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Two methods for creating arbitrary two-photon polarization pure states are introduced. Based on these, four
schemes for creating two-photon polarization mixed states are proposed and analyzed. The first two schemes
can synthesize completely arbitrary two-qubit mixed states, i.e., control all 15 free parameters: scheme I
requires several sets of crystals, while scheme II requires only a single set, but relies on decohering the pump
beam. Additionally, we describe two further schemes which are much easier to implement. Although the total
capability of these is still being studied, we show that they can synthesize all two-qubit Werner states, maxi-
mally entangled mixed states, Collins-Gisin states, and arbitrary Bell-diagonal states.
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I. INTRODUCTION

Quantum-information processingf1g promises great
power relative to its classical counterpart. Many quantum-
information processes require specific pure entangled states,
such as Bell states, to succeed. After interacting with the
environment, however, pure states inevitably decohere; deco-
herence generally causes pure entangled states to become
mixed and less entangled. Quantum error correctionf2g and
entanglement distillation or concentrationf3g have been de-
veloped to help cope with a noisysand hence decoheringd
environment. On the other hand, there are implementations
using mixed states to investigate quantum computing, e.g.,
liquid-state NMR f4g. The states in this last example are
highly mixed and have no entanglement. Still, between
highly entangled pure states and highly separable mixed
states there exists a vast experimentally unexplored region in
Hilbert spacesmore precisely, the space of density matricesd,
where states can be simultaneously mixed and entangled.
The two-qubit system possesses the simplest and smallest
Hilbert space that permits the existence of entanglement.
Separate from the specific protocols which make use of the
states, it is of fundamental interest to understand the prepa-
ration of one of the most basic quantum systems. Although
there have been many attemptsf5–8g to synthesize two-qubit
mixed polarization states, none has yet been able to create
completely arbitrary two-qubit mixed statesf9g.

Here we describe several two-photon polarization state
implementations that should in principle enable preparation
of arbitrary two-qubit mixed states, including states possess-
ing all physical degrees of entanglement and entropy. The
schemes we shall present facilitate state creation and allow
access to two-qubit Hilbert space and can be useful for cur-
rent and future quantum-information protocols. We remark
that if there exist efficient two-qubit entangling gates such as
controlled-NOT sCNOTd gatesf1g, arbitrary state synthesis can

be systematically implemented by first generating a purifica-
tion f10g of the mixed state by adding ancillas, and then
tracing over the ancillas. However, efficient photon-
polarizationCNOT gates do not existf11g, so we rely on other
degrees of freedom to introduce decoherence, leading to
mixed states.

The paper is organized as follows. After a brief back-
ground discussion in Sec. I A, we describe, in Sec. II, two
schemes to achievearbitrary pure two-photon polarization
states by employing down-conversion in a two-crystal ar-
rangement. The first one is based on the existence of Schmidt
decompositions. The second one utilizes the coherent super-
positions of two down-conversion processes embedded in an
interferometric setup. In Sec. III we describe how to extend
these two schemes to realize arbitrary two-qubitmixedstates
sschemes I and IId. In Sec. IV we propose two reduced
schemessIII and IVd that provide practical ways to realize
several important families of states that are currently of in-
terest, including Werner statesf12g, maximally entangled
mixed statesf13g, Collins-Gisin statesf14g, and arbitrary
Bell-diagonal states. Scheme III requires only two down-
conversion crystals, but cannot synthesize all two-qubit
states. Scheme IV partially extends the set of attainable
states, but requires four down-conversion crystals. Finally, in
Sec. V we summarize the four schemes and mention possible
applications. Readers who do not require full details but
want an overview of the four schemes and synthesizable
states can refer to Table I below. The details of how to create
particular families of states can be found around the equa-
tions fs16d, s19d, s23d, ands29dg describing these states.

A. Background information

The entangled photon pairs we consider come from
frequency-degenerate type-I spontaneous parametric down-
conversionsSPDCd f15g. The general state from SPDC is a
two-mode squeezed state consisting of vacuum andk-pair
statesf16g:
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TABLE I. Comparison of the four mixed-state schemes. CP stands for controllable parameterssout of 15 in totald. The nonlinear crystals
sNLCd are used in the down-conversion process. In “other resources,” we include wave platesswhere a general unitary requires, e.g., one
half-wave plate and two quarter-wave plates, hence counted as three elementsd, mirrors, attenuators, prisms, and decoherers, and we assume
that the pump is already polarized. The crystal and resource numbers given are sufficient to produce all states given in the final column. This
resource accounting is intended to indicate the relative complexity of the various schemes; however, the numbers listed may be reduced for
certain states, or possibly by using clever combinations of elementsse.g., reflections which modify polarizationd. The resource number listed
for scheme II is several items lower than a direct counting from Fig. 4, which was shown for clarity with extra mirrors. The resource number
listed for scheme III is counted without pump decoherence and with only a single stage of decoherence, and is thus less than a direct counting
from Fig. 5, but is sufficient to synthesize the states listed.

Scheme
Synthesizable

states CP NLC Other optics Advantages Disadvantages

I, Fig. 3 Arbitrary
two qubits

15 8 38 Arbitrary states s1d Birefringence of
crystals causes
additional rotations
and possible decoherence

s2d Requires precise
spatial-mode alignment

s3d Narrow opening angles
of down-conversion
require long path
difference for mixing

s4d Potential loss
of down-converted
photons

s5d Wave plate imperfection
and wedges, esp. at
early stages, cause beam
deviation

II, Fig. 4 Arbitrary
two qubits

15 2 48 s1d Arbitrary states s1d Requires interferometer
stablization

s2d Not lossy in
down-conversion

s2d Need to compensate
reflection-induced
transformations
from mirrors

s3d Only two crystals s3d Variable beam splitters
difficult to tune

s4d Lossy in pump

III, Fig. 5 MEMS Eq. s16d,
Werner Eq.s19d,

Collins-Gisin Eq.s23d,
and states Eq.s14d

ù10 2 10 s1d Partially testedf3,33,35g s1d Probably not arbitrary
states

s2d Minimal spatial-mode
matching

s2d No complete theory
for more than one
decoherer per arm

s3d Only two crystals

IV, Fig. 6 States from III,
Bell-diagonal states

Eq. s30d, and
states Eq.s26d

ù12 4 26 More states than III s1d Probably not
arbitrary states

s2d Birefringence of
crystals causes
additional rotations
and possible decoherence

s3d Requires precise spatial-mode
alignment

WEI et al. PHYSICAL REVIEW A 71, 032329s2005d

032329-2



uCl = uvacuuml + «ucs1dl + «2ucs2dl + ¯ , s1d

whereucskdl is a k-pair state, and« is the relative amplitude
stypically of order 10−6d to find a single pair. The postse-
lected one-pair stateucs1dl is composed of two daughter pho-
tons, usually calledsignal and idler. For the present article,
we limit our attention to the case where the signal and idler
photons have approximately degenerate central frequencies,
half that of the pump.sOur schemes apply to the nondegen-
erate case as well.d When the down-conversion momenta are
well collimated or otherwise sharply selectedsexperimen-
tally by a small irisd, one can neglect the momentum depen-
dence of the pair state. The postselected two-photon state can
then be described by

where v is the pump frequency.ux j ,xkl and uv /2+e ,v /2
−el, respectively, represent the polarizations and frequencies
of the two photons, withux1l;uHl the horizontal polariza-
tion, andux2l;uVl the vertical polarization.cjk is the ampli-
tude of the polarization stateux j ,xkl; for single-crystal type-I
phase matching the polarization state is unentangled, i.e.,
cjk=ajbk. Asised is the amplitude for a particular division of
energy, so thate indicates the deviation from half pump fre-
quency.uAsisedu2 is peaked ate=0 with widthde, and we shall
approximate it by a Gaussian distribution:

uAsisedu2 =
1

Î2pde
2
expS−

e2

2de
2D . s3d

More generally, the pump is not monochromatic, and
therefore the pair state should be described by

ucl =E dv Apsvducs1dsvdl, s4d

where Apsvd describes the frequency spread of the pump,
assumed to be peaked at some frequencyv0 with half-width
dv. For most of the following discussion, we consider thick-
nesses of wave plates and crystals that are much less than the
coherence lengthlps;c/dvd of the pump, and hence we can
safely use Eq.s2d. The coherence length of down-conversion
photons slsi;c/ded is usually much smaller thanlp, i.e.,
c/de!c/dv, because there are many ways to distribute the
energy of the pump photon between the daughter photons in
each pair, resulting in a largede f17g.

II. SCHEMES FOR ARBITRARY TWO-PHOTON
POLARIZATION PURE STATES

A. Via Schmidt decomposition

Using the method of Schmidt decompositionf1g, an arbi-
trary two-qubit pure state ucl=auHHl+buHVl+cuVHl
+duVVl can always be written using only two terms:ucl
=auxjl+bux'j'l, whereuxlsujld is orthogonal toux'lsuj'ld,
anda andb satisfy uau2+ ubu2=1.

Now we describe how to prepare such a state. The cre-
ation of the entangled state

cosuuHAHBl + eifsinuuVAVBl s5d

from two-crystal down-conversion was proposed in Ref.f15g
ssee Fig. 1d. Consider two identically cut thin nonlinear crys-
tals. Suppose the first crystal’s optic axis lies in the vertical
plane defined by the directions of pump beam and the verti-
cal polarization. Assuming type-I phase matching, a
V-polarized pump will produce twoH-polarized daughter
photons. We denote this process byuVl→ uHAl ^ uHBl. If the
pump isH polarized, no down-conversion process will take
place. Suppose the second crystal is placed at an orientation
rotated from the first crystal by 90° about the pump direction.
An H-polarized pump will now produce a pair ofV-polarized
photonsuHl→ uVAl ^ uVBl, whereas no down-conversion will
occur if the pump isV polarizedf18g. With the two crystals
placed in contact with each other, a pump in the state
cosuuVl+eifsinuuHl will produce a pair of photons in the
state

cosuuHAHBl + eifsinuuVAVBl,

where u and f are tuned using wave plates acting on the
pump polarizationf15g. sf can also be tuned with, e.g., a
variable wave plate acting on just one of the down-
conversion photons.d

Choosing the local unitary transformationsÛA and ÛB
such that

ÛAhuHl,uVlj → huxl,ux'lj, s6ad

ÛBhuHl,uVlj → hujl,uj'lj, s6bd

we can achieve the arbitrary two-qubit pure stateucl by start-
ing with an entangled state withscosu ,eifsinud=sa ,bd sup
to an irrelevant overall phased, followed by the correspond-

ing local rotationsÛA and ÛB

FIG. 1. sColor onlined Arbitrary pure states via Schmidt decom-
position. PBS, polarizing beam splitter; HWP, half-wave plate;
QWP, quarter-wave plate; NLC, nonlinear crystal.
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ÛA ^ ÛBscosuuHAHBl + eifsinuuVAVBld

= auHAHBl + buHAVBl + cuVAHBl + duVAVBl. s7d

The two rotations can be obtained in the process of Schmidt
decomposingucl f1g; see also the Appendix for an explicit

construction of the appropriateÛ’s, a, and b given
ha,b,c,dj.

In practice, any SUs2d rotation such asÛA and ÛB on a
polarization state can be implemented by combinations of
half- and quarter-wave platesf19g—preferably zero-order
wave platesf20g, for which the retardance is barely sensitive
to deviation from the central frequency. That is to say, the

action of wave plates,Û, can be assumed to bee independent
sat least in the frequency range set by the interference filter
before detectiond, i.e.,

ÛHux jl ^ E de AsedUv

2
± eLJ

< o
k

Ukjuxkl ^ E de AsedUv

2
± eL , s8d

whereUkj are the elements of a unitary matrix that is inde-
pendent ofe. We shall assume throughout this paper that
unitary transformations by wave plates are ideal and inde-
pendent of deviation from the central frequency.

B. Via interferometry

A second method for creating arbitrary pure states is
shown in Fig. 2 and is a modification from the setup of Ref.
f21g. As discussed in Sec. II, via SPDCsassuming type-I
phase matchingd, a pump in a polarization stateauHl+buVl
will generate an entangled photon pair in the statesup to
some irrelevant phasesd auVVl+buHHl. With a half-wave
plate, this entangled state can be further transformed into
auVHl+buHVl. Now, an arbitrary pure two-photon polariza-
tion stateauHHl+buHVl+cuVHl+duVVl can be regarded as a
superposition of twosunnormalizedd parts: auHHl+duVVl
and buHVl+cuVHl. The first part can be created from the
sunnormalizedd pump stateucUl;auVl+duHl. To create the
second part, we need thesunnormalizedd pump stateucLl
;buVl+cuHl, from which SPDC yields the two-photon state

buHHl+cuVVl. Again, a half-wave plate in one armsor
equivalently, passing through a quarter-wave plate twiced can
transform this state intobuHVl+cuVHl. By coherently super-
posing the above two processes, as shown in Fig. 2, the fully
arbitrary pure two-qubit stateauHHl+buHVl+cuVHl+duVVl
can be created. The amplitude of each process, which is de-
termined by the relative values ofkcU ucUl andkcL ucLl, can
be adjusted by the transmission through the beam splitter.
Moreover, coherent superposition can be achieved by balanc-
ing the two path lengths. Thus, by combining a well-
balanced interferometer and the process of spontaneous
down-conversion we can realize arbitrary two-photon polar-
ization pure states. In the next section we shall describe two
schemes capable of producing arbitrary two-photon polariza-
tion mixedstates.

III. SCHEMES FOR ARBITRARY TWO-PHOTON
POLARIZATION MIXED STATES

Any two-qubit mixed state can be canonically decom-
posed as followsf1g:

r = o
i=1

4

liucilkciu, s9d

wherehucilj are orthonormal eigenstates ofr. It is therefore
natural to realizer simply by mixing its eigenstates with
probabilities proportional to their eigenvaluesli. As we can
synthesize arbitrary pure states from one set of crystals, in-
dividual synthesis of eachucil is straightforward.

A. Scheme I: Arbitrary two-qubit mixed states I

The first mixed-state scheme is shown in Fig. 3. We have
four pairs of nonlinear crystals, each generating a pure state
that, when propagating to the output, arrives asucil f22g.
There is an attenuator in front of each set of crystalssexcept
the first setd such that the pump intensityI i going into theith
set of crystals is proportional toli sarranged in decreasing
order:l1ùl2ùl3ùl4d. It is less favorable to attenuate the
four down-conversion pure states to tune the probabilities
according to their eigenvalues, because direct attenuation of
the down-conversion photons would, in general, result in un-

FIG. 2. sColor onlined Arbitrary pure states via
inteferometry.

FIG. 3. sColor onlined Scheme I employs four sets of nonlinear
crystals. The two-photon state created at theith set of crystals is
chosen such that it is the correct stateucil after propagation through
the subsequent elements. The necessary local unitary transforma-
tions at each down-conversion location can be readily calculated
f22g. PBS, polarizing beam splitter; HWP, half-wave plate; QWP,
quarter-wave plate; NLC, nonlinear crystal.
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paired photons, i.e., one of the photons would be absorbed,
but not the otherf9g.

For a pulsed pump, the mixing is incoherent, as the arrival
time of the down-conversion pairsrelative to the pump
pulsed can, in principle, reveal information on where the pair
was generated. For a cwscontinuous waved pump, one can
add a path delaysmuch greater than the pump coherence
length f17gd, to each pair such that pair-generation ampli-
tudes at all sets of crystals are no longer coherent with one
another. We can thus synthesizer by incoherently mixing its
eigenstates with appropriate weights. As the down-
conversion process is much more likely to produce one
rather than multiple pairsfe.g., see Eq.s1dg, multiple pairs
can be ignored.

B. Scheme II: Arbitrary two-qubit mixed states II

The interferometric scheme of Sec. II B can also be ex-
tended to create arbitrary mixed states. The full scheme is
shown in Fig. 4. The coherent superposition method of Fig. 2
is used to create each of the four pure statesucil in the
decompositions9d and mix them incoherently in proportion
to their eigenvaluesli, as in scheme I. Arbitrary weights of
mixing can be achieved by controlling the transmissions of
the beam splitters. In order to mix the four parts incoherently,
we first use timing informationf23g such that the state of the
pump is

ucpl = o
i=1

4

sucUil + ucLild ^ uilT. s10d

Here,ucUil anducLil sboth unnormalizedd are the two parts of
the pump state that will, ultimately, yield the corresponding
pure stateucil f24g. The factorsuilT si =1, …, 4d encode tim-
ing information; there is no coherence between paths labeled
by distinct values ofi, i.e., ki u jlT=di j . For this absence of

coherence to hold, the path-length difference between any
two uppersor lowerd unmatched paths must be greater than
the pump coherence lengthf25g. As long as coherence is
maintained for the corresponding pairs of statesucUil and
ucLil sfor i =1, …, 4d, but the time differences for thei ’s are
distinguishable, the output state is the desired mixed state,
once timing information is traced over, i.e., discardedf26g.
Note, however, that there is no difference inrelative timing
between signal and idler photons. The timing information is
coupled solely to the pump photons; because this timing in-
formation is traced oversignoredd, down-conversion pro-
duces an incoherent mixture of four two-photon states. Also
note that with a cw pump, the only possibility to detect any
coherence in the timing information would be to include
similar unbalanced interferometers in the down-conversion
output.

The difference between the present schemesII d and the
previous onesId is that for scheme II each of the four pure
states is created probabilistically in the same down-
conversion crystals, whereas for scheme I each of the four
pure states is created in down-conversion crystals at distinct
locations. Both schemes yield arbitrary two-qubit mixed
states by incoherent temporal mixing.

IV. RESOURCE-OPTIMIZED SCHEMES FOR MIXED
STATES

In this section we describe two reduced schemessIII and
IV d that provide practical ways to realize several important
families of states that are currently of interest. Scheme III,
whose feasibility has been demonstrated experimentally,
emerges as an effort to reduce the number of down-
conversion crystals to two by sacrificing the generality of the
synthesizable states. Scheme IV further extends the set of
synthesizable states by employing two sets of crystals and
the mixing technique introduced in scheme I.

A. Scheme III: Filling the tangle-entropy plane

Recall that scheme I requires the use of, at most, four sets
of SPDC crystals. Since fewer crystal sets would be more
economical and likely easier to implement, we thus propose
a modified scheme, which uses only one set of SPDC crys-
tals but relies on “controlled” decoherence. Although we do
not yet know whether this scheme can generatearbitrary
two-qubit states, it can synthesize several important families
of mixed states, including states with all physically allowed
values of entanglementscharacterized, e.g., by “tangle”d and
mixednessscharacterized, e.g., by the linear entropyf27gd.

We use thick birefringent crystals with thicknessL as “de-
coherers.” Their effect on a polarization state of definite fre-
quencyv is ssee, e.g.,f19,28gd

DsLdux jl ^ uvl = einjLv/cux jl ^ uvl, s11d

where the optic axis is assumed to be along, say,x2, i.e., the
V direction, andnj is the refractive index for thej th polar-
ization state. The decohering elements entangle the polariza-
tion and frequency degrees of freedom. In the output, only
polarizations are detected, so we have to trace over the fre-

FIG. 4. sColor onlined Arbitrary two-qubit mixed-state synthesis
scheme II. The transmission probabilities of the various beam split-
ters depend on the desired final state. The variable beam splitters
immediately preceding the unitary rotations could also be realized
by polarizing beam splitters with suitable polarization rotations be-
fore and after.
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quency degree of freedom in the joint pure statesof polar-
izations and frequenciesd. In general, we are then left with a
mixed two-photon polarization state. In the present scheme,
we can have several decoherers in each arm, along with ar-
bitrary unitary rotations between the decohererssonly two
are shown in Fig. 5d.

In addition to directly decohering the down-conversion
photons, one can also decohere the pump photons before
down-conversion, as indicated in Fig. 5. However, as men-
tioned previously, the pump typically has a much longer co-
herence length than the down-conversion photons do, and
hence may require much greater relative birefringent delays,
e.g., unbalanced polarization interferometers, to achieve de-
coherence.

In the limit we are considering, i.e.,lp@ uDnuL1/2@ lsi
fwhereDn;snV−nHd, andL1 andL2 are the respective thick-
nesses of the decoherersg, decohering the pump in addition to
the down-conversion photons does not provide further con-
trol beyond simply decohering the down-conversion photons.
Hence, in the following analysis we shall not consider deco-
hering the pump.

Consider a pure initial polarization state of down-
conversion pairss7d: ucs1dl=auHHl+buHVl+cuVHl+duVVl
swhich is created by the method described in Sec. IId. After
the decoherersDsL1d andDsL2d, one in each of the two arms,
the state is

ucl = DsL1d ^ DsL2ducs1dl. s12d

Tracing over the frequenciesf29g, the reduced density matrix
for the polarization state isswith rc;uclkcud

r = Trerc =E de8Kv

2
+ e8,

v

2
− e8UrcUv

2
+ e8,

v

2
− e8L .

s13d

In the limit L1,L2@c/ sdeuDnud, whereDn is assumed to be
independent ofe, the resulting polarization mixed state issin
the huHHl , uHVl , uVHl , uVVlj basisd

1
uau2 0 0 fad*

0 ubu2 0 0

0 0 ucu2 0

f*a*d 0 0 udu2
2 , s14d

wheref is a complex function ofL1 andL2 whose exact form
depends onAsised. ForAsised of Gaussian form, as in Eq.s3d,
f is given by

f = expS−
1

2
FDnsL1 − L2d

c/de
G2De−iDnsL1+L2dv/2c. s15d

Note thatuf uø1, with uf u=1 for L1=L2.
The family of two-qubit mixed states described by Eq.

s14d turns out to be of the form hypothesized by Munroet al.
f13g in their search for the maximally entangled mixed states
sMEMSd, which define the boundary of physically allowed
states on the tangle-entropy planef13,30g. fThe family s14d
also contains other maximally entangled mixed states, corre-
sponding to different charaterizations of entanglement and
entropyf31g.g Although states in this family actually fill the
physically allowed region of the tangle-entropy plane, this
does not mean that the family contains all two-qubit mixed
states. In fact, the familys14d has only four independent real
parameters excluding the phase of the off-diagonal element.
By including the six additional real parameters coming from
the two arbitrary local SUs2d transformations, we can thus
control 10 of the 15 real parameters associated with general
two-qubit mixed states. This assumes asingle decoherer in
each arm. The full capability of scheme III with an arbitrary
number of decoherence stages is a difficult theoretical prob-
lem that requires further investigation.

Next we specifically describe how to generate maximally
entangled mixed states, Werner states, and a particular class
of mixed states recently discussed by Collins and Gisinf14g.
The maximally entangled mixed states found by Munroet al.
f13g are of the form

rMEMS =5rIsrd for
2

3
ø r ø 1,

rIIsrd for 0 ø r ø
2

3
,6 s16ad

rIsrd =1
r

2
0 0

r

2

0 1 − r 0 0

0 0 0 0

r

2
0 0

r

2

2, rIIsrd =1
1

3
0 0

r

2

0
1

3
0 0

0 0 0 0

r

2
0 0

1

3

2 .

s16bd

Here, an irrelevant phase in the nonzero off-diagonal ele-
ments has been set to zero. ForrIsrd, we only need to gen-
erate a pure state of the form

FIG. 5. sColor onlined Scheme III employs decoherence. Down-
conversion photon pairs can be decohered, as well as pump pho-
tons. The decoherers are thick birefringent crystals, which separate
different polarizations and decrease the coherence between them.
Also shown is a possible decoherence on the pump beam: the ver-
tical polarization component experiences an adjustable extra delay.
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Î r

2
uHHl + Î1 − r uHVl +Î r

2
uVVl, s17d

followed by decoherers with thicknessesL1=L2. For rIIsrd,
we start with

Î1

3
uHHl +Î1

3
uHVl +Î1

3
uVVl, s18d

followed by decoherers with thicknessesL1 andL2 such that
ufsL1,L2du=3r /2 f6g. This requires either prior knowledge of
Asised or the tuning ofsL1−L2d so as to obtain the correct
reduction factoruf u. Similarly, to prepare the Werner states of
the form

rWsrd ; r uF+lkF+u +
1 − r

4
1

=1
1 + r

4
0 0

r

2

0
1 − r

4
0 0

0 0
1 − r

4
0

r

2
0 0

1 + r

4

2 , s19d

fwith uF+l;suHHl+ uVVld /Î2g, we start with the pure state

Î1 + r

4
uHHl +Î1 − r

4
uHVl +Î1 − r

4
uVHl +Î1 + r

4
uVVl,

s20d

and follow with decoherers with thicknessesL1 andL2 such
that ufsL1,L2du=2r / s1+rd. Analogous procedures yield the
other forms of the Werner states, i.e., with other maximally
entangled components.

Using these methods, several maximally entangled mixed
states and Werner states have been synthesized experimen-
tally, with high fidelities f32g between the experimentally
produced states and the theoretical target states. For example,
the MEMS

1
1

3
0 0

1

3

0
1

3
0 0

0 0 0 0

1

3
0 0

1

3

2 s21d

was used to investigate entanglement purification protocols
f6g, and the separable Werner state

1
1

3
0 0

1

6

0
1

6
0 0

0 0
1

6
0

1

6
0 0

1

3

2 s22d

was used to perform ancilla-assisted process tomography
without entanglementf33g.

Next, we turn to the Collins-Gisin states, particular mix-
tures of two pure states:

rCGsl,ud ; luculkcuu + s1 − lduHVlkHVu

=1
l cos2u 0 0 l cosu sinu

0 s1 − ld 0 0

0 0 0 0

l cosu sinu 0 0 l sin2u
2 ,

s23d

where ucul;cosuuHHl+sinuuVVl. Collins and Gisin re-
ported a Bell-like inequalityswhich they call I3322d that is
inequivalent to the usual Clauser-Horne-Shimony-Holt–
sCHSH-d Bell inequalityf34g, in that there are states that do
not violate CHSH butdo violate I3322f14g. For example,
the family of statesrCGsl ,ud exhibit this behavior for certain
ranges ofl andu where no violations of CHSH occur. How
can we create these Collins-Gisin states? In light of the
above examples of MEMS and Werner states, we see that we
only need to generate a pure state of the form

Îl cosuuHHl + Î1 − luHVl + Îl sinuuVVl, s24d

followed by a decoherence withL1=L2. Such states have
been experimentally realized and used to study various tests
for entanglement and nonlocalityf35g.

States described by Eq.s14d splus those derived from
them by local unitary transformationsd are not the most gen-
eral form that scheme II can achieve. For example, if, via
down-conversion, we prepare the pure stateuC+l;suHVl
+ uVHld /Î2, apply decoherers of common thicknessLs@lsid
in both arms, and then rotate each photon polarization by
45°, followed by a second set of decoherers with the same
thicknesses, we will generate a mixed state of the form

1
1

4
0 0

1

4

0
1

4

1

8
0

0
1

8

1

4
0

1

4
0 0

1

4

2 , s25d

up to some irrelevant phases. This state does not belong to
the familys14d, obtained with only one stage of decoherence,
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suggesting that using multiple decoherences may enable
control over more than the ten independent parameters
allowed by a single decoherence. Further theoretical investi-
gation is needed to determine the most general states
obtainable.

B. Scheme IV: A hybrid technique

From scheme I it appears that one needs four sets of non-
linear crystals in order to synthesize fully general rank-4
mixed states, whereas from scheme III one can create rank-4
mixed states of the restricted forms14d sup to local unitary
transformationsd with a single set of crystals. As we now
discuss, by using a hybrid scheme one can, with only two
sets sor in some cases, even just a single setd of crystals,
generate a larger class of rank-4 mixed states.

The idea is as follows. Suppose that the stater can be
decomposed into

r − ps + s1 − pduclkcu. s26d

If the mixed states can be created by scheme IIIfe.g., states
in Eq. s14dg, we can then mix, with appropriate weights,s
sas created from a first set of crystalsd with the pure state
uclkcu sfrom a second setd, and thus obtainr f36g; see Fig.
6sad Although any two-qubit mixed state always allows a
decomposition into a mixed state plus a pure partf37g, it
remains an open question whether there always exists a de-
composition for which the mixed-state part is achievable by
scheme III. Nevertheless, this hybrid scheme can obviously
generate more states than scheme III alone, since adding the
pure part adds more degrees of freedom.

We can make a simple reckoning of the number of param-
eters of the achievable density matrices independently con-
trollable. Suppose we restrict the mixed-state parts to be
produced by scheme III with only one stage of decoherence,

i.e., s is of the form Eq.s14d with all parameters real. Recall
that a general two-qubit pure state can be expressed
as

ucl = UA ^ UBsÎluHVl + Î1 − luVHld, s27d

whereUA andUB are local unitary transformations, andÎl
andÎ1−l are Schmidt coefficients. Expressed in the basis in
which the pure stateucl is Schmidt decomposed, the mixed
stateps+s1−pduclkcu appears as

pUA
†

^ UB
†1

a2 0 0 fad

0 b2 0 0

0 0 c2 0

fad 0 0 d2
2UA ^ UB

+ s1 − pd1
0 0 0 0

0 l Îls1 − ld 0

0 Îls1 − ld 1 − l 0

0 0 0 0
2 . s28d

For fixedUA andUB, this gives, in general, six independent
parametersha,b,c, f ,p,lj snothing thatd is not independent
of ha,b,cjd. Barring some coincidence that, for different
pairs of ha,b,c,d, fj and hUA,UBj, gives the same mixed
part, we have in total 12 independent parameters, after add-
ing six from the local unitariesf38g.

One important family of states that this scheme can syn-
thesizesand which cannot be generated via scheme III with
only one stage of decoherenced are the arbitrary Bell-
diagonal mixed statesf3g:

rB ; l1uF+lkF+u + l2uF−lkF−u + l3uC+lkC+u + l4uC−lkC−u.
s29d

Expressed in thehuHHl , uHVl , uVHl , uVVlj basis,

rB =
1

21
l1 + l2 0 0 l1 − l2

0 l3 + l4 l3 − l4 0

0 l3 − l4 l3 + l4 0

l1 − l2 0 0 l1 + l2

2 . s30d

Assuming thatul3−l4uø1/2 sotherwiseul1−l2uø1/2d, rB
can also be decomposed as

rB = s1 − ul3 − l4udr1 + ul3 − l4uuClkCu, s31d

wheres1−ul3−l4udr1 is

FIG. 6. sColor onlined Scheme IV is a hybrid technique.
sad Mixing a pure state with a mixed state. The local unitary trans-
formations immediately after the decoherers are used to precompen-
sate the effect of local unitary transformations used afterward to
rotate the pure part, and also to undo any effects of passing through
the nonlinear crystalsscf. Fig. 3d. sbd A reduced setup of the method
in sad, using only one set of nonlinear crystals, and retroreflecting
the pump back through the nonlinear crystals and the first photon
pair back into the spatial modes of the second pair. Setupsbd is less
general than sad, as the pure-state part cannot be chosen
arbitrarily.
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1

21
l1 + l2 0 0 l1 − l2

0 l3 + l4 − ul3 − l4u 0 0

0 0 l3 + l4 − ul3 − l4u 0

l1 − l2 0 0 l1 + l2

2 s32ad

and the pure-state part is a Bell state

uCl =
1
Î2

fuHVl + sgnsl3 − l4duVHlg. s32bd

Here sgnsxd is the sign function, which gives a factor of ±1,
depending on the sign ofx. It is clear thatr1 belongs to the
family of states s14d, and hence can be synthesized by
scheme III with one stage of decoherence; on the other hand,
uCl is a Bell state, which can be easily generated. Further-
more, the weight ofr1 is not less than that ofuClkCu, so
there is no need to attenuate the intensity of the mixed part
f36g. Therefore, scheme IV can synthesizeanyBell-diagonal
staterB. The Bell-diagonal states, if entangled, can be readily
distilled via the Bennett-Brassard-Popescu-Schumacher-
Smolin-Wootters schemef3,39g into states with more en-
tanglement. They also have the property that, for a given set
of eigenvalues, they achieve the maximal violation of the
CHSH-Bell inequalityf40g.

For certain states this hybrid scheme can also be imple-
mented via a single set of crystals, by reflecting the source
and the down-conversion pair back through the crystals with
a mirror; see Fig. 6sbd. However, in this case, the pure-state
part cannot be arbitrarily chosen, as the local unitary trans-
formations needed to create the mixed parts and the pure
part uCl are no longer independent. The mixed parts is

obtained via locally rotatinga1uHHl+b1uVVl by ÛA ^ ÛB,
followed by a decoherence. As the photons reflect back from
the mirrors, they experience again the same local unitary

transformationÛA ^ ÛB. The local unitary transformation at
the output port is then chosen to eliminate this additional
effect sby choosing the inverse of this transformationd,
thereby fixings to be of the forms14d; the pure-state part is

consequently limited to the formucl=ÛA
−1

^ ÛB
−1sa2uHHl

+b2uVVld. Any further local unitary transformation will ro-
tates and ucl together and cannot change this relative rela-
tion.

V. CONCLUDING REMARKS

We have described two approaches for synthesizing arbi-
tary two-qubit pure states. Based on these, we have devel-
oped four schemes for synthesizing two-qubit photon polar-
ization mixedstates. Scheme IsFig. 3d requires several sets
of down-conversion crystals to create arbitrary two-qubit
mixed states. It would be desirable to experimentally synthe-
size rank-2 mixed states using this scheme, in order to give a
proof-of-principle demonstration. Scheme IIsFig. 4d em-
ploys temporal mixing to achieve decoherence. It offers a

second way to realize arbitrary two-photon polarization
mixed states, but—significantly—requires only one set of
down-conversion crystals, at the cost of requiring several
rather large, phase-stabilized interferometers. Scheme III
sFig. 5d provides control over at least ten of the independent
real parameters of two-qubit mixed states, and gives access
to all physically allowed values of entanglement and entropy.
Furthermore, this scheme has been experimentally imple-
mented to synthesize several interesting families of mixed
states, such as Werner states, maximally entangled mixed
states, and Collins-Gisin statesf6,33,35g. The fourth scheme
sFig. 6d, extends the range of scheme IIIsproviding control
over 12 mixed-state parametersd. In particular, this scheme
can be used to produce arbitrary Bell-diagonal states, which
are of interest, e.g., in entanglement distillationf3,39g and
maximal violations of Bell inequalitiesf40g. Although the
full capabilities of schemes III and IV are not yet entirely
clear, our analysis shows that these two schemes provide
practical methods for creating quite general mixed states,
many of which were previously not accessible experimen-
tally. The four mixed-state schemes are summarized and
compared in Table I, including the respective resources, ad-
vantages, and disadvantages for implementation.

Once one has well-controlled arbitrary two-qubit sources,
they will be usable for many quantum-information process-
ing applications, such as testing methods of entanglement
distillation f3,6,39,41g, investigating quantum process to-
mographyf33,42g, characterizing quantum gatesf43g, testing
violations of Bell-type inequalitiesf8,15,34,40g by mixed
statessincluding a relevant two-qubit Bell inequalityf14g
that is inequivalent to the CHSH inequalityd, and exploring
the vast, previously inaccessible territory of Hilbert space.
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APPENDIX: CREATING ARBITRARY PURE STATES

In this appendix we explain how to create an arbitrary
two-qubit pure state, characterized byha,b,c,dj of Eq. s7d.
This amounts to establishing adequate local unitary transfor-
mationssUA and UBd and post-SPDC pure states Eq.s5d of
the form that SPDC naturally yields. For convenience, we
exchange the coefficients cosu for a andeifsinu for b.
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To find the appropriate settings and local unitary transfor-
mations, we need to solve

UA ^ UBsauHHl + buVVld = auHHl + buHVl + cuVHl + duVVl
sA1d

for hUA,UB,a ,bj, givenha,b,c,dj that are properly normal-
ized. This equation can be solved either by Schmidt decom-
position or by direct algebraic manipulation. However, the
solution is not unique.

Whenad−bc=0, the state to synthesize is a product state,
which can be created from an initial stateuHHl followed by
independent local rotationsssee, e.g., Ref.f19gd. For

ad− bcÞ 0, uad− bcu Þ 1/2, sA2d

i.e., the case of nonmaximally entangled pure states, one
possible solution is

a = Î1 −Î1 − 4uad− bcu2/Î2, sA3ad

b = sad− bcd/a, sA3bd

UA = S u1 v1

− v1
* u1

* D, UB = S u2 v2

− v2
* u2

* D , sA3cd

where

u1 ; uz1u/Îuz1u2 + uz3u2, v1 ; z3u1
* /z1

* , sA4ad

u2 ; z3
* /sz1z3 + z2z4d, v2 ; z2/sz1z3 + z2z4d, sA4bd

with z1, z2, z3, z4 defined via

z1 ; saa* − d*bd/suau2 − ubu2d, sA5ad

z2 ; sd*a − ab*d/suau2 − ubu2d, sA5bd

z3 ; s− c*a − bb*d/suau2 − ubu2d, sA5cd

z4 ; s− ba* − c*bd/suau2 − ubu2d. sA5dd

When uad−bcu=1/2 there are three possible cases:sid b
=c=0 anduau= udu=1/Î2; sii d a=d=0 andubu= ucu=1/Î2; siii d
a, b, c, dÞ0, uau= udu , ubu= ucu.

Casesid is already the form we seek. In casesii d, an ex-
changeH↔V se.g., by a half-wave plated will do. In case
siii d, one possible solution is

eig ; a/d* = − b/c* , sA6ad

sa,bd = seig,1d/Î2, sA6bd

UA =
1
Î2

S 1 eig

− e−ig 1
D , sA6cd

UB = S d* − c d* + c

− d − c* d − c* D . sA6dd

In fact, this last case includes the previous two cases, if one
interprets the phase in Eq.sA6ad to be the appropriate ratio
of the nonzero coefficients. We remark that the solution pre-
sented above is not unique, and that experimentally one
would implement the one that is most convenient.
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