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Twirl operations, which convert impure singlet states into Werner states, play an important role in many
schemes for entanglement purification. In this paper we describe strategies for implementing twirl operations,
with an emphasis on methods suitable for ensemble quantum information processors such as nuclear magnetic
resonancesNMRd quantum computers. We implement our twirl operation on a general two-spin mixed state
using liquid-state NMR techniques, demonstrating that we can obtain the singlet Werner state with high
fidelity.
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I. INTRODUCTION

The twirl operation was introduced by Bennettet al. f1,2g
in the context of entanglement purification of mixed states.
The first step in many of these protocols is the twirl opera-
tion which converts an arbitrary mixed state of a two-qubit
system,r, into a Werner singlet staterW f3g, an incoherent
mixture of « parts of a maximally entangled singlet state,
uC−l=su01l− u10ld /Î2, and s1−«d parts of the maximally
mixed state:

rWs«d = «uC−lkC−u + s1 − «d
1

4
. s1d

The key idea behind the twirl is that the singlet state is in-
variant under any bilateral unitary transformation of the two
qubits sthat is, any operation where identical local unitaries
are applied to the two qubitsd, whereas any other state will be
affected. A randomly chosen bilateral rotation should serve
to average any other state, converting an arbitrary mixed
state to a Werner singlet.sNote that the twirl sequence does
not createnew singlet terms; rather itpreservesthe singlet,
while averaging out all other terms.d This provides a good
“in-principle” definition of the twirl operation, but in practice
it is important to consider what a random bilateral rotation
really is and how it can actually be implemented.

Early work in this field concentrated on reducing the in-
finite set of randomly chosen rotations down to a small finite
set. Originally it was suggestedf1g that the twirl could be
achieved using a set of four bilateral rotations, although it
was later shown that a set of 12 bilateral rotations is both

necessary and sufficientf2g. This approach is sensible for
conventional quantum information processors, but with some
ensemble devices, such as nuclear magnetic resonance
sNMRd quantum computers, it may be useful to use a differ-
ent approach, as it is sometimes easier to perform rotations
by angles that vary continuously over the ensemble than by
angles from some small carefully chosen set.

In NMR devices, for example, the application of a strong
magnetic field gradientf4g performs a rotation around thez
axis with a rotation angle that depends strongly on the posi-
tion of a given molecule within the spatial ensemble; inte-
grating over the position within the sample is then equivalent
to applying a random rotation. In the language of NMR this
is often referred to as acrush gradientpulse. For simplicity
we will sometimes describe a crush gradient as a random
rotation around thez axis, as the effect on the averaged den-
sity matrix is the same, but when considering experimental
implementations it is necessary to be more precise. Note that
two spins in the same molecule have very similar positions
in the sample and for typical gradient strengths will experi-
ence indistinguishable magnetic fields. If two spins are of the
same nuclear speciessa homonuclearspin systemd, then they
will have the same gyromagnetic ratio, and so each spin will
experience the same rotation angle. Thus a gradient can be
considered as a random bilateral rotation.

The use of field gradients forms the basis of spatial aver-
aging methods, used in NMR quantum computing to prepare
pseudopure statesf5,6g. Field gradients have also been used
to average out error termsf7g, to project qubits into the Zee-
man basisf8g, and to simplify density matrices prior to
partial-state tomographyf9g. The alternative procedure, in
which one rotation chosen from a small set is applied, re-
quires several experiments to be performed and in the con-
text of NMR quantum computing is usually known as tem-
poral averaging.

In subsequent sections we explore different methods for
implementing the twirl, initially concentrating on those
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which use continuous rotations. We begin by noting that any
set of bilateral rotations which performs a twirl must corre-
spond to a set of single-qubit rotations which, when consid-
ered from the viewpoint of a single-qubit subsystem, aver-
ages any state of a single-qubit to the maximally mixed state.
As we shall see, however, averaging a single qubit is a nec-
essary but not a sufficient condition for a set of rotations to
act as a twirl.

II. AVERAGING A SINGLE QUBIT

Averaging a single qubit gives some useful insight into
the problem of twirling a two-qubit state. A single qubit state
can be represented by a ray on the Bloch sphere and an
arbitrary rotation will move this ray over the surface of the
sphere. Each rotationUsj ,n̂d is defined by a rotation anglej
about an axisn̂ parametrized by a tilt angleu and an azi-
muthal anglef. An arbitrary single-qubit state is completely
defined by three real parameters, which are conventionally
taken as the expectation values of the single-spin Pauli op-
eratorshsx,sy,szj f10g. For scrambling an arbitrary state to
the maximally mixed state, we must choose a convenient set
of operations, which scrambles each of these Pauli operators
individually. A tempting, but incorrect, approach is to apply
random rotations about random axes—that is, to takej as
being uniformly distributed between 0 and 2p, while the
rotation axes defined byu and f are uniformly distributed
over the sphere; we call this set of rotationsR.

Brute force integration shows that the continuous set of
random rotations around random axes,R, does not com-
pletely randomize the state of a single qubit and socannot
constitute the basis for a twirl operation; instead, it reduces
the Bloch vector to one-third of its original length. In retro-
spect the reason for this behavior is clear: random rotations
around axes perpendicular to the original state will com-
pletely average it, while rotations around axes parallel or
antiparallel to the state will leave it unaffected. Thus the
overall effect ofR must be to scale down the state, rather
than to average it completely. The significance of the scaling
by one-third is discussed below.

A better definition of a random rotation is provided by
considering the description of a rotation by means of its Eu-
ler angles. While many different conventions for describing
Euler angles exist, the essential feature is that any rotation
can be decomposed as a sequence of three rotations around
two axes. For example, any rotation can be achieved by the
sequence of rotations

RzsfdRysudRzsjd, s2d

where rotations are applied from left to right. A random dis-
tribution of Euler rotationsswhich we callEd can be achieved
by takingj as uniformly distributed between 0 and 2p, with
the rotation axes defined byu and f uniformly distributed
over the sphere. It might seem thatE is the same asR, but
they are in fact quite different: in particularE completely
averages a single qubit, whileR does not. This is easily seen
by noting that the first rotation will averagesx andsy, while
the second and third will averagesz. As any state of a single
qubit can be written as a linear combination of these basic

matrices and the maximally mixed state, the first two opera-
tions will averageany state.

Although the two results above make sense, it is not im-
mediately obvious how they relate to one another, but a more
careful analysis makes this clear. The random Euler rotation
can be broken down into two stages: a frame rotation and a
rotation in that frame. The first two pulses serve to rotate
someaxis onto thez axis, and the third pulse then causes a
rotation around this axis. This process seems equivalent to a
rotation around the desired axis, but in fact the two processes
are subtly different. A rotation byj around thesu ,fd axis
can be achieved using the sequence of five rotations

Rzs− fdRys− udRzsjdRysudRzsfd, s3d

where rotations are applied from left to right as before. For
random rotations we average overu, f, andj, and the first
three rotations are seen to be equivalent to the Euler rota-
tions; thus, these rotations act to scramble a state. The final
two rotations, which serve to reverse the frame rotation, can-
not, however, be ignored, as their rotation angles are not
independent of the first three rotations. Instead these rota-
tions act to partiallyunscramblethe state, leading to the
scaling behavior observed.

It is clear that a random Euler rotation will average any
single qubit, but this process is perhaps excessive, as two
rotations suffice.sWe will see below that this is not true
when considering a true twirl applied to two qubits.d The
sequence of rotations

RzsxdRyszd, s4d

where bothz and x are taken as uniformly distributed be-
tween 0 and 2p, will average any single qubit; as before, this
is most simply seen by considering the result forsx, sy, and
sz. Indeed this process can be simplified still further: as de-
scribed by Bennettet al. f1g it is possible to average a single
qubit by randomly selecting from the four operations
h1 ,sx,sy,szj. Sincesa is equivalent to a 180a

° rotation and
sneglecting global phasesd sx=sysz, it is clear that this op-
eration is equivalent to applying either 0 or 180z

° at random
and then applying 0 or 180y

° at random; a similar result has
been described by Haydenet al. f11g. Thus instead of choos-
ing the two angles in Eq.s4d at random from uniform distri-
butions, we can choose at random from two particular val-
ues.

This process of replacing a continuous rotation by a small
number of discrete values is an example of a quite general
procedure. For rank-1 and rank-2 tensors, continuous rota-
tions about a fixed axis can, in fact, always be replaced by
discrete rotations: we can “hop” between the angles 2pk/p,
with pù3 and k=1,2, . . . ,p, and the overall effect is the
same as rotating continuously about the same axisf12g. It is
sometimespossible to usep=2, but this cannot be relied on
in general.

The rotation through 2pk/p is the memberCp
k of the cy-

clic groupCp f13g; in this way, the continuous rotations can
be replaced by discrete group operations and the continuous
integrals over the rotation anglej can be substituted by
group-theoretical averages, such as
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Usj,n̂drU†sj,n̂ddj ; o
k=0

p−1

US2pk

p
,n̂DrU†S2pk

p
,n̂D .

s5d

The simplest discrete group that can generally be used for
averaging is the cyclicC3 group, which is employed by NMR
spectroscopists in the form of magic angle hoppingf12,14g, a
discrete version of its continuous counterpart, magic angle
spinning f12g. The group-theoretical framework has also
been used in the context of bang-bang decoupling protocols
f15,16g, which seek to average out system-environment in-
teractions by applying fast, discrete, and periodic control im-
pulses toonly the system, with the control propagators faith-
fully representing the members of a discrete cyclic groupCn.

This approach hints at another method for performing
complete averaging of a single qubit. We have already noted
that random rotations around a random axis do not com-
pletely average a single qubit, but simply rescale its length
by one-third. As noted above, a continuous rotation can be
replaced by a three-point average, and so a random rotation
around a random axis is equivalent to applying rotations
through angles of 0°, 120°, or 240° around the same random
axis and then averaging the result. Clearly a 0° rotation can
have no effect, while the effect of the 120° and 240° rota-
tions must be the same. From this it can be deduced that a
120° rotation around a random axis will completely average
a single qubit, and this is indeed the case.

Finally we turn to the issue of practical experimental
implementations. For a conventional quantum information
processor the obvious approach is to use the smallest discrete
set of operations; for the case of averaging a single qubit,
this is the set of four rotations described by Bennettet al.
With an ensemble processor, such as an NMR quantum com-
puter, it is better to use a procedure based on continuous
rotations, corresponding to spatial averaging. Clearly the best
approach is to apply random rotations around two orthogonal
axes, such asz and y. A strong magnetic field gradient, de-
notedG, will effect a random rotation around thez axis, and
rotations around other axes can be achieved by combining
gradients with single-qubit gatessradio frequency pulsesd
which can be treated as rotating the axis system. Thus the
sequence

G-90x-G s6d

comprising continuous rotations around two axes will com-
pletely average a single spin. Note that this procedure is not
completely equivalent to Eq.s4d, as it should strictly speak-
ing be followed by a 90−x pulse to rotate the axes back to
their original positions, but as the maximally mixed state will
not be affected by the rotation this final stage may be safely
omitted.

The discussion above assumes that the gradient pulses are
instantaneous, so that their sole effect is to average the spin
state and evolution under any background Hamiltonian can
be ignored. In fact, gradient pulses take a finite time, but as
the gradient and background Hamiltonians commute, they
can be treated as an instantaneous pulse followed by a finite
period of evolution under the background Hamiltonian. For a

single NMR spin this is not a problem, as the maximally
mixed state does not evolve under the background Hamil-
tonian; for a two-qubit system, however, the result of the
twirl is a singlet state, whichdoesevolve under the back-
ground Hamiltonian. Thus for two-qubit twirls it is necessary
to consider this problem more carefully.

III. TWIRLING TWO QUBITS

We now turn to the problem of implementing a full twirl
on two qubits. This is clearly related to the problem of aver-
aging a single qubit, but is more complicated. In particular,
any twirl procedure will average a single qubit, but not every
averaging procedure can be converted to a twirl. For ex-
ample, the sequence of four operationsh1 ,sx,sy,szj sug-
gested by Bennettet al. f1g does average a single qubit, but
does not effect a twirl; instead, it is necessary to use a set of
12 operationsf2g corresponding to the rotational symmetry
elements of the tetrahedral groupT f13g. The group-
theoretical justification for using these rotations is discussed
in f17g.

Turning to the other averaging methods discussed above,
only the method based on random Euler rotationssEd will
correctly implement a twirl; the other methods will only par-
tially average the state. In particular the sequence of two
random rotations around orthogonal axes has already been
studiedf9g and shown to implement a partial twirl, in which
the density matrix is reduced to Bell diagonal form, but not
to a Werner state.

For an ensemble quantum information processor, it might
seem that the best strategy for performing a full twirl would
be to perform random Euler rotations. Unfortunately this ap-
proach cannot be implemented using gradients or similar
methods, as these generate rotations with a uniform distribu-
tion sbetween 0 and 2pd for each rotation angle, while the
Euler rotation method requires that the anglesu and f be
uniformly distributedover a sphere. Thus it might seem that
twirl operations cannot be easily implemented by ensemble
methods. It is, however, possible to do this by using sequen-
tial random rotations around three different axes.

This procedure is a development of the partial twirl de-
scribed above. Consider again the sequence of rotations in
Eq. s6d. These two rotations constitute a partial twirlf9g and
leave the density matrix Bell diagonal with equal populations
of uF+l and uF−l, where uF±l=su00l± u11ld /Î2. The role of
the third rotation is to scramble these states with the sole
remaining undesired termuC+l=su01l+ u10ld /Î2, leaving a
Werner singlet state. This can be achieved by rotating about
an axis at an anglec=arccoss1/Î3d<54.74°, commonly
known in NMR studies as the “magic angle”f12,14g. Our
final twirl sequence is then

G-90x-G-54.74x-G. s7d

As was the case for the partial twirlf9g it is necessary to
choose the lengths of the gradient pulses as multiples of 1/d,
whered is the difference between the Larmor frequencies of
the two spins, to refocus evolution under the background
Hamiltonian, which occurs at this difference frequency.
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If desired this twirl can be implemented using discrete
steps by replacing each random rotation with a three-step
averaging procedure

hZ3
mj-90x-hZ3

nj-54.74x-hZ3
pj, s8d

wherehZb
aj indicates a set ofz rotations with rotation angles

2pa/b, wherea=0,1, . . . ,b−1. This discrete twirl requires
27 steps, but the number of steps can be reduced to 18, using
the sequences

hZ2
mj-90x-hZ3

nj-54.74x-hZ3
pj s9d

or

hZ3
mj-90x-hZ2

nj-54.74x-hZ3
pj. s10d

It is not possible to reduce the number of steps further while
using sequential rotations around three axes.

It is instructive to compare this discrete twirl with the
12-step version of Bennettet al. f2g. Their 12 rotations in-
clude the identity operation,p rotations about the principal
x, y, and z axes, and rotations by ±2p /3 around the four
body diagonals, each of which is at the magic angle with the
cardinal axes.sThese are the 12 rotations that leave a tetra-
hedron invariant.d Clearly our rotations are closely related to
theirs; the use of sequential rotations means that the number
of steps required is larger, but the sequential approach may
be simpler to implement in practice. Interestingly our se-
quential twirl comprises continuous rotations around three
axes, all of which can lie in a single plane.

IV. NMR EXPERIMENT

Finally, we demonstrate the experimental implementation
of our ensemble twirl operation as described in Eq.s7d. Our
implementation is based on a homonuclear system, compris-
ing the two1H nuclei of cytosine dissolved in D2O; we use
the product operator descriptionf18g for the NMR states and
pulse sequences, and label the two spins asI and S. The
Hamiltonian of our system is then

H/" = 2pnIIz + 2pnSSz + pJ2IzSz, s11d

wherenI andnS are the resonance offset frequencies of spins
I andS, andJ is theIS spin-spin coupling constantsassuming
weak couplingd, all measured in hertz. NMR experiments
were performed on a Varian Unity INOVA 600 MHz spec-
trometer with the spectrometer frequency placed between the
two cytosine resonances; for our system,nI =457.9 Hz,nS=
−457.9 Hz, andJ=7.2 Hz.

The experiment began with the preparation of a generic
mixed state of the two qubits containing a contribution from
the singlet state as well as a wide range of other terms. The
preparation sequenceswhich was applied to the thermal
equilibrium state,Iz+Szd involves shaped pulses selectively
exciting the spins and separated by a delayt:

A ; 60Iy-t-30Sy. s12d

Shaped pulses were implemented using strongly modulated
composite pulses as described by Fortunatoet al. f19g. The
deviation density matrix of the prepared stater has a singlet
component proportional to

Î3

8
sinspJtdsins2pnItd. s13d

Clearly the amount of singlet inr can be easily controlled
through choice of the delayt. Note that as we are using a
deviation density matrix description of a highly mixed state
it is possible for the singlet component to be negative.

We performed two sets of experiments on states drawn
from this family of states. The first set uses a fixed initial
state and demonstrates a stepwise progression through the
twirl sequence, with the resulting state becoming closer to a
Werner state at each stage. The second set uses a range of
initial states, with different singlet fractions, and shows that
the twirl sequence works equally well over this range.

The first set of experiments, listed in Table I comprises a
stepwise progression through the twirl sequence, Eq.s7d.
Each experiment uses the same initial state, witht
=69.3 ms, a value chosen to maximize the singlet fraction.
The three stages of the twirl correspond to the application of
three different crush gradients and can be characterized as
follows: stage 0, do nothing; stage 1, apply a single crush
gradient; stage 2, apply the partial twirl sequencef9g; stage
3, apply the full twirl sequence. Two different measurements
are performed to characterize the state after each step: simple
direct acquisition swhich should show no signals for a
Werner singlet stated and acquisition after a selective excita-
tion pulse, which converts the singlet state into NMR observ-
able termssthe singlet state is, of course, invariant under
hard pulses, as these are bilateral rotationsd. The selective
pulse was implemented using the sequence

9045-F 1

4d
G-90180, s14d

whered=915.8 Hz is the frequency separation between the
two resonances as before and 9045 indicates a 90° rotation
around an axis in thexy plane at 45° to thex axis. This
sequence is based on jump-and-return sequencesf20g and
has been described previouslyf9g. When applied to a singlet
state it results in the observable NMR terms

1

2
s− 2IxSz + 2IzSxd, s15d

corresponding to a pair of antiphase doublets with equal and
opposite intensities. The resulting spectra are shown in Fig.
1. The left-hand column of this figure shows spectra from
direct acquisition and the right-hand column shows spectra

TABLE I. Pulse sequences for the first set of experiments,
which demonstrate the effects of the three stages of our twirl op-
eration. See main text for details.

Stage Pulse sequence

0 A-Acq

1 A-G1-Acq

2 A-G1-90x-G2-Acq

3 A-G1-90x-G2-54.74x-G3-Acq
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obtained with the excitation pulse followed by acquisition.
The four rows correspond to observation after zero, one, two,
or all three stages of the twirl sequence.

The initial stater contains many different components,
and the observed spectrastop rowd are complicated, reflect-
ing this fact. After the first stage of the twirl sequencesthe
first field gradientd all components which are directly observ-
able by NMR are crushedsaveraged to zerod, and so no
signal is visible in the direct detection spectrum, but many
other components remain, indicated by the variety of signals
seen after excitation.

The second stage of the twirlsthe 90x pulse and the sec-
ond gradientd removes most of these terms, producing a Bell
diagonal state with equal populations ofuF+l and uF−l. As
before there is no signal in the left-hand spectrum, while the
spectrum on the right contains two antiphase doublets with
clearly different intensities. This intensity difference arises
from the imbalance between theuC+l state and the twouF±l
statesf9g.

After the third and final stage of the twirlsthe 54.74x
pulse and the last gradientd these two antiphase doublets
have equal and opposite intensities, characteristic of a
Werner singlet state. The final intensity of these doublets
could be compared with a calibration spectrum acquired
from the thermal state to check whether they are consistent
with the twirl preserving the fraction of the singlet state as
expected. More simply, they can be compared against the

right-hand doublet in the top left spectrum in Fig. 1. This
signal arises from a 30° excitation pulse acquired to a spin in
the thermal state and will thus have half the full intensity of
the thermal state signal. The analysis is, however, more com-
plex than it might appear: although Eq.s13d gives the frac-
tion of singlet in the initial deviation density matrix, this
does not correspond directly to the NMR visible singlet sig-
nal.

It might seem from naive consideration of the twirl opera-
tion that it leaves singlet terms unaffected while converting
other terms to the maximally mixed state, but more careful
thought shows that this cannot be the case. The maximally
mixed state can be decomposed as an equal mixture of the
four Bell statesf10g and so can be considered as one-quarter
singlet terms. Since the twirl does not create new singlet
terms, it cannot convert terms to the maximally mixed state.
In fact the twirl converts undesired terms to an equal mixture
of the other three Bell states. Since the maximally mixed
state gives no NMR observable signal, it is clear that this
mixture gives an NMR signal corresponding to a negative
quantity of singlet terms, reducing the overall signal. An-
other way of viewing this is that that the mixture of the three
other Bell states combines with a corresponding quantity of
singlet to produce the maximally mixed state, which does not
contribute to thesobservabled deviation density matrix.

Allowing for this effect, the NMR visible single compo-
nent in our experiment takes the form

FIG. 1. Experimental spectra depicting an implementation of an ensemble twirl; they axis is in arbitrary units, as absolute intensities
have no meaning in NMR spectra, but each spectrum is plotted on the same vertical scale. Spectra were obtained using the pulse sequences
listed in Table I. The four rows correspond to spectra acquired after zero, one, two, or three stages of the twirl sequence, while the left and
right columns correspond to direct signal acquisition and acquisition after the selective excitation sequence. The ideal result at the end of the
full twirl slast rowd is no signal with direct detectionsleft columnd and a pair of antiphase doublets with equal and opposite intensities after
a selective excitation sequencesright columnd.
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Î3

12
sinspJtdsins2pnItd, s16d

which is two-thirds of the naive result. The signal is maxi-
mized by choosingt such that the two oscillatory terms are
approximately one and is expected to be about 29% of the
signal in the calibration spectrum. In fact the observed signal
intensity is only about 18%, indicating that the sequence is
not working perfectly. This signal loss can be ascribed to
imperfections in the implementation of the experiment, most
notably relaxation during the gradient pulses, and the effects
of rf inhomogeneity on the rf pulses.

These effects should result in the loss of a constant frac-
tion of the ideal signal. This point is explored in more detail
in the second experiment, in which the full twirl is applied to
a range of initial states with different amounts of the singlet
state. The size of the singlet component for our family of
states is given in Eq.s13d and shows two kinds of sinusoidal
modulation with the variable delayt : a fast variation, arising
from the offset frequencynI, on top of a slow variation due
to the couplingJ between the two qubits. If we chooset to
be close to 1/s2Jd, we are near the maximum of the slowJ
modulation, and the effect of varyingt is dominated by a
sinusoidal variation arising fromnI.

In this way we can produce a range of density matricesr
with varying amounts of singlet, together with other terms,
each of which can be twirled to produce a Werner state. This
state can then be observed using a selective excitation pulse
prior to acquisition. In each case the expected spectrum is a
pair of antiphase doublets, with the intensity of the signal
showing a sinusoidal modulation at the frequencynI. The
results of this experiment are shown in Fig. 2, which depicts
the intensity variation in the right-hand component of the
left-hand doublet ast is varied around a value of 1/s2Jd
=69.3 ms, with an increment between successive spectra of
1/s10nId=218ms; equivalent effects can be seen for the
other three components of the NMR signal. As expected a
sinusoidal modulation of the signal is clearly seen, and the
observed modulation period of ten spectra is exactly as ex-
pected. The small out-of-phase signals observable near the
zero crossings of the sine wave can be ascribed to the effects
of spin–lattice relaxation during the gradient pulses.

V. CONCLUSIONS

We have described a variety of strategies for the practical
implementation of twirl sequences on conventional and en-
semble quantum computers, and have demonstrated an en-
semble implementation on an NMR quantum computer. With
a conventional quantum computer the implementation requir-
ing the smallest number of different bilateral operations is
the set of 12 rotations previously describedf2g, but our 18-
step and 27-step averaging procedures require a smaller
number of elementary operations and may be simpler to
implement in practice. With an ensemble quantum computer,
such as an NMR device, it can be simpler to replace the
discrete averaging procedure by continuous averaging, ex-
ploiting the ensemble nature of the system. We have devel-
oped a scheme, involving the application of three successive
crush gradients separated by rf pulses, which is well suited to
NMR quantum computers, and have demonstrated that its
experimental performance is consistent with theoretical ex-
pectations.
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