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Characterization of distillability of entanglement in terms of positive maps
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A necessary and sufficient condition for one-distillability is formulated in terms of decomposable positive
maps. As an application we provide insight into why all states violating the reduction criterion map are
distillable and demonstrate how to construct such maps in a systematic way. We establish a connection between
a number of existing results, which leads to an elementary proof for the characterization of distillability in
terms of two-positive maps.
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[. INTRODUCTION positive partial transpose can never be distilled. If the condi-
Distillation is the process of converting with some finite tion of the theorem is satisfied for a particular numbeénen
P 9 we call the statgpseuden-copy distillableor in shortn dis-

probability a large number of mixed entangled states into fillable. This result has proven to be extremely useful and is

smaller number of maximally entangled pure states. It re“e%ften used as a definition of distillability. It has recently been

\?vri]tr:?:?:\llsg?gzgfgct;r\:?rnTn?gé%lélr?t&r;w(getr:]tehgaglr(é:z Ctoc?eltther proven that for arbitrary there exist states that anedistill-
P -t able but notn-1) distillable[8].

has become apparent that characterizing and quantifying dis- It is conjectured that some NPT states cannot be distilled

tillation is of great importance in understanding the nature of, . L
entanglement from a physical point of view. Considerableat all, and proving this is a central open problEdid). The

effort has been devoted to characterizing distillable state conjecture has the highly nontrivial consequence that bipar-

but even for bipartite systems the matter is not settled. In thiiIte distillable entanglement is nonadditiy&1]. Partial re-

paper we give a necessary and sufficient condition for a stat%uItS are abundant and we wpuld like to mention two results
to be one-distillable. which includes several known criteria® 9réat interest. Let us first fix some notation and recall the

in a natural and simple way. notion of positive map. . .
The distillation of pure states was completely analyzed in 4 Thte ds%t g{;)oulgdecRi O%?;_?;OEST (()jn a tH'Itiﬁrt tspates
Ref.[1], in which it was shown that all entangled pure states enoted by - rorRe’ . eno-es € franspose

can be reversibly distilled: in the limit of a large number of with resTpect toT Some given ba§|s 6t; for ReB(Ha

pairs one can extract the same number of singlet states Hp), R andR'e denote the partial transposes.

were needed to construct the state. Mixed state distillation Definition 1 A positive mapA :B(H) —B(H) is a linear

proved to be much harder. The first papers were mainly connot necessarily trace preservjngiap between operators

cerned with qubit systemi@,3]. Building upon these early which preserves p_03|t|V|ty. A-positive mapis a positive

results it was provefd] that all entangled ® 2 mixed states Map such that the induced map

can be distilled, l:_)ut that distillation of mixed states requires 1,® A:B(H, ® H) — B(H, ® H) )

inherently collective measuremenits,6]. In Ref.[7] a nec-

essary and sufficient condition was formulated for bipartitels positive. Acompletely positive magCP map is a map

distillability: which isk positive for allk (or equivalentlyd positive, with
Theorem 1 (Horodecki et dl7]). A statep is distillable if ~ d the dimension ofH).

and only if there exist some two-dimensional projectors It was shown[12] that if A is a positive(but not neces-

P:HL"—HR" andQ: Hg"— Hg" and a numben, such that  sarily CP map thenl,® A is positive on separable states.

the state Therefore positive maps can detect entanglement, the most
L on famous example being the transpose. Anotmezakej map
p'=(PeQp™(P®Q) (D) is given byA,(A)=Tr(A)1-A; this gives rise to the reduction
is entangled. criterion [13,14]. It was shown that all states violating the

AS p’ lives in a 292 space, a necessary and Sufficientreduction criterion can be distilled. The second result we
condition for distillability is thatp’ has a negative partial Would like to mention is the following.
transpos€NPT). The physical interpretation of this is clear: ~ Theorem 2 (DiVincenzo et di9]). Let p be a state an&
if we find such a two-dimensional subspace we can projecke the completely positive map defined by
upon it and distill the effectively two-qubit pair using known 1
distillation protocols. The pure singlets can then be con- p=(® 9P, with P, = => lii )i -
verted into maximally entangled states of the full spge d%;

A direct consequence of the theorem is that states with Fhenp is one-copy distillable if and only ik =ToS is not

two-positive(hereT denotes the transpose map
As deciding whether all NPT states can be distilled cur-
*Electronic address: Ic181@york.ac.uk rently seems too difficult, it is natural to ask if we can get
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stronger results in the other direction. In other words, whatis 2. There exists a decomposition pf with all vectors

the special role which the reduction criterion seems to play?|;)} of Schmidt rank at mosi.

Can we find other, perhaps stronger, positive maps with thGo separable states have Schmidt number 1, which is the
same property? In what follows we will answer these quessame definition as for pure states. The opera®i® have
tions. In particular we will show how both of the above thus Schmidt number 2. It is easy to see that in the above
results follow naturally from the more general notiondi$-  theorem we can allow all operatoBs'® with Schmidt num-
tillability witnessand how to construct maps like that of the per 2.

reduction criterion in a systematic way. The Jamiotkowski isomorphisifil5] gives a one-to-one
correspondence between linear mapsB(H)— B(H) and
Il. MAIN RESULTS operatorsD € B(H ® H), according to
As separable states form a convex compact set, there ex- D=d(lg® AP, (4)

ists an entanglement witness for each entangled state, i.e., a
hyperplane which separates the entangled state from the set _ T
of separable states. Using the Jamiotkowski isomorphism A(X)_TrA[D(X ®ld)]' (5)
[15] between operators and maps, this can be translated | our caseD is a decomposable operator, therefdrds a
terms of positive maps. We will pursue here the same line ofjecomposable magA=ToA$P+ASP, but here ASP=0).
reasoning for distillable states, and most of the proofs will beyyhat more can we say about the completely positive map

similar to the ones presented in REE2]. Note that the dis- AS$P? The general forni21,22 of such a map is given by
tillation problem has been studied in connection wéh-

tanglementwitnesses[16]. Although this approach turned ACP(A):EViAV,-T, (6)
out to be very useful to obtain results about the activation i

properties of the state, it does not yield constructive tests for . LT .
distillability since it depends on verifying whether a certain Where V; are arbitrary operators. Taking's=|y)(y|, with

operator is an entanglement witness. For an excellent revie\|/\$[’>zcl|""1'b1>+02|""2’b2> a Schmidt rank-2 vector, we obtain

At ; ter some algebra that the associated map is given by
on the characterization of convex sets and witnesses see R%( )
[17]: see also Ref18]. CR(A)=V AV, with V=c,|b,)(a,|+c,|by){(a,|. Therefore for

The crux is that one-undistillable states also form a congeneraiD™ with Schmidt number 2, the associated map sat-

vex compact set. Indeed, from Theorem 1 and the linearity offies Eq.(6), with eachV; an arbitrary operator of rank 2.
the partial transpose, it follows that mixing one-undistillableWe call mapsA=TeAP=ACP-T defined in this waytwo-
states can never yield a distillable staf®]. What are the decomposablg23]. With each map\: B(*,,) — B(H,,) there
corresponding witnesses? To see this better, notice that frois associated aadjoint mapA™:B(H,,) — B(H,,) defined by
Theorem 1 it follows[10] that distillability is equivalent to  Tr[AA(B)]=Tr[AT(A)B] for all A andB. It is easy to show
the existence of a Schmidt rank-2 statg)=cyla;,b;)  that if A is two-decomposable then the adjoint map is
+Cyla,, by, with {|a;),|ay)} two orthonormal vectors ift{y"  two-decomposable.

and{|b,),|b,)} two orthonormal vectors ift{3", and somen Theorem 3 (main theoremA statep is one-undistillable if
such that and only if

(™" el = (e (p™®) ") < 0. (3 (1®A)p)=0 (7
To study the phenomenon of distillation it is sufficient to for all two-decomposable maps.
characterize the one-distillable statesdistillable statesp Proof. Supposep is one-distillable, so that there exists a
can be characterized by looking at one copy®f. Thus we  D=|¢)(™8, with |) a Schmidt rank-2 vector such that
have the following. Tr(Dp) <0. Using the associated m&p) this can be written

Observation 1For each one-distillable statethere exists as
an operatorD such that TDo<0, but TrDp=0 for all N
one-undistillable states The operatob can always be cho- Tl A (Pypl=TH A @ A)(p)P.] <0, (8

- .
sen to be equal t@/)(y{'e for some Schmidt rank-2 vector and sinceP, is positive it follows thatl ® AT(p) £0, i.e., we

. ;
. . . . ave found a two-decomposable map that detects the state.
This theorem is compatible with the fact that PPT states prove the converse, leh=APT be a two-

cannot be distilled. Note thdd is decomposable by con- decomposable map such thab A(p) has a negative eigen-

struction, i.e., can be written @+Q'® with P,Q>0, here value. Denoting by/¢) the corresponding eigenvector, we
P=0. For the following it is very interesting to consider get ' 9 P 9 €9 '

slightly more general distillation witnessé&s Recall from

Ref. [20] the notion of generalized Schmidt number of den- (g1 ® AP(p™®)| ) = T (1 ® AT)(|p)(p8] <0. (9)

sity matrices: A bipartite density matrixhas Schmidt num-

berk if It is sufficient to conside°F(A)=V AV, with V a rank-2
1. For any decomposition op, {p;=0,|#)} with p  operator, thereforel® AT(|p)(d|)=|¢p'X¢'|, with |¢)

=3pi| i), at least one of the vectoffy;)} has Schmidt  Schmidt rank 2. Thus Tp'8/¢’'){¢'|) <0, and p is one-

rank at leask. distillable.
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Note that given a two-decomposable map the above 3. If we take Schmidt rank-2 vectors of the forfin)
result implies that undistillable states must satisfy both-|jj), we get
(I®A)(p)=0 and the dual criteriofA ® 1)(p) =0.
DTe =2 (fii i = lii)(jj|) = - dP, +dZ, (15
Il ILLUSTRATIONS i#]
To illustrate the power of the above formulation, we will and thusD=-V+dZ; the associated map is given By (A)
rederive two known results. The first is that all states violat-=—AT+d diagA.
ing the reduction criterion can be distilled. The original proof  In fact, everyoperator with Schmidt number 2 gives us a
[13] relied on a series of protocols: filtering, twirling, and strong distillation witness:
distillation of isotropic states. Let us construct the operator 4. In Ref.[20] it is proven that the special isotropic state
D& associated with the Schmidt rank-2 vectdys)=[ij) _
—|jiy,i#j. If we add the resulting operators we get De=(d-2)1+(2d-1)dP, (16)
T _ _ G e allows a Schmidt rank-2 decomposition. We find
D B_z i)l _gj (il = lidih=1-v, (10 D=(d-2)1+(2d-1)V and for the corresponding map
As(A)=(d-2)Tr Al+(2d-1)AT.
with V=3, j|ij )(ji| the flip operator, and thud=1-dP,. The
associated map is given hy;(A)=Tr(A)1-A. This is just
the map used by the reduction criterion for entanglement.
Thus if a state satisfiesl ® pg=pZ0 orpp® 1-p#0 then it As is well known in the theory of characterization of con-
is one-distillable. In this way we have also proven that theyex sets with the aid of witnessdsee, for instance, Ref.
map is decomposable, and using the results of the previoysg]), the dual formulation in terms of positive maps is much
section we can obtain the explicit Kraus for(®) for the  stronger. That is, the map deteatsrestates. Let us redo the
map. second part of the main theorem in a slightly different way to

The second result concerns the formulation of distillationsee this more clearly. So suppdse A(p) #0; then we can
in terms of two-positive map§Theorem 2. We will provide  rewrite Eq.(9) as

an elegant proof of this, making use of the following theo-
rem, which is implicit in Ref[20]: A map is k positive if and Tr(A@ )D(AT @ 1)p] <O, (17)

only if the corresponding operator is positive on states wit .
Scr):midt number E or Ie$g§5]r.) Now, for 5ndisti|lable stateg hwhere we have subst|tute4i;'>)<¢|—(A®J1)P+(AT®1).. n
we have that other words the map c_orresponds to the class of withesses
(A® 1)D(AT®1), for arbitraryA.
Tr(pD) = Tr(p'™®D'8) > 0, (11 It also implies that the criteria® A(p)=0 andA(p) ® |
=0 are insensitive to local transformations by one of the

T, ; ; i
fr;):ane't:lor?e; :xggrezsnihvryéd:jenduurggi;]ai. tr':varor;nathgsg(r)i\i/;t)gjlzvi arties. Indeed, suppose Alice performs a general measure-
P ent, with measurement operatofg and A, satisfying

To e o
D e " 795 ¥l ALRa=I (a s-cald fterng operaion Then e
state p will be transformed intop;=(A;® 1)p(A ® 1)/ p;. It
p=(® 9P, (12 follows that if the original state did not violate the criteria,
then the transformed state does not either. The map corre-
sponds to the operator witness, together with all possible

IV. DISCUSSION AND CONCLUSION

and define the positive map\=T°S, then p is one-

undistillable if and only ifA is two-positive. _local filtering operations by one of the parties.

As lllustrated W'th the reduct|o_n. map, dlstlllat|on WIt- e have shown how to construct maps that detect distill-
nesses can be obtained by combining Schmidt rank-2 veGyyjivy anplicable in arbitrary dimensions, which can be eas-
tors. Herg WE give Some more eXampIgs. ily evaluated on states. There is, however, a catch. As can be

1. Taking our vectorsij)+[ji) we obtain seen from the reconstruction of the reduction criterion, the

Tg— SNG4 NG = _ witness from which the map is derived, is a convex combi-
P z (DAL =1+v-22 a3 nation of manywitnesses. So it is possible that one of those
) o ~ witnessegand the associated magetects a state, while the
with Z=Xii)ii|. ThereforeD=1+dP,-2Z and the associ- sym does not. In other words, the map could be weaker than
ated map is given by\,(A)=TrAl+A-2diagA. The map  expected at first sight. The sum of the negative eigenvalues
diag maps all off-diagonal elements to zero and leaves thef D, or the entanglement d'e, can be seen as a measure

diagonal itself invariant. o for the strength of a certain map.
2. For the Schmidt rank-2 vectors of the fofin +|jj), we The characterization of the separability problem in terms
get of positive maps faces the problem that a complete charac-

terization of positive maps is unknown. In contrast, the cone
of two-decomposable maps is complete characteritsd
definition). Moreover, as shown above, application of the
and thusD=V+(d-2)Z; the associated map is given by map replaces the distillation witne§is terms of the opera-
A3(A)=AT+(d-2)diagA. tor), with a whole class of distillation witnessda.concretq

De= 2 (fii)ii| +[ii)(jj)) =dP, +(d-2)Z,  (14)

i#]
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the minimization of(y/{p"8|), with |4} Schmidt rank 2, can stronger criterion. It was proven in R¢.3] that it is not the
be replaced with a minimization df2 A(p) with A the two-  case: they proved that if© A(p®?) %0 thenl® A;(p) 0.
decomposable map corresponding tonadiximally entangled It is readily verified that all introduced maps share this prop-
Schmidt rank-2). erty. In the case of the reduction criterion, the reverse is also
In the context of separability, the formulation in terms of true. This can be proved as follows. From REL3] 1,
positive maps is not the only way to tackle the problem. IN® Ag(p;® py) =1p ® p?®1A2®ABZ(p2)+J1A1®ABl(p1)®p2.
particular convex optimization techniquésee, for instance, Now supposel ® A(p;) is not a positive operator, so that
Ref. [27]) have been successfully applied. In a forthcomingthere exist a vectoty) with negative expectation value.
paper we will discuss such techniques in the context of thérom the above expression follows thé&¥|1,® Ag(p;
distillability problem. ® p)| )< 0, with |P)=|yy) ®|1). So applying the reduc-
The basis requirement for a distillation witneSsto de-  tion criterion to one or more pairs is completely equivalent
tect two-distillable state which is not one-distillable is that (this also applies for,).
D's must be entangled with respect to the first and second |n conclusion, we have clarified the role which the reduc-
pair. Indeed, supposBe=[y)(¢| with [)=[¢1) @ [¢h,) sepa-  tion criterion plays in the story of distillation: it is just an
rable, then TD™8p®2T8)=Tr(|y)(¢alp)Tr(|¢)(¢olp) >0,  example of a two-decomposable positive map. The formula-
since the vectorlj;) have at most Schmidt rank 2. Consider tion of the distillation problem in terms of those positive
the witness for the reduction criterion on two paiBss=1 maps gives rise to a class of strong criteria, that are more
-V=1,®1,-V,®V,, but Ref. [26] V=Ps-P, and 1=Pg5  powerful than any other known criteria or reformulation of
+ P, with PgandP, projection operators onto the symmetric the problem. It is our hope that the presented results will
and antisymmetric subspaces, respectively. Substitutioshed some light on the question of the convexity of the
yields D"8=Pg, ® Pa,+Pa; ® P so thatD™® is separable whole set of undistillable states.
with respect to the different pairs. Note that this property is
not adhered. by the map sin¢A® 1)DTB(AT®11) gould t_)e ACKNOWLEDGMENT
entangled with respect to the two pairs, evemifitself is
not. So it is not at all obvious that collective application of  The author would like to thank A. Sudbery for interesting
the reduction criteriortfor instance, op®?) does not yield a  discussions and comments on this paper.
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