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Practical implementations of twirl operations
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Twirl operations, which convert impure singlet states into Werner states, play an important role in many
schemes for entanglement purification. In this paper we describe strategies for implementing twirl operations,
with an emphasis on methods suitable for ensemble quantum information processors such as nuclear magnetic
resonancéNMR) quantum computers. We implement our twirl operation on a general two-spin mixed state
using liquid-state NMR techniques, demonstrating that we can obtain the singlet Werner state with high
fidelity.
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I. INTRODUCTION necessary and sufficief2]. This approach is sensible for
The twirl operation was introduced by Bennettal. [1,2] conventional quantum information processors, but with some

: o : ensemble devices, such as nuclear magnetic resonance
in the_ context_of entanglement pur|f|cat|0r_1 of m|xe_d states.(NMR) quantum computers, it may be useful to use a differ-
The first step in many of these protocols is the twirl opera-

i hich ' bit ved state of a t b.tent approach, as it is sometimes easier to perform rotations
lon which converts an arbitrary mixed staté or a to-qubit,, 4ngles that vary continuously over the ensemble than by
system,p, into a Werner singlet stata, [3], an incoherent

. ) : angles from some small carefully chosen set.
mixture of & parts of a maximally entangled singlet state, |5 NMR devices, for example, the application of a strong

[¥7)=(|01)-[10))/v2, and (1-¢) parts of the maximally magnetic field gradierfi4] performs a rotation around tie
mixed state: axis with a rotation angle that depends strongly on the posi-
1 tion of a given molecule within the spatial ensemble; inte-
pw(e) =T WP +(1-¢)-. (1)  grating over the position within the sample is then equivalent
4 to applying a random rotation. In the language of NMR this
The key idea behind the twirl is that the singlet state is in-S Often referred to as erush gradienipulse. For simplicity
variant under any bilateral unitary transformation of the two"'® will sometimes describe a crush gradient as a random
qubits (that is, any operation where identical local unitaries/0taton around the axis, as the effect on the averaged den-
are applied to the two qubitswhereas any other state will be sity matrix is the.sgme, but when considering experlmental
affected. A randomly chosen bilateral rotation should serv: |mplem_ent_at|ons Itis necessary to be more precise. NOFQ that
to average any other state, converting an arbitrary mixe VO Spins in the same mqlecule h_ave very S|m|Iar. positions
state to a Werner singletiNote that the twirl sequence does the_ sam_ple qnd for typical gra@ent strengths_ will experi-

, _ 3 ) ence indistinguishable magnetic fields. If two spins are of the
not createnew singlet terms; rather fireserveshe singlet, g me nyclear speciés homonucleaspin systery then they
thne_av_eraglng_o_qt all other t_ern)sThls_ DFOV'de_S a 9090' will have the same gyromagnetic ratio, and so each spin will
_|n_-p_r|nC|pIe definition .Of the twirl operation, bUt In practice experience the same rotation angle. Thus a gradient can be
it is important to consider what a random bilateral rotation

v | d how i v be imol q considered as a random bilateral rotation.
really Is and how it can actually be implemented. . The use of field gradients forms the basis of spatial aver-
Early work in this field concentrated on reducing the in-

fini ¢ v ch X Il fini aging methods, used in NMR quantum computing to prepare
inite set of randomly chosen rotations down to a small finite e qopure statds,6]. Field gradients have also been used
set. Originally it was suggestdd] that the twirl could be

. . ; _ _to average out error termig], to project qubits into the Zee-
achieved using a set of four bilateral rotations, although it basis[8], and to simplify density matrices prior to

was later shown that a set of 12 bilateral rotations is bo“bartial—state tomograph9]. The alternative procedure, in

which one rotation chosen from a small set is applied, re-
quires several experiments to be performed and in the con-

*Electronic address: muhammad.anwar@physics.ox.ac.uk text of NMR quantum computing is usually known as tem-
"Electronic address: jonathan.jones@qubit.org poral averaging.

*Electronic address: shd3@york.ac.uk In subsequent sections we explore different methods for
SElectronic address: cartereh@iro.umontreal.ca implementing the twirl, initially concentrating on those
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which use continuous rotations. We begin by noting that anynatrices and the maximally mixed state, the first two opera-

set of bilateral rotations which performs a twirl must corre-tions will averageany state.

spond to a set of single-qubit rotations which, when consid- Although the two results above make sense, it is not im-

ered from the viewpoint of a single-qubit subsystem, avermediately obvious how they relate to one another, but a more

ages any state of a single-qubit to the maximally mixed statecareful analysis makes this clear. The random Euler rotation

As we shall see, however, averaging a single qubit is a neaan be broken down into two stages: a frame rotation and a

essary but not a sufficient condition for a set of rotations tarotation in that frame. The first two pulses serve to rotate

act as a twirl. someaxis onto thez axis, and the third pulse then causes a
rotation around this axis. This process seems equivalent to a

II. AVERAGING A SINGLE QUBIT rotation around the desired axis, but in fact the two processes
are subtly different. A rotation by around the(8, ¢) axis
Averaging a single qubit gives some useful insight intocan be achieved using the sequence of five rotations
the problem of twirling a two-qubit state. A single qubit state
can be represented by a ray on the Bloch sphere and an R.(= d)IR/(= ORLOR(ORA ), (3

arbitrary rotation will move this ray over the surface of the . . .
sphere. Each rotatiod(¢,f) is defined by a rotation angle where rotations are applied from left to right as before. For

about an axish parametrized by a tilt anglé and an azi- random rotations we average ovr¢, and¢, and the first

muthal angles. An arbitrary single-qubit state is completely three rotations are seen to be equivalent to the Euler rota-

defined by three real parameters, which are conventionalg)ons thus, these rotations act to scramble a state. The final

taken as the expectation values of the single-spin Pauli ogV° rotations, which serve to reverse the frame rotation, can-

erators{oy, oy, 10]. For scrambling an arbitrary state to _not, however, be ignored’ as their_ rotation angles are not
{oy, 0y, 02} [10] 9 y E]dependent of the first three rotations. Instead these rota-

the maximally mixed state, we must choose a convenient S(i‘ s act to partiallvunscramblethe state. leading to the
of operations, which scrambles each of these Pauli operato ons P y ’ 9
scaling behavior observed.

individually. A tempting, but incorrect, approach is to apply It is clear that a random Euler rotation will average any

random rotations about random axes—that is, (o tales single qubit, but this process is perhaps excessive, as two
being uniformly distributed between 0 andr2while the gie qubtt, | P! P pS exce ’
rotations suffice.We will see below that this is not true

rotation axes defined by and ¢ are uniformly distributed S ) : .
over the sphere; we caliythis sq;t of rotatidﬁsy when considering a true twirl applied to two qubithe
i gequence of rotations

Brute force integration shows that the continuous set o
random rotations around random ax&®, does not com- R(VR,(0) (4)
pletely randomize the state of a single qubit andcaanot z v
constitute the basis for a twirl operation; instead, it reducesvhere both¢ and y are taken as uniformly distributed be-
the Bloch vector to one-third of its original length. In retro- tween 0 and 2, will average any single qubit; as before, this
spect the reason for this behavior is clear: random rotations most simply seen by considering the resultdgr oy, and
around axes perpendicular to the original state will com-g,. Indeed this process can be simplified still further: as de-
pletely average it, while rotations around axes parallel oiscribed by Bennettt al.[1] it is possible to average a single
antiparallel to the state will leave it unaffected. Thus thequbit by randomly selecting from the four operations
overall effect ofR must be to scale down the state, rather{l,,,0,,0,}. Sinces, is equivalent to a 18Qrotation and
than to average it completely. The significance of the scalingneglecting global phases,= a0, it is clear that this op-
by one-third is discussed below. eration is equivalent to applying either O or 18@ random

A better definition of a random rotation is provided by and then applying 0 or 18t random; a similar result has
considering the description of a rotation by means of its Eupeen described by Hayden al.[11]. Thus instead of choos-
ler angles. While many different conventions for describinging the two angles in E{4) at random from uniform distri-
Euler angles exist, the essential feature is that any rotatioputions, we can choose at random from two particular val-
can be decomposed as a sequence of three rotations aroungk.
two axes. For example, any rotation can be achieved by the This process of replacing a continuous rotation by a small
sequence of rotations number of discrete values is an example of a quite general

procedure. For rank-1 and rank-2 tensors, continuous rota-

RASIRAORAE), 2) tions about a fixed axis can, in fact, always be replaced by
where rotations are applied from left to right. A random dis-discrete rotations: we can “hop” between the anglek/,
tribution of Euler rotationgwhich we callf) can be achieved with p=3 andk=1,2,... p, and the overall effect is the
by taking £ as uniformly distributed between 0 angr2with ~ same as rotating continuously about the same [@4§ It is
the rotation axes defined by and ¢ uniformly distributed sometimepossible to use=2, but this cannot be relied on
over the sphere. It might seem théais the same a®, but  in general.
they are in fact quite different: in particular completely The rotation through 2k/p is the membecg of the cy-
averages a single qubit, whife does not. This is easily seen clic groupC, [13]; in this way, the continuous rotations can
by noting that the first rotation will averagg, ando,, while  be replaced by discrete group operations and the continuous
the second and third will average. As any state of a single integrals over the rotation anglé can be substituted by
qubit can be written as a linear combination of these basigroup-theoretical averagesuch as
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p-1 single NMR spin this is not a problem, as the maximally

. e a 27k . T 2k . ) .
U(&R)pUT(g A de= D Ul =— A |pUT| =— A . mixed state does not evolve under the background Hamil-
é k=0 P P tonian; for a two-qubit system, however, the result of the

(5)  twirl is a singlet state, whictdoesevolve under the back-
) ) ground Hamiltonian. Thus for two-qubit twirls it is necessary
The simplest discrete group that can generally be used fag consider this problem more carefully.
averaging is the cycli€; group, which is employed by NMR
spectroscopists in the form of magic angle hopgitg, 14, a
dispre_te version of its continuous counterpart, magic angle IIl. TWIRLING TWO QUBITS
spinning [12]. The group-theoretical framework has also
been used in the context of bang-bang decoupling protocols We now turn to the problem of implementing a full twirl
[15,16], which seek to average out system-environment inOn two qubits. This is clearly related to the problem of aver-
teractions by applying fast, discrete, and periodic control im-aging a single qubit, but is more complicated. In particular,
pulses toonly the system, with the control propagators faith- any twirl procedure will average a single qubit, but not every
fully representing the members of a discrete cyclic gréyp averaging procedure can be converted to a twirl. For ex-
This approach hints at another method for performinggmple, the sequence of four operatidfisoy,oy,0,} sug-
complete averaging of a single qubit. We have already notegested by Bennett al. [1] does average a single qubit, but
that random rotations around a random axis do not comdoes not effect a twirl; instead, it is necessary to use a set of
pletely average a single qubit, but simply rescale its lengtil2 operationg2] corresponding to the rotational symmetry
by one-third. As noted above, a continuous rotation can belements of the tetrahedral group [13]. The group-
replaced by a three-point average, and so a random rotatidheoretical justification for using these rotations is discussed
around a random axis is equivalent to applying rotationgn [17].
through angles of 0°, 120°, or 240° around the same random Turning to the other averaging methods discussed above,
axis and then averaging the result. Clearly a 0° rotation ca@nly the method based on random Euler rotatiGfs will
have no effect, while the effect of the 120° and 240° rota-correctly implement a twirl; the other methods will only par-
tions must be the same. From this it can be deduced thattilly average the state. In particular the sequence of two
120° rotation around a random axis will completely averageandom rotations around orthogonal axes has already been
a single qubit, and this is indeed the case. studied[9] and shown to implement a partial twirl, in which
Finally we turn to the issue of practical experimental the density matrix is reduced to Bell diagonal form, but not
implementations. For a conventional quantum informationto a Werner state.
processor the obvious approach is to use the smallest discrete For an ensemble quantum information processor, it might
set of operations; for the case of averaging a single qubitseem that the best strategy for performing a full twirl would
this is the set of four rotations described by Benmttal.  be to perform random Euler rotations. Unfortunately this ap-
With an ensemble processor, such as an NMR quantum conproach cannot be implemented using gradients or similar
puter, it is better to use a procedure based on continuousethods, as these generate rotations with a uniform distribu-
rotations, corresponding to spatial averaging. Clearly the beston (between 0 and 2) for each rotation anglewhile the
approach is to apply random rotations around two orthogondEuler rotation method requires that the angteand ¢ be
axes, such ag andy. A strong magnetic field gradient, de- uniformly distributedover a sphereThus it might seem that
notedG, will effect a random rotation around tlzeaxis, and  twirl operations cannot be easily implemented by ensemble
rotations around other axes can be achieved by combiningnethods. It is, however, possible to do this by using sequen-
gradients with single-qubit gategadio frequency pulsg¢s tial random rotations around three different axes.
which can be treated as rotating the axis system. Thus the This procedure is a development of the partial twirl de-
sequence scribed above. Consider again the sequence of rotations in
Eq. (6). These two rotations constitute a partial twWil and
G-90,-G (6)  leave the density matrix Bell diagonal with equal populations

+ - £\ — 123
comprising continuous rotations around two axes will com—Of [@*) and|@"), where|®%)=(|00)£[11))/ 2. The role of

pletely average a single spin. Note that this procedure is n € tr_ur_d rotat|on_ Is to scrainble these staths W'th_ the sole
completely equivalent to Ed4), as it should strictly speak- emaining undesired teri™)=(/01)+[10))/+2, leaving a
ing be followed by a 90, pulse to rotate the axes back to Werngr singlet state. This can be“_achleved by rotating about
their original positions, but as the maximally mixed state will @0 axis at an angley=arcco$1/y3)~54.74°, commonly
not be affected by the rotation this final stage may be safelfinown in NMR studies as the “magic anglg?2,14. Our
omitted. final twirl sequence is then

The discussion above assumes that the gradient pulses are 00 . )
instantaneous, so that their sole effect is to average the spin G-90G-54.74-G. ™
state and evolution under any background Hamiltonian cais was the case for the partial twif®] it is necessary to
be ignored. In fact, gradient pulses take a finite time, but ashoose the lengths of the gradient pulses as multiples &f 1/
the gradient and background Hamiltonians commute, thewhered is the difference between the Larmor frequencies of
can be treated as an instantaneous pulse followed by a finitee two spins, to refocus evolution under the background
period of evolution under the background Hamiltonian. For aHamiltonian, which occurs at this difference frequency.
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If desired this twirl can be implemented using discrete TABLE I. Pulse sequences for the first set of experiments,
steps by replacing each random rotation with a three-stephich demonstrate the effects of the three stages of our twirl op-

averaging procedure eration. See main text for details.

{Z31-90-{Z5}-54.74-{Z5}, (8) Stage Pulse sequence
where{Z}} indicates a set of rotations with rotation angles 0 A-Acq
2malb, wherea=0,1, ... b—1. This discrete twirl requires 1 A-G-Acq
27 steps, but the number of steps can be reduced to 18, using 5 AG -901x-G Ac
the sequences 1 22Acq

3 A-G;-90,-G,-54.74-G5-Acq

{231-90{Z3}-54.74-{Z5} 9

or 3
V3 .

{ZT-90,-{Z0}-54.74-{Z5}. (10) 3 sin(mJ7)sin(2my 7). (13
It i; not possiple to ret_juce the number of steps further whilemeaﬂy the amount of singlet ip can be easily controlled
using sequential rotations around three axes. through choice of the delay. Note that as we are using a

It is instructive to compare this discrete twirl with the geyiation density matrix description of a highly mixed state
12-step version of Bennet al. [2]'. Their 12 rotations In- it is possible for the singlet component to be negative.
clude the identity operationy rotations about the principal We performed two sets of experiments on states drawn
X, y, andz axes, and rotations by 3 around the four fom this family of states. The first set uses a fixed initial
body diagonals, each of which is at the magic angle with thetate and demonstrates a stepwise progression through the
cardinal axes(These are the 12 rotations that leave a tetrayyir| sequence, with the resulting state becoming closer to a
hedron invarianj.Clearly our rotations are closely related to \werner state at each stage. The second set uses a range of
theirs; the use of sequential rotations means that the numbgyitia| states, with different singlet fractions, and shows that
of steps required is larger, but the sequential approach maye twirl sequence works equally well over this range.
be simpler to implement in practice. Interestingly our se- e first set of experiments, listed in Table | comprises a
quential twirl qomprisefs (_:ontin_uous rotations around thre%tepwise progression through the twirl sequence, &Y.
axes, all of which can lie in a single plane. Each experiment uses the same initial state, with
V. NMR EXPERIMENT =69.3 ms, a value chosen_ to maximize the singlet_ fra_ction.
The three stages of the twirl correspond to the application of
Finally, we demonstrate the experimental implementatiorthree different crush gradients and can be characterized as
of our ensemble twirl operation as described in &g. Our  follows: stage 0, do nothing; stage 1, apply a single crush
implementation is based on a homonuclear system, comprigiradient; stage 2, apply the partial twirl sequef@g stage
ing the two™H nuclei of cytosine dissolved in f; we use 3, apply the full twirl sequence. Two different measurements
the product operator descriptiph8] for the NMR states and are performed to characterize the state after each step: simple
pulse sequences, and label the two spind a®d S. The  direct acquisition(which should show no signals for a
Hamiltonian of our system is then Werner singlet stajeand acquisition after a selective excita-
_ tion pulse, which converts the singlet state into NMR observ-
HIn=2mml,+ 2mvsS, + mI2155,, 1D aple terms(the singlet state is, of course, invariant under
where, and vs are the resonance offset frequencies of spind1ard pulses, as these are bilateral rotatiofiie selective
| andS, andJ is thelS spin-spin coupling constafiassuming ~ Pulse was implemented using the sequence
weak coupling, all measured in hertz. NMR experiments 1
were performed on a Varian Unity INOVA 600 MHz spec- 9045.{_}_90180' (14)
trometer with the spectrometer frequency placed between the 46

two cytosine resonances; for our systenr457.9 Hz,vs= where §=915.8 Hz is the frequency separation between the

—457.9 Hz, a_ndJ:7.2 Hz. . . .two resonances as before and,Qhdicates a 90° rotation
The experiment began with the preparation of a generi¢, - nd an axis in they plane at 45° to thex axis. This

mixed state of the two qubits containing a contribution fromSequence is based on jump-and-return sequefg@sand

the sing[et state as well as a wide range of other terms. Thﬁas been described previou$Bl. When applied to a singlet
preparation sequencévhich was applied to the thermal state it results in the observable NMR terms

equilibrium state|,+S,) involves shaped pulses selectively
exciting the spins and separated by a detay

A = 60l,-7-30S,. (12)

Shaped pulses were implemented using strongly modulateebrresponding to a pair of antiphase doublets with equal and
composite pulses as described by Forturettal. [19]. The  opposite intensities. The resulting spectra are shown in Fig.
deviation density matrix of the prepared stathas a singlet 1. The left-hand column of this figure shows spectra from

component proportional to direct acquisition and the right-hand column shows spectra

%(— 2,5+ 21,8), (15
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Stage Direct detection Detection after Excitation

2 | L
l N\
3 I T
400.0 2000 00 2000 4000 400.0 2000 00 2000 4000
relative frequency (Hz) relative frequency (/z)

FIG. 1. Experimental spectra depicting an implementation of an ensemble twiry; dkes is in arbitrary units, as absolute intensities
have no meaning in NMR spectra, but each spectrum is plotted on the same vertical scale. Spectra were obtained using the pulse sequence
listed in Table I. The four rows correspond to spectra acquired after zero, one, two, or three stages of the twirl sequence, while the left and
right columns correspond to direct signal acquisition and acquisition after the selective excitation sequence. The ideal result at the end of the
full twirl (last row is no signal with direct detectiofieft column and a pair of antiphase doublets with equal and opposite intensities after
a selective excitation sequeng@éght column.

obtained with the excitation pulse followed by acquisition. right-hand doublet in the top left spectrum in Fig. 1. This
The four rows correspond to observation after zero, one, twasignal arises from a 30° excitation pulse acquired to a spin in
or all three stages of the twirl sequence. the thermal state and will thus have half the full intensity of
The initial statep contains many different components, the thermal state signal. The analysis is, however, more com-
and the observed spectftop row) are complicated, reflect- plex than it might appear: although E@G.3) gives the frac-
ing this fact. After the first stage of the twirl sequeniiege  tion of singlet in the initial deviation density matrix, this
first field gradienkall components which are directly observ- does not correspond directly to the NMR visible singlet sig-
able by NMR are crushedaveraged to zejp and so no nal.
signal is visible in the direct detection spectrum, but many It might seem from naive consideration of the twirl opera-
other components remain, indicated by the variety of signaléion that it leaves singlet terms unaffected while converting
seen after excitation. other terms to the maximally mixed state, but more careful
The second stage of the twithe 9Q pulse and the sec- thought shows that this cannot be the case. The maximally
ond gradientremoves most of these terms, producing a Bellmixed state can be decomposed as an equal mixture of the
diagonal state with equal populations |df*) and |®). As  four Bell state410] and so can be considered as one-quarter
before there is no signal in the left-hand spectrum, while thesinglet terms. Since the twirl does not create new singlet
spectrum on the right contains two antiphase doublets witherms, it cannot convert terms to the maximally mixed state.
clearly different intensities. This intensity difference arisesin fact the twirl converts undesired terms to an equal mixture
from the imbalance between th*) state and the twgb*)  of the other three Bell states. Since the maximally mixed
stateq9]. state gives no NMR observable signal, it is clear that this
After the third and final stage of the twifthe 54.74  mixture gives an NMR signal corresponding to a negative
pulse and the last gradignthese two antiphase doublets quantity of singlet terms, reducing the overall signal. An-
have equal and opposite intensities, characteristic of ather way of viewing this is that that the mixture of the three
Werner singlet state. The final intensity of these doublet®ther Bell states combines with a corresponding quantity of
could be compared with a calibration spectrum acquiredinglet to produce the maximally mixed state, which does not
from the thermal state to check whether they are consisterontribute to thgobservablg deviation density matrix.
with the twirl preserving the fraction of the singlet state as  Allowing for this effect, the NMR visible single compo-
expected. More simply, they can be compared against theent in our experiment takes the form
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/
”3
;——2 sin(wJ7)sin(27y 7), (16)

which is two-thirds of the naive result. The signal is maxi- 'Vk JLY ”‘V'AM

mized by choosing such that the two oscillatory terms are

approximately one and is expected to be about 29% of the

signal in the calibration spectrum. In fact the observed signal

intensity is only about 18%, indicating that the sequence is

not working perfectly. This signal loss can be ascribed t0 k|G, 2. Spectra from Werner singlet states obtained by twirling

imperfections in the implementation of the experiment, mosimpure states with varying singlet fractions; only one component of

notably relaxation during the gradient pulses, and the effectgne antiphase doublet is shown. Successive spectra are obtained by

of rf inhomogeneity on the rf pulses. incrementing the variable delay in the preparation sequence, Eq.
These effects should result in the loss of a constant fracc12), in steps of 1(10v,)=218 us, which causes the fraction of

tion of the ideal signal. This point is explored in more detail singlet in the initial state to be modulated, with a period of ten

in the second experiment, in which the full twirl is applied to steps. Each spectrum is plotted with the sa@bitrary vertical

a range of initial states with different amounts of the singletscale.

state. The size of the singlet component for our family of

states is given in Eq13) and shows two kinds of sinusoidal V. CONCLUSIONS

modulation with the variable delay. a fast variation, arising

from the offset frequency,, on top of a slow variation due

to the couplingd between the two qubits. If we choosdo

be close to 1(2J), we are near the maximum of the slaw

modulation, and the effect of varyingis dominated by a

sinusoidal variation arising from,.

We have described a variety of strategies for the practical
implementation of twirl sequences on conventional and en-
semble quantum computers, and have demonstrated an en-
semble implementation on an NMR quantum computer. With
a conventional quantum computer the implementation requir-

In this way we can produce a range of density matrices ing the smallest number of different bilateral operations is

with varying amounts of singlet, together with other terms,{he Set of 12 rotations previously descrid@j, but our 18-
each of which can be twirled to produce a Werner state. ThiSieP_and 27-step averaging procedures require a smaller
state can then be observed using a selective excitation pmggmber of.elemer_nary operations and may be simpler to
prior to acquisition. In each case the expected spectrum is 'g'Plément in practice. With an ensemble quantum computer,

pair of antiphase doublets, with the intensity of the signaSUch @ an NMR device, it can be simpler to replace the
showing a sinusoidal modulation at the frequengy The  disCrete averaging procedure by continuous averaging, ex-

results of this experiment are shown in Fig. 2, which depictsaOIOiting the ensemble nature of th? system. We oy dev_el—
the intensity variation in the right-hand component of theOped a scheme, involving the application c_)f th_ree successive
left-hand doublet as is varied around a value of 12J) crush gradients separated by rf pulses, which is well suited to
=69.3 ms, with an increment between successive spectra MR quantum computers,_and hr?\ve demonstrated_that Its
1/(101/'):'218#5. equivalent effects can be seen for the €XPerimental performance is consistent with theoretical ex-

other three components of the NMR signal. As expected gectatmns.

sinusoidal modula_tlon of _the signal is clearly seen, and the ACKNOWLEDGMENTS
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