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This paper initiates the study of hidden variables from a quantum computing perspective. For us, a hidden-
variable theory is simply a way to convert a unitary matrix that maps one quantum state to another into a
stochastic matrix that maps the initial probability distribution to the final one in some fixed basis. We list five
axioms that we might want such a theory to satisfy and then investigate which of the axioms can be satisfied
simultaneously. Toward this end, we propose a new hidden-variable theory based on network flows. In a
second part of the paper, we show that if we could examine the entire history of a hidden variable, then we
could efficiently solve problems that are believed to be intractable even for quantum computers. In particular,
under any hidden-variable theory satisfying a reasonable axiom, we could solve the graph isomorphism prob-
lem in polynomial time, and could search Bkitem database usin@(N'3) queries, as opposed @(NY?)
queries with Grover’s search algorithm. On the other handNffébound is optimal, meaning that we could
probably not solve NP-complete problems in polynomial time. We thus obtain the first good example of a
model of computation that appeaskghtly more powerful than the quantum computing model.
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[. INTRODUCTION important contribution is theaxxiomatic approachthat we
use. We propose five axioms for hidden-variable theories in
abur setting and then compare theories against each other
" based on which of the axioms they satisfy. A central question
in our approach is which subsets of axioms can be satisfied
simultaneously.
In a second part of the paper, we make the connection to

(say an electron will be found in an excited state if mea
sured at a particular time. But it is silent abanultiple-time
or transition probabilities: that is, what is the probability that
the electron will be in an excited state at tilgegiven that it

was in its ground state at an earlier timy@ The usual re- . licit b dvi h ional
sponse is that this question is meaningless, unless of cour§élantum computing explicit by studying the computationa

the electron wasneasuredor otherwise known with prob- complexity of simulating hidden-variable theories. Below we
ability 1) to be in its ground state at, A different describe our computational results.

response—pursued by Schroding&t, Bohm[2], Bell [3],
Nelson[4], Dieks[5], and others—treats the question as pro-
visionally meaningful and then investigates how one might

answer it mathematically. Specific attempts at answers are . . . .
called “hidden-variable theories.” It is often stressed that hidden-variable theories yield ex-

The appeal of hidden-variable theories is that they providéctly the same predictions as ordinary quantum mechanics.
one possible solution to the measurement problem. For thely" the other hand, these theories describe a different picture
allow us to apply unitary quantum mechanics to the entiredf physical reality, with an additional layer of dynamics be-
universe(including ourselves yet still discuss the probabil- yond that of a state vector evolving unitarily. We address a
ity of a future observation conditioned on our current obsergquestion that, to our knowledge, has never been raised be-
vations. Furthermore, they let us do so without making anyfore: what is the computational complexity of simulating that
assumptions about decoherence or the nature of observeeglditional dynamics™ other words, if we could examine a
For example, even if an observer were placed in cohererttidden variable’s entire history, then could we solve prob-
superposition, that observer would still have a sequence déms in polynomial time that are intractable even for quan-
definite experiences, and the probability of any such setum computers?
quence could be calculated. We present strong evidence that the answer is yes. The

This paper initjates the stu_dy of hidden_ variables frpm agraph isomorphism problem asks whether two graptend
quantum computing perspective. We restrict our attention t¢4 are isomorphic, while given a basis for a lattiGe= R",
the simplest possible setting: that of discrete time, a finiteyhe approximate shortest vector problem asks for a nonzero

dimensional Hilbert space, and a fixed orthogonal basisyector in £ within a vh factor of the shortest one. We show
Within this setting, we reformulate known hldden—vanablethat both problems are efficiently solvable by sampling a

theories due to Diekg5] and Schrodingefl] and also intro-  higgen variable's history, provided the hidden-variable

duce a new theory based on network flows. However, a mor?neory satisfies the indifference axiom. By contrast, despite a

decade of effort, neither problem is known to lie in BQP
(bounded-error quantum polynomial-timéhe class of prob-
*Electronic address: aaronson@ias.edu lems solvable in quantum polynomial time with bounded er-

A. Complexity of sampling histories
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ror probability.l Thus, if we let DQP(dynamical quantum amplitudes or a preparation procedﬁr‘éy contrast, ours is
polynomial time be the class of problems solvable in our the first independently motivated model we know of that
new model, then this already provides circumstantial evi-seems more powerful than quantum computing, but only
dence that BQP is strictly contained in DQP. slightly so? Moreover, the striking fact that an unordered
However, the evidence is stronger than this. For we actusearch in our model takes abdut’® steps, as compared o

ally show that DQP contains an enticiassof problems, of ~ Steps classically anti*’> quantum mechanically, suggests
which graph isomorphism and approximate shortest vectofat DQP somehow “continues a sequence” that begins with
are special cases. Computer scientists know this clastaas P @nd BQP. It would be interesting to find a model in which

1/4 1/5
tistical zero knowledge(SZK). Furthermore, in previous S€arch takesi"™ or N> steps. o .
work [6] we showed that “relative to an oracle,” SZK is not 11 second reason our results are surprising is that, given

contained in BQP. This is a technical concept implying that® hidden variable, the distribution over its possible values at

any proof of SZKC BQP would require techniques unlike anys.ingletime is 90‘.’9.med by standard quantum mechanics
those that are cu?rently known. Combining our result thaamd Is therefore efficiently samplable on a quantum com-
. e ) &)uter. So if examining the variable’s history confers any ex-
SZKC DQP with Fhe oracle separation (], we obtain that tra computational power, then it can only be becauseoof
BQ_P#_ DQP relative FO an or'gcle as well. leen. COMPULer o ations between the variable’s values at different times.
scientists’ long-standing inability to separate basic complex-  Tha third reason is our criterion for success. We are not

ity classes, th@s is _near_ly tht_a best evidence one could h°p§’aying merely that one can solve graph isomorphism under
for that sampling h_|stor|es yields more power than standardomehidden-variable theory, or even that, under any theory
quantum computation. satisfying the indifference axiom, there exists an algorithm to
Besides solving SZK problems, we also show that bysolve it, but rather that there existssingle algorithm that
sampling histories, one could search an unordered databaselves graph isomorphism under any theory satisfying indif-
of N items for a single “marked item” using oni@(N'/3) ference. Thus, we must consider even theories that are spe-
database queries. By comparison, Grover’s quantum seardifically designed to thwart such an algorithm.
algorithm[7] requires©(NY?) queries, while classical algo- But what is the motivation for our results? The first mo-
rithms require©(N) queriesz. On the other hand, we also tivation is that, within the community of physicists who
show that oulNY upper bound is the best possible—so evenstudy hidden-variable theories such as Bohmian mechanics,
in the histories model, one cannot search\aitem database there is great interest in actualyalculating the hidden-
in (log N)° steps for some fixed powex This implies that variable trajectories for specific physmal syste[ﬂs,.lzl].
NP DQP relative to an oracle, which in turn suggests thatOur results'show th"?‘t’ when many mterac.tlng particles are
DQP isstill not powerful enough to solve NP-complete prob- !nvolved, this task might be funda_\mentally intractable, even
lems in polynomial time. Note that while graph isomor hismIf a guantum computer were available. The second motiva-
poly grap p

) ' o tion is that, in classical computer science, studying “unreal-
and the approximate shortest vector are in NP, it is strongI){stiC,, models of computation has often led to new insights
believed that they are not NP-complete.

hi . hould add h into realistic ones, and likewise we expect that the DQP
At this point we should address a concern that many reads,oqe| could lead to new results about standard quantum

ers will have. Once we extend quantum mechanics by positzompytation. Indeed, in a sense this has already happened.
ing the “unphysical” ability to sample histories, is it not com- gor our result that SZK- BQP relative to an oracles] grew
pletely unsurprising if we can then solve problems that wergy t of work on the BQP versus DQP question. Yet the “quan-
previously intractable? We believe the answer is no, for threg,m |ower bound for the collision problem” underlying that
reasons. result provided the first evidence that cryptographic hash
First, almost every change that makes the quantum coMynctions could be secure against quantum attack, and ruled

puting model more powerful seems to makeatmuchmore oyt 3 large class of possible quantum algorithms for graph
powerful that NP-complete and even harder problems be’rsomorphism and related problems.

come solvable efficiently. To give some examples,

NP-complete problems can be solved in polynomial time us-

ing a nonlinear Schrodinger equation, as shown by Abrams B. Outline of the paper
and Lloyd [8]; using closed timelike curves, as shown by
Brun[9] and Bacor{10] (and conjectured by Deuts¢hl]);

or using a measurement rule of the fof#P for any p# 2,

as shown by ufl2]. It is also easy to see that we could solve
NP-complete problems if, given a quantum stafe, we 3For as Abrams and LloyfB] observed, we can so arrange things

could request a classical description|¢f, such as a list of ~that [1)=[0) if an NP-complete instance of interest to us has no
solution, but|#)=\1-¢|0)+e|1) for some tinye if it has a solu-

Sections Il A~V B develop our axiomatic approach to
hidden variables; then, Secs. VI-IX study the computational

- tion.
ISee www.complexityzoo.com for more information about the 40ne can define other, less motivated, models with the same prop-
complexity classes mentioned in this paper. erty by allowing “noncollapsing measurements” of quantum states,

2For readers unfamiliar with asymptotic notatidd(f(N)) means  but these models are very closely related to ours. Indeed, a key
“at most orderf(N),” Q(f(N)) means “at least ordef(N),” and ingredient of our results will be to show that certain kinds of non-
O(f(N)) means “exactly ordef(N).” collapsing measurements can $imulatedusing histories.
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complexity of sampling hidden-variable histories. In Sec. VI we shift our attention to the complexity of

Section Il formally defines hidden-variable theories in oursampling histories. We formally define DQP as the class of
sense; then, Sec. Il A contrasts these theories with relatgstoblems solvable by a classical polynomial-time algorithm
ideas such as Bohmian mechanics and modal interpretationgith access to a “history oracle.” Given a sequence of quan-
Section Il B addresses the most common objections to ouum circuits as input, this oracle returns a sample from a
approach: for example, that the implicit dependence on @orresponding distribution over histories of a hidden vari-
fixed basis is unacceptable. _ _ _ able, according to some hidden-variable thedfy The

In Sec. Ill, we introduce five possible axioms for hidden- 4 4¢le can choos# “adversarially,” subject to the constraint
variable theories. These are indifference to the identity 0P, 517 satisfies the indifference and robustness axioms. Thus,
eration, robustness to small perturbations, commutativity, key result from Sec. VI that we rely on is that thesdsts

with respect to spacelike-separated unitarie_s, co_mmutativitg hidden-variable theory satisfying indifference and robust-
for the special case of product states, and invariance under

" . . ess.
decomposition of mixed states into pure states. Ideally, & . . . )
theory would satisfy all of these axioms. However, we show Section IV A establishes the most basic facts about DQP:

in Sec. IV that no theory satisfies both indifference and comfor example, that BQE DQP and that DQP is independent

mutativity; no theory satisfies both indifference and a stronf the choice of gate set. Then Sec. VII presents the “juggle
ger version of robustness; no theory satisfies indifferenceSUbroutine,” a crucial ingredient in both of our main hidden-
robustness, and decomposition invariance; and no theory safariable algorithms. Given a state of the foffa) +[0))/v2
isfies a stronger version of decomposition invariance. or (|ay—|b))/+2, the goal of this subroutine is to “‘juggle” a
In Sec. V we shift from negative to positive results. Sec-hidden variable betweda) and|b), so that when we inspect
tion V A presents a hidden-variable theory called flv  the hidden variable’s history, bofa) and |b) are observed
theoryor F7, which is based on the max-flow-min-cut theo- with high probability. The difficulty is that this needs to work
rem from combinatorial optimization. The idea is to define aunderany indifferent hidden-variable theory.
network of “pipes” from basis states at an initial time to basis Next, Sec. VIII combines the juggle subroutine with a
states at a final time and then route as much probability magechnique of Valiant and Vaziran[17] to prove that
as possible through these pipes. The capacity of each pif@ZKC DQP, from which it follows in particular that graph
depends on the corresponding entry of the unitary actingsomorphism and the approximate shortest vector problem
from the initial to final time. To find the probability of tran- are in DQP. Then Sec. IX applies the juggle subroutine to
sitioning from basis statf) to basis statéj), we then deter- search aml-item database i®(N3) queries and also proves
mine how much of the flow originating 4 is routed along that thisN* bound is optimal.
the pipe tolj). Our main results are tha7 is well defined We conclude in Sec. X with some directions for further
and that it is robust to small perturbations. SIteE trivially research.
satisfies the indifference axiom, this implies that the indiffer-
ence and robustness axioms can be satisfied simultaneously, Il. HIDDEN-VARIABLE THEORIES
which was not at all obvioua priori.
Section V B presents a second theory that we call the Suppose we have adx N unitary matrixU, acting on a
Schrddinger theoryor S7, since it is based on a pair of state
integral equations introduced in a 1931 paper of Schrodinger
[1]. Schrédinger conjectured, but was unable to prove, the [ = aq|1) + -+ + ay|N),
existence and uniqueness of a solution to these equations; the _ _
problem was not settled until the work of Nagasdwa] in ~ Where|1),...,[N) is a standard orthogonal basis. Let
the 1980s. In our discrete setting the problem is simpler, and _
we give a self-contained proof of existence using a matrix Ulg) =B D) + - + BuIN).

scaling technique due to Sinkhoffi6]. The idea is as fol-  then can we construct a stochastic magiwhich maps the
lows: we want to convert a unitary matrix that maps one

: . X vector of probabilities
guantum state to another, into a non-negative matrix whose ) )
ith column sums to the initial probability of basis stdite |ay|?
and whosgth row sums to the final probability of basis state
[j>. To do so, we first replace each entry of the unitary matrix
. . 2
by its absolute value, then normalize each column to sum to _|01N| ]
the desired initial probability, and then normalize each row to,
sum to the desired final probability. But then the columns aré
no longer normalized correctly, so we normalize thagain,
then normalize the rows again, and so on. We show that this
iterative process converges, from which it follows t5at is :
well defined. We also show th&7 satisfies the indifference |82
and product commutativity axioms and violates the decom- B B
position invariance axiom. We conjecture th8T satisfies induced by measuring)|#)? The answer is, trivially, yes.
the robustness axiom; proving that conjecture is one of th@he following matrix mapsany vector of probabilities taj,
main open problems of the paper. ignoring the input vectop entirely:

o
1

nduced by measuring)), to the vector

[ 18,2 ]

el
1
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1B - B get around this, we adopt the convention that
Spr=| t S(p,V) = lim S(p,,U),
1B 1B o0

Here PT stands forproduct theory The product theory cor- Wherep,=(1-e)p+el and| is the NN maximally mixed
responds to a strange picture of physical reality, in whichState. Technically, the limits

memories and records are completely unreliable, there being (P(p,, L))
no causal connection between states of affairs at earlier and lim ——=—1
later times. e0t (Poii

So we would likeS to depend orUJ itself somehow, not
just on|¢) andU|#). Indeed, ideallyS would be a function
only of U, and not of|). But this is impossible, as the
following example shows. Let) be aw/4 rotation, and let
|[+)=(0)+|1))/v2 and |-)=(]0)=|1))/v2. Then U|+)=|1) A. Comparison with previous work

implies that Before going further, we should contrast our approach
with previous approaches to hidden variables, the most fa-
mous of which is Bohmian mechani¢2]. Our main criti-

L J cism of Bohmian mechanics is that it commits itself to a
whereasU|-)=|0) implies that Hilbert space of particle positions and momenta. Further-
_ - more, it is crucial that the positions and momentabetinu-
11 ous in order for particles to evolve deterministically. To see
0 0] this, let|L) and|R) be discrete positions and suppose a par-
) ) ticle is in stateL) at timet, and statd|L)+|R))/\2 at a later

Il asU. then th finitel hor ¢ time t;. Then a hidden variable representing the position
[4) as well asu, then there are infinitely many choices for would have entropy 0 at, since it is alwaydL) then, but

the functionS(|#),U). Every choice reproduces the predic- entropy 1 at, since it is|L) or |R) both with 1/2 probability.

tions of quantum mechanics perfectly when restricted tornerefore the earlier value cannot determine the latePdne.
single-time probabilities. So how can we possibly choosgg|iows that Bohmian mechanics is incompatible with the
among them? Our approach in Secs. lll and V will be t©pglief that all physical observables are discrete. But in our
write down axioms that we would lik€ to satisfy and then e, there are strong reasons to hold that belief, which in-
investigate which of the axioms can be satisfied simultag,de plack hole entropy bounds, the existence of a natural
neously. minimum length scalé10733 cm), results on area quantiza-

. Formally, ahidden-variable theorys a fami_ly of fu_nc- tion in gquantum gravity{18], the fact that many physical
tions {Syln=1, where eactgy maps arN-dimensional mixed 4 aniities once thought to be continuous have turned out to

statep and anN X N unitary matrixU onto a singly stochas- pe giscrete, the infinities of quantum field theory, the implau-
tic matrix Sy(p,U). We will often suppress the dependence gjyjjity of analog “hypercomputers,” and conceptual prob-

onN, p, andU and occasionally use subscripts such’ds  |ems raised by the independence of the continuum hypoth-
or FT to indicate the theory in question. Also,df|y)ylis  ggjs.
a pure state, we may writ8(|¢),U) instead ofS(|¢)y{,U). Of course there exist stochastic analogs of Bohmian me-
Let (M);; denote the entry in thigh column andth row of  chanics, among them Nelsonian mecharjis and Bohm
matrix M. Then(S);; is the probability that the hidden vari- and Hiley’s “stochastic interpretatiof19]. But it is not ob-
able takes the valug) after U is applied, conditioned on it vious why we should prefer these to other stochastic hidden-
taking the valudi) beforeU is applied. At a minimum, any variable theories. From a quantum-information perspective,
theory must satisfy the following marginalization axiom: for it is much more natural to take an abstract approach—one
all je{1,...,N}, that allows arbitrary finite-dimensional Hilbert spaces and
that does not rule out any transition rudepriori.
2 (9ij(p)i = (UpU™)y;. Stochastic hidden variables have also been considered in
: the context of modal interpretations; see Dick$af], Bac-
This says that aftel is applied, the hidden variable takes ciagaluppi and Dicksor21], and Dieks[5] for example.
the value|j) with probability (Upu—l)”, which is the usual H'owever, the central assumpthns in that yvork are extremely
Born probability. different from ours. In modal interpretations, a pure state
Often it will be convenient to refer, not titself, but to ~ €volving unitarily poses no problems at all: one simply ro-
the matrixP(p,U) of joint probabilities whoséi, j) entry is  tates the hidden-variable basis along with the state, so that
(P)ij=(9)jj(p)ii- Theith column of P must sum to(p);;, and
the jth row must sum tqUpU™);;. Indeed, we will define  Spy differently, Bohm’s conservation of probability result breaks
the theoriesF7 andST by first specifying the matri® and  down because the “wave functions”tgiandt, are degenerate, with
then setting(S);; := (P);j/ (p);i. This approach has the draw- all amplitude concentrated on finitely many points. But in a discrete
back that if(p);; =0, then thath column ofSis undefined. To  Hilbert spacegverywave function is degenerate in this sense.

might not exist, but in the cases of interest to us it will be
obvious that they do.

S(+)U) =

S(-»U) =

On the other hand, it is easy to see tha§ ¢fan depend on
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the state always represents a “possessed property” of the syghich informally requires that the stochastic matB&xnot

tem in the current basis. Difficulties arise only for mixed depend on the temporal order of spacelike separated events.

states, and there, the goal is to track a whole set of possessBdfortunately, we will see that when entangled states are

properties. By contrast, our approach is to fix an orthogonainvolved, commutativity is irreconcilable with another axiom

basis and then track a single hidden variable that is an eléhat seems even more basic. The resulting nonlocality has the

ment of that basis. The issues raised by pure states and mixedme character as the nonlocality of Bohmian mechanics—

states are essentially the same. that is, one cannot use it to send superluminal signals in the
Finally we should mention the consistent-histories inter-usual sense, but it is unsettling nonetheless.

pretation of Griffiths[22] and Gell-Mann and Hartl¢23].

This interpretation assigns probabilities to various histories

through a quantum system, as long as the “interference” be- Ill. AXIOMS FOR HIDDEN-VARIABLE THEORIES

tween those histories is negligible. Loosely speaking, then,

the situations where consistent histories make sense are pre-We now state five axioms that we might like hidden-

cisely the ones where the question of transition probabilitie¥ariable theories to satisfy. _ _
can be avoided. Indifference The indifference axiom says that @ is

block diagonal, thei® should also be block diagonal with the
o same block structure or some refinement thereof. Formally,
B. Objections let ablockbe a subseBC{1,...,N} such tha(U); =0 for all
Hidden-variable theories, as we define them, are open tbe B, j ¢ B andi ¢ B, j € B. Then for all blocksB, we should
several technical objections. For example, we required trarhave(S);=0 for alli € B, j ¢ B andi ¢ B, j € B. In particular,
sition probabilities for only one orthogonal observable. Whatindifference implies that given any staién a tensor product
about other observables? The problem is that, according tepaceH ,® Hg and any unitaryJ that acts only ori, (that
the Kochen-Specker theorem, we cannot assign consisteist, never maps a basis statg) ® |ig) to |jo) ® |jg) Whereig
values to all observables at asjngle time, let alone give # jg), the stochastic matri$(p,U) acts only onH, as well.
transition probabilities for those values. This is an issue in RobustnessA theory is robust if it is insensitive to small
any setting, not just ours. The solution we prefer is to postuerrors in a state or unitarfwhich, in particular, implies con-
late a fixed orthogonal basis of “distinguishable experiencesijnyity). Suppose we obtai andU by perturbingp and U

and to interpret a measurement in any other basis as a unitafgspectively. Then, for all polynomiafs there should exist a
followed by a measurement in the fixed basis. As mentionegholynomialq such that for allN,

in Sec. Il A, modal interpretations opt for a different solu-
tion, which involves sets of bases that change over time with 1
the state itself. 0 _ -

Another objection is that the probability of transitioning IP(s,U) = P(p,U).. < p(N)’
from basis statéi) at timet, to basis stat§) at timet, might
depend on how finely we divide the time interval betwégn
andt,. In other words, for some statg) and unitaries/, W,
we might have

where |[M|..=max;|(M);;|, whenever|p-p|..<1/q(N) and
|[U-U|..<1/q(N). Robustness has an important advantage
for quantum computing: if a hidden-variable theory is robust,
S, WV) # SV, WS ), V) then the set of gates used to define the unitdsigs.. U is
irrelevant, since by the Solovay-Kitaev theorefsee
[25,26]), any universal quantum gate set can simulate any
other to a precisior with O(log®1/e) overhead.
Commutativity Let pag be a bipartite state, and ety and
Ug act only on subsysten’s and B respectively. Then com-
mutativity means that the order in whidd, and Ug are
applied is irrelevant:

(a similar point was made by Gillespj@4]). Indeed, this is
true for any hidden-variable theory other than the produc
theory P7. To see this, observe that for all unitarigsand
states|y), there exist unitariey/,W such thatU=WV and
V|y»=|1). Then applyingV destroys all information in the
hidden variablgthat is, decreases its entropy tp 8o if we
then applyW, then the variable’s final value must be uncor-
related with the initial value. In other words,
S(V]¢), W)S(| ), V) must equaBp(|¢),U). It follows that to S(UapasUn"Us)S(pas: Un) = S(UppasUs",Un) S(pae. Up).-
any hidden-variable theory we must associate a time scale, or
some other rule for deciding when the transitions take plac
In response, let us point out that exactly the same proble
arises incontinuoustime stochastic hidden-variable theories. =|vw @), o . . o
For if a state|¢) is governed by the Schrodinger equation I_Decqmposnmn invarianceh theory is decomposition in-
d|¢)/dt=iH ) and a hidden variable's probability distribu- Varant if
tion p is governed by the stochastic equatidp/dr=A_p,
then there is still an arbitrary parameter/dt on which the 6y an earlier version of this paper, there were two more axioms:
dynamics depend. symmetry under relabeling of basis states and a weaker version of
Finally, it will be objected that we have ignored special robustness. We have omitted these axioms because they are largely
relativity. In Sec. Il we will define acommutativity axiom irrelevant for our results.

e Product commutativityA theory is product commutative
rﬁ it satisfies commutativity for all separable pure stags
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TABLE I. Axioms the four theories satisfy. completely characterize which of the axioms can be satisfied

simultaneously.

PT DT FT ST
(producy  (Dieks)  (flow)  (Schrédinger IV. IMPOSSIBILITY RESULTS
Indifference No Yes Yes Yes This section shows that certain sets of axioms cannot be
Robustness Yes No Yes ? satisfied by any hidden-variable theory. We first show that
Commutativity Yes No No No _the failure of D7, }‘7_', and ST to_satlsfy commutativity is
inherent, and not a fixable technical problem.

Product Yes Yes No Yes - . g L

o Theorem 1No hidden-variable theory satisfies both indif-
commutatmty ..
D it v v N N ference and commutativity.
insgﬁancojl on es es ° 0 Proof. Assume indifference holds, and let our initial state

be |#)=(|00)+|11))2. SupposeJ, applies ar/8 rotation to
the first qubit andJg applies a -w/8 rotation to the second
qubit. Then,

N
Sip,U) = 2 piSuiil, V)
i=1 Ualth) = UB|¢/;>——(cos—|00> sm—|01)

for every decomposition
LT w
N + S|n§|10> + cos§|11>),
p=2 pilvauil
i=1
|01) + |10y +]11)).

of p into pure states. Theorem 2, pér, will show that the UaUg| ) =

1
UgUal) = §(|00> -
analogous axiom foP(p,U) is unsatisfiable.
Let v; be the value of the hidden variable afteunitaries
have been applied. L& be the event that,=|00) initially

. . ) _andv,=|10) at the end. IfU, is applied befordJg, then the
To fix ideas, let us compare some hidden-variable theor'eﬁmque ‘path” fromu,, to v, consistent with indifference sets
with respect to the above axioms. We have already seen tlva 110). So

product theoryP7 in Sec. Il. It is easy to show tha®7
satisfies robustness, commutativity, and decomposition in-
variance. However, we consid@&7 unsatisfactory because
it violates indifference: even if a unitaty acts only on the
first of two qubits,Spp,U) will readily produce transitions
involving the second qubit.

Recognizing this problem, Diek$] proposed an alterna-
tive theory that in our setting corresponds to the following.
First partition the set of basis states into minimal blocks

Comparing theories

PIE] < Prv; = 110 = =sir?~

2 8
But if U, is applied befordJg, then the probability thad,
=|11) andv,=|10) is at most%sinz(w/8), by the same rea-
soning. Thus, since, must equal10) with probability 1/4,
and since the only possibilities fag, are|00) and|11),

B4,...,By, between whichU never sends amplitude. Then P{E] = ———smz > = sm2—
apply the product theory separately to each block; that is, if 4 2
andj belong to the same blodg, then set We conclude that commutativity is violated. [

Let us remark on the relationship between Theorem 1 and
Bell's theorem. Any hidden-variable theory that is “local” in
Bell's sense would immediately satisfy both indifference and
commutativity. However, the converse is not obvious, since
there might be nonlocal information in the statdg|y) or
pB|¢) which an indifferent commutative theory could ex-

(U U_l)--
_ D
(9 = )
2 (UpU™;
jeBy
and otherwise setS);=0. The resultingDieks theory(D7)
satisfies indifference by construction. However, it does no

satisfy robustnesgor even continuity, since the set of
blocks can change if we replace “0” entries lhby arbi-
trarily small nonzero entries.

In Sec. V we will introduce two other hidden-variable

theories, the flow theoryF7 and the Schrédinger theo§7.
Table | lists which axioms the four theories satisfy.

If we could prove thatS7 satisfies robustness, then Table
| together with the impossibility results of Sec. IV would

7Dieks(personal communicatigrsays he would no longer defend

this theory.

ploit but a local one could not. Theorem 1 rules out this
possibility and in that sense is a strengthening of Bell's theo-
rem

The next result places limits on decomposition invariance.

Theorem 2 (i) No theory satisfies indifference, robust-
ness, and decomposition invarian¢g) No theory has the
property that

N
Plp.U) =2 piP(4) (il U)

for every decompositiol ¥ pi|¢)(¢s| of p.
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Proof. (i) Suppose the contrary. Let
cosf -siné

o0 -sne]
sing coso

|pg = c0sH|0) + sin 6]1).

Then, for everyd not a multiple ofw/2, we must have

_ 11
S(|<P—a>aR0)— 0ol

00
S(|(P77/2—0>!R0):|:1 1:|

So by decomposition invariance, lettingl =(|0)0|
+|1)(1])/2 denote the maximally mixed state,

SRy 5( 0-040-0l* 02N @nz-dl Re) _ {

2

NI= NI-
NI NI
—_

and therefore

(o (P | |1 1
P(IR)_z 2 | |4 4
T o P | |11

2 2 4 4

By robustness, this holds f#=0 as well. But this is a con-
tradiction, since by indifferenc®(l,R;) must be half the
identity.

(ii) Suppose the contrary; then,

P(|O>1R71'/8) + P(|1>1R7T/8)
2 .

P(I,Rg) =

So considering transitions frof) to |1),

P(|0),R, 0 1
(P(I,R,,T/g))oj_:( (o) 2/8))11"‘ :E

Sir— .
8
But

P(|(P7T/8>Y R7T/8) + P(|‘P57T/8>v R7T/8)

P(I YR’H'/S) = 2

also. SiNCeR 5| @ g =|@ma), We have

1
(P(l !R’ZT/B))O]. = E(P(|§DW/8>! R7T/8))Ol

1

1
5(5 - (P(|(P77/8>! R7T/8))11)

\%

1/1 1
> —(— - sin27—7> > —sin27—7,
2\2 8 2 8

which is a contradiction. |
Notice that all three conditions in Theorem 2, péint

PHYSICAL REVIEW A 71, 032325(2005

Our last impossibility result says that no hidden-variable
theory satisfies both indifference and “strong continuity,” in
the sense that for a>0 there existso>0 such that|p
-p||=< & implies||S(p,U)-S(p,U)||<e. To see this, let

1 0 0
1 1
0 = -—F
U= V2 N2 |,
o, L 1
\E VE

p=\1-280)+ 81) + 6/2),

D=V1-26%0) + 81) - 6/2).

Then, by indifference,

100 100
SpU)=|0 0 0|, spU)=l0 1 1|
011 000

This is the reason why we defined robustness in terms of the
joint probabilities matrixP rather than the stochastic matrix
S. On the other hand, note that by giving up indifference, we
can satisfy strong continuity, as is shown B7.

V. SPECIFIC THEORIES

This section presents two nontrivial examples of hidden-
variable theories: the flow theory in Sec. VA and the
Schrédinger theory in Sec. V B.

A. Flow theory

The idea of the flow theory is to convert a unitary matrix
into a weighted directed graph and then route probability
mass through that graph like oil through pipes. Given a uni-
tary U, let

B W1 = U || e

Bn Wi - (Unn ][ e

where for the time being

)= i)+ -+ a|N),

Ulg) = Ba|1) + -+ + ByIN)

are pure states. Then consider the netw@rkhown in Fig.
1. We have a source vertsxa sink vertex, andN input and
N output vertices labeled by basis staféy,...,|N). Each
edge of the fornts, |i)) has capacityq;|?, each edgéli),|j))
has capacity(U);|, and each edgéj),t) has capacitys|2.
A natural question is how much probability mass can flow
from s to t without violating the capacity constraints. Rather

were essential—foP7 satisfies robustness and decomposi-surprisingly, we show that one unit of ma($Ba§ is, all of i
tion invariance, DT satisfies indifference and decomposition can. Interestingly, this result would be false if edge, [j))

invariance, andF7 satisfies indifference and robustness.

had capacity(U);;|? [or even|(U);|***] instead ofi(U);|. We
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upy = (U)j|1) + -+ + (U)yN).

Let H, be the subspace of states spanned|byi € A}, and
let Hg be the subspace spanned fjy)):j € B}. Also, let
La(|#)) be the length of the projection ¢f) ontoH,, and let
Lg(|¢)) be the length of the projection ¢f) ontoHg. Then,
since theli)’s and |uj)’'s from orthogonal bases fdt, and
Hg, respectively, we have

A:r?g > LR+ > K|

ieA jeB

FIG. 1. A network(weighted directed graph with source and =max{La(|$)?+ Lg(|)3].
sink) corresponding to the unitaty and statg ). )

So letting 6 be the angle betweedr, andHg,
also show that there exists a mapping from networks to
maximal flows in those networks, which i®bustin the A=2 co§g =1 + cosf
sense that a small change in edge capacities produces only a

small change in the amount of flow through any edge. <1+ max [ab)

The proofs of these theorems use classical results from la) e Ha by e Hg
the theory of network flowssee[27] for an introduction. In
particular, let acut be a set of edges that separatdsom t; =1+ max (2 7i<i|><2 5j|uj>)‘
the value of a cut is the sum of the capacities of its edges. yafP - +nl=1 | \ieA 1B
Then a fundamental result called thex-flow-min-cut theo- |83+ -+ 8\%=1
rem [28] says that the maximum possible amount of flow <1+ 3 |yl
from s to t equals the minimum value of any cut. Using that - A <B i
result we can show the following. ’
Theorem 3 One unit of flow can be routed fromtot  which completes the theorem. |
in G. Observe that Theorem 3 still holds if acts on a mixed

Proof. By the above, it suffices to show that any €ltn statep, since we can writ@ as a convex combination of pure
G has value at least 1. Lét be the set of e {1,...,N} such  states|#)y], construct a flow for eachy) separately, and
that(s,|i)) ¢ C, and letB be the set of such that|j),t) ¢ C.  then take a convex combination of the flows.

ThenC must contain every edgéi), |j)) such thai e A and Using Theorem 3, we now define the flow thed¥y. Let
j B, and we can assume without loss of generality hat F(p,U) be the set of maximal flows fqr,U—representable
contains no other edges. So the valueCoi by NXN arrays of real numbers; such that 6<f;
<|(U);| for all i,j and also
2 laf+ 2B+ X W)yl _
A jes | icAjen > fi; = ()i, > fij = (UpU™);;.

j i

Therefore we need to prove the matrix inequality Clearly F(p,U) is a convex polytope, which Theorem 3 as-

(1 - |ai|2) + (1 -3 |Bj|2) + S |(U)ij| =1 serts is nonempty. F9rm a maximallfloﬁlv(p,U) e F(p,U)
A jeB icAjcB as follows: first letf;; be the maximum off;; over all
feF(p,U). Then letf;, be the maximum off,, over all
f e F(p,U) such thatf,,=f;,. Continue to loop through all
i,j pairs in lexicographic order, setting eathto its maxi-
1+ 2 W)= 2 e+ X 1B (1) mJurFr)1 possible vaI?Je ?:onsistent with t(?e 1)ﬁl:|lq+j—1 previ-
ous values. Finally, Ie(P)ij:ij for all i,j. As discussed in
Let U be fixed, and consider the maximum of the right-handSec. Il, givenP we can easily obtain the stochastic ma®ix

or

ieAjeB ieA jeB

side of Eq.(1) over all|¢). Since by dividing theith column by(p); or taking a limit in case
(p)ii=0.
B = E U)jjai, It is easy to check that’7 so defined satisfies the indif-
I

ference axiom. Showing thaF7 satisfies robustness is
harder. Our proof is based on the Ford-Fulkerson algorithm
[28], a classic algorithm for computing maximal flows that
works by finding a sequence of “augmenting paths,” each of

this maximum is equal to the largest eigenvaluef the
positive semidefinite matrix

D li)i| + > |uj)(uj|, which increases the flow frons to t by some positive
oA B amount.
Theorem 4 F7 satisfies robustness.
where, for eachj, Proof. Let G be an arbitrary flow network with source
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sink t, and directed edges,...,e,, where eaclg has ca- g,<e—ggteg—e+te "¢,

pacity ¢; and leads fronmy; to w;. It will be convenient to ]

introduce a fictitious edge, from t to s with unlimited ca- @nd so on up tey. This completes the proof. u
pacity; then maximizing the flow througB is equivalent to That 77 violates decomposition invariance now follows

maximizing the flow througte,. Suppose we produce a new from Theorem 2, parti). One can also show tha&7" vio-
network G by increasing a single capacity: by somee lates prgduct commutativity, by conS|der|ng _th.e. following
~0. Let f* be the optimal flow forG, obtained by first X@mPle: 'eﬂ¢>:L¢w/4>®|¢—w/8> be a two-qubit initial state,
maximizing the flowf, throughey, then maximizing the flow and letR%, andR2,, be 7/ 4 rotations applied to the first and

) ) ~ second qubits, respectively. Then,
f, throughe; holding f, fixed, and so on up té,, Let f* be

the maximal flow forG produced in the same way. We claim SRyl ), RE)S(1).R0) # SRS 1), Ro) S, R 4).

that, for alli £ {0,...,m}, We omit a proof for brevity.

-1
To see that the theorem follows from this claim: firstf’fis ] ] ] )

robust under adding to c., then it must also be robust _ Our final hidden-variable theory, which we call the
under subtracting from c.. Second, if we changg,U to  Schrodinger theoryr S7, is the most interesting one math-
5.0 such thailp—pll. = 1/q(N) and|[U-U]..<1/q(N), then ematically. The idea—to make a matrix into a stochastic ma-

. ine thal2+ 2N ed i h d trix via row and column rescaling—is natural enough that we
‘Q’;gﬁg I?Oa%QS edge capacilies are changed one ., e upon it independently, only later learning that it origi-

nated in a 1931 paper of Schrodindgét. The idea was sub-
= TNt SN sequently developed by For{eX9], Beurling[30], Nagasawa
£ @.U) = £ (o, Ul < % W] = Wl [15], and others. Our goal is to give whab our knowledgg
is the first self-contained, reasonably accessible presentation
+ |@)i = (p)ii of the main result in this area and to interpret that result in
i what we think is the correct way: as providing one example
of a hidden-variable theory, whose strengths and weaknesses

=e¢.

B. Schrédinger theory

* 2 |(UBU™;; = (UpU ™ should be directly compared to those of other theories.
) Most of the technical difficulties if1,15,29,30 arise be-
_ 4_l\12 cause the stochastic process being constructed involves con-
- qN)’ tinuous time and particle positions. Here we eliminate those

o difficulties by restricting attention to discrete time and finite-
(Here we have made no attempt to optimize the bound.  dimensional Hilbert spaces. We thereby obtain a generalized
We now prove the claim. To do so we describe an iterativg,ersiolf of a problem that computer scientists know as
algorithm for computingf*. First maximize the flowf, (r,c)-scaling of matrice$16,31,32.
throughe, by using the Ford-Fulkerson algorithm to find a  agin the case of the flow theory, given a unitahacting

maximal flow froms to t. Let f© be the resulting flow, and g, 5 statep, the first step is to replace each entrylbby its
let G be the residual network that corresponds'fd For  apsoute value, obtaining a non-negative mat® defined
eachi, that is, G has an edge=(v;,w;) of capacityci  py (U©);;:=[(U);]. We then wish to find non-negative col-
=¢—f” and an edg&=(w,v;) of capacityc"=f". Next umn multipliers a, ...,y and row multipliersgy, ..., By
maximizef, subject tof, by using the Ford-Fulkerson algo- such that, for ali,j,

rithm to find “augmenting cycles” fronw, to v; and back to

w; in GM\{e,,e,}. Continue in this manner until each of i By(U )i+ + i Bu(U )iy = (p)i 2
fi,...,fm has been maximized subject to the previdys.
Finally setf*=fMm, B (U + -+ (U0 =(U U™ ()

Now, one way to computg* is to start with f*, then
repeatedly “correct” it by applying the same iterative algo-

rithm to maximizef, thenfy, and so on. Lek;=|f; =, (3) are satisfied. Admittedly, it might be thought physically
then, we need to show thaf<e for all i €{0,....m}. The  jjausible that such a complicated dynamical process
proof is by induction on. Clearlyeo=<se, since increasing  ghoyld take place at every instant of time. On the other hand,
by e can increase the value of the minimum cut frero t it is hard to imagine a more “benign” way to convé#®
by at moste. Likewise, after we maximizd,, the value of into a joint probabilities matrix than by simply rescaling its
the minimum cut fromw; to v, can increase by at most  rows and columns.
—got+eg=e. For of the at most new units of flow fromw;
to v, that increasingci» made availablegy of them were ——— _ _ _ ) _

In (r,c)-scaling, we are given an invertible real matrix, and the

taken up” in maximizingfo, but the process of maximizing goal is to rescale all rows and columns to sum to 1. The generalized

fo could have again increased the minimum cut fieto v, version is to rescale the rows and columns to given valnes
by up toeg. Continuing in this way, necessarily L

If we like, we can interpret they's and g;'s as dynamical
variables that reach equilibrium precisely when E@s.and
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We will show that multipliers satisfying Eq$2) and(3)  As a result of the(2t)th normalization step, we hag,C*
always exist. The intuition of a dynamical process reaching=1. Subject to that constraint, the maximum of
equilibrium turns out to be key to the proof. For &# 0, let

H (Ci(Zt))(p)ii
(UZD), = o (U, !
> (U@, (2, @) . .
” ik over theC;””’s occurs whenC;”"=(p); for all i—a simple
calculus fact that follows from the non-negativity of the
o Kullback-Leibler distance. This implies tha?*V=z2),
(U2, = (UpU™);; (@D, Similarly, normalizing rows leads tg*2 = z(2+1),

It follows that the limit P(p,U)=lim, ..U exists. For
suppose not; then son@ft) is bounded away frontp);;, SO
In other words, we obtait)@* by normalizing each col- there exists as>0 such thaZV = (1+¢)Z" for all event.
umni of U@ to sum to(p);; likewise, we obtairJ@+2 py ~ But this is a contradiction, sinc&®>0 and z"<1
normalizing each row of U®*Y to sum to(UpU™);:. The for all t. _ _ _ u

; ; o Besides showing thd(p,U) is well defined, Theorem 5
crucial fact is that the above process always converges to 9 P '

2 (U(2t+l))k]_
k

someP(p,U)=lim,_..UY. We can therefore take also yields a procedure talculate F{p,U) (as well as the
a;'s and g;’s). It can be shown that this procedure converges
- (p); to within entrywise errog after a number steps polynomial
=115 o in N and 1/k. Also, once we havé®(p,U), the stochastic
=0 % (Ui matrix S(p,U) is readily obtained by normalizing each col-
umn of P(p,U) to sum to 1. This completes the definition of
o 1 the Schrédinger theorg7.
B = (UpU™);; It is immediate thatS7 satisfies indifference. Let us show
e S (UeHD),, that it satisfies product commutativity as well.
k Proposition 6 S7 satisfies product commutativity.

Proof. Given a statg)=|#) ® |¢), let Up® 1 act only

for all i,j. Although we will not prove it here, it turns out :
that this yields ainiquesolution to Eqs(2) and(3), uptoa [#2) and letl @ Ug act only on|yg). Then we claim that
global rescaling of the forma;— a;c for all i and g ), Ua® 1) =S|iha),Up) @ 1.

— B;j/c for all j [15].

Our convergence proof will reuse a result about networ
flows from Sec. VA, in order to define a nondecreasing .
“progress measure” based on Kullback-Leibler distance. state[x) of |y), has no e_ffect on the scaling procedure that

Theorem 5The limit P(p,U)=lim, .U exists. producesS(|¢x),Un). Similarly,

Proof. A consequence of Theorem 3 is that for evpry, Syl ® Ug) =1 ® |¢), Ug).
there exists alN X N array of non-negative real numbefis
such that It follows that

(1) f;;=0 whenevet(U);;|=0,
) fijl+"'+fiN:(P)ii fml alli, S([a),Ua) ® S(|44g),Ug)

kThe reason is simply that multiplying all amplitudes|if)
andU,|y,) by a constant factow,, as we do for each basis

(3) fyy+ -+ +fy=(UpU™; for all . =S(Unlyw) @ |¥e),1 © Ug)S((4),Up @ 1)
Given any such array, define a progress measure = S| ® Uglvre),Ua ® NS0, ® Ug).
70 = H (U(t))ifjij, m

] On the other hand, numerical simulations readily show
where we adopt the conventio?=01. We claim thaz*?  that ST violates decomposition invariance, even whign
=70 for all t=1. To see this, assume without loss of gen-=2 (We omit a concrete example for brevity

erality that we are on an odd steg+2, and let Ci(Zt)
:EJ-(U(ZU)” be theith column sum before we normalize it. VI. COMPUTATIONAL MODEL
Then,

Z(2t+1) - H (U(2t+1))ifjij — H

We now explain our model of computation, building our
( (p)ij (U(zt))ij)f” way up to the complexity class DQP. From now on, the states

- L @ p that we consider will always be pure statesfcflog, N
v R qubits. That isp=|y)(y| where
~ H(U(zt))fij H % fig+ -+
=L i )| L W= 2 .
!y ( ') : xe{0,11¢
:zml‘[(%) o Our algorithms will work underany hidden-variable
i \Gi theory that satisfies the indifference axiom. On the other
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hand, if we take into account that even in the@st alone in  BQPC DQP; that is, sampling histories is at least as power-
practice, a generic unitary cannot be represented exactlyull as standard quantum computation. Fey, the first
with a finite universal gate set, only approximated arbitrarilyhidden-variable value returned I6%('7), can be seen as sim-
well, then we also need the robustness axiom. Thus, it iply the result of applying a polynomial-size quantum circuit

reassuring that themxistsa hidden-variable theorgnamely,
FT) that satisfies both indifference and robustness.

Let a quantum computer have the initial sté§¢, and
suppose we apply a sequeri¢e (U4, ...,U) of unitary op-

U, to the initial statel0)®¢ and then measuring in the stan-

dard basis. A key further observation is the following.
Theorem 7 Any universal gate set yields the same com-

plexity class DQP. By universal, we mean that any unitary

erations, each of which is implemented by a polynomial-sizematrix (real or complex can be approximated, without the

quantum circuit. Then aistory of a hidden variable through
the computation is a sequenie=(vy, ... ,vt) of basis states,
wherev, is the variable’s value immediately afték, is ap-
plied (thus vy=|0)®¢). Given any hidden-variable theof¥,
we can obtain a probability distributiof(Z/,7) over histo-
ries by just applyingZ repeatedly, once for eadb, to ob-
tain the stochastic matrices

S]0)¥4,U1),S(U1]0)*4,Uy), ..., S(Upy - -~ U4 [0)®E, Uy).

Note thatQ)(U/,T) is a Markov distribution; that is, eaah is
independent of the other’s conditioned onv,_; and v4.
Admittedly, Q2(2/,7) could depend on the precise way in
which the combined circuit);---U, is “sliced” into compo-
nent circuitsUq, - - -, U1. But as we showed in Sec. Il B, such

need for ancilla qubits.

Proof Let G and G’ be universal gate sets. Also, lat
=(U4,...,Ut) be a sequence dfqubit unitaries, each speci-
fied by a polynomial-size quantum circuit ovgér We have
T,£=0(poly(n)) wheren is the input length. We can also
assume without loss of generality that n, since otherwise
we simply insertn—¢ dummy qubits that are never acted on
(by the indifference axiom, this will not affect the results
We want to approximaté/ by another sequence d@fqubit
unitaries, 4’ =(Uj, ...,Us), where each)] is specified by a
quantum circuit overg’. In particular, for allt we want
||U{—Ut||m<2‘€2T. By the Solovay-Kitaev theorerf25,26],
we can achieve this using polp, ¢2T)=poly(n) gates from
G'; moreover, the circuit folJ{ can be constructed in poly-

dependence on the granularity of unitaries is unavoidable imomial time given the circuit fol,.

any hidden-variable theory other th&y.

Given a hidden-variable theory, let O(7) be an oracle
that takes as input a positive integérand a sequence of
quantum circuitd/=(U4,...,U) that act on¢ qubits. Here
eachU, is specified by a sequendg; ;,...,0;my) Of gates
chosen from some finite universal gate sktThe oracle
O(T) returns as output a samgley, ...,v7) from the history
distribution (¢4, 7) defined previously. Now led be a de-

terministic classical Turing machine that is given oracle ac

cess toO(7). The machinéA receives an inpux, makes a
single oracle query t@(7), and then produces an outpu
based on the response. We say a set of stilinigan DQP if
there exists arA such that for all sufficiently large and
inputsx € {0, 1}", and all theoriesI” satisfying the indiffer-
ence and robustness axionss correctly decides whether
e L with probability at least 2/3, in time polynomial im

Let us make some remarks about the above definition.

There is no real significance in our requirement thAabe

Let |g)=U;--Ug|0)®¢ and |¢)=U;---U;|0)*‘. Notice
that, for allte{1,...,T},

’ ’ _p2 _p2
9> = lelle < 2l = [l + 27T < T2T(27T)
- T2—€(€—1)T

since ||| = |¢o)l|l..=0. Here| |.. denotes the maximum en-
trywise difference between two vectors(i . Also, given a

theory 7, let P, and P{ be the joint probabilities matrices

corresponding tdJ; and U/, respectively. Then by the ro-

{ bustness axiom, there exists a polynomgpkuch that if

IV ~Udl.<1/q(2") and [|y_p=lvr-0l-<1/a(2"), then
|P;=P{|..=<273. For all such polynomialg, we have 20T
<1/q(2%) and T274VT<1/q(2% for sufficiently largen

< (. Thereford|P,—P{|..<27% for all t and sufficiently large
n.

Now assume that is sufficiently large, and consider the
distributionsQ(U/,7) and Q' ,7) over classical histories

deterministic and classical and that it be allowed only oneH=(vo,...,v,). For alite{1,...,T} andx e {0, 1}, we have

query toO(7). We made this choice only because it suffices
for our upper bounds; it might be interesting to consider the

Pr
oQUT

Pr [v,=|x]] <2¢273)=27%,
QU 1)

)[Ut =1x)]-

effects of other choices. However, other aspects of the defi- ) o )
nition are not arbitrary. The order of quantifiers matters; welt follows by the union bound that the variation distance

want a singleA that works forany hidden-variable theory
satisfying indifference and robustness. Also, we regaite
succeed only for sufficiently larga since by choosing a
large enough polynomial(N) in the statement of the robust-
ness axiom, an adversary might easily makiacorrect on a
finite number of instances.

Basic results

QW' , T)-QU,T)| is at most

T T

— g J—

2t 2

In other words)(i4’,T) can be distinguished fro®(l4,T)

with bias at mosf/2", which is exponentially small. So any
classical postprocessing algorithm that succeeds with high
probability givenH e Q(i4,7) also succeeds with high prob-
ability givenH e Q(i’, 7). This completes the theorenll

T2/(27%) =

Having defined the complexity class DQP, let us establish Unfortunately, the best upper bound on DQP we have
its most basic properties. First of all, it is immediate thatbeen able to show is DQPEXP; that is, any problem in
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DQP is solvable in deterministic exponential time. The proofstates that agree with on theith bit and similarly for the
is trivial: let 7 be the flow theoryF7, with the slight modi-  probability mass atb). Then, afterU, is applied,v, can
fication that we omit the step from Sec. V A of symmetrizing differ from v, only on theith bit, again by the indifference
over all permutations of basis states. Then, by using thexiom. So each basis stated§U,|) must receive an equal
Ford-Fulkerson algorithm, we can clearly construct the regeontribution from probability mass originating &) and
uisite maximum flows in time polynomial in2Zhence ex- probability mass originating db). Thereforev, is indepen-
ponential inn) and thereby calculate the probability of each dent ofv,, from which it follows thatv is independent of
possible history(v,,...,v7) to suitable precision. as well.

Unfortunately, the juggle subroutine only works with
probability 1/2¢)—for it requires thata;#b;,, and even
then, inspecting the historfpg,v4,...) only reveals botha)

This section presents a crucial subroutine that will be use@nd [b) with probability 1/2. Furthermore, the definition of
in both algorithms of this paper: the algorithm for simulating PQP does not allow more than one call to the history oracle.
statistical zero knowledge in Sec. VIII and the algorithm for However, all we need to do is pack multiple subroutine calls
search inN'3 queries in Sec. IX. Given aif-qubit state into a single oracle call. That is, choobk similarly to U,
(la)+|b))/2, where|a) and|b) are unknown basis states, the (except with a different value dff and setUs=U, and Us
goal of the juggle subroutine is to learn baitandb. The ~ =Ys DO the same with7,Us, and U, and so on. Since
name arises because our strategy will be to “juggle” a hiddefys:Ys, Us. ... all return the quantum state ), the ‘?ﬁgCt IS
variable, so that if it starts out &), then with non-negligible  that of multiple independent juggle attempts. With*2at-
probability it transitions tdb) and vice versa. Inspecting the €MPts, we can make the failure probability at m@st
entire history of the hidden variable will then reveal bath —1/(20))*" <e™.
andb, as desired. As a final remark, it is easy to see that the juggle subrou-

To produce this behavior, we will exploit a basic featuretine works equally well with states of the foriw)=(|a)
of quantum mechanics: that observable information in one-|b))/\2. This will prove useful in Sec. IX.
basis can become unobservable phase information in a dif-
ferent basis. We will apply a sequence of unitaries that hide
all information abouta andb in phases, thereby forcing the VIII. SIMULATING SZK

hidden variable to “forget” whether it started|a} or |b). We Our goal is to show that SZ& DOP. Here SZK, or sta-

will then invert those unitaries to return the state (a) - = .

= . _ . _ o tistical zero knowledge, was originally defined as the class of
+|b,>,)./V23 at which point the hidden variable, having forgqt— all problems that possess a certain kind of “zero-knowledge
ten” its initial value, must be unequal to that value with proof protocol’—that is, a protocol between an omniscient
provtz/ablllty 1{2' h broutine. Lok = b/ 12 be th prover and a verifier, by which the verifier becomes con-
_ wenhowgive t 1€ su routme. {ap?-(|a)+| NIN2bethe  \ineeq of the answer to a problem, yet without learning any-
initial state. _The first unlta_lrjul consists of Hadamard_gate_s thing else about the problem. However, for our purposes this
on £-1 qubits chosen uniformly at random and the identity ¢y srographic definition of SZK is irrelevant. For Sahai and
operation on the remaining quhit Next U, consists of &  y;3ghan[33] have given an alternate and much simpler char-
Hadamard gate on quhit Finally U; consists of Hadamard  ycterization: a problem is in SZK if and only if it can be
gates on all¢ qubits. Leta=a,...a, and b=b;...b. Then  raqyced to a problem called statistical difference, which in-
sincear Db, we haveg #b; with probability at least 1¢.  yolyes deciding whether two probability distributions are

VII. JUGGLE SUBROUTINE

Assuming that occurs, the state close or far.
1 More formally, letPy and P; be functions that map-bit
Uql = W( > (-1)27aEp) strings toq(n)-bit strings for some polynomial, and that are
2e{0,1}%:z=4, specified by classical polynomial-time algorithms. L&
f 3 (= 1Pzbi) andA, pe the_probability (_jistributions o_véro(x) andP;(x),
2 (0., ) respectively, ifxe{0,1}" is chosen uniformly at random.

Then the problem is to decide whethiér,—A4|| is less than
assigns nonzero amplitude to all’ dasis states. Then 1/3 or greater than 2/3, given that one of these is the case.
U,U,|#) assigns nonzero amplitude to""2 basis states Here,

|z—namely, those for whicha-z=b-z(mod 2. Finally

UsUaUslih=[). Iho-Adl=2 3 | Pr [P =y]
Let v; be the value of the hidden variable aftdy is ap- ye{o, 190 |xe{0,1"

plied. Then, assuming; #b;, we claim thatv; is indepen- _

dent ofv,. So in particular, ifvg=|a), thenvz=|b) with 1/2 _Xegrl}n[Pl(X) =v]

probability, and ifvy=|b), thenvs=|a) with 1/2 probability.
To see this, observe that whéwy, is applied, there is no is the variation distance betweéy and A;.

interference between basis sta@ssuch thatz =a; and those To illustrate, let us show that graph isomorphism is in
such thatz;=b;. So by the indifference axiom, the probability SZK. Given two graph&, andG,, takeAg to be the uniform
mass atla) must spread out evenly among ali"2 basis distribution over all permutations @&, andA to be uniform
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over all permutations of5;. This way, if Gy and G, are i 1
isomorphic, them\, and A, will be identical, so||Ag—A,]| P [(lANhHs)|=1]= r.
=0. On the other hand, 6, andG; are nonisomorphic, then =Tk

Ao and A, will be perfectly distinguishable, S\~ A4|=1.  As a corollary, the expectation ovhre D, of
Since Ay and A; are clearly samplable by polynomial-time ) _ _

algorithms, it follows that any instance of graph isomor- {s e {0, B lANh 9 = 1}

phism can be expressed as an instance of statistical diffefs at least ¥8. It follows that, if x is drawn uniformly at
ence. For a proof that the approximate shortest vector prorandom fromA, then

lem is in SzZK, we refer the reader to Goldreich and

Goldwassel 34] (see also Aharonov and Ta-Shirgb)). PI|A N hi(h(x)| = 1] = % = 1
Our proof will use the following “amplification lemma” hx Al 4
from [33].°

This immediately suggests the following algorithm for the

samplable distributions\, and A;, we can construct new Many-to-one hcase. Drﬁ"‘kh uniformly at random frohm
efficiently samplable distribution, and A}, such that if 12:--:N*+1} then, drawho,hy & Dy Havel prepare the
|Ag=A4[<1/3, then [Aj-Aj|<2™ while if [Ag-A, St&te

Lemma 8 (Sahai and Vadhan)Given efficiently-

=2/3, then||Ag—-Af[=1-2" 1
In particular, Lemma 8 means we can assume without loss S > [b)[x)| Py(x)) (X))
of generality that eithef|Ag—A4|<2™ or |Ag-Al=1 be{0.21xe{0, 3"
—2"" for some constant> 0. and then apply the juggle subroutine to the joint state of the
Having covered the necessary facts about SZK, we cafb) and|x) registers, ignoring thiP,(x)) and|h,(x)) registers
now proceed to the main result. as before.
Theorem 9SZKC DQP. Suppose ||[Ag—A4]|=0. Also, given xe{0,1}" and i

Proof. We show how to solve statistical difference by us- €{0,1}, let Ai:Pi‘l(Pi(x)) and Hi:hi‘l(hi(x)), and suppose
ing a history oracle. For simplicity, we start with the special 2k-2<|A | =|A;| < 2L, Then,
case wherd®, and P; are both one-to-one functions. In this

2
case, the circuit sequentégiven to the history oracle does Pr [|A; N Ho| = 10[A; N Hy|=1] = (})
the following: it first prepares the state shohy 0 . ! 4/
1 since the event$A,NHy/=1 and|A; NH4 =1 are indepen-
o(+1)12 > D)X} Pp(x)). dent of each other conditioned @nAssuming both events

be{0,1}xe{0,1" occur, as before the juggle subroutine will reveal box,)

It then applies the juggle subroutine to the joint state of thend [1)[xy) with high probability, wherex, and x; are the
Iby and|x) registers, taking=n+1. Notice that by the indif- Unique elements oRy,NHo and A;MHy, respectively. By
ference axiom, the hidden variable will never transition from¢ontrast, if|Ao—A4|=1, then only one value of thi) reg-
one value ofP,(x) to another—exactly as if we hasea- ister will evercbe observed. Again, replauﬁngo—AlH:co by
suredthe third register in the standard basis. All that matterd/Ao—A4[<2™" and||[Ag=A4[=1 by [|[Ag=A4[=1-2"" can
is the reduced stati) of the first two registers, which has have only a negligible effect on the history distribution.
the form (|0)[xo) +|1)[x1))/\2 for somexg, Xy if |Ag—A4]|=0 Of course, the probability that the correct valuekofs
and|b)|x) for someb, x if ||Ag—A4|=1. We have already seen chosen, and thaf\,NHy(s) and A;NH;(s) both have a
that the juggle subroutine can distinguish these two casestnique element could be as low ag(16n). To deal with this,
when the hidden-variable history is inspected, it will containwe simply increase the number of calls to the juggle subrou-
two values of theb) register in the former case and only one tine by anO(n) factor, drawing new values d,ho,h; for
value in the latter case. Also, clearly the cdb®,—A,| €ach call. We pack multiple subroutine calls into a single
<2 is statistically indistinguishable fronfAq—A4[=0 oracle call as desg:ribed in Se_c. V_II, except that now we
with respect to the subroutine, and likewii&,—A =1  Uncompute the entire stateeturning it to[0---0)) and then
_o g indistinguishable fromjAg—A4|=1. recompu_te it between subro_utlne calls. A_ final rem_a_rk:_ since
We now consider the general case, whgeand P, need Ehe algonthm that calls the history qracle is determln[stlc, we
not be one to one. Our strategy is to reduce to the one-to-on raw” new values ok, ho,h; by havingl/ prepare a uniform

case, by using a well-known hashing technique of Va”antsuperposmon over all possible values. The indifference

and Vazirani[17]. Let D, be the uniform distribution over axiom justifies this procedure, by guaranteeing that within
all affine functioﬁs mapE)’;(n{p 1"t0 {0, 1% where we iden- each call to the juggle subroutine, the hidden-variable values

tify those sets with the finite fieldg) and &, respectively. of k, ho, andh, remain constant. u

What Valiant and Vazirani showed is that, for all subsets Let us end this section with some brief remarks about the
L] H H . n n
AC{0,1}" such that 52<|A| <2< and alls < {0, 1}, oracle result of 6]. Given a functiong: {0, 1}"— {0, 1}", the

collision problemis to decide whetheg is one to one or two

to one, given that one of these is the case. The question is,
®Note that in this lemma, the constants 1/3 and 2/3 are not arbinow many queries t@ are needed to solve this problem

trary; it is important for technical reasons thai/3)%>>1/3. [where a query just returrigx) givenx]? It is not hard to see
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that6(2.“’2) querieg are necessary and sufficient fqr classical o-n6,, S CDyx +278 D [0)°M3),
randomized algorithms. What we showed [if] is that ye{0. 413 xe{0, 1203

Q(2"%) queries are needed by amuantumalgorithm as o _ _ ’ _

well. Subsequently SHi36] managed to improve the quan- wherex, consists of the firsh/3 bits ofx andxg consists of
tum lower bound toQ(2"3) queries, thereby matching an the remaining 8/3 bits. LetY be the set of 73 basis states
upper bound of Brassard, Hayer, and T&Bf. On the other  Of the foégw3|y>|x5> andZ be the set of 2'° basis states of the
hand, the collision problem is easily reducible to the statistiform 0)"[2). o6 . ,

cal difference problem and is therefore solvable in polyno- Notice that 2™a=2""8. So with the sole exception of

. . o . /3 ; « »
mial time by sampling histories. This is the essence of the®)“"“Ixe) (which belongs to botty and z), the Enarked )
statement that BOR DQP relative to an oracle. basis states ilY have the same amplitude as the “unmarked

basis states iZ. This is what we wanted. Notice also that, if
we manage to find anly)|xg) € Y, then we can find itself
IX. SEARCH IN N3 QUERIES using 2" further classical queries: simply test all possible
strings that end ixg. Thus, the goal of our algorithm will be
Given a Boolean functiori:{0,1}"—{0, 1}, the database to cause the hidden variable to visit an elemen¥p$o that
search problem is simply to find a stringsuch thatf(x) inspecting the variable’s history reveals that element.
=1. We can assume without loss of generality that this As in Theorem 9, the tools that we need are the juggle
“marked item”x is unique'® We want to find it using as few subroutine and a way of reducing many basis states to two.
queries tof as possible, where a query returfitg) giveny.  Let s be drawn uniformly at random frorf0, 1}"3. Thent/
Let N=2". Then classically, of cours€)(N) queries are appends a third register to the state, and sets it eqyal io
necessary and sufficient. By queryirfigin superposition, the first two registers have the for{6)*"|z) or to |s,y) if

Grover's algorithm[7] finds x using O(NY?) queries, to- they have the formly)|xg). Disregarding the basis state

~ b sni3 - :
gether withO(N'?) auxiliary computation stepgere theO [0)®"™xg) for convenience, the result is

hides a factor of the form{logN)°]. Bennettet al. [38] ~ 26,( > (—1paYy)xa)syy+ > [0)2"32)|2)).
showed that any quantum algorithm ne&¥dN'/?) queries. yelo, g3 2¢{0,1123

In this section, we show how to find the marked item by ) ) ) .
Next U/ applies the juggle subroutine to the joint state of the

i istori i 1 - D(NY
samplmg_hlstones, using oniQ(N™") queries and(N™) first two registers. Suppose the hidden-variable value has the
computation steps. Formally, the model is as follows. Each, |0)2M32)|2) (that is, lies outsid&). Then with probabil-

of thg guantum circuits_Jl, ..., Uy that algorithmA gives to ity 273 overs, the firstn/3 bits ofz are equal tes. Suppose
the history oracled(7) is now able to query. Supposel; this event occurs. Then, conditioned on the third register be-

make.sqt qugries tof; then, the total number of queries made ing |2), the reduced state of the first two registers is
by A is defined to beQ=q;+---+qy. The total number of

computationsteps is at least the number of steps required to (= 1)*7%8|z5)[xg)[0)*"¥|2)
write downU,,...,Uq, but could be greater. V2 '

Theorem 10In the DQP model, we can search a database ) ) )
of N items for a unique marked item usi®(N3) queries ~Wherezg consists of the last/3 bits ofz. So it follows from

Sec. VII that with probability()(1/n), the juggle subroutine
will cause the hidden variable to transition frg@®"3|z) to
|zs)|xg) and hence fronZ to Y.

The algorithm calls the juggle subroutin®(2"3n)
=O(NY3log N) times, drawing a new value afand recom-
puting the third register after each call. Each call moves the
hidden variable fromZ to Y with independent probability
Q(27"3/n); therefore, with high probabilitsomecall does
so. Note that this juggling phase does not involve any data-

1 base queries. Also, as in Theorem 9, “drawirg’really
@= N3 4 o U3+l 4 means preparing a uniform superposition over all possible
Finally, the probability that the hidden variable ever visits the
basis statd0)®"3|xg) is exponentially smallby the union
bound, which justifies our having disregarded it. |

A curious feature of Theorem 10 is the trade-off between
gueries and computation steps. Suppose we ha®ritera-
(one can check that this state is normalizeédexti/ applies  tions of Grover’s algorithm or, in other words, maQeque-
Hadamard gates to the first3 qubits. This yields the state ries tof. Then, providedQ< VN, the marked statg) would
have occurred with probability)(Q?/N), meaning that

190 if there are multiple marked items, then we can reduce to th&(N/Q?) calls to the juggle subroutine would have been suf-
unique marked item case by using the Valiant-Vazirani hashindicient to findx. Of course, the choice dD that minimizes
technique described in Theorem 9. max {Q,N/Q?% is Q=N¥3. On the other hand, had we been

and O(N'3) computation steps.

Proof. Assume without loss of generality thidt=2" with
n|3 and that each database item is labeled by-ait string.
Let x e {0, 1}" be the label of the unique marked item. Then
the sequence of quantum circuits does the following: it
first runsO(2"3) iterations of Grover’s algorithm, in order to
produce then-qubit statea|x)+ B2, .o rly), Where

B - 2—n/3a
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willing to spend O(N) computation steps, we could have has been that such considerations can actually get us quite
found x with only asinglequery.11 Thus, one might wonder far.

whether some other algorithm could push the number of quet-_ Tc; fq{cr;]us atte?tlc;n on t.T)T cor(tet_lss.ugfs, we:[ ret_strlctedfat_tten-
ries belowNY3, without simultaneously increasing the num- 10N 0 the SIMpIest possible Setling: discrete ime, a fnite-
dimensional Hilbert space, and a single orthogonal basis.

?heart %foggirgiﬂtj;atmn steps. The following theorem rules Ou\Ni'thin this setting, we propqsed what seem like ree}sonable
Theorem l'l In the DOP model Q(NY?) computation axioms th_at any hldden—van_able_theory should satisfy: for
) ' , example, indifference to the identity operation, robustness to
steps are needed to searchNkitem database for a uniqueé gmg| perturbations, and independence of the temporal order
marked item. As a consequence, there exists an oracle relgt spacelike-separated events. We then showed that not all of
tive to which NREDQP:; that is, NP-complete problems are these axioms can be satisfied simultaneously. But perhaps
not efficiently solvable by sampling histories. more surprisingly, we also showed that certain subsets of
Proof. LetN=2"andf:{0,1}"—{0, 1}. Given a sequence axiomscanbe satisfied for quite nontrivial reasons. In show-
of quantum circuitg/=(U,, ...,Uq) that queryf and assum- ing that the indifference and robustness axioms can be simul-
ing thatx € {0, 1}" is the unique string such thétx)=1, let  taneously satisfied, Sec. V revealed an unexpected connec-
[4(x)) be the quantum state aftek, is applied but before tion between unitary matrices and the classical theory of
Uy is. Then the “hybrid argument” of Bennegt al. [38]  Nnetwork flows.

implies that, by simply changing the location of the marked As mentioned pre__\/ipusly, an importe_mt_ open problem is to
item from x to x*, we can ensure that show that the Schrodinger theory satisfies robustness. Cur-

rently, we can only show that the matiBg,(p,U) is robust
Qt2 to exponentiallysmall perturbations, not polynomially small
N/ ones. The problem is that if any row or column sum in the
U® matrix is extremely small, then the, c)-scaling process
where]| || represents trace distance a@gs the total number il magnify tiny errors in the entries. Intuitively, though,
of queries made té by U, ..., U;. ThereforeO(Q{/N) pro-  thjs effect should be washed out by later scaling steps.
vides an upper bound on the probability of noticing the A second open problem is whether there exists a theory
—X* change by monitoring, the value of the hidden vari- that satisfies indifference, as well as commutativity for all
able afterU; is applied. So by the union bound, the probabil- separablenixedstategnot just separable pure stake third
ity of noticing the change by monitoring the entire history problem is to investigate other notions of robustness—for

114600 =[x * ] = o(

(v1,...,v7) is at most of order example, robustness to smaililtiplicativerather than addi-
T tive errors.
D &$E$ On the complexity side, perhaps the most interesting
=1 N N problem left open by this paper is the computational com-

) ) plexity of simulating Bohmian mechanics. We strongly con-
This cannot be}(1) unlessT=Q(N"3) or Qr=Q(N"3), ei-  jecture that this problem, like the hidden-variable problems
ther of which implies ar(2(N*?) lower bound on the total \ve have seen, is strictly harder than simulating an ordinary
number of steps. quantum computer. The trouble is that Bohmian mechanics

To obtain an oracle relative to whiddP@DQP, we can  does not quite fit in our framework: as discussed in Sec. Il B,
now use a standard and well-known “diagonalizationwe cannot have deterministic hidden-variable trajectories for
method” due to Baker, Gill, and Solov§$9] to construct an  discrete degrees of freedom such as qubits. Even worse, Bo-
infinite sequence of exponentially hard search problemshmian mechanics violates the continuous analogue of the
such that any DQP machine fails on at least one of the probindifference axiom. On the other hand, this means that by
lems, whereas there exists an NP machine that succeeds g9ing to implement(say) the juggle subroutine with Bohm-
all of them. We omit the details. B jan trajectories, one might learn not only about Bohmian

mechanics and its relation to quantum computation, but also
about how essential the indifference axiom really is for our
X. DISCUSSION implementation.

The idea that certain observables in quantum mechanics Another key open problem is to show better upper bounds

might have trajectories governed by dynamical laws has rec—Jn DQP. Recall that we were only able to show DOPXP,
9 JE€C i g ~a Dy y .~ by giving a classical exponential-time algorithm to simulate
appeared many times: in Schrodinger’s 1931 stochastic apy

proach[1], Bohmian mechanic$2], modal interpretations he flow theory 77. Can we improve this to(say
, , 5 . . .
[5,20,21, and elsewhere. Yet because all of these proposalDQPQ PSPACE? Clearly it would suffice to give a PSPACE

yield the same predictions for single-time probabilities, i Weglgorlthm that computes the transition probabilities for some

are to decide between them, it must be on the basis of inte%‘ﬁ?&{)tﬁi?shzlnnf ,:Eli m?éﬁte;eoqcbe egggsggiitgﬁis tﬁé'r%ms'

nal mathematical considerations. One message of this papﬁ{ight be an indirect simulation method that does not work
by computing(or even sampling fromthe distribution over
“0ne should not make too much of this fact; one way to interprethistories. It would also be nice to pin down the complexities
it is simply that the “number of queries” should be redefinedas of simulating specific hidden-variable theories, suchrds
+T rather thamQ. andS7.
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