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A necessary and sufficient condition for one-distillability is formulated in terms of decomposable positive
maps. As an application we provide insight into why all states violating the reduction criterion map are
distillable and demonstrate how to construct such maps in a systematic way. We establish a connection between
a number of existing results, which leads to an elementary proof for the characterization of distillability in
terms of two-positive maps.
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I. INTRODUCTION

Distillation is the process of converting with some finite
probability a large number of mixed entangled states into a
smaller number of maximally entangled pure states. It relies
on local scollectived manipulation of the particles together
with classical communication between the partiessLOCCd. It
has become apparent that characterizing and quantifying dis-
tillation is of great importance in understanding the nature of
entanglement from a physical point of view. Considerable
effort has been devoted to characterizing distillable states,
but even for bipartite systems the matter is not settled. In this
paper we give a necessary and sufficient condition for a state
to be one-distillable, which includes several known criteria
in a natural and simple way.

The distillation of pure states was completely analyzed in
Ref. f1g, in which it was shown that all entangled pure states
can be reversibly distilled: in the limit of a large number of
pairs one can extract the same number of singlet states as
were needed to construct the state. Mixed state distillation
proved to be much harder. The first papers were mainly con-
cerned with qubit systemsf2,3g. Building upon these early
results it was provenf4g that all entangled 2̂ 2 mixed states
can be distilled, but that distillation of mixed states requires
inherently collective measurementsf5,6g. In Ref. f7g a nec-
essary and sufficient condition was formulated for bipartite
distillability:

Theorem 1 (Horodecki et al.f7g). A stater is distillable if
and only if there exist some two-dimensional projectors
P:HA

^n→HA
^n andQ:HB

^n→HB
^n and a numbern, such that

the state

r8 = sP ^ Qdr^nsP ^ Qd s1d

is entangled.
As r8 lives in a 2̂ 2 space, a necessary and sufficient

condition for distillability is thatr8 has a negative partial
transposesNPTd. The physical interpretation of this is clear:
if we find such a two-dimensional subspace we can project
upon it and distill the effectively two-qubit pair using known
distillation protocols. The pure singlets can then be con-
verted into maximally entangled states of the full spacef1g.
A direct consequence of the theorem is that states with a

positive partial transpose can never be distilled. If the condi-
tion of the theorem is satisfied for a particular numbern then
we call the statepseudo-n-copy distillableor in shortn dis-
tillable. This result has proven to be extremely useful and is
often used as a definition of distillability. It has recently been
proven that for arbitraryn there exist states that aren distill-
able but notsn−1d distillable f8g.

It is conjectured that some NPT states cannot be distilled
at all, and proving this is a central open problemf9,10g. The
conjecture has the highly nontrivial consequence that bipar-
tite distillable entanglement is nonadditivef11g. Partial re-
sults are abundant and we would like to mention two results
of great interest. Let us first fix some notation and recall the
notion of positive map.

The set of bounded operators on a Hilbert spaceH is
denoted byBsHd. For RPBsHd ,RT denotes the transpose
with respect to some given basis ofH; for RPBsHA

^ HBd ,RTA andRTB denote the partial transposes.
Definition 1. A positive mapL :BsHd→BsHd is a linear

snot necessarily trace preservingd map between operators
which preserves positivity. Ak-positive mapis a positive
map such that the induced map

1k ^ L:BsHk ^ Hd → BsHk ^ Hd s2d

is positive. Acompletely positive mapsCP mapd is a map
which is k positive for allk sor equivalentlyd positive, with
d the dimension ofHd.

It was shownf12g that if L is a positivesbut not neces-
sarily CPd map then1k ^ L is positive on separable states.
Therefore positive maps can detect entanglement, the most
famous example being the transpose. Anothersweakerd map
is given byL1sAd=TrsAd1−A; this gives rise to the reduction
criterion f13,14g. It was shown that all states violating the
reduction criterion can be distilled. The second result we
would like to mention is the following.

Theorem 2 (DiVincenzo et al.f9g). Let r be a state andS
be the completely positive map defined by

r = s1 ^ SdP+ with P+ =
1

d
o
i j

uii lk j j u.

Then r is one-copy distillable if and only ifL=T+S is not
two-positiveshereT denotes the transpose mapd.

As deciding whether all NPT states can be distilled cur-
rently seems too difficult, it is natural to ask if we can get*Electronic address: lc181@york.ac.uk
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stronger results in the other direction. In other words, what is
the special role which the reduction criterion seems to play?
Can we find other, perhaps stronger, positive maps with the
same property? In what follows we will answer these ques-
tions. In particular we will show how both of the above
results follow naturally from the more general notion ofdis-
tillability witnessand how to construct maps like that of the
reduction criterion in a systematic way.

II. MAIN RESULTS

As separable states form a convex compact set, there ex-
ists an entanglement witness for each entangled state, i.e., a
hyperplane which separates the entangled state from the set
of separable states. Using the Jamiołkowski isomorphism
f15g between operators and maps, this can be translated in
terms of positive maps. We will pursue here the same line of
reasoning for distillable states, and most of the proofs will be
similar to the ones presented in Ref.f12g. Note that the dis-
tillation problem has been studied in connection withen-
tanglementwitnessesf16g. Although this approach turned
out to be very useful to obtain results about the activation
properties of the state, it does not yield constructive tests for
distillability since it depends on verifying whether a certain
operator is an entanglement witness. For an excellent review
on the characterization of convex sets and witnesses see Ref.
f17g; see also Ref.f18g.

The crux is that one-undistillable states also form a con-
vex compact set. Indeed, from Theorem 1 and the linearity of
the partial transpose, it follows that mixing one-undistillable
states can never yield a distillable statef19g. What are the
corresponding witnesses? To see this better, notice that from
Theorem 1 it followsf10g that distillability is equivalent to
the existence of a Schmidt rank-2 stateucl=c1ua1,b1l
+c2ua2,b2l, with hua1l , ua2lj two orthonormal vectors inHA

^n

andhub1l , ub2lj two orthonormal vectors inHB
^n, and somen

such that

kcusr^ndTBucl = kcusrTBd^nucl , 0. s3d

To study the phenomenon of distillation it is sufficient to
characterize the one-distillable states;n-distillable statesr
can be characterized by looking at one copy ofr^n. Thus we
have the following.

Observation 1. For each one-distillable states there exists
an operatorD such that TrDs,0, but TrDrù0 for all
one-undistillable statesr. The operatorD can always be cho-
sen to be equal touclkcuTB for some Schmidt rank-2 vector
ucl.

This theorem is compatible with the fact that PPT states
cannot be distilled. Note thatD is decomposable by con-
struction, i.e., can be written asP+QTB with P,Q.0, here
P=0. For the following it is very interesting to consider
slightly more general distillation witnessesD. Recall from
Ref. f20g the notion of generalized Schmidt number of den-
sity matrices: A bipartite density matrixr has Schmidt num-
ber k if

1. For any decomposition ofr , hpi ù0,ucilj with r
=oipiufilkfiu, at least one of the vectorshucilj has Schmidt
rank at leastk.

2. There exists a decomposition ofr with all vectors
hucilj of Schmidt rank at mostk.
So separable states have Schmidt number 1, which is the
same definition as for pure states. The operatorsDTB have
thus Schmidt number 2. It is easy to see that in the above
theorem we can allow all operatorsDTB with Schmidt num-
ber 2.

The Jamiołkowski isomorphismf15g gives a one-to-one
correspondence between linear mapsL :BsHd→BsHd and
operatorsDPBsH ^ Hd, according to

D = ds1d ^ LdP+, s4d

LsXd = TrAfDsXT
^ 1ddg . s5d

In our caseD is a decomposable operator, thereforeL is a
decomposable mapsL=T+L1

CP+L2
CP, but here L2

CP=0d.
What more can we say about the completely positive map
L1

CP? The general formf21,22g of such a map is given by

LCPsAd = o
i

ViAVi
†, s6d

where Vi are arbitrary operators. TakingDTB= uclkcu, with
ucl=c1ua1,b1l+c2ua2,b2l a Schmidt rank-2 vector, we obtain
after some algebra that the associated map is given by
LCPsAd=V AV†, with V=c1ub1lka1u+c2ub2lka2u. Therefore for
generalDTB with Schmidt number 2, the associated map sat-
isfies Eq.s6d, with eachVi an arbitrary operator of rank 2.

We call mapsL=T+LCP=L̃CP+T defined in this waytwo-
decomposablef23g. With each mapL :BsHnd→BsHmd there
is associated anadjoint mapL†:BsHmd→BsHnd defined by
TrfALsBdg=TrfL†sAdBg for all A and B. It is easy to show
that if L is two-decomposable then the adjoint mapL† is
two-decomposable.

Theorem 3 (main theorem). A stater is one-undistillable if
and only if

s1 ^ Ldsrd ù 0 s7d

for all two-decomposable mapsL.
Proof. Supposer is one-distillable, so that there exists a

D= uclkcuTB, with ucl a Schmidt rank-2 vector such that
TrsDrd,0. Using the associated maps5d this can be written
as

Trfs1 ^ LdsP+drg = Trfs1 ^ L†dsrdP+g , 0, s8d

and sinceP+ is positive it follows that1 ^ L†srdà0, i.e., we
have found a two-decomposable map that detects the state.

To prove the converse, letL=LCP+T be a two-
decomposable map such that1 ^ Lsrd has a negative eigen-
value. Denoting byufl the corresponding eigenvector, we
get

kfu1 ^ LCPsrTBdufl = Trfs1 ^ L†dsuflkfudrTBg , 0. s9d

It is sufficient to considerLCPsAd=V AV†, with V a rank-2
operator, therefore 1 ^ L†suflkfud= uf8lkf8u, with uf8l
Schmidt rank 2. Thus TrsrTBuf8lkf8ud,0, and r is one-
distillable.
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Note that given a two-decomposable mapL, the above
result implies that undistillable states must satisfy both
s1 ^ Ldsrdù0 and the dual criterionsL ^ 1dsrdù0.

III. ILLUSTRATIONS

To illustrate the power of the above formulation, we will
rederive two known results. The first is that all states violat-
ing the reduction criterion can be distilled. The original proof
f13g relied on a series of protocols: filtering, twirling, and
distillation of isotropic states. Let us construct the operator
DTB associated with the Schmidt rank-2 vectorsuci jl= ui j l
− u ji l , i Þ j . If we add the resulting operators we get

DTB = o
i, j

uci jlkci j u = o
iÞ j

sui j lki j u − ui j lk ji ud = 1 − V, s10d

with V=oi,jui j lk ji u the flip operator, and thusD=1−dP+. The
associated map is given byL1sAd=TrsAd1−A. This is just
the map used by the reduction criterion for entanglement.
Thus if a stater satisfies1 ^ rB−rà0 or rA ^ 1−rà0 then it
is one-distillable. In this way we have also proven that the
map is decomposable, and using the results of the previous
section we can obtain the explicit Kraus forms6d for the
map.

The second result concerns the formulation of distillation
in terms of two-positive mapssTheorem 2d. We will provide
an elegant proof of this, making use of the following theo-
rem, which is implicit in Ref.f20g: A map is k positive if and
only if the corresponding operator is positive on states with
Schmidt number k or lessf25g. Now, for undistillable statesr
we have that

TrsrDd = TrsrTBDTBd . 0, s11d

for all DTB with Schmidt number 2. From the previously
mentioned theorem we deduce that the map associated with
rTB is two-positive for undistillable states. In other words, let
S be the completely positive map defined by

r = s1 ^ SdP+ s12d

and define the positive mapL=T+S; then r is one-
undistillable if and only ifL is two-positive.

As illustrated with the reduction map, distillation wit-
nesses can be obtained by combining Schmidt rank-2 vec-
tors. Here we give some more examples.

1. Taking our vectorsui j l+ u ji l we obtain

DTB = o
iÞ j

sui j lki j u + ui j lk ji ud = 1 + V − 2Z, s13d

with Z=oiuii lkii u. ThereforeD=1+dP+−2Z and the associ-
ated map is given byL2sAd=Tr A1+A−2 diagA. The map
diag maps all off-diagonal elements to zero and leaves the
diagonal itself invariant.

2. For the Schmidt rank-2 vectors of the formuii l+ u j j l, we
get

DTB = o
iÞ j

suii lkii u + uii lk j j ud = dP+ + sd − 2dZ, s14d

and thusD=V+sd−2dZ; the associated map is given by
L3sAd=AT+sd−2ddiagA.

3. If we take Schmidt rank-2 vectors of the formuii l
− u j j l, we get

DTB = o
iÞ j

suii lkii u − uii lk j j ud = − dP+ + dZ, s15d

and thusD=−V+dZ; the associated map is given byL4sAd
=−AT+d diagA.

In fact, everyoperator with Schmidt number 2 gives us a
strong distillation witness:

4. In Ref. f20g it is proven that the special isotropic state

DTB = sd − 2d1 + s2d − 1ddP+ s16d

allows a Schmidt rank-2 decomposition. We find
D=sd−2d1+s2d−1dV and for the corresponding map
L5sAd=sd−2dTr A1+s2d−1dAT.

IV. DISCUSSION AND CONCLUSION

As is well known in the theory of characterization of con-
vex sets with the aid of witnessesssee, for instance, Ref.
f26gd, the dual formulation in terms of positive maps is much
stronger. That is, the map detectsmorestates. Let us redo the
second part of the main theorem in a slightly different way to
see this more clearly. So suppose1 ^ Lsrdà0; then we can
rewrite Eq.s9d as

TrfsA ^ 1dDsA†
^ 1drg , 0, s17d

where we have substituteduflkfu=sA^ 1dP+sA† ^ 1d. In
other words the mapL corresponds to the class of witnesses
sA^ 1dDsA† ^ 1d, for arbitraryA.

It also implies that the criteria1 ^ Lsrdù0 andLsrd ^ 1
ù0 are insensitive to local transformations by one of the
parties. Indeed, suppose Alice performs a general measure-
ment, with measurement operatorsA1 and A2 satisfying
A1

†A1+A2
†A2=1 sa so-called filtering operationd. Then the

stater will be transformed intori =sAi ^ 1drsAi
†

^ 1d /pi. It
follows that if the original state did not violate the criteria,
then the transformed state does not either. The map corre-
sponds to the operator witness, together with all possible
local filtering operations by one of the parties.

We have shown how to construct maps that detect distill-
ability, applicable in arbitrary dimensions, which can be eas-
ily evaluated on states. There is, however, a catch. As can be
seen from the reconstruction of the reduction criterion, the
witness from which the map is derived, is a convex combi-
nation ofmanywitnesses. So it is possible that one of those
witnessessand the associated mapd detects a state, while the
sum does not. In other words, the map could be weaker than
expected at first sight. The sum of the negative eigenvalues
of D, or the entanglement ofDTB, can be seen as a measure
for the strength of a certain map.

The characterization of the separability problem in terms
of positive maps faces the problem that a complete charac-
terization of positive maps is unknown. In contrast, the cone
of two-decomposable maps is complete characterizedsby
definitiond. Moreover, as shown above, application of the
map replaces the distillation witnesssin terms of the opera-
tord, with a whole class of distillation witnesses.In concreto,
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the minimization ofkcurTBucl, with ucl Schmidt rank 2, can
be replaced with a minimization of1 ^ Lsrd with L the two-
decomposable map corresponding to allmaximally entangled
Schmidt rank-2ucl.

In the context of separability, the formulation in terms of
positive maps is not the only way to tackle the problem. In
particular convex optimization techniquesssee, for instance,
Ref. f27gd have been successfully applied. In a forthcoming
paper we will discuss such techniques in the context of the
distillability problem.

The basis requirement for a distillation witnessD to de-
tect two-distillable stater which is not one-distillable is that
DTB must be entangled with respect to the first and second
pair. Indeed, supposeDTB= uclkcu with ucl= uc1l ^ uc2l sepa-
rable, then TrsDTBr^2TBd=Trsuc1lkc1urdTrsuc2lkc2urd.0,
since the vectorsucil have at most Schmidt rank 2. Consider
the witness for the reduction criterion on two pairs:DTB=1
−V=11 ^ 12−V1 ^ V2, but Ref. f26g V=PS−PA and 1=PS
+PA with PS andPA projection operators onto the symmetric
and antisymmetric subspaces, respectively. Substitution
yields DTB=PS1 ^ PA2+PA1 ^ PS2 so that DTB is separable
with respect to the different pairs. Note that this property is
not adhered by the map sincesA^ 1dDTBsA† ^ 1d could be
entangled with respect to the two pairs, even ifD itself is
not. So it is not at all obvious that collective application of
the reduction criterionsfor instance, onr^2d does not yield a

stronger criterion. It was proven in Ref.f13g that it is not the
case: they proved that if1 ^ L1sr^2dà0 then1 ^ L1srdà0.
It is readily verified that all introduced maps share this prop-
erty. In the case of the reduction criterion, the reverse is also
true. This can be proved as follows. From Ref.f13g 1A
^ LBsr1 ^ r2d = 1A1 ^ r1

B
^ 1A2 ^ LB2sr2d+1A1 ^ LB1sr1d ^ r2.

Now suppose1 ^ Lsrid is not a positive operator, so that
there exist a vectorucl with negative expectation value.
From the above expression follows thatkCu1A ^ LBsr1

^ r2duCl,0, with uCl= uc1l ^ uc2l. So applying the reduc-
tion criterion to one or more pairs is completely equivalent
sthis also applies forL4d.

In conclusion, we have clarified the role which the reduc-
tion criterion plays in the story of distillation: it is just an
example of a two-decomposable positive map. The formula-
tion of the distillation problem in terms of those positive
maps gives rise to a class of strong criteria, that are more
powerful than any other known criteria or reformulation of
the problem. It is our hope that the presented results will
shed some light on the question of the convexity of the
whole set of undistillable states.
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