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Synthesizing arbitrary two-photon polarization mixed states
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Two methods for creating arbitrary two-photon polarization pure states are introduced. Based on these, four
schemes for creating two-photon polarization mixed states are proposed and analyzed. The first two schemes
can synthesize completely arbitrary two-qubit mixed states, i.e., control all 15 free parameters: scheme |
requires several sets of crystals, while scheme Il requires only a single set, but relies on decohering the pump
beam. Additionally, we describe two further schemes which are much easier to implement. Although the total
capability of these is still being studied, we show that they can synthesize all two-qubit Werner states, maxi-
mally entangled mixed states, Collins-Gisin states, and arbitrary Bell-diagonal states.
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I. INTRODUCTION be systematically implemented by first generating a purifica-

. . , , tion [10] of the mixed state by adding ancillas, and then
Quantum—lnformatlon processmgil] promises great tracing over the ancillas. However, efficient photon-
power relative to its classical counterpart. Many quantum-

! ) X o olarizationcNOT gates do not exigtl1], so we rely on other
information processes require specific pure entangled state% 9 st y

such as Bell states, to succeed. After interacting with them ?Sézessta?ésfreedom to introduce decoherence, leading to

environment, however, pure states inevitably decohere; deco- Th . ed foll Aft brief back
herence generally causes pure entangled states to become € paper IS organized as Tollows. Alter a briet back-

mixed and less entangled. Quantum error corredi@rand ground discussiqn in Sec. | A, we describe, in Se_c. I_I, two
entanglement distillation or concentratif8] have been de- Schemes to achievarbitrary pure two-photon polarization
veloped to help cope with a noisgnd hence decoheripg States by employing down-conversion in a two-crystal ar-
environment. On the other hand, there are implementation&ngement. The first one is based on the existence of Schmidt
using mixed states to investigate quantum computing, e.gdecompositions. The second one utilizes the coherent super-
liquid-state NMR[4]. The states in this last example are Positions of two down-conversion processes embedded in an
highly mixed and have no entanglement. Still, betweerinterferometric setup. In Sec. lll we describe how to extend
highly entangled pure states and highly separable mixethese two schemes to realize arbitrary two-quhitedstates
states there exists a vast experimentally unexplored region itgschemes | and )I In Sec. IV we propose two reduced
Hilbert spacegmore precisely, the space of density matrices schemegqlll and 1V) that provide practical ways to realize
where states can be simultaneously mixed and entangledeveral important families of states that are currently of in-
The two-qubit system possesses the simplest and smallegfrest, including Werner statdd?], maximally entangled
Hilbert space that permits the existence of entanglemenmixed stateg13], Collins-Gisin stateg14], and arbitrary
Separate from the specific protocols which make use of thge|l-diagonal states. Scheme Il requires only two down-
states, it is of fundamental int_erest to understand the prepapnversion crystals, but cannot synthesize all two-qubit
ration of one of the most basic quantum systems. Althouglytates. Scheme IV partially extends the set of attainable
there have been many attemffis-8] to synthesize two-qubit  giates, but requires four down-conversion crystals. Finally, in
mixed polarization states, none has yet been able to creatg.. \/ e summarize the four schemes and mention possible
completely arbitrary two-qubit mixed statfg]. applications. Readers who do not require full details but

Here we describe several two-photon polarization stat ant an overview of the four schemes and synthesizable

impler_nentations th&.lt ShOUId in prin.ciple gnable preparatior%tates can refer to Table | below. The details of how to create
of arbitrary two-qubit mixed states, including states POSSeSs- . lar families of states can be found around the equa-

ing all physical degrees of entanglement and entropy. Th L
schemes we shall present facilitate state creation and allog{/ons [(18), (19), (23), and (29)] describing these states.

access to two-qubit Hilbert space and can be useful for cur-
rent and future quantum-information protocols. We remark
that if there exist efficient two-qubit entangling gates such as
controlledNoOT (cNOT) gateq 1], arbitrary state synthesis can

A. Background information

The entangled photon pairs we consider come from
frequency-degenerate type-l spontaneous parametric down-
conversion(SPDQ [15]. The general state from SPDC is a

*Present address: Department of Physics and Optical Engineerintiyo-mode squeezed state consisting of vacuum lapdir
Rose-Hulman Institute of Technology, Terre Haute, IN 47803, USA stateq 16]:
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TABLE I. Comparison of the four mixed-state schemes. CP stands for controllable paratoetef15 in tota). The nonlinear crystals
(NLC) are used in the down-conversion process. In “other resources,” we include wave(plages a general unitary requires, e.g., one
half-wave plate and two quarter-wave plates, hence counted as three ejeméandtss, attenuators, prisms, and decoherers, and we assume
that the pump is already polarized. The crystal and resource numbers given are sufficient to produce all states given in the final column. This
resource accounting is intended to indicate the relative complexity of the various schemes; however, the numbers listed may be reduced for
certain states, or possibly by using clever combinations of elenfexnts reflections which modify polarizatiprThe resource number listed
for scheme Il is several items lower than a direct counting from Fig. 4, which was shown for clarity with extra mirrors. The resource number
listed for scheme Il is counted without pump decoherence and with only a single stage of decoherence, and is thus less than a direct counting
from Fig. 5, but is sufficient to synthesize the states listed.

Synthesizable
Scheme states CP  NLC Other optics Advantages Disadvantages

I, Fig. 3 Arbitrary 15 8 38 Arbitrary states (2) Birefringence of
two qubits crystals causes

additional rotations
and possible decoherence
(2) Requires precise
spatial-mode alignment
(3) Narrow opening angles
of down-conversion
require long path
difference for mixing
(4) Potential loss
of down-converted
photons

(5) Wave plate imperfection
and wedges, esp. at

early stages, cause beam
deviation

II, Fig. 4 Arbitrary 15 2 48 (2) Arbitrary states (1) Requires interferometer
two qubits stablization

(2) Not lossy in (2) Need to compensate

down-conversion reflection-induced
transformations
from mirrors

(3) Only two crystals (3) Variable beam splitters
difficult to tune
(4) Lossy in pump

IIl, Fig. 5 MEMS Eq. (16), =10 2 10 (1) Partially tested3,33,39 (1) Probably not arbitrary
Werner Eq.(19), states
Collins-Gisin Eq.(23),
and states Eq14)
(2) Minimal spatial-mode (2) No complete theory
matching for more than one
decoherer per arm

(3) Only two crystals

IV, Fig. 6 States from llI, =12 4 26 More states than Il (1) Probably not
Bell-diagonal states arbitrary states
Eqg. (30), and

states Eq(26)

(2) Birefringence of

crystals causes

additional rotations

and possible decoherence

(3) Requires precise spatial-mode
alignment
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W) = [vacuum + e[ y!) + &2yf?) + -+, (1)

where|4/¥) is ak-pair state, and is the relative amplitude
(typically of order 109) to find a single pair. The postse-
lected one-pair state/'") is composed of two daughter pho-
tons, usually callesgignal andidler. For the present article,

we limit our attention to the case where the signal and idler
photons have approximately degenerate central frequencies,
half that of the pump(Our schemes apply to the nondegen-

erate case as wellWhen the down-conversion momenta are |Z| PBS Ej HWP ﬂ QWP

well collimated or otherwise sharply selectéekperimen-

tally by a small irig, one can neglect the momentum depen- NLC O Unitary transformation

dence of the pair state. The postselected two-photon state can

then be described by FIG. 1. (Color onling Arbitrary pure states via Schmidt decom-
position. PBS, polarizing beam splitter; HWP, half-wave plate;
QWP, quarter-wave plate; NLC, nonlinear crystal.

W(l)(w)) = {E Cjk|Xj’Xk>} ® f deA(e) g + E,g - 6>,
Jk Now we describe how to prepare such a state. The cre-
. g p—r ation of the entangled state
polarization quency

where w is the pump frequencyy;, xi» and |w/2+e,w/2

- €), respectively, represent the polarizations and frequencies
of the two photons, witHy;)=|H) the horizontal polariza- , ,
tion, and|x,)=|V) the vertical polarizationc; is the ampli- from two-crystal down-conversion was proposed in iReS|
tude of the polarization statg;, xi); for single-crystal type-| (see Fig. 1. Consider two |den’t|cally' cut thin nonlinear crys-
phase matching the polarization state is unentangled, i etals. Suppose the first crystal’s optic axis lies in the vertical

Ck=ab,. Ag(e) is the amplitude for a particular division of plane defined by the directions of pump beam and the verti-
energy, so that indicates the deviation from half pump fre- €&l Polarization. “Assuming type-| phase matching, a
quency]A(e)|? is peaked at=0 with width 5., and we shall V-polarized pump will produce twdd-polarized daughter

approximate it by a Gaussian distribution: photons. We denote this process [y — |Hy) ® Hg). If the
pump isH polarized, no down-conversion process will take

cosdHaHg) + €?sin 6]VAVg) (5)

) 1 e place. Suppose the second crystal is placed at an orientation
Asi(e)]* = \’,mex T og2) ©) rotated from the first crystal by 90° about the pump direction.

An H-polarized pump will now produce a pair ¥fpolarized
More generally, the pump is not monochromatic, andphotons|H)— [V,)® |Vg), whereas no down-conversion will

therefore the pair state should be described by occur if the pump isV polarized[18]. With the two crystals
placed in contact with each other, a pump in the state
- (1) cos6|V)+€e?sin gH) will produce a pair of photons in the
| de Ap(@)|¢P(w)), @ e

where A(w) describes the frequency spread of the pump, e
assumed to be peaked at some frequangith half-width cosf|HaHg) + €’sin 6[VaVp),
8,. For most of the following discussion, we consider thick-
nesses of wave plates and crystals that are much less than twbere ¢ and ¢ are tuned using wave plates acting on the
coherence length,(=c/é,) of the pump, and hence we can pump polarizatior[15]. (¢ can also be tuned with, e.g., a
safely use Eq(2). The coherence length of down-conversion variable wave plate acting on just one of the down-
photons (I5;=c/é,) is usually much smaller thafy, i.e., ~Cconversion photonk. . A
cl/6.<clé,, because there are many ways to distribute the Choosing the local unitary transformatiotl, and Ug
energy of the pump photon between the daughter photons isuch that
each pair, resulting in a largé [17].
1

Il. SCHEMES FOR ARBITRARY TWO-PHOTON UA{|H>'|V>} - {|X>’ |X h (63

POLARIZATION PURE STATES

A. Via Schmidt decomposition UB{|H>, IV} — {|&), 165}, (6b)

Using the method of Schmidt decompositidtj, an arbi- . . .
trary two-qubit pure state [)=alHH)+b|HV)+c[VH)  We can achieve the arbitrary two-qublt_pu_re stabeby start-
+dVV) can always be written using only two termgsy ~ ing with an entangled state witltos6,€“sin 6)=(«, ) (up
=a|x&)+ B|x* &), where|x)(|€)) is orthogonal tdy*)(|&L)), to an irrelevant overall phagefollowed by the correspond-

and @ and 8 satisfy|a|?+|8|?=1. ing local rotationsJ, and Ug
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alv)*d|H) \

Pump

Pump [1PBs § HWP [} QwP O Attenuator

NLC O Unitary transformation

Beam Splitter / FIG. 3. (Color online Scheme | employs four sets of nonlinear
blV)*c|H) crystals. The two-photon state created at iteset of crystals is
Mirror chosen such that it is the correct sthig after propagation through

the subsequent elements. The necessary local unitary transforma-
tions at each down-conversion location can be readily calculated
[22]. PBS, polarizing beam splitter; HWP, half-wave plate; QWP,
quarter-wave plate; NLC, nonlinear crystal.

FIG. 2. (Color online Arbitrary pure states via
inteferometry.

Up ® Ug(cos|HaHg) + €sin 6|VAVg)) b[HH)+c|VV). Again, a half-wave plate in one arror
_ equivalently, passing through a quarter-wave plate twéea
=aHaHg) + blHAVe) + c[VaHg) + dVaVe).  (7) transform this state intb|HV)+c|VH). By coherently super-
The two rotations can be obtained in the process of Schmidtosing the above two processes, as shown in Fig. 2, the fully
decomposingdy) [1]; see also the Appendix for an explicit arbitrary pure two-qubit state|HH)+b|HV)+c|VH)+d|VV)
construction of the appropriatd)’s, «, and g given Can be created. The amplitude of each process, which is de-
{a,b,c,d. termined by the relative values 6fy, | ) and (¢ | #4), can
be adjusted by the transmission through the beam splitter.
Moreover, coherent superposition can be achieved by balanc-
ing the two path lengths. Thus, by combining a well-

In practice, any SK(2) rotation such aQA and OB on a
polarization state can be implemented by combinations o.

half- and quarter-wave platelslo]—preferably zero-order '\ o 0\ "inioiterometer and the process of spontaneous

wave plate$20], for which the retardance is barely sensitive down-conversion we can realize arbitrary two-photon polar-

to deviation from the central frequency. That is to say, the|zation pure states. In the next section we shall describe two

action of wave plateg), can be assumed to leendependent  gchemes capable of producing arbitrary two-photon polariza-
(at least in the frequency range set by the interference filtefiq, mixedstates.

before detectioy i.e.,

- o lll. SCHEMES FOR ARBITRARY TWO-PHOTON
Uilxp @ | deAle)| te POLARIZATION MIXED STATES
o Any two-qubit mixed state can be canonically decom-
~ > Uylx ® J de Ae) Sre/, (8  posed as follow$1]:
k

whereU,; are the elements of a unitary matrix that is inde- p=> Nl il 9
pendent ofe. We shall assume throughout this paper that i=1

unitary transformations by wave plates are ideal and inde- h h e fit is theref
pendent of deviation from the central frequency. where{|)} are orthonormal eigenstates aflt is therefore

natural to realizep simply by mixing its eigenstates with
probabilities proportional to their eigenvalugs As we can
synthesize arbitrary pure states from one set of crystals, in-

A second method for creating arbitrary pure states igjividual synthesis of eachy) is straightforward.
shown in Fig. 2 and is a modification from the setup of Ref.

[21]. As discussed in Sec. Il, via SPD@ssuming type-l
phase matching a pump in a polarization staigH)+ g|V)
will generate an entangled photon pair in the statp to The first mixed-state scheme is shown in Fig. 3. We have
some irrelevant phasesy|VV)+g/HH). With a half-wave four pairs of nonlinear crystals, each generating a pure state
plate, this entangled state can be further transformed intthat, when propagating to the output, arrives|#s [22].
a/VH)+ B|HV). Now, an arbitrary pure two-photon polariza- There is an attenuator in front of each set of crystelsept

tion statea|HH)+b|HV)+c|VH)+d|VV) can be regarded as a the first setsuch that the pump intensitygoing into theith
superposition of two(unnormalizedl parts: a|HH)+d|VV) set of crystals is proportional ty; (arranged in decreasing
and b|HV)+c|VH). The first part can be created from the order:N;=X\,=\3=1\,). It is less favorable to attenuate the
(unnormalizedl pump state ) =a|V)+d/H). To create the four down-conversion pure states to tune the probabilities
second part, we need tH@nnormalizedl pump state|y;)  according to their eigenvalues, because direct attenuation of
=h|V)+c|H), from which SPDC yields the two-photon state the down-conversion photons would, in general, result in un-

B. Via interferometry

A. Scheme I: Arbitrary two-qubit mixed states |

032329-4
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coherence to hold, the path-length difference between any
two upper(or lowen unmatched paths must be greater than
the pump coherence lengfl25]. As long as coherence is
maintained for the corresponding pairs of stafg¢g;) and
lyni) (fori=1, ..., 4), but the time differences for thiés are
distinguishable, the output state is the desired mixed state,
once timing information is traced over, i.e., discard2é.
Note, however, that there is no differenceratative timing
between signal and idler photons. The timing information is
coupled solely to the pump photons; because this timing in-
formation is traced ovefignored, down-conversion pro-
duces an incoherent mixture of four two-photon states. Also
note that with a cw pump, the only possibility to detect any
5O coherence in the timing information would be to include
Sy similar unbalanced interferometers in the down-conversion
output.

FIG. 4. (Color onling Arbitrary two-qubit mixed-state synthesis The dlﬁerenge between the present scheizand the
scheme II. The transmission probabilities of the various beam splitprev'ous_‘ ondll) is that for S(_:he_me I e_aCh of the four pure
ters depend on the desired final state. The variable beam splittelssl""'[es IS created probabilistically in the same down-
immediately preceding the unitary rotations could also be realizefONVersion crystals, whereas for scheme | each of the four
by polarizing beam splitters with suitable polarization rotations be-PUre states is created in down-conversion crystals at distinct
fore and after. locations. Both schemes yield arbitrary two-qubit mixed
states by incoherent temporal mixing.

N
PODO O

p
4

A X

Pump _E g

paired photons, i.e., one of the photons would be absorbed,
but not the othef9]. IV. RESOURCE-OPTIMIZED SCHEMES FOR MIXED

For a pulsed pump, the mixing is incoherent, as the arrival STATES
time of the down-conversion paifrelative to the pump . ) _
pulse can, in principle, reveal information on where the pair !N this section we describe two reduced schefiiésnd
was generated. For a cgontinuous wavepump, one can V) _that provide practical ways to reah;e several important
add a path delaymuch greater than the pump coherencefamilies of states that are currently of interest. Scheme I,
length [17]), to each pair such that pair-generation amp"_whose feasibility has been demonstrated experimentally,
tudes at all sets of crystals are no longer coherent with on8Merges as an effort to reduce the number of down-
another. We can thus synthesjzéy incoherently mixing its  COnVersion crystals to two by sacrificing the generality of the
eigenstates with appropriate weights. As the down_synthes!zable states. Scheme v further extends the set of
conversion process is much more likely to produce onéynthesizable states by employing two sets of crystals and
rather than multiple pairfe.g., see Eq(1)], multiple pairs  the mixing technique introduced in scheme |.
can be ignored.

A. Scheme IlI: Filling the tangle-entropy plane

B. Scheme II: Arbitrary two-qubit mixed states II Recall that scheme | requires the use of, at most, four sets
The interferometric scheme of Sec. Il B can also be ex?f SPDC crystals. Since fewer crystal sets would be more

tended to create arbitrary mixed states. The full scheme igconomical and likely easier to implement, we thus propose
shown in Fig. 4. The coherent superposition method of Fig. i mod|f|ed_schem“e, which u”ses only one set of SPDC crys-
is used to create each of the four pure stdigs in the tals but relies on controllgd decoherence. AIthough we do
decomposition9) and mix them incoherently in proportion NOt Yet know whether this scheme can genewteitrary
to their eigenvaluea,, as in scheme I. Arbitrary weights of two-qublt states, '|t can.synthesuze §evera| |mportant families
mixing can be achieved by controlling the transmissions of’f Mixed states, including states with all physically allowed
the beam splitters. In order to mix the four parts incoherently?2!ues of entanglemericharacterized, e.g., by “tangleand

we first use timing informatiofi23] such that the state of the Mixednesscharacterized, e.g., by the linear entrd@y)).
pump is We use thick birefringent crystals with thickndsss “de-

coherers.” Their effect on a polarization state of definite fre-
guencyw is (see, €.9.[19,28))

D(L)[x;) ® |w) = €M y)) ® |w), (1

Here,| 1) and|yy;) (both unnormalizedare the two parts of where the optic axis is assumed to be along, gayi.e., the

the pump state that will, ultimately, yield the correspondingV direction, andn; is the refractive index for th¢th polar-
pure statd;) [24]. The factordi); (i=1, ..., 4 encode tim- ization state. The decohering elements entangle the polariza-
ing information; there is no coherence between paths labeletion and frequency degrees of freedom. In the output, only
by distinct values of, i.e., (i|j)t= ;. For this absence of polarizations are detected, so we have to trace over the fre-

4
oy = 2 (i) + |4i) @ i)y (10
i=1
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la> 0 o0 fad

0 b?> o o

0 0 [¢* o [
ffad 0 0 |d?

Pump
decoherence

(14)
Pump

wheref is a complex function ok ; andL, whose exact form

@ Decoherer depends or\(e). For Agi(e) of Gaussian form, as in E3),

f is given by
FIG. 5. (Color onling Scheme Il employs decoherence. Down-
conversion photon pairs can be decohered, as well as pump pho- 1| An(L;-L,) |2 AL Lo al2e
tons. The decoherers are thick birefringent crystals, which separate f=exp - > T € 12 . (19
€

different polarizations and decrease the coherence between them.
Also shown is a possible decoherence on the pump beam: the Ve{ote that|f| <1 with |f|=1 for Ly=L,

tical polarization component experiences an adjustable extra delay. The family of two-qubit mixed states described by Eq.
(14) turns out to be of the form hypothesized by Mumetaal.

quency degree of freedom in the joint pure staiepolar-  [13]in their search for the maximally entangled mixed states
izations and frequencigsin general, we are then left with a (MEMS), which define the boundary of physically allowed
mixedtwo-photon polarization state. In the present schemestates on the tangle-entropy plafied,30. [The family (14)
we can have several decoherers in each arm, along with agiso contains other maximally entangled mixed states, corre-
bitrary unitary rotations between the decoher@sly two  sponding to different charaterizations of entanglement and
are shown in Fig. b entropy[31].] Although states in this family actually fill the

In addition to directly decohering the down-conversionphysically allowed region of the tangle-entropy plane, this
photons, one can also decohere the pump photons befogdes not mean that the family contains all two-qubit mixed
down-conversion, as indicated in Fig. 5. However, as menstates. In fact, the family14) has only four independent real
tioned previously, the pump typically has a much longer coparameters excluding the phase of the off-diagonal element.
herence length than the down-conversion photons do, angy including the six additional real parameters coming from
hence may require much greater relative birefringent delayshe two arbitrary local S(2) transformations, we can thus
e.g., unbalanced polarization interferometers, to achieve deontrol 10 of the 15 real parameters associated with general
coherence. two-qubit mixed states. This assumesiagle decoherer in

In the limit we are considering, i.ely>|An[Ly,>1s  each arm. The full capability of scheme Ill with an arbitrary
[whereAn= (ny—ny), andL, andL, are the respective thick- number of decoherence stages is a difficult theoretical prob-
nesses of the decohergrdecohering the pump in addition to |lem that requires further investigation.
the down-conversion photons does not provide further con- Next we specifically describe how to generate maximally
trol beyond simply decohering the down-conversion photonsentangled mixed states, Werner states, and a particular class
Hence, in the following analysis we shall not consider decoof mixed states recently discussed by Collins and Jis#j.

hering the pump. The maximally entangled mixed states found by Muetal.
Consider a pure initial polarization state of down-[13] are of the form

conversion pairs(7): |¢Y)y=alHH)+b[HV)+c|VH)+d|VV)

(which is created by the method described in Sec.After 2
the decoherer®(L,) andD(L,), one in each of the two arms, pi(r) for 3=rs 1,
the state is PMEMS = 5 (169
pu(r) forosrs= 3
) =D(Ly) ® D(L)|¢Y). (12
1 r
r r - 0 0 =
Tracing over the frequenci¢g9], the reduced density matrix > 0 O > 3 2
for the polarization state ievith p, =) () 1
b=l 0 1-r 0 0 0-00
pi(r) = o 0o ool pu(r) = 3
6w 6w r r 0000
p=Trep¢=fde' Ste, - —€|py|o+e, S -€ ). 20 o - 1
2 2 2 2 > > T'90:=
(13) 2 3
(16b)

In the limit L,,L,>c/(8JAn|), whereAn is assumed to be Here, an irrelevant phase in the nonzero off-diagonal ele-
independent o, the resulting polarization mixed state(ia =~ ments has been set to zero. ffr), we only need to gen-
the {|{HH),|HV),|VH),|VV)} basis erate a pure state of the form
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p r 1 1

r = r =00 =

\/;|HH>+\1 rIHV) + \/;|vv>, (17) 3 5

1

followed by decoherers with thicknesseg=L,. For p,(r), 0 g 00
we start with 1 (22

0 0 8 0

1 1 1

\/i|HH>+ \/j|HV>+ \/j|vv>, (18) 1 1

3 3 3 =00 =

6 3

followed by decoherers with thicknesdesandL, such that
|f(Ly,L,)|=3r/2[6]. This requires either prior knowledge of without entanglemen(33].

Asi(€) or the tuning of(L,~L,) SO as to obtain the correct  Neyt we turn to the Collins-Gisin states, particular mix-
reduction factotf|. Similarly, to prepare the Werner states of ,res of two pure states:

was used to perform ancilla-assisted process tomography

the form
pca(N, 0) = Mg + (1 =N)[HV)(HV]
R et ¢ \ cog6 0 O \cos#sing
pw(r) =r|®NP* + ——1
4 0 (1-N) O 0
1+4r 0 0 r 0 0 0 0 '
4 2 Acosfsind O O Asinfd

(23

1-r
o — O 0
4 where |,)=cosfHH)+sin §VV). Collins and Gisin re-

- 1-r ' (19) ported a Bell-like inequalitywhich they call 13322 that is
0 0 e 0 inequivalent to the usual Clauser-Horne-Shimony-Holt—
(CHSH9 Bell inequality[34], in that there are states that do
r 0 0 1+r not violate CHSH butdo violate 13322[14]. For example,
2 4 the family of stategcg(\, 6) exhibit this behavior for certain

ranges of\ and 6 where no violations of CHSH occur. How

[with |®*)=(JHH)+|VW))/\2], we start with the pure state can we create these Collins-Gisin states? In light of the
above examples of MEMS and Werner states, we see that we

T+t 1t 1t Tar only need to generate a pure state of the form
\ 7 IHH + | HV) + = VH) + [ == VW), I\ COSOHH) + VI -A[HV) + A singVV),  (24)

(20 followed by a decoherence with;=L,. Such states have
been experimentally realized and used to study various tests
and follow with decoherers with thicknessesandL, such  for entanglement and nonlocalifg5].
that |f(L;,L,)|=2r/(1+r). Analogous procedures yield the  States described by Eq14) (plus those derived from
other forms of the Werner states, i.e., with other maximallythem by local unitary transformationare not the most gen-
entangled components. eral form that scheme Il can achieve. For example, if, via
Using these methods, several maximally entangled mixedown-conversion, we prepare the pure stale)=(|HV)
states and Werner states have been synthesized experimenVH))/v2, apply decoherers of common thicknd<s>1;)
tally, with high fidelities[32] between the experimentally in both arms, and then rotate each photon polarization by
produced states and the theoretical target states. For exampls°, followed by a second set of decoherers with the same

the MEMS thicknesses, we will generate a mixed state of the form
1 1 l 00 1
= 00 3 4 4
3 3
11
1 0> >0
0 -00O0 4 8
3 (22) 11 , (29)
0 - -0
0000 5 4
3203 190t
4 4
was used to investigate entanglement purification protocolap to some irrelevant phases. This state does not belong to
[6], and the separable Werner state the family (14), obtained with only one stage of decoherence,
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i.e., o is of the form Eq.(14) with all parameters real. Recall
that a general two-qubit pure state can be expressed
as

(a) Pump

) =Up® Ug(\NHV) +1-XVHY),  (27)

whereU, and Ug are local unitary transformations, ana
and\1-\ are Schmidt coefficients. Expressed in the basis in
which the pure stat@y) is Schmidt decomposed, the mixed
statepo+(1-p)|y)(y| appears as

(b) Pump

FIG. 6. (Color online Scheme IV is a hybrid technique.

(a) Mixing a pure state with a mixed state. The local unitary trans- a2 0 0 fad

formations immediately after the decoherers are used to precompen- B 0 0

sate the effect of local unitary transformations used afterward to pUL ® UE Up® Ug

rotate the pure part, and also to undo any effects of passing through 0 0c¢ O

the nonlinear crystal&f. Fig. 3). (b) A reduced setup of the method fad 0 0 o2

in (a), using only one set of nonlinear crystals, and retroreflecting

the pump back through the nonlinear crystals and the first photon 0 0 0 0

pair back into the spatial modes of the second pair. S@dlis less 0 A \m 0

general than(a), as the pure-state part cannot be chosen +(1-p) _— . (28

arbitrarily. 0 VW1-») 1-)a O
0 0 0 0

suggesting that using multiple decoherences may enable
control over more than the ten independent parameters fixed U dU.. this ai . | six ind dent
allowed by a single decoherence. Further theoretical investi'-:or IxedUa andUs, thiS gIVes, In general, six independen

gation is needed to determine the most general State%arameter$a,b,czf,p,)\} (nothi_ng _thatd Is not independent
obtainable. of {a,b,c}). Barring some coincidence that, for different

pairs of{a,b,c,d,f} and {Ux,Ug}, gives the same mixed
part, we have in total 12 independent parameters, after add-
ing six from the local unitarief38].

From scheme I it appears that one needs four sets of non- One important family of states that this scheme can syn-
linear crystals in order to synthesize fully general rank-4thesize(and which cannot be generated via scheme Il with
mixed states, whereas from scheme Il one can create rankghly one stage of decoherencare the arbitrary Bell-
mixed states of the restricted for(h4) (up to local unitary  diagonal mixed statds]:
transformations with a single set of crystals. As we now
discuss, by using a hybrid scheme one can, with only two
sets(or in some cases, even just a single) sEtcrystals,  pg = Aq| P NP+ N DTHDT| + g W W] + Ny W NP
generate a larger class of rank-4 mixed states. (29)

The idea is as follows. Suppose that the statean be
decomposed into

B. Scheme IV: A hybrid technique

Expressed in th¢/HH),

HV),|VH),|[VW)} basis,

p=po+(1-p)|yXy. (26)
If the mixed stater can be created by scheme[lH.g., states
in Eqg. (14)], we can then mix, with appropriate weights, AR 0 0 A= A;
(as created from a first set of crystalsith the pure state 1 0 NatNg N3—Ng 0
|y)(y| (from a second sgtand thus obtaip [36]; see Fig. Pe=5 0 As=As Ag+As O - (30

6(a) Although any two-qubit mixed state always allows a
decomposition into a mixed state plus a pure paid], it
remains an open question whether there always exists a de-
composition for which the mixed-state part is achievable by ; o\ = ; | =
scheme lll. Nevertheless, this hybrid scheme can obviousI@;ﬁuaﬂggb;hgitgm)\&'gez/iS(OtherWISep\l Nl =1/2), po
generate more states than scheme Il alone, since adding the
pure part adds more degrees of freedom.

We can make a simple reckoning of the number of param- pa= (1 =|hg=Ng)p1 + g = Ng|[¥)(P, (31
eters of the achievable density matrices independently con-
trollable. Suppose we restrict the mixed-state patpo be
produced by scheme Il with only one stage of decoherenceyhere(1—|\3—\4|)p; is

)\1_)\2 O 0 )\l+)\2
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)\1 + )\2 0 O )\1 - )\2
1 0 Nz+Ng—|Ag—\ 0 0
L 3+ Na=[A3= N (324
2 0 O )\3+)\4_|)\3_)\4| O
)\1 - )\2 O O )\1 + )\2
[
and the pure-state part is a Bell state second way to realize arbitrary two-photon polarization
mixed states, but—significantly—requires only one set of
|\If>:i—[|HV>+sgr{>\3—>\4)|VH>]. (32p)  down-conversion crystals, at the cost of requiring several
V2 rather large, phase-stabilized interferometers. Scheme |lI

(Fig. 5 provides control over at least ten of the independent
' real parameters of two-qubit mixed states, and gives access

) . to all physically allowed values of entanglement and entropy.
family of states(14), and hence can be synthesized by thermore, this scheme has been experimentally imple-

scheme I1l with one stage of decoherence; on the other hanfh,o e to synthesize several interesting families of mixed

V) is a Bell state, which can be easily generated. Furtherg,ios “sich” as Werner states, maximally entangled mixed

more,'the weight 0fp; is not less Fhan that Olﬂrij SO states, and Collins-Gisin statg$,33,35. The fourth scheme
there is no need to attenuate the intensity of the mixed par(tFig_ 6), extends the range of scheme (firoviding control
[36]. Therefore, scheme IV can synthesérey Bell-diagonal ey 12 mixed-state parametgrén particular, this scheme
statepg. The Bell-diagonal states, if entangled, can be readily.an pe used to produce arbitrary Bell-diagonal states, which
distilled via the Bennett-Brassard-Popescu-Schumachelye of interest, e.g., in entanglement distillati®39] and
Smolin-Wootters schemgs,39] into states with more en- mayimal violations of Bell inequalitie§40]. Although the
tanglement. They also have the property that, for a given s}y capapilities of schemes Iil and IV are not yet entirely
of eigenvalues, they achieve the maximal violation of theclear, our analysis shows that these two schemes provide

CHSH-Bell inequality{ 40]. practical methods for creating quite general mixed states,

For certain states this hybrid scheme can also be impleqany of which were previously not accessible experimen-
mented via a single set of crystals, by reflecting the sourceyy” The four mixed-state schemes are summarized and
and the down-conversion pair back through the crystals with o nared in Table 1, including the respective resources, ad-
a mirror; see Fig. (I_o). However, in this case, the pure-state vantages, and disadvantages for implementation.
part ca}nnot be arbitrarily chosen, as the local unitary trans-  nce one has well-controlled arbitrary two-qubit sources,
formations needed to create the mixed parand the pure hey will be usable for many quantum-information process-
part [¥) are no longer independent. The mixed parts ing applications, such as testing methods of entanglement
obtained via locally rotatingy;|HH)+B,|VV) by Us®Ug,  distillation [3,6,39,41, investigating quantum process to-
followed by a decoherence. As the photons reflect back fronmography[33,42, characterizing quantum gatg#3], testing
the mirrors, they experience again the same local unitaryiolations of Bell-type inequalitie$8,15,34,40 by mixed
transformationU,® Ug. The local unitary transformation at States(including a relevant two-qubit Bell inequalityl4]
the output port is then chosen to eliminate this additionathat is inequivalent to the CHSH inequalityand exploring
effect (by choosing the inverse of this transformation the vast, previously inaccessible territory of Hilbert space.
thereby fixingo to be of the form(14); the pure-state part is
consequently limited to the formiy)=U,"® Uzl (ay|HH)
+3,|VV)). Any further local unitary transformation will ro-
tate o and |¢) together and cannot change this relative rela- The authors would like to acknowledge useful discussions
tion. with Bill Munro and Sam Braunstein. This work was sup-

ported by NSF Award No. EIA01-21568, ARDA, the DCI,
and the MURI Center for Photonic Quantum Information
V. CONCLUDING REMARKS Systemg ARO/ARDA Program No. DAAD19-03-1-0199

We have described two approaches for synthesizing arbi-
tary two-qubit pure states. Based on these, we have devel- AppeNDIX: CREATING ARBITRARY PURE STATES
oped four schemes for synthesizing two-qubit photon polar-
ization mixedstates. Scheme (Fig. 3 requires several sets  In this appendix we explain how to create an arbitrary
of down-conversion crystals to create arbitrary two-qubittwo-qubit pure state, characterized b, c,d} of Eq. (7).
mixed states. It would be desirable to experimentally syntheThis amounts to establishing adequate local unitary transfor-
size rank-2 mixed states using this scheme, in order to give mations(U, and Ug) and post-SPDC pure states Ef) of
proof-of-principle demonstration. Scheme (Fig. 4 em-  the form that SPDC naturally yields. For convenience, we
ploys temporal mixing to achieve decoherence. It offers a&xchange the coefficients cégor o andée'%sin ¢ for g.

Here sgiix) is the sign function, which gives a factor of £1
depending on the sign of It is clear thatp; belongs to the
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To find the appropriate settings and local unitary transfor- 7= (aa’ —d' B)(a)?>- 82, (A5a)
mations, we need to solve
Ua ® Ug(alHH) + BIVV)) = a|HH) + b|HV) + ¢|VH) + d[VV) z,=(da-ag)l(d*~|BP), (A5Db)
Al x *
(A1) z=(-Ca-b)(a- 18D,  (ASO)
for {Ux,Ug, @, B}, given{a,b,c,d} that are properly normal-
ized. This equation can be solved either by Schmidt decom- z=(-ba" - PBl(|a>- 8. (A5d)

position or by direct algebraic manipulation. However, the
solution is not unique. When|ad-bc|=1/2 there are three possible casés:b
Whenad-bc=0, the state to synthesize is a product state=C=0 andja|=|d[=1/v2; (i) a=d=0 and|b|=|c|=1/12; (iii)
which can be created from an initial stakéH) followed by &, b, ¢, d#0, [a/=[d], |b|=]c|.
independent local rotatior(see, e.g., Ref.19]). For Case(i) is already the form we seek. In cafB, an ex-
changeH <~V (e.g., by a half-wave platewill do. In case
ad-bc#0, |ad-bd # 1/2, (iii), one possible solution is

(A2)

with z;, z,, z3, z, defined via

[2] P. W. Shor, Phys. Rev. 52, R2493(1995.
[3] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A.

i.e., the case of nonmaximally entangled pure states, one é?=ald =-b/c, (A6a)
possible solution is
a=V1-\1-4ad-bd?/\2, (A3a) (a,B) = (€7, DIN2, (A6b)
B=(ad-bo)/a (A3b) 1( 1 ¢€
' Up=—F+ . , (A6c)
V2\-e" 1
u u
uA=< L Uf), uBz( 2, Uf), (A30) . )
B— * * |-
where -d-¢" d-c
u = zlzl+ 22 vi= 22Uz, (Ada) Infact, this last case includes the previous two cases, if one
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would implement the one that is most convenient.
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