then
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minimize Tr[Zp] a way that preserves the symmetries, making use of the fact
: that p; can be restricted to lie on the symmetric subspace
Zs=00 S n : . .
subject to S (8) ®;Symi(A)). For a fixed number of parties and a fixedhe
THZ ® D)= Wﬁ(z Z}S> ars computation required to solve the two semidefinite programs
S

will scale polynomially with the Hilbert space dimensions

Note thatZ is an observable on the physical Hilbert spaceinvolved. Also for a fixed number of parties and fixed Hilbert
®;H, and the identityl acts on the duplicate copies of dif- SPace dimensions the computation required to perform the
ferent partiess ;%5 "™, Thus the differenZ are observ- }ests' will scale as some polynomial of the componenis.of |
i ) on n this case the number of inequivalent partial transposes will
ables on the same space as the state extensipng Hx". e fimited very greatly by the symmetry between the differ-
We will show that this dual optimization answers the ques-ent copies of the subspacAs Unfortunately as the number
tion of the existence of a PPTLSE; equally well and has  of parties increases the number of inequivalent partial trans-
the added benefit that when such an extension does not exﬁése tests will increase very rapidly. However the tests will
the optimal solution is an entanglement witness. be of use even if only a restricted subset of the possible
Suppose that somg, satisfying these constraints exists partial transposea restricted subset of the possilfién the

and has TiZ,p] <0 and yet there is also a PPTL$E Then  above formulasare actually used. The number of inequiva-

- X lent partial transposes is related to the number of possible

TrlZ.p]=T(Z, @ Dpr] partitions of N quantum systems and is discussed2a].
= Tf[m(E Z?) Wﬁpﬁ]
S

= % T Zspss] = 0,

IV. COMPLETENESS OF THE FAMILY OF TESTS

Each test described in the previous section gives a neces-
o - o sary condition for separability of a multipartite state. We
which is a contradiction. The first line follows from the fact |,5e discussed how these tests can be stated as semidefinite
that p; is an extension fop, the second line from the sym- ,q4rams, which implies that there are efficient algorithms to
metry of p and the constraints o The third again uses the gg|ye them. In this section we will show that this family of
symmetry ofp and the property of partial transposes that yjteria is also complete, in the sense that any mutipartite
TrLXTSY]zTr[XYTS]- Finally positivity results from the re-  entangled state will be detected by some test. We will actu-
quirement that bothp; and the differentZs are positive gy prove a stronger result; a weaker family of tests is al-
semidefinite. If such an observabie exists thenp cannot  yeady complete. The proof is based on the completeness of
have a PPTLSk; and thusp must be entangled. Equally all' the pipartite hierarchy of tesfd1-13, and the properties of
separable states do have have a PPTLS&; given by EQ.  the Quantum de Finetti representatidi].

(4) and as a result TZ,0]=0. ThereforeZ, is an entangle- Theorem 1 (multipartite completeneskt p be a multi-
ment witness. As in the bipartite case discusseld 8} these  partite mixed state i, H,, such thatp has locally sym-
entanglement witnesses have interesting algebraic propertiggetric extensionsLSE) py, for its first (N~1) parties, asso-

that relate them to the general methods[28]. Since the ciated with the vectorsi,= (k, k k,1), 0 k=1. Thenp
details are essentially identical to the bipartite case we refeg fully separable KT 2l '

the interested reader to these two references , - . :
. S N Moreover, there are unique conditional probability densi-
This leaves the possibility that the optimum of the dual.. ' q _ probabiity
P : o ties Pi(wp |wp ... ,0a), 1<I<N-1, and a unique func-
semidefinite progrant8) is positive and yet no PPTLSE; . S R 1 _
. ) S . - tion A:Dp X - XDp  —Djp, WhereD, is the space of
exists. As in the bipartite case this possibility must be ex- tates it h that N i
cluded by appealing to strong dualfiy3]. Broadly speaking States int, such tha

when no PPTLSE exists the existence of an entanglement N-1
witness of the formZ, is guaranteed by the separating hy- p:f (_@ “’Ai) ® )\AN(wAl, 'wAN—l)
perplane theorem of convex analysis applied to an appropri- Dyt \i=1

ate convex set associated with the feasibility probléhn
However, in order to apply this theorem we must check that
this set is in fact closed. In our case this may be determinegith [on-1 meaningfp - - fp. ).
by checking thaz=1>0 satisfies the constraints of the dual 5+ proof is gly industion in the number of parties
semidefinite progre‘lTnQSJ). For full details of this argument The probf of the casdl=2 is theorem 1 if13] .
see Appendix B off13]. We may conclude that when no N
PPTLSE exists we may use the dual semidefinite program tﬁ Let us assume the result holds Wr 1. Letp in @;-;71x

X 11 _lPi(wAi|wAi—1’ ’wAl)dei’ ©)

construct an entanglement witness and equally that the opt lave the LSE mentioned in the statement of the theorem.

S onsider the spliA;—(A,, ... ,Ay) of the N parties and re-
f the dual ly b tive if a PPTLSE P R N )
?X?;?SO © dual program can only be posfive It a gardp as a bipartite state. Consider the LSEpcdissociated

These two equivalent semidefinite programs can bdVith the vectomy. Then, by t.raimg O”,gk_ 1) copies off,,
implemented numerically using exactly the techniques de2=i=<N, we obtain a state ift{,, ®(®j=,}) that is invari-
scribed in[13] and we will not dwell on these details here. ant under permutations of the copies %, and yieldsp
Once again it is important to implement the optimizations inwhen we tracék—-1) copies of’HAl. Hence,p has SE to any
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number of copies oA, and applying the result of the bipar-
tite case, we can write p= f wp, @ Trpskerpeken[og . kp(@a)]
DA1
P:f wa, ® (wp))Pi(wp )dws , (10) X P kp(@a)dwg, . (16)
DA1

If we compare(10) and (16), we can use the unigueness of
wherea(w, ) is auniquestate in®i“i2HAi, andPy(wa)) is a the decomposition to conclude that

unique propablllty density on the space of statBg, . Our U(wA) Tr{A®k N A@k-l}[U(k (wA ), O k=1,
strategy will be to construct a family of LSEs for the states
O'(wAl) and invoke the inductive hypothesis to conclude that (17)
they are separable. and
Now, consider the state i ® (@5 H,) @ H, de-
fined by P(k,...,k,l)(wAl) = Pl(wAl)- (19
Pk, . k1= TTAsk-D Lps,]- (11) For eachw, , the stater(wAl) is a state in@i“izHAi. We claim

that this state has locally symmetric extensions for the first
we (N-2) parties that are associated with vectordNefl com-
ponents of the formm,=(k,k, ... k,1), O k=1.
Equation(17) proves the existence of the extensions. To
prove the symmetry, we use E@.5) and uniqueness of the

decomposition. First note that, by hypothesis, we can state
Triaomk.pemk[ps = pg,. 12 o P y hyp

Note thatpﬁk exists by hypothesis but need not be unique.
will impose the further condition oMy, that for all m>k
there is an LSEp; for p such that

Thu5pn itself has symmetric extensions to larger numbers of Pak.. k1) = ViA)Pak.. k1Viri) (19
copies of the different parties.

It is not difficult to see that if we consider again the bi-
partite splitA;—(A, ... ,Ay), the statep;y 1) has sym-
metric extensions to any number of copies?()jl. For ex-
ample, if we want a symmetric extension o copies,m
=<k, we can take

which holdsO i, 2<i<(N-1), and 7(i) € §, since these
symmetry requirements are implied by the symmetry prop-
erties ofp;; . Note that the permutation operators(i9) act
only on partiesA, throughAy_;. If we apply (19) to both
sides of(15), we obtain

Traztem[pg,] (13) Pik.. k1) = fD wa, ® [Vi )0k, .. kp(@a)Vi ]
Al
(wkhere Tr“fo means not taking any trageand if m>k we % Pl(“’Al)d“’Al' (20)
take
But comparing(20) with (15), and using again the unique-
Tr{A;;m-k,,,Am-k}[pﬁm]_ (14)  ness of the decomposition, we have
N-1
Ok, k(@a) =Viiok. kn@a)Vig. (2D

Thus we have thap,y k1 has symmetric extensions to
any number of copies df(, , S0 applying the bipartite result So the extensions af(w, ) have the required symmetry.

again we can write We can now apply the inductive hypothesisotav, ) and
conclude that this state must be fully separable and in fact
= wp R O wp )P wp )dwps ,
Pak...k1) fDAl A, @ k... k(@A) Pk, k1(wa)doa o(wp) = f ( ® wA) ® M (wp), oo )
(15
X Hi:2 Pi((x)Ai|(1)Ai_l, e ,(,()Al)d(l)Ai. (22)
ek
where bOth_ fche statgy,. kp(@a,) I (1 HA ) ®Ha, and Combining(10) with (22) we finally get
the probability densn)P(nZW”anlyl)(wAl) defined onDA are -
unique =
If we trace out(k—1) copies ofH, 2<i<N-1, in (15), P fDN 1( 2 wA) ® May(@n on )

we obtain Ne

X H =1 P (wA |wA o ,wAl)dei, (23)

Yt may not be immediately obvious that this is possible. Supposshowing that the statg is fully separable[].
not; then for allfi, LSE p;, there is somen> k such that there is no This result generates a sequence of separability criteria
N LSE satisfying(12). Take anyfiy, LSE p; and consider the state labeled by the integek. Since the existence of a LSE for
Triaemk..asmiq[ps ; it is clear that this state is 6 LSE for p  somek, implies the existence of a LSE for ath, ky=<k;,
which is & contradiction. then we have that this sequence has a hierarchichal structure,
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similar to the one introduced for the bipartite casd 13]. In the example, we look for one-copy extensions of one of
We note that this sequence of state extensions is exactly thee parties, i.e., the case whene(2,1,1). Equivalently,
one considered in37] in context of finding local hidden from the dual viewpoint, we look for witness&ssatisfying
variable theories for multipartite statgs This shows that, the conditions of the dual semidefinite progré@h.
exactly as in[36], these local hidden variable theories can
only give a local realistic description of Bell experiments
having an arbitrary number of detector settings for the two
observers when the states of interest are separable. However,We apply the results to a®2®2 tripartite state, first
applying this particular hierarchy of tests is not the best pracproposed in[21]. This entangled state is constructed using
tical tool to detect entanglement of multipartite states. unextendible product basédPB9, and has the very inter-
From theorem 1 we have the following corollary. esting property of being separable for every possible biparti-
Corollary 1. A multipartite mixed state in ®i“ilHAi has tion of the three parties. The state has the following expres-
PPTLSE to any number of copies of its fitst— 1) parties, if ~ sion:
and only if p is fully separable. 4
Proof. If p is fully separable, it has a decomposition of the p= }<] -> |¢,><¢_|> (24)
form (1) and hence we can construct the PPTLSE given by 4 o)
(4). On the other hand, ip has PPTLSE to any number of
copies of its firstN-1) parties, in particular it has PPTLSE Where

A. A2®2®2 state from UPBs

to extensions associated with the vectogs (k,k, ... k, 1), h=10,1,+), h=|1,+,0,

0 k=1. Since any PPTLSE is also a LSE, according to theo-

rem 1 p must be fully separable] (Note that we could P3=]+,0,D, =|-,—-,-),

replace PPTLSE by LSE in the statement of corollary 1 and _

still recover the same result. and|+)=(]0y%|1))/\2. After solving the SDP, we easily ar-

Corollary 1, although equivalent to theorem 1, seems tdgive at a witness whose matrix representation is given below:

be less practical, since we require the existence of many 1 -1 -1 1 -1 1 1 -1
more PPTLSE. However, since the existence of any PPTLSE

is anecessargondition for separability, its nonexistence is a -1 4 1 0 1 3-1 1
sufficientcondition for entanglement. The advantage of an -1 1 4 3 1 -1 0 1
application of these results based on corollary 1 rather than 1 0 3 4 -1 1 1 -
on theorem 1, lies in the fact that we might be able to show 7= . (25
entanglement by searching for a PPTLSE to one extra copy -11 1-1 4 0 3 1
of oneof the parties instead of one extra copyalif parties. 1 3-1 1 0 4 1 -1
In terms of the resources needed to implement this might 1 -1 0 1 3 1 4 -1
amount to a huge saving. For example, if we have a state in

204®4, it is much easier to search for a PPTLSE to 3 __1 1 1-1 1-1-1 1_

copies of the first party, than it would be to search for a |+ can be verified that sz]:_§<0 but Z is non-
PPTLSE to one copy of each of the parties. Corollary 1 gives,aative in all product states. This is certified by an identity,
us the chance of choosing a more economical way of testingpiained from the solution of the SDP. that expresaen

for entanglement. We will see later on, when we diSCuSS g g of 5 set of matrice; and shows that the conditions of
particular example, that this approach can be very useful. 1o qual progrant8) are satisfied.

In [25] the multipartite separability problem was dis-  \ve see that it is possible to demonstrate thais en-
cussed in terms of linear maps positive on products state ngled by looking for an extension to only a single extra

opy of one of the subsystenmig=(2,1,1)] so long as we
‘?equire that the extension has positive partial transposes.
This highlights the fact that the hierarchy involving
$PTLSESs can be much more powerful than the hierarchy that
Mooks for LSEs without requiring positivity of the partial

. L . .pUlIransposes of the state extension. In our example, girise
space of the linear map. An exactly similar Character'z""t'onseparable when considered as a bipartite state resulting from

of the adjoint of a linear map strictly positive on product N ; -
| . ; ... any bipartition of the three parties, locally symmetric exten-
states is possible based on theorem 1. Since the only dlﬁeg y Dip P y 5y

i ) ) . ions ofp exist forn=(k, 1,1 with anyk, although we know
\?vri]lf?]cl)? eﬁ,tgn:r:ngxnﬁzit'ggfgfgnthe multipartite case we from the completeness theorem that LSEsdaannot exist
9 P : for i=(k,k, 1) for all k.

characterization of these maps. [&3] we characterized
strictly positive maps as those that are completely positiv

V. EXAMPLE

. VI. CONCLUSIONS
Here we consider the example of a complete bound en-

tangled three qubit state constructed by Beneettl. from In this paper we have discussed separability criteria for
an unextendible product bagig1]. multipartite quantum states based on the existence of exten-
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sions of the state to a larger space consisting of several copot. A sequence of tests for entanglement that was invariant
ies of each of the subsystems. The symmetric extensions wender local operations and classical communication would
consider always exist if the state is separable but do ngpoint to the existence of many sets of states, other than the
necessarily exist for entangled states. We showed that multpositive partial transpose states and the separable states, that
partite entangled states will eventually fail one of these testgre closed under local operations and classical communica-
and in this case we constructed an entanglement witness Ugon and this could have interesting consequences for quan-
ing the duality theory of semidefinite programming.  tym information theory. Another important open question is

_ It would be enlightening to better understand the physicalne problem of finding explicit product state decompositions
significance of these symmetric extensions. It can be saigy senaraple states. As they exist at the moment our tests
that they highlight a version of the monogamy of entangle+,, . yrovide definitive answers when the state of interest

tlrns out to be entangled. A more powerful procedure would

ment for mixed states; if a group of entangled systems are i
a strongly entangled state It is hard for them 1o share th%e able to detect separable states and construct product state

same entanglement with ojcher _systems. Another mtt_arpret fecompositions when this is possible.
tion carries over from the bipartite case, the symmetric state
extensions, if they exist, provide local hidden variable de-
scriptions for large classes of possible multiparty Bell experi-
ments. This is discussed much more fully[86,37. ACKNOWLEDGMENTS
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