
Quantum computing and hidden variables

Scott Aaronson*
Institute for Advanced Study, Princeton, New Jersey 08540, USA

sReceived 5 August 2004; revised manuscript received 22 November 2004; published 18 March 2005d

This paper initiates the study of hidden variables from a quantum computing perspective. For us, a hidden-
variable theory is simply a way to convert a unitary matrix that maps one quantum state to another into a
stochastic matrix that maps the initial probability distribution to the final one in some fixed basis. We list five
axioms that we might want such a theory to satisfy and then investigate which of the axioms can be satisfied
simultaneously. Toward this end, we propose a new hidden-variable theory based on network flows. In a
second part of the paper, we show that if we could examine the entire history of a hidden variable, then we
could efficiently solve problems that are believed to be intractable even for quantum computers. In particular,
under any hidden-variable theory satisfying a reasonable axiom, we could solve the graph isomorphism prob-
lem in polynomial time, and could search anN-item database usingOsN1/3d queries, as opposed toOsN1/2d
queries with Grover’s search algorithm. On the other hand, theN1/3 bound is optimal, meaning that we could
probablynot solve NP-complete problems in polynomial time. We thus obtain the first good example of a
model of computation that appearsslightly more powerful than the quantum computing model.
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I. INTRODUCTION

Quantum mechanics lets us calculate the probability that
ssayd an electron will be found in an excited state if mea-
sured at a particular time. But it is silent aboutmultiple-time
or transitionprobabilities: that is, what is the probability that
the electron will be in an excited state at timet1, given that it
was in its ground state at an earlier timet0? The usual re-
sponse is that this question is meaningless, unless of course
the electron wasmeasuredsor otherwise known with prob-
ability 1d to be in its ground state att0. A different
response—pursued by Schrödingerf1g, Bohm f2g, Bell f3g,
Nelsonf4g, Dieksf5g, and others—treats the question as pro-
visionally meaningful and then investigates how one might
answer it mathematically. Specific attempts at answers are
called “hidden-variable theories.”

The appeal of hidden-variable theories is that they provide
one possible solution to the measurement problem. For they
allow us to apply unitary quantum mechanics to the entire
universesincluding ourselvesd, yet still discuss the probabil-
ity of a future observation conditioned on our current obser-
vations. Furthermore, they let us do so without making any
assumptions about decoherence or the nature of observers.
For example, even if an observer were placed in coherent
superposition, that observer would still have a sequence of
definite experiences, and the probability of any such se-
quence could be calculated.

This paper initiates the study of hidden variables from a
quantum computing perspective. We restrict our attention to
the simplest possible setting: that of discrete time, a finite-
dimensional Hilbert space, and a fixed orthogonal basis.
Within this setting, we reformulate known hidden-variable
theories due to Dieksf5g and Schrödingerf1g and also intro-
duce a new theory based on network flows. However, a more

important contribution is theaxiomatic approachthat we
use. We propose five axioms for hidden-variable theories in
our setting and then compare theories against each other
based on which of the axioms they satisfy. A central question
in our approach is which subsets of axioms can be satisfied
simultaneously.

In a second part of the paper, we make the connection to
quantum computing explicit by studying the computational
complexity of simulating hidden-variable theories. Below we
describe our computational results.

A. Complexity of sampling histories

It is often stressed that hidden-variable theories yield ex-
actly the same predictions as ordinary quantum mechanics.
On the other hand, these theories describe a different picture
of physical reality, with an additional layer of dynamics be-
yond that of a state vector evolving unitarily. We address a
question that, to our knowledge, has never been raised be-
fore: what is the computational complexity of simulating that
additional dynamics?In other words, if we could examine a
hidden variable’s entire history, then could we solve prob-
lems in polynomial time that are intractable even for quan-
tum computers?

We present strong evidence that the answer is yes. The
graph isomorphism problem asks whether two graphsG and
H are isomorphic, while given a basis for a latticeLPRn,
the approximate shortest vector problem asks for a nonzero
vector inL within a În factor of the shortest one. We show
that both problems are efficiently solvable by sampling a
hidden variable’s history, provided the hidden-variable
theory satisfies the indifference axiom. By contrast, despite a
decade of effort, neither problem is known to lie in BQP
sbounded-error quantum polynomial-timed, the class of prob-
lems solvable in quantum polynomial time with bounded er-*Electronic address: aaronson@ias.edu
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ror probability.1 Thus, if we let DQPsdynamical quantum
polynomial timed be the class of problems solvable in our
new model, then this already provides circumstantial evi-
dence that BQP is strictly contained in DQP.

However, the evidence is stronger than this. For we actu-
ally show that DQP contains an entireclassof problems, of
which graph isomorphism and approximate shortest vector
are special cases. Computer scientists know this class assta-
tistical zero knowledgesSZKd. Furthermore, in previous
work f6g we showed that “relative to an oracle,” SZK is not
contained in BQP. This is a technical concept implying that
any proof of SZK#BQP would require techniques unlike
those that are currently known. Combining our result that
SZK#DQP with the oracle separation off6g, we obtain that
BQPÞDQP relative to an oracle as well. Given computer
scientists’ long-standing inability to separate basic complex-
ity classes, this is nearly the best evidence one could hope
for that sampling histories yields more power than standard
quantum computation.

Besides solving SZK problems, we also show that by
sampling histories, one could search an unordered database
of N items for a single “marked item” using onlyOsN1/3d
database queries. By comparison, Grover’s quantum search
algorithm f7g requiresUsN1/2d queries, while classical algo-
rithms requireUsNd queries.2 On the other hand, we also
show that ourN1/3 upper bound is the best possible—so even
in the histories model, one cannot search anN-item database
in slog Ndc steps for some fixed powerc. This implies that
NPúDQP relative to an oracle, which in turn suggests that
DQP isstill not powerful enough to solve NP-complete prob-
lems in polynomial time. Note that while graph isomorphism
and the approximate shortest vector are in NP, it is strongly
believed that they are not NP-complete.

At this point we should address a concern that many read-
ers will have. Once we extend quantum mechanics by posit-
ing the “unphysical” ability to sample histories, is it not com-
pletely unsurprising if we can then solve problems that were
previously intractable? We believe the answer is no, for three
reasons.

First, almost every change that makes the quantum com-
puting model more powerful seems to make itso muchmore
powerful that NP-complete and even harder problems be-
come solvable efficiently. To give some examples,
NP-complete problems can be solved in polynomial time us-
ing a nonlinear Schrödinger equation, as shown by Abrams
and Lloyd f8g; using closed timelike curves, as shown by
Brun f9g and Baconf10g sand conjectured by Deutschf11gd;
or using a measurement rule of the formucup for any pÞ2,
as shown by usf12g. It is also easy to see that we could solve
NP-complete problems if, given a quantum stateucl, we
could request a classical description ofucl, such as a list of

amplitudes or a preparation procedure.3 By contrast, ours is
the first independently motivated model we know of that
seems more powerful than quantum computing, but only
slightly so.4 Moreover, the striking fact that an unordered
search in our model takes aboutN1/3 steps, as compared toN
steps classically andN1/2 quantum mechanically, suggests
that DQP somehow “continues a sequence” that begins with
P and BQP. It would be interesting to find a model in which
search takesN1/4 or N1/5 steps.

The second reason our results are surprising is that, given
a hidden variable, the distribution over its possible values at
any single time is governed by standard quantum mechanics
and is therefore efficiently samplable on a quantum com-
puter. So if examining the variable’s history confers any ex-
tra computational power, then it can only be because ofcor-
relationsbetween the variable’s values at different times.

The third reason is our criterion for success. We are not
saying merely that one can solve graph isomorphism under
somehidden-variable theory, or even that, under any theory
satisfying the indifference axiom, there exists an algorithm to
solve it, but rather that there exists asingle algorithm that
solves graph isomorphism under any theory satisfying indif-
ference. Thus, we must consider even theories that are spe-
cifically designed to thwart such an algorithm.

But what is the motivation for our results? The first mo-
tivation is that, within the community of physicists who
study hidden-variable theories such as Bohmian mechanics,
there is great interest in actuallycalculating the hidden-
variable trajectories for specific physical systemsf13,14g.
Our results show that, when many interacting particles are
involved, this task might be fundamentally intractable, even
if a quantum computer were available. The second motiva-
tion is that, in classical computer science, studying “unreal-
istic” models of computation has often led to new insights
into realistic ones, and likewise we expect that the DQP
model could lead to new results about standard quantum
computation. Indeed, in a sense this has already happened.
For our result that SZKúBQP relative to an oraclef6g grew
out of work on the BQP versus DQP question. Yet the “quan-
tum lower bound for the collision problem” underlying that
result provided the first evidence that cryptographic hash
functions could be secure against quantum attack, and ruled
out a large class of possible quantum algorithms for graph
isomorphism and related problems.

B. Outline of the paper

Sections II A–V B develop our axiomatic approach to
hidden variables; then, Secs. VI–IX study the computational

1See www.complexityzoo.com for more information about the
complexity classes mentioned in this paper.

2For readers unfamiliar with asymptotic notation,OsfsNdd means
“at most orderfsNd,” VsfsNdd means “at least orderfsNd,” and
UsfsNdd means “exactly orderfsNd.”

3For as Abrams and Lloydf8g observed, we can so arrange things
that ucl= u0l if an NP-complete instance of interest to us has no
solution, butucl=Î1−«u0l+Î«u1l for some tiny« if it has a solu-
tion.

4One can define other, less motivated, models with the same prop-
erty by allowing “noncollapsing measurements” of quantum states,
but these models are very closely related to ours. Indeed, a key
ingredient of our results will be to show that certain kinds of non-
collapsing measurements can besimulatedusing histories.
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complexity of sampling hidden-variable histories.
Section II formally defines hidden-variable theories in our

sense; then, Sec. II A contrasts these theories with related
ideas such as Bohmian mechanics and modal interpretations.
Section II B addresses the most common objections to our
approach: for example, that the implicit dependence on a
fixed basis is unacceptable.

In Sec. III, we introduce five possible axioms for hidden-
variable theories. These are indifference to the identity op-
eration, robustness to small perturbations, commutativity
with respect to spacelike-separated unitaries, commutativity
for the special case of product states, and invariance under
decomposition of mixed states into pure states. Ideally, a
theory would satisfy all of these axioms. However, we show
in Sec. IV that no theory satisfies both indifference and com-
mutativity; no theory satisfies both indifference and a stron-
ger version of robustness; no theory satisfies indifference,
robustness, and decomposition invariance; and no theory sat-
isfies a stronger version of decomposition invariance.

In Sec. V we shift from negative to positive results. Sec-
tion V A presents a hidden-variable theory called theflow
theoryor FT, which is based on the max-flow-min-cut theo-
rem from combinatorial optimization. The idea is to define a
network of “pipes” from basis states at an initial time to basis
states at a final time and then route as much probability mass
as possible through these pipes. The capacity of each pipe
depends on the corresponding entry of the unitary acting
from the initial to final time. To find the probability of tran-
sitioning from basis stateuil to basis stateu jl, we then deter-
mine how much of the flow originating atuil is routed along
the pipe tou jl. Our main results are thatFT is well defined
and that it is robust to small perturbations. SinceFT trivially
satisfies the indifference axiom, this implies that the indiffer-
ence and robustness axioms can be satisfied simultaneously,
which was not at all obviousa priori.

Section V B presents a second theory that we call the
Schrödinger theoryor ST, since it is based on a pair of
integral equations introduced in a 1931 paper of Schrödinger
f1g. Schrödinger conjectured, but was unable to prove, the
existence and uniqueness of a solution to these equations; the
problem was not settled until the work of Nagasawaf15g in
the 1980s. In our discrete setting the problem is simpler, and
we give a self-contained proof of existence using a matrix
scaling technique due to Sinkhornf16g. The idea is as fol-
lows: we want to convert a unitary matrix that maps one
quantum state to another, into a non-negative matrix whose
ith column sums to the initial probability of basis stateuil,
and whosej th row sums to the final probability of basis state
u jl. To do so, we first replace each entry of the unitary matrix
by its absolute value, then normalize each column to sum to
the desired initial probability, and then normalize each row to
sum to the desired final probability. But then the columns are
no longer normalized correctly, so we normalize themagain,
then normalize the rows again, and so on. We show that this
iterative process converges, from which it follows thatST is
well defined. We also show thatST satisfies the indifference
and product commutativity axioms and violates the decom-
position invariance axiom. We conjecture thatST satisfies
the robustness axiom; proving that conjecture is one of the
main open problems of the paper.

In Sec. VI we shift our attention to the complexity of
sampling histories. We formally define DQP as the class of
problems solvable by a classical polynomial-time algorithm
with access to a “history oracle.” Given a sequence of quan-
tum circuits as input, this oracle returns a sample from a
corresponding distribution over histories of a hidden vari-
able, according to some hidden-variable theoryT . The
oracle can chooseT “adversarially,” subject to the constraint
thatT satisfies the indifference and robustness axioms. Thus,
a key result from Sec. VI that we rely on is that thereexists
a hidden-variable theory satisfying indifference and robust-
ness.

Section IV A establishes the most basic facts about DQP:
for example, that BQP#DQP and that DQP is independent
of the choice of gate set. Then Sec. VII presents the “juggle
subroutine,” a crucial ingredient in both of our main hidden-
variable algorithms. Given a state of the formsual+ ubld /Î2
or sual− ubld /Î2, the goal of this subroutine is to “juggle” a
hidden variable betweenual andubl, so that when we inspect
the hidden variable’s history, bothual and ubl are observed
with high probability. The difficulty is that this needs to work
underany indifferent hidden-variable theory.

Next, Sec. VIII combines the juggle subroutine with a
technique of Valiant and Vaziranif17g to prove that
SZK#DQP, from which it follows in particular that graph
isomorphism and the approximate shortest vector problem
are in DQP. Then Sec. IX applies the juggle subroutine to
search anN-item database inOsN1/3d queries and also proves
that thisN1/3 bound is optimal.

We conclude in Sec. X with some directions for further
research.

II. HIDDEN-VARIABLE THEORIES

Suppose we have anN3N unitary matrixU, acting on a
state

ucl = a1u1l + ¯ + aNuNl,

whereu1l ,… , uNl is a standard orthogonal basis. Let

Uucl = b1u1l + ¯ + bNuNl.

Then can we construct a stochastic matrixS, which maps the
vector of probabilities

pW = 3ua1u2

A
uaNu2

4 ,

induced by measuringucl, to the vector

qW = 3ub1u2

A
ubNu2

4 ,

induced by measuringUucl? The answer is, trivially, yes.
The following matrix mapsany vector of probabilities toqW,
ignoring the input vectorpW entirely:
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SPT = 3ub1u2 ¯ ub1u2

A A
ubNu2 ¯ ubNu2

4 .

HerePT stands forproduct theory. The product theory cor-
responds to a strange picture of physical reality, in which
memories and records are completely unreliable, there being
no causal connection between states of affairs at earlier and
later times.

So we would likeS to depend onU itself somehow, not
just on ucl andUucl. Indeed, ideallyS would be a function
only of U, and not of ucl. But this is impossible, as the
following example shows. LetU be ap /4 rotation, and let
u+l=su0l+ u1ld /Î2 and u−l=su0l− u1ld /Î2. Then Uu+l= u1l
implies that

Ssu + l,Ud = F0 0

1 1
G ,

whereasUu−l= u0l implies that

Ssu− l,Ud = F1 1

0 0
G .

On the other hand, it is easy to see that, ifScan depend on
ucl as well asU, then there are infinitely many choices for
the functionSsucl ,Ud. Every choice reproduces the predic-
tions of quantum mechanics perfectly when restricted to
single-time probabilities. So how can we possibly choose
among them? Our approach in Secs. III and V will be to
write down axioms that we would likeS to satisfy and then
investigate which of the axioms can be satisfied simulta-
neously.

Formally, ahidden-variable theoryis a family of func-
tions hSNjNù1, where eachSN maps anN-dimensional mixed
stater and anN3N unitary matrixU onto a singly stochas-
tic matrix SNsr ,Ud. We will often suppress the dependence
on N, r, andU and occasionally use subscripts such asPT
or FT to indicate the theory in question. Also, ifr= uclkcu is
a pure state, we may writeSsucl ,Ud instead ofSsuclkcu ,Ud.

Let sMdi j denote the entry in theith column andj th row of
matrix M. ThensSdi j is the probability that the hidden vari-
able takes the valueu jl after U is applied, conditioned on it
taking the valueuil beforeU is applied. At a minimum, any
theory must satisfy the following marginalization axiom: for
all j P h1,… ,Nj,

o
i

sSdi jsrdii = sUrU−1d j j .

This says that afterU is applied, the hidden variable takes
the valueu jl with probability sUrU−1d j j , which is the usual
Born probability.

Often it will be convenient to refer, not toS itself, but to
the matrixPsr ,Ud of joint probabilities whosesi , jd entry is
sPdi j =sSdi jsrdii . The ith column ofP must sum tosrdii , and
the j th row must sum tosUrU−1d j j . Indeed, we will define
the theoriesFT andST by first specifying the matrixP and
then settingsSdi j ª sPdi j / srdii . This approach has the draw-
back that ifsrdii =0, then theith column ofS is undefined. To

get around this, we adopt the convention that

Ssr,Ud ª lim
«→0+

Ssr«,Ud,

wherer«=s1−«dr+«I and I is the N3N maximally mixed
state. Technically, the limits

lim
«→0+

„Psr«,Ud…i j

sr«dii

might not exist, but in the cases of interest to us it will be
obvious that they do.

A. Comparison with previous work

Before going further, we should contrast our approach
with previous approaches to hidden variables, the most fa-
mous of which is Bohmian mechanicsf2g. Our main criti-
cism of Bohmian mechanics is that it commits itself to a
Hilbert space of particle positions and momenta. Further-
more, it is crucial that the positions and momenta becontinu-
ous, in order for particles to evolve deterministically. To see
this, let uLl and uRl be discrete positions and suppose a par-
ticle is in stateuLl at timet0 and statesuLl+ uRld /Î2 at a later
time t1. Then a hidden variable representing the position
would have entropy 0 att1, since it is alwaysuLl then, but
entropy 1 att1, since it isuLl or uRl both with 1/2 probability.
Therefore the earlier value cannot determine the later one.5 It
follows that Bohmian mechanics is incompatible with the
belief that all physical observables are discrete. But in our
view, there are strong reasons to hold that belief, which in-
clude black hole entropy bounds, the existence of a natural
minimum length scales10−33 cmd, results on area quantiza-
tion in quantum gravityf18g, the fact that many physical
quantities once thought to be continuous have turned out to
be discrete, the infinities of quantum field theory, the implau-
sibility of analog “hypercomputers,” and conceptual prob-
lems raised by the independence of the continuum hypoth-
esis.

Of course there exist stochastic analogs of Bohmian me-
chanics, among them Nelsonian mechanicsf4g and Bohm
and Hiley’s “stochastic interpretation”f19g. But it is not ob-
vious why we should prefer these to other stochastic hidden-
variable theories. From a quantum-information perspective,
it is much more natural to take an abstract approach—one
that allows arbitrary finite-dimensional Hilbert spaces and
that does not rule out any transition rulea priori.

Stochastic hidden variables have also been considered in
the context of modal interpretations; see Dicksonf20g, Bac-
ciagaluppi and Dicksonf21g, and Dieksf5g for example.
However, the central assumptions in that work are extremely
different from ours. In modal interpretations, a pure state
evolving unitarily poses no problems at all: one simply ro-
tates the hidden-variable basis along with the state, so that

5Put differently, Bohm’s conservation of probability result breaks
down because the “wave functions” att0 andt1 are degenerate, with
all amplitude concentrated on finitely many points. But in a discrete
Hilbert space,everywave function is degenerate in this sense.
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the state always represents a “possessed property” of the sys-
tem in the current basis. Difficulties arise only for mixed
states, and there, the goal is to track a whole set of possessed
properties. By contrast, our approach is to fix an orthogonal
basis and then track a single hidden variable that is an ele-
ment of that basis. The issues raised by pure states and mixed
states are essentially the same.

Finally we should mention the consistent-histories inter-
pretation of Griffithsf22g and Gell-Mann and Hartlef23g.
This interpretation assigns probabilities to various histories
through a quantum system, as long as the “interference” be-
tween those histories is negligible. Loosely speaking, then,
the situations where consistent histories make sense are pre-
cisely the ones where the question of transition probabilities
can be avoided.

B. Objections

Hidden-variable theories, as we define them, are open to
several technical objections. For example, we required tran-
sition probabilities for only one orthogonal observable. What
about other observables? The problem is that, according to
the Kochen-Specker theorem, we cannot assign consistent
values to all observables at anysingle time, let alone give
transition probabilities for those values. This is an issue in
any setting, not just ours. The solution we prefer is to postu-
late a fixed orthogonal basis of “distinguishable experiences”
and to interpret a measurement in any other basis as a unitary
followed by a measurement in the fixed basis. As mentioned
in Sec. II A, modal interpretations opt for a different solu-
tion, which involves sets of bases that change over time with
the state itself.

Another objection is that the probability of transitioning
from basis stateuil at timet1 to basis stateu jl at timet2 might
depend on how finely we divide the time interval betweent1
andt2. In other words, for some stateucl and unitariesV,W,
we might have

Ssucl,WVd Þ SsVucl,WdSsucl,Vd

sa similar point was made by Gillespief24gd. Indeed, this is
true for any hidden-variable theory other than the product
theory PT. To see this, observe that for all unitariesU and
statesucl, there exist unitariesV,W such thatU=WV and
Vucl= u1l. Then applyingV destroys all information in the
hidden variablesthat is, decreases its entropy to 0d; so if we
then applyW, then the variable’s final value must be uncor-
related with the initial value. In other words,
SsVucl ,WdSsucl ,Vd must equalSPTsucl ,Ud. It follows that to
any hidden-variable theory we must associate a time scale, or
some other rule for deciding when the transitions take place.

In response, let us point out that exactly the same problem
arises incontinuous-time stochastic hidden-variable theories.
For if a stateucl is governed by the Schrödinger equation
ducl /dt= iHtucl and a hidden variable’s probability distribu-
tion pW is governed by the stochastic equationdpW /dt=AtpW ,
then there is still an arbitrary parameterdt /dt on which the
dynamics depend.

Finally, it will be objected that we have ignored special
relativity. In Sec. III we will define acommutativity axiom,

which informally requires that the stochastic matrixS not
depend on the temporal order of spacelike separated events.
Unfortunately, we will see that when entangled states are
involved, commutativity is irreconcilable with another axiom
that seems even more basic. The resulting nonlocality has the
same character as the nonlocality of Bohmian mechanics—
that is, one cannot use it to send superluminal signals in the
usual sense, but it is unsettling nonetheless.

III. AXIOMS FOR HIDDEN-VARIABLE THEORIES

We now state five6 axioms that we might like hidden-
variable theories to satisfy.

Indifference. The indifference axiom says that ifU is
block diagonal, thenSshould also be block diagonal with the
same block structure or some refinement thereof. Formally,
let ablockbe a subsetB# h1,… ,Nj such thatsUdi j =0 for all
i PB, j ¹B andi ¹B, j PB. Then for all blocksB, we should
havesSdi j =0 for all i PB, j ¹B andi ¹B, j PB. In particular,
indifference implies that given any stater in a tensor product
spaceHA ^ HB and any unitaryU that acts only onHA sthat
is, never maps a basis stateuiAl ^ uiBl to u jAl ^ u jBl where iB
Þ jBd, the stochastic matrixSsr ,Ud acts only onHA as well.

Robustness. A theory is robust if it is insensitive to small
errors in a state or unitaryswhich, in particular, implies con-

tinuityd. Suppose we obtainr̃ and Ũ by perturbingr andU
respectively. Then, for all polynomialsp, there should exist a
polynomialq such that for allN,

iPsr̃,Ũd − Psr,Udi` ø
1

psNd
,

where iMi`=maxi j usMdi j u, wheneverir̃−ri`ø1/qsNd and

iŨ−Ui`ø1/qsNd. Robustness has an important advantage
for quantum computing: if a hidden-variable theory is robust,
then the set of gates used to define the unitariesU1,… ,UT is
irrelevant, since by the Solovay-Kitaev theoremssee
f25,26gd, any universal quantum gate set can simulate any
other to a precision« with Oslogc1/«d overhead.

Commutativity. Let rAB be a bipartite state, and letUA and
UB act only on subsystemsA andB respectively. Then com-
mutativity means that the order in whichUA and UB are
applied is irrelevant:

SsUArABUA
−1,UBdSsrAB,UAd = SsUBrABUB

−1,UAdSsrAB,UBd.

Product commutativity. A theory is product commutative
if it satisfies commutativity for all separable pure statesucl
= ucAl ^ ucBl.

Decomposition invariance. A theory is decomposition in-
variant if

6In an earlier version of this paper, there were two more axioms:
symmetry under relabeling of basis states and a weaker version of
robustness. We have omitted these axioms because they are largely
irrelevant for our results.
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Ssr,Ud = o
i=1

N

piSsucilkciu,Ud

for every decomposition

r = o
i=1

N

piucilkciu

of r into pure states. Theorem 2, partsii d, will show that the
analogous axiom forPsr ,Ud is unsatisfiable.

Comparing theories

To fix ideas, let us compare some hidden-variable theories
with respect to the above axioms. We have already seen the
product theoryPT in Sec. II. It is easy to show thatPT
satisfies robustness, commutativity, and decomposition in-
variance. However, we considerPT unsatisfactory because
it violates indifference: even if a unitaryU acts only on the
first of two qubits,SPTsr ,Ud will readily produce transitions
involving the second qubit.

Recognizing this problem, Dieksf5g proposed an alterna-
tive theory that in our setting corresponds to the following.7

First partition the set of basis states into minimal blocks
B1,… ,Bm between whichU never sends amplitude. Then
apply the product theory separately to each block; that is, ifi
and j belong to the same blockBk, then set

sSdi j =
sUrU

−1d j j

o
ĵPBk

sUrU−1d ĵ ĵ

and otherwise setsSdi j =0. The resultingDieks theorysDTd
satisfies indifference by construction. However, it does not
satisfy robustnesssor even continuityd, since the set of
blocks can change if we replace “0” entries inU by arbi-
trarily small nonzero entries.

In Sec. V we will introduce two other hidden-variable
theories, the flow theoryFT and the Schrödinger theoryST.
Table I lists which axioms the four theories satisfy.

If we could prove thatST satisfies robustness, then Table
I together with the impossibility results of Sec. IV would

completely characterize which of the axioms can be satisfied
simultaneously.

IV. IMPOSSIBILITY RESULTS

This section shows that certain sets of axioms cannot be
satisfied by any hidden-variable theory. We first show that
the failure ofDT , FT, andST to satisfy commutativity is
inherent, and not a fixable technical problem.

Theorem 1. No hidden-variable theory satisfies both indif-
ference and commutativity.

Proof. Assume indifference holds, and let our initial state
be ucl=su00l+ u11ldÎ2. SupposeUA applies ap /8 rotation to
the first qubit andUB applies a −p /8 rotation to the second
qubit. Then,

UAucl = UBucl =
1
Î2

Scos
p

8
u00l − sin

p

8
u01l

+ sin
p

8
u10l + cos

p

8
u11lD ,

UAUBucl = UBUAucl =
1

2
su00l − u01l + u10l + u11ld.

Let vt be the value of the hidden variable aftert unitaries
have been applied. LetE be the event thatv0= u00l initially
andv2= u10l at the end. IfUA is applied beforeUB, then the
unique “path” fromv0 to v2 consistent with indifference sets
v1= u10l. So

PrfEg ø Prfvi = u10lg =
1

2
sin2p

8
.

But if UA is applied beforeUB, then the probability thatv0

= u11l and v2= u10l is at most1
2sin2sp /8d, by the same rea-

soning. Thus, sincev2 must equalu10l with probability 1/4,
and since the only possibilities forv0 are u00l and u11l,

PrfEg ù
1

4
−

1

2
sin2p

8
.

1

2
sin2p

8
.

We conclude that commutativity is violated. j
Let us remark on the relationship between Theorem 1 and

Bell’s theorem. Any hidden-variable theory that is “local” in
Bell’s sense would immediately satisfy both indifference and
commutativity. However, the converse is not obvious, since
there might be nonlocal information in the statesUAucl or
UBucl, which an indifferent commutative theory could ex-
ploit but a local one could not. Theorem 1 rules out this
possibility and in that sense is a strengthening of Bell’s theo-
rem.

The next result places limits on decomposition invariance.
Theorem 2. sid No theory satisfies indifference, robust-

ness, and decomposition invariance.sii d No theory has the
property that

Psr,Ud = o
i=1

N

piPsucilkciu,Ud

for every decompositionoi=1
N piucilkciu of r.

7Dieks spersonal communicationd says he would no longer defend
this theory.

TABLE I. Axioms the four theories satisfy.

PT
sproductd

DT
sDieksd

FT
sflowd

ST
sSchrödingerd

Indifference No Yes Yes Yes

Robustness Yes No Yes ?

Commutativity Yes No No No

Product
commutativity

Yes Yes No Yes

Decomposition
invariance

Yes Yes No No
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Proof. sid Suppose the contrary. Let

Ru = Fcosu − sinu

sinu cosu
G ,

uwul = cosuu0l + sinuu1l.

Then, for everyu not a multiple ofp /2, we must have

Ssuw−ul,Rud = F1 1

0 0
G ,

Ssuwp/2−ul,Rud = F0 0

1 1
G .

So by decomposition invariance, lettingI =su0lk0u
+ u1lk1ud /2 denote the maximally mixed state,

SsI,Rud = SS uw−ulkw−uu + uwp/2−ulkwp/2−uu
2

,RuD = F 1
2

1
2

1
2

1
2

G .

and therefore

PsI,Rud = 3
srd00

2

srd11

2

srd00

2

srd11

2
4 = 3

1

4

1

4

1

4

1

4
4 .

By robustness, this holds foru=0 as well. But this is a con-
tradiction, since by indifferencePsI ,R0d must be half the
identity.

sii d Suppose the contrary; then,

PsI,Rp/8d =
Psu0l,Rp/8d + Psu1l,Rp/8d

2
.

So considering transitions fromu0l to u1l,

„PsI,Rp/8d…01 =
„Psu0l,Rp/8d…11 + 0

2
=

1

2
sin2p

8
.

But

PsI,Rp/8d =
Psuwp/8l,Rp/8d + Psuw5p/8l,Rp/8d

2

also. SinceRp/8uwp/8l= uwp/4l, we have

„PsI,Rp/8d…01 ù
1

2
„Psuwp/8l,Rp/8d…01

ù
1

2
S1

2
− „Psuwp/8l,Rp/8d…11D

ù
1

2
S1

2
− sin2p

8
D .

1

2
sin2p

8
,

which is a contradiction. j
Notice that all three conditions in Theorem 2, partsid,

were essential—forPT satisfies robustness and decomposi-
tion invariance,DT satisfies indifference and decomposition
invariance, andFT satisfies indifference and robustness.

Our last impossibility result says that no hidden-variable
theory satisfies both indifference and “strong continuity,” in
the sense that for all«.0 there existsd.0 such thatir̃
−riød implies iSsr̃ ,Ud−Ssr ,Udiø«. To see this, let

U =3
1 0 0

0
1
Î2

−
1
Î2

0
1
Î2

1
Î2

4 ,

r = Î1 − 2d2u0l + du1l + du2l,

r̃ = Î1 − 2d2u0l + du1l − du2l.

Then, by indifference,

Ssr,Ud = 31 0 0

0 0 0

0 1 1
4, Ssr̃,Ud = 31 0 0

0 1 1

0 0 0
4 .

This is the reason why we defined robustness in terms of the
joint probabilities matrixP rather than the stochastic matrix
S. On the other hand, note that by giving up indifference, we
can satisfy strong continuity, as is shown byPT.

V. SPECIFIC THEORIES

This section presents two nontrivial examples of hidden-
variable theories: the flow theory in Sec. V A and the
Schrödinger theory in Sec. V B.

A. Flow theory

The idea of the flow theory is to convert a unitary matrix
into a weighted directed graph and then route probability
mass through that graph like oil through pipes. Given a uni-
tary U, let

3b1

A
bN

4 = 3sUd11 ¯ sUdN1

A A
sUd1N ¯ sUdNN

43a1

A
aN

4 ,

where for the time being

ucl = a1u1l + ¯ + aNuNl,

Uucl = b1u1l + ¯ + bNuNl

are pure states. Then consider the networkG shown in Fig.
1. We have a source vertexs, a sink vertext, andN input and
N output vertices labeled by basis statesu1l ,… , uNl. Each
edge of the formss, uild has capacityuaiu2, each edgesuil , u jld
has capacityusUdi j u, and each edgesu jl ,td has capacityub ju2.
A natural question is how much probability mass can flow
from s to t without violating the capacity constraints. Rather
surprisingly, we show that one unit of masssthat is, all of itd
can. Interestingly, this result would be false if edgesuil , u jld
had capacityusUdi j u2 for evenusUdi j u1+«g instead ofusUdi j u. We
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also show that there exists a mapping from networks to
maximal flows in those networks, which isrobust in the
sense that a small change in edge capacities produces only a
small change in the amount of flow through any edge.

The proofs of these theorems use classical results from
the theory of network flowssseef27g for an introductiond. In
particular, let acut be a set of edges that separatess from t;
the value of a cut is the sum of the capacities of its edges.
Then a fundamental result called themax-flow-min-cut theo-
rem f28g says that the maximum possible amount of flow
from s to t equals the minimum value of any cut. Using that
result we can show the following.

Theorem 3. One unit of flow can be routed froms to t
in G.

Proof. By the above, it suffices to show that any cutC in
G has value at least 1. LetA be the set ofi P h1,… ,Nj such
that ss, uild¹C, and letB be the set ofj such thatsu jl ,td¹C.
ThenC must contain every edgesuil , u jld such thati PA and
j PB, and we can assume without loss of generality thatC
contains no other edges. So the value ofC is

o
i¹A

uaiu2 + o
j¹B

ub ju2 + o
iPA,jPB

usUdi j u.

Therefore we need to prove the matrix inequality

S1 − o
iPA

uaiu2D + S1 − o
jPB

ub ju2D + o
iPA,jPB

usUdi j u ù 1

or

1 + o
iPA,jPB

usUdi j u ù o
iPA

uaiu2 + o
jPB

ub ju2. s1d

Let U be fixed, and consider the maximum of the right-hand
side of Eq.s1d over all ucl. Since

b j = o
i

sUdi jai ,

this maximum is equal to the largest eigenvaluel of the
positive semidefinite matrix

o
iPA

uilki u + o
jPB

uujlkuju,

where, for eachj ,

uujl = sUd1ju1l + ¯ + sUdNjuNl.

Let HA be the subspace of states spanned byhuil : i PAj, and
let HB be the subspace spanned byhuujl : j PBj. Also, let
LAsucld be the length of the projection ofucl ontoHA, and let
LBsucld be the length of the projection ofucl ontoHB. Then,
since theuil’s and uujl’s from orthogonal bases forHA and
HB, respectively, we have

l = max
ucl SoiPA

uki uclu2 + o
jPB

ukujuclU2

= max
ucl

fLAsucld2 + LBsucld2g.

So lettingu be the angle betweenHA andHB,

l = 2 cos2
u

2
= 1 + cosu

ø 1 + max
ualPHA,ublPHB

ukaubl

= 1 + max
ug1u2+¯+ugNu2=1

ud1u2+¯+udNu2=1

USo
iPA

giki uDSo
jPB

d juujlDU
ø 1 + o

iPA,jPB

usUdi j u,

which completes the theorem. j
Observe that Theorem 3 still holds ifU acts on a mixed

stater, since we can writer as a convex combination of pure
statesuclkcu, construct a flow for eachucl separately, and
then take a convex combination of the flows.

Using Theorem 3, we now define the flow theoryFT. Let
Fsr ,Ud be the set of maximal flows forr ,U—representable
by N3N arrays of real numbersf ij such that 0ø f ij
ø usUdi j u for all i , j and also

o
j

f i j = srdii , o
i

f i j = sUrU−1d j j .

Clearly Fsr ,Ud is a convex polytope, which Theorem 3 as-
serts is nonempty. Form a maximal flowf * sr ,UdPFsr ,Ud
as follows: first let f11

* be the maximum off11 over all
f PFsr ,Ud. Then let f12

* be the maximum off12 over all
f PFsr ,Ud such thatf11= f11

* . Continue to loop through all
i , j pairs in lexicographic order, setting eachf ij

* to its maxi-
mum possible value consistent with thesi −1dN+ j −1 previ-
ous values. Finally, letsPdi j = f ij

* for all i , j . As discussed in
Sec. II, givenP we can easily obtain the stochastic matrixS
by dividing theith column bysrdii or taking a limit in case
srdii =0.

It is easy to check thatFT so defined satisfies the indif-
ference axiom. Showing thatFT satisfies robustness is
harder. Our proof is based on the Ford-Fulkerson algorithm
f28g, a classic algorithm for computing maximal flows that
works by finding a sequence of “augmenting paths,” each of
which increases the flow froms to t by some positive
amount.

Theorem 4. FT satisfies robustness.
Proof. Let G be an arbitrary flow network with sources,

FIG. 1. A network sweighted directed graph with source and
sinkd corresponding to the unitaryU and stateucl.
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sink t, and directed edgese1,… ,em, where eachei has ca-
pacity ci and leads fromvi to wi. It will be convenient to
introduce a fictitious edgee0 from t to s with unlimited ca-
pacity; then maximizing the flow throughG is equivalent to
maximizing the flow throughe0. Suppose we produce a new

network G̃ by increasing a single capacityci* by some«
.0. Let f* be the optimal flow forG, obtained by first
maximizing the flowf0 throughe0, then maximizing the flow

f1 throughe1 holding f0 fixed, and so on up tofm. Let f̃* be

the maximal flow forG̃ produced in the same way. We claim
that, for all i P h0,… ,mj,

u f̃ i
* − f i

* u ø «.

To see that the theorem follows from this claim: first, iff* is
robust under adding« to ci* , then it must also be robust
under subtracting« from ci* . Second, if we changer ,U to

r̃ ,Ũ such thatir̃−ri`ø1/qsNd andiŨ−Ui`ø1/qsNd, then
we can imagine theN2+2N edge capacities are changed one
by one, so that

if * sr̃,Ũd − f * sr,Udi` ø o
i j

uusŨdi j u − usUdi j uu

+ o
i

usr̃dii − srdii u

+ o
j

usŨr̃Ũ−1d j j − sUrU−1d j j u

ø
4N2

qsNd
.

sHere we have made no attempt to optimize the bound.d
We now prove the claim. To do so we describe an iterative

algorithm for computingf*. First maximize the flow f0
throughe0 by using the Ford-Fulkerson algorithm to find a
maximal flow froms to t. Let f s0d be the resulting flow, and
let Gs1d be the residual network that corresponds tof s0d. For
eachi, that is,Gs1d has an edgeei =svi ,wid of capacityci

s1d

=ci − f i
s0d and an edgeēi =swi ,vid of capacityc̄i

s1d= f i
s0d. Next

maximize f1 subject tof0 by using the Ford-Fulkerson algo-
rithm to find “augmenting cycles” fromw1 to v1 and back to
w1 in Gs1d \ he0,ē0j. Continue in this manner until each of
f1,… , fm has been maximized subject to the previousf i’s.
Finally set f * = f smd.

Now, one way to computef̃* is to start with f*, then
repeatedly “correct” it by applying the same iterative algo-

rithm to maximize f̃0, then f̃1, and so on. Let«i = u f̃ i
* − f i

* u;
then, we need to show that«i ø« for all i P h0,… ,mj. The
proof is by induction oni. Clearly«0ø«, since increasingci*
by « can increase the value of the minimum cut froms to t

by at most«. Likewise, after we maximizef̃0, the value of
the minimum cut fromw1 to v1 can increase by at most«
−«0+«0=«. For of the at most« new units of flow fromw1
to v1 that increasingci* made available,«0 of them were

“taken up” in maximizingf̃0, but the process of maximizing

f̃0 could have again increased the minimum cut fromw1 to v1
by up to«0. Continuing in this way,

«2 ø « − «0 + «0 − «1 + «1 = «,

and so on up to«m. This completes the proof. j
That FT violates decomposition invariance now follows

from Theorem 2, partsid. One can also show thatFT vio-
lates product commutativity, by considering the following
example: letucl= uwp/4l ^ uw−p/8l be a two-qubit initial state,
and letRp/4

A andRp/4
B bep /4 rotations applied to the first and

second qubits, respectively. Then,

SsRp/4
A ucl,Rp/4

B dSsucl,Rp/4
A d Þ SsRp/4

B ucl,Rp/4
A dSsucl,Rp/4

B d.

We omit a proof for brevity.

B. Schrödinger theory

Our final hidden-variable theory, which we call the
Schrödinger theoryor ST, is the most interesting one math-
ematically. The idea—to make a matrix into a stochastic ma-
trix via row and column rescaling—is natural enough that we
came upon it independently, only later learning that it origi-
nated in a 1931 paper of Schrödingerf1g. The idea was sub-
sequently developed by Fortetf29g, Beurlingf30g, Nagasawa
f15g, and others. Our goal is to give whatsto our knowledged
is the first self-contained, reasonably accessible presentation
of the main result in this area and to interpret that result in
what we think is the correct way: as providing one example
of a hidden-variable theory, whose strengths and weaknesses
should be directly compared to those of other theories.

Most of the technical difficulties inf1,15,29,30g arise be-
cause the stochastic process being constructed involves con-
tinuous time and particle positions. Here we eliminate those
difficulties by restricting attention to discrete time and finite-
dimensional Hilbert spaces. We thereby obtain a generalized
version8 of a problem that computer scientists know as
sr ,cd-scaling of matricesf16,31,32g.

As in the case of the flow theory, given a unitaryU acting
on a stater, the first step is to replace each entry ofU by its
absolute value, obtaining a non-negative matrixUs0d defined
by sUs0ddi j ª usUdi j u. We then wish to find non-negative col-
umn multipliers a1,… ,aN and row multipliersb1,… ,bN
such that, for alli , j ,

aib1sUs0ddi1 + ¯ + aibNsUs0ddiN = srdii , s2d

a1b jsUs0dd1j + ¯ + aNb jsUs0ddNj = sUrU
−1d j j . s3d

If we like, we can interpret theai’s and b j’s as dynamical
variables that reach equilibrium precisely when Eqs.s2d and
s3d are satisfied. Admittedly, it might be thought physically
implausible that such a complicated dynamical process
should take place at every instant of time. On the other hand,
it is hard to imagine a more “benign” way to convertUs0d

into a joint probabilities matrix than by simply rescaling its
rows and columns.

8In sr ,cd-scaling, we are given an invertible real matrix, and the
goal is to rescale all rows and columns to sum to 1. The generalized
version is to rescale the rows and columns to given valuessnot
necessarily 1d.
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We will show that multipliers satisfying Eqs.s2d and s3d
always exist. The intuition of a dynamical process reaching
equilibrium turns out to be key to the proof. For alltù0, let

sUs2t+1ddi j =
srdii

o
k

sUs2tddik

sUs2tddi j ,

sUs2t+2ddi j =
sUrU−1d j j

o
k

sUs2t+1ddkj

sUs2t+1ddi j .

In other words, we obtainUs2t+1d by normalizing each col-
umn i of Us2td to sum tosrdii ; likewise, we obtainUs2t+2d by
normalizing each rowj of Us2t+1d to sum tosUrU−1d j j . The
crucial fact is that the above process always converges to
somePsr ,Ud=limt→`Ustd. We can therefore take

ai = p
t=0

`
srdii

o
k

sUs2tddik

,

b j = p
t=0

`
sUrU−1d j j

o
k

sUs2t+1ddkj

for all i , j . Although we will not prove it here, it turns out
that this yields auniquesolution to Eqs.s2d ands3d, up to a
global rescaling of the formai →aic for all i and b j
→b j /c for all j f15g.

Our convergence proof will reuse a result about network
flows from Sec. V A, in order to define a nondecreasing
“progress measure” based on Kullback-Leibler distance.

Theorem 5. The limit Psr ,Ud=limt→`Ustd exists.
Proof. A consequence of Theorem 3 is that for everyr ,U,

there exists anN3N array of non-negative real numbersf ij
such that

s1d f ij =0 wheneverusUdi j u=0,
s2d f i1+¯ + f iN=srdii for all i,
s3d f1j +¯ + fNj=sUrU−1d j j for all j .
Given any such array, define a progress measure

Zstd = p
i j

sUstddi j
f i j ,

where we adopt the convention 00=1. We claim thatZst+1d

ùZstd for all tù1. To see this, assume without loss of gen-
erality that we are on an odd step 2t+1, and let Ci

s2td

=o jsUs2tddi j be theith column sum before we normalize it.
Then,

Zs2t+1d = p
i j

sUs2t+1ddi j
f i j = p

i j
S srdii

Ci
s2td sU

s2tddi jD f i j

= Sp
i j

sUs2tddi j
f i jDFp

i
S srdii

Ci
s2tdD f i1+¯+f iNG

= Zs2tdp
i
S srdii

Ci
s2tdDsrdii

.

As a result of thes2tdth normalization step, we hadoiCi
s2td

=1. Subject to that constraint, the maximum of

p
i

sCi
s2tddsrdii

over theCi
s2td’s occurs whenCi

s2td=srdii for all i—a simple
calculus fact that follows from the non-negativity of the
Kullback-Leibler distance. This implies thatZs2t+1dùZs2td.
Similarly, normalizing rows leads toZs2t+2dùZs2t+1d.

It follows that the limit Psr ,Ud=limt→`Ustd exists. For
suppose not; then someCi

std is bounded away fromsrdii , so
there exists an«.0 such thatZst+1dù s1+«dZstd for all event.
But this is a contradiction, sinceZs0d.0 and Zstdø1
for all t. j

Besides showing thatPsr ,Ud is well defined, Theorem 5
also yields a procedure tocalculate Psr ,Ud sas well as the
ai’s andb j’sd. It can be shown that this procedure converges
to within entrywise error« after a number steps polynomial
in N and 1/«. Also, once we havePsr ,Ud, the stochastic
matrix Ssr ,Ud is readily obtained by normalizing each col-
umn of Psr ,Ud to sum to 1. This completes the definition of
the Schrödinger theoryST.

It is immediate thatST satisfies indifference. Let us show
that it satisfies product commutativity as well.

Proposition 6. ST satisfies product commutativity.
Proof. Given a stateucl= ucAl ^ ucBl, let UA ^ I act only

on ucAl and letI ^ UB act only onucBl. Then we claim that

Ssucl,UA ^ Id = SsucAl,UAd ^ I .

The reason is simply that multiplying all amplitudes inucAl
andUAucAl by a constant factorax, as we do for each basis
stateuxl of ucBl, has no effect on the scaling procedure that
producesSsucAl ,UAd. Similarly,

Ssucl,I ^ UBd = I ^ SsucBl,UBd.

It follows that

SsucAl,UAd ^ SsucBl,UBd

= SsUAucAl ^ ucBl,I ^ UBdSsucl,UA ^ Id

= SsucAl ^ UBucBl,UA ^ IdSsucl,I ^ UBd.

j
On the other hand, numerical simulations readily show

that ST violates decomposition invariance, even whenN
=2 swe omit a concrete example for brevityd.

VI. COMPUTATIONAL MODEL

We now explain our model of computation, building our
way up to the complexity class DQP. From now on, the states
r that we consider will always be pure states of,=log2 N
qubits. That is,r= uclkcu where

ucl = o
xPh0,1j,

axuxl.

Our algorithms will work underany hidden-variable
theory that satisfies the indifference axiom. On the other
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hand, if we take into account that even in theoryslet alone in
practiced, a generic unitary cannot be represented exactly
with a finite universal gate set, only approximated arbitrarily
well, then we also need the robustness axiom. Thus, it is
reassuring that thereexistsa hidden-variable theorysnamely,
FT d that satisfies both indifference and robustness.

Let a quantum computer have the initial stateu0l^,, and
suppose we apply a sequenceU=sU1,… ,UTd of unitary op-
erations, each of which is implemented by a polynomial-size
quantum circuit. Then ahistoryof a hidden variable through
the computation is a sequenceH=sv0,… ,vTd of basis states,
wherevt is the variable’s value immediately afterUt is ap-
plied sthus v0= u0l^,d. Given any hidden-variable theoryT,
we can obtain a probability distributionVsU ,T d over histo-
ries by just applyingT repeatedly, once for eachUt, to ob-
tain the stochastic matrices

Ssu0l^,,U1d,SsU1u0l^,,U2d,…,SsUT−1¯ U1u0l^,,UTd .

Note thatVsU ,T d is a Markov distribution; that is, eachvt is
independent of the othervi’s conditioned onvt−1 and vt+1.
Admittedly, VsU ,T d could depend on the precise way in
which the combined circuitUT¯U1 is “sliced” into compo-
nent circuitsU1,¯ ,UT. But as we showed in Sec. II B, such
dependence on the granularity of unitaries is unavoidable in
any hidden-variable theory other thanPT.

Given a hidden-variable theoryT, let OsT d be an oracle
that takes as input a positive integer,, and a sequence of
quantum circuitsU=sU1,… ,UT d that act on, qubits. Here
eachUt is specified by a sequencesgt,1,… ,gt,mstdd of gates
chosen from some finite universal gate setG. The oracle
OsT d returns as output a samplesv0,… ,vTd from the history
distributionVsU ,T d defined previously. Now letA be a de-
terministic classical Turing machine that is given oracle ac-
cess toOsT d. The machineA receives an inputx, makes a
single oracle query toOsT d, and then produces an output
based on the response. We say a set of stringsL is in DQP if
there exists anA such that for all sufficiently largen and
inputs xP h0,1jn, and all theoriesT satisfying the indiffer-
ence and robustness axioms,A correctly decides whetherx
PL with probability at least 2/3, in time polynomial inn.

Let us make some remarks about the above definition.
There is no real significance in our requirement thatA be
deterministic and classical and that it be allowed only one
query toOsT d. We made this choice only because it suffices
for our upper bounds; it might be interesting to consider the
effects of other choices. However, other aspects of the defi-
nition are not arbitrary. The order of quantifiers matters; we
want a singleA that works forany hidden-variable theory
satisfying indifference and robustness. Also, we requireA to
succeed only for sufficiently largen since by choosing a
large enough polynomialqsNd in the statement of the robust-
ness axiom, an adversary might easily makeA incorrect on a
finite number of instances.

Basic results

Having defined the complexity class DQP, let us establish
its most basic properties. First of all, it is immediate that

BQP#DQP; that is, sampling histories is at least as power-
full as standard quantum computation. Forv1, the first
hidden-variable value returned byOsT d, can be seen as sim-
ply the result of applying a polynomial-size quantum circuit
U1 to the initial stateu0l^, and then measuring in the stan-
dard basis. A key further observation is the following.

Theorem 7. Any universal gate set yields the same com-
plexity class DQP. By universal, we mean that any unitary
matrix sreal or complexd can be approximated, without the
need for ancilla qubits.

Proof. Let G and G8 be universal gate sets. Also, letU
=sU1,… ,UT d be a sequence of,-qubit unitaries, each speci-
fied by a polynomial-size quantum circuit overG. We have
T,,=O(polysnd) where n is the input length. We can also
assume without loss of generality that,ùn, since otherwise
we simply insertn−, dummy qubits that are never acted on
sby the indifference axiom, this will not affect the resultsd.
We want to approximateU by another sequence of,-qubit
unitaries,U8=sU18 ,… ,UT8 d, where eachUt8 is specified by a
quantum circuit overG8. In particular, for all t we want
iUt8−Uti`ø2−,2T. By the Solovay-Kitaev theoremf25,26g,
we can achieve this using polysn,,2Td=polysnd gates from
G8; moreover, the circuit forUt8 can be constructed in poly-
nomial time given the circuit forUt.

Let uctl=Ut¯U1u0l^, and uct8l=Ut8¯U18u0l^,. Notice
that, for all tP h1,… ,Tj,

iuct8l − uctli` ø 2,siuct−18 l − uct−1li` + 2−,2Td ø T2,Ts2−,2Td

= T2−,s,−1dT,

since iuc08l− uc0li`=0. Herei i` denotes the maximum en-
trywise difference between two vectors inC2,

. Also, given a
theory T, let Pt and Pt8 be the joint probabilities matrices
corresponding toUt and Ut8, respectively. Then by the ro-
bustness axiom, there exists a polynomialq such that if
iUt8−Uti`ø1/qs2,d and iuct−18 l− uct−1li`ø1/qs2,d, then

iPt−Pt8i`ø2−3,. For all such polynomialsq, we have 2−,2T

ø1/qs2,d and T2−,s,−1dTø1/qs2,d for sufficiently largen
ø,. ThereforeiPt−Pt8i`ø2−3, for all t and sufficiently large
n.

Now assume thatn is sufficiently large, and consider the
distributionsVsU ,T d and VsU8 ,T d over classical histories
H=sv0,… ,vtd. For all tP h1,… ,Tj andxP h0,1j,, we have

U Pr
VsU,T d

fvt = uxlg − Pr
VsU8,T d

fvt = uxlgU ø 2,s2−3,d = 2−2,.

It follows by the union bound that the variation distance
iVsU8 ,T d−VsU ,T di is at most

T2,s2−2,d =
T

2, ø
T

2n .

In other words,VsU8 ,T d can be distinguished fromVsU ,T d
with bias at mostT/2n, which is exponentially small. So any
classical postprocessing algorithm that succeeds with high
probability givenHPVsU ,T d also succeeds with high prob-
ability given HPVsU8 ,T d. This completes the theorem.j

Unfortunately, the best upper bound on DQP we have
been able to show is DQP#EXP; that is, any problem in
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DQP is solvable in deterministic exponential time. The proof
is trivial: let T be the flow theoryFT , with the slight modi-
fication that we omit the step from Sec. V A of symmetrizing
over all permutations of basis states. Then, by using the
Ford-Fulkerson algorithm, we can clearly construct the req-
uisite maximum flows in time polynomial in 2, shence ex-
ponential innd and thereby calculate the probability of each
possible historysv1,… ,vTd to suitable precision.

VII. JUGGLE SUBROUTINE

This section presents a crucial subroutine that will be used
in both algorithms of this paper: the algorithm for simulating
statistical zero knowledge in Sec. VIII and the algorithm for
search inN1/3 queries in Sec. IX. Given an,-qubit state
sual+ ubld /Î2, whereual andubl are unknown basis states, the
goal of the juggle subroutine is to learn botha and b. The
name arises because our strategy will be to “juggle” a hidden
variable, so that if it starts out atual, then with non-negligible
probability it transitions toubl and vice versa. Inspecting the
entire history of the hidden variable will then reveal botha
andb, as desired.

To produce this behavior, we will exploit a basic feature
of quantum mechanics: that observable information in one
basis can become unobservable phase information in a dif-
ferent basis. We will apply a sequence of unitaries that hide
all information abouta andb in phases, thereby forcing the
hidden variable to “forget” whether it started atual or ubl. We
will then invert those unitaries to return the state tosual
+ ubld /Î2, at which point the hidden variable, having “forgot-
ten” its initial value, must be unequal to that value with
probability 1/2.

We now give the subroutine. Letucl=sual+ ubld /Î2 be the
initial state. The first unitaryU1 consists of Hadamard gates
on ,−1 qubits chosen uniformly at random and the identity
operation on the remaining qubiti. Next U2 consists of a
Hadamard gate on qubiti. Finally U3 consists of Hadamard
gates on all, qubits. Let a=a1…a, and b=b1…b,. Then
since aÞb, we haveai Þbi with probability at least 1/,.
Assuming that occurs, the state

U1ucl =
1

2,/2S o
zPh0,1j,:zi=ai

s− 1da·z−aiziuzl

+ o
zPh0,1j,:zi=bi

s− 1db·z−biziuzlD
assigns nonzero amplitude to all 2, basis states. Then
U2U1ucl assigns nonzero amplitude to 2,−1 basis states
uzl—namely, those for whicha·z;b·zsmod 2d. Finally
U3U2U1ucl= ucl.

Let vt be the value of the hidden variable afterUt is ap-
plied. Then, assumingai Þbi, we claim thatv3 is indepen-
dent ofv0. So in particular, ifv0= ual, thenv3= ubl with 1/2
probability, and ifv0= ubl, thenv3= ual with 1/2 probability.
To see this, observe that whenU1 is applied, there is no
interference between basis statesuzl such thatzi =ai and those
such thatzi =bi. So by the indifference axiom, the probability
mass atual must spread out evenly among all 2,−1 basis

states that agree witha on the ith bit and similarly for the
probability mass atubl. Then, afterU2 is applied,v2 can
differ from v1 only on theith bit, again by the indifference
axiom. So each basis state ofU2U1ucl must receive an equal
contribution from probability mass originating atual and
probability mass originating atubl. Thereforev2 is indepen-
dent ofv0, from which it follows thatv3 is independent ofv0
as well.

Unfortunately, the juggle subroutine only works with
probability 1/s2,d—for it requires thatai Þbi, and even
then, inspecting the historysv0,v1,…d only reveals bothual
and ubl with probability 1/2. Furthermore, the definition of
DQP does not allow more than one call to the history oracle.
However, all we need to do is pack multiple subroutine calls
into a single oracle call. That is, chooseU4 similarly to U1
sexcept with a different value ofid and setU5=U2 and U6
=U3. Do the same withU7,U8, and U9, and so on. Since
U3,U6,U9,… all return the quantum state toucl, the effect is
that of multiple independent juggle attempts. With 2,2 at-
tempts, we can make the failure probability at most(1
−1/s2,d)2,2

,e−,.
As a final remark, it is easy to see that the juggle subrou-

tine works equally well with states of the formucl=sual
− ubld /Î2. This will prove useful in Sec. IX.

VIII. SIMULATING SZK

Our goal is to show that SZK#DQP. Here SZK, or sta-
tistical zero knowledge, was originally defined as the class of
all problems that possess a certain kind of “zero-knowledge
proof protocol”—that is, a protocol between an omniscient
prover and a verifier, by which the verifier becomes con-
vinced of the answer to a problem, yet without learning any-
thing else about the problem. However, for our purposes this
cryptographic definition of SZK is irrelevant. For Sahai and
Vadhanf33g have given an alternate and much simpler char-
acterization: a problem is in SZK if and only if it can be
reduced to a problem called statistical difference, which in-
volves deciding whether two probability distributions are
close or far.

More formally, letP0 andP1 be functions that mapn-bit
strings toqsnd-bit strings for some polynomialq, and that are
specified by classical polynomial-time algorithms. LetL0
andL1 be the probability distributions overP0sxd andP1sxd,
respectively, ifxP h0,1jn is chosen uniformly at random.
Then the problem is to decide whetheriL0−L1i is less than
1/3 or greater than 2/3, given that one of these is the case.
Here,

iL0 − L1i =
1

2 o
yPh0,1jqsnd

U Pr
xPh0,1jn

fP0sxd = yg

− Pr
xPh0,1jn

fP1sxd = ygU
is the variation distance betweenL0 andL1.

To illustrate, let us show that graph isomorphism is in
SZK. Given two graphsG0 andG1, takeL0 to be the uniform
distribution over all permutations ofG0 andL1 to be uniform
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over all permutations ofG1. This way, if G0 and G1 are
isomorphic, thenL0 and L1 will be identical, souuL0−L1uu
=0. On the other hand, ifG0 andG1 are nonisomorphic, then
L0 andL1 will be perfectly distinguishable, soiL0−L1i=1.
SinceL0 and L1 are clearly samplable by polynomial-time
algorithms, it follows that any instance of graph isomor-
phism can be expressed as an instance of statistical differ-
ence. For a proof that the approximate shortest vector prob-
lem is in SZK, we refer the reader to Goldreich and
Goldwasserf34g ssee also Aharonov and Ta-Shmaf35gd.

Our proof will use the following “amplification lemma”
from f33g.9

Lemma 8 (Sahai and Vadhan). Given efficiently-
samplable distributionsL0 and L1, we can construct new
efficiently samplable distributionsL08 and L18, such that if
iL0−L1iø1/3, then iL08−L18iø2−n, while if iL0−L1i
ù2/3, theniL08−L18iù1−2−n.

In particular, Lemma 8 means we can assume without loss
of generality that eitheriL0−L1iø2−nc

or iL0−L1iù1
−2−nc

for some constantc.0.
Having covered the necessary facts about SZK, we can

now proceed to the main result.
Theorem 9. SZK#DQP.
Proof. We show how to solve statistical difference by us-

ing a history oracle. For simplicity, we start with the special
case whereP0 andP1 are both one-to-one functions. In this
case, the circuit sequenceU given to the history oracle does
the following: it first prepares the state

1

2sn+1d/2 o
bPh0,1j,xPh0,1jn

ubluxluPbsxdl.

It then applies the juggle subroutine to the joint state of the
ubl and uxl registers, takingl =n+1. Notice that by the indif-
ference axiom, the hidden variable will never transition from
one value ofPbsxd to another—exactly as if we hadmea-
suredthe third register in the standard basis. All that matters
is the reduced stateucl of the first two registers, which has
the form su0lux0l+ u1lux1ld /Î2 for somex0,x1 if iL0−L1i=0
andubluxl for someb,x if iL0−L1i=1. We have already seen
that the juggle subroutine can distinguish these two cases:
when the hidden-variable history is inspected, it will contain
two values of theubl register in the former case and only one
value in the latter case. Also, clearly the caseiL0−L1i
ø2−nc

is statistically indistinguishable fromiL0−L1i=0
with respect to the subroutine, and likewiseiL0−L1iù1
−2−nc

is indistinguishable fromiL0−L1i=1.
We now consider the general case, whereP0 andP1 need

not be one to one. Our strategy is to reduce to the one-to-one
case, by using a well-known hashing technique of Valiant
and Vaziranif17g. Let Dn,k be the uniform distribution over
all affine functions mappingh0,1jn to h0,1jk, where we iden-
tify those sets with the finite fieldsF2

n andF2
k, respectively.

What Valiant and Vazirani showed is that, for all subsets
A# h0,1jn such that 2k−2ø uAuø2k−1 and allsP h0,1jk,

Pr
hPDn,k

fuA ù h−1ssdu = 1g ù
1

8
.

As a corollary, the expectation overhPDn,k of

uhsP h0,1jk:uA ù h−1ssdu = 1ju

is at least 2k/8. It follows that, if x is drawn uniformly at
random fromA, then

Pr
h,x

fuA ù h−1
„hsxd…u = 1g ù

2k/8

uAu
ù

1

4
.

This immediately suggests the following algorithm for the
many-to-one case. Drawk uniformly at random from
h2,… ,n+1j; then, drawh0,h1PDn,k. Have U prepare the
state

1

2sn+1d/2 o
bPh0,1j,xPh0,1jn

ubluxluPbsxdluhbsxdl

and then apply the juggle subroutine to the joint state of the
ubl anduxl registers, ignoring theuPbsxdl anduhbsxdl registers
as before.

Suppose iL0−L1i=0. Also, given xP h0,1jn and i
P h0,1j, let Ai =Pi

−1(Pisxd) and Hi =hi
−1(hisxd), and suppose

2k−2ø uA0u= uA1uø2k−1. Then,

Pr
s,h0,h1

fuA0 ù H0u = 1 ∧ uA1 ù H1u = 1g ù S1

4
D2

,

since the eventsuA0ùH0u=1 and uA1ùH1u=1 are indepen-
dent of each other conditioned ons. Assuming both events
occur, as before the juggle subroutine will reveal bothu0lux0l
and u1lux1l with high probability, wherex0 and x1 are the
unique elements ofA0ùH0 and A1ùH1, respectively. By
contrast, ifiL0−L1i=1, then only one value of theubl reg-
ister will ever be observed. Again, replacingiL0−L1i=0 by
iL0−L1iø2−nc

and iL0−L1i=1 by iL0−L1iù1−2−nc
can

have only a negligible effect on the history distribution.
Of course, the probability that the correct value ofk is

chosen, and thatA0ùH0ssd and A1ùH1ssd both have a
unique element could be as low as 1/s16nd. To deal with this,
we simply increase the number of calls to the juggle subrou-
tine by anOsnd factor, drawing new values ofk,h0,h1 for
each call. We pack multiple subroutine calls into a single
oracle call as described in Sec. VII, except that now we
uncompute the entire statesreturning it to u0¯0ld and then
recompute it between subroutine calls. A final remark: since
the algorithm that calls the history oracle is deterministic, we
“draw” new values ofk,h0,h1 by havingU prepare a uniform
superposition over all possible values. The indifference
axiom justifies this procedure, by guaranteeing that within
each call to the juggle subroutine, the hidden-variable values
of k, h0, andh1 remain constant. j

Let us end this section with some brief remarks about the
oracle result off6g. Given a functiong: h0,1jn→ h0,1jn, the
collision problemis to decide whetherg is one to one or two
to one, given that one of these is the case. The question is,
how many queries tog are needed to solve this problem
fwhere a query just returnsgsxd givenxg? It is not hard to see

9Note that in this lemma, the constants 1/3 and 2/3 are not arbi-
trary; it is important for technical reasons thats2/3d2.1/3.
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that Us2n/2d queries are necessary and sufficient for classical
randomized algorithms. What we showed inf6g is that
Vs2n/5d queries are needed by anyquantumalgorithm as
well. Subsequently Shif36g managed to improve the quan-
tum lower bound toVs2n/3d queries, thereby matching an
upper bound of Brassard, Høyer, and Tappf37g. On the other
hand, the collision problem is easily reducible to the statisti-
cal difference problem and is therefore solvable in polyno-
mial time by sampling histories. This is the essence of the
statement that BQPÞDQP relative to an oracle.

IX. SEARCH IN N1/3 QUERIES

Given a Boolean functionf : h0,1jn→ h0,1j, the database
search problem is simply to find a stringx such thatfsxd
=1. We can assume without loss of generality that this
“marked item”x is unique.10 We want to find it using as few
queries tof as possible, where a query returnsfsyd given y.

Let N=2n. Then classically, of course,UsNd queries are
necessary and sufficient. By queryingf in superposition,
Grover’s algorithmf7g finds x using OsN1/2d queries, to-

gether withÕsN1/2d auxiliary computation stepsfhere theÕ
hides a factor of the formslog Ndcg. Bennett et al. f38g
showed that any quantum algorithm needsVsN1/2d queries.

In this section, we show how to find the marked item by

sampling histories, using onlyOsN1/3d queries andÕsN1/3d
computation steps. Formally, the model is as follows. Each
of the quantum circuitsU1,… ,UT that algorithmA gives to
the history oracleOsT d is now able to queryf. SupposeUt

makesqt queries tof; then, the total number of queries made
by A is defined to beQ=q1+¯ +qT. The total number of
computationsteps is at least the number of steps required to
write downU1,… ,UT, but could be greater.

Theorem 10. In the DQP model, we can search a database
of N items for a unique marked item usingOsN1/3d queries

andÕsN1/3d computation steps.
Proof. Assume without loss of generality thatN=2n with

nu3 and that each database item is labeled by ann-bit string.
Let xP h0,1jn be the label of the unique marked item. Then
the sequence of quantum circuitsU does the following: it
first runsOs2n/3d iterations of Grover’s algorithm, in order to
produce then-qubit stateauxl+boyPh0 ,1jnuyl, where

a =Î 1

2n/3 + 2−n/3+1 + 1
,

b = 2−n/3a

sone can check that this state is normalizedd. Next U applies
Hadamard gates to the firstn/3 qubits. This yields the state

2−n/6a o
yPh0,1jn/3

s− 1dxA·yuyluxBl + 2n/6b o
xPh0,1j2n/3

u0l^n/3uzl,

wherexA consists of the firstn/3 bits ofx andxB consists of
the remaining 2n/3 bits. LetY be the set of 2n/3 basis states
of the formuyluxBl andZ be the set of 22n/3 basis states of the
form u0l^n/3uzl.

Notice that 2−n/6a=2n/6b. So with the sole exception of
u0l^n/3uxBl swhich belongs to bothY and Zd, the “marked”
basis states inY have the same amplitude as the “unmarked”
basis states inZ. This is what we wanted. Notice also that, if
we manage to find anyuyluxBlPY, then we can findx itself
using 2n/3 further classical queries: simply test all possible
strings that end inxB. Thus, the goal of our algorithm will be
to cause the hidden variable to visit an element ofY, so that
inspecting the variable’s history reveals that element.

As in Theorem 9, the tools that we need are the juggle
subroutine and a way of reducing many basis states to two.
Let s be drawn uniformly at random fromh0,1jn/3. ThenU
appends a third register to the state, and sets it equal touzl if
the first two registers have the formu0l^n/3uzl or to us,yl if
they have the formuyluxBl. Disregarding the basis state
u0l^n/3uxBl for convenience, the result is

2−n/6aS o
yPh0,1jn/3

s− 1dxA·yuyluxBlus,yl + o
zPh0,1j2n/3

u0l^n/3uzluzlD .

Next U applies the juggle subroutine to the joint state of the
first two registers. Suppose the hidden-variable value has the
form u0l^n/3uzluzl sthat is, lies outsideYd. Then with probabil-
ity 2−n/3 overs, the firstn/3 bits ofz are equal tos. Suppose
this event occurs. Then, conditioned on the third register be-
ing uzl, the reduced state of the first two registers is

s− 1dxA·zBuzBluxBlu0l^n/3uzl
Î2

,

wherezB consists of the lastn/3 bits ofz. So it follows from
Sec. VII that with probabilityVs1/nd, the juggle subroutine
will cause the hidden variable to transition fromu0l^n/3uzl to
uzBluxBl and hence fromZ to Y.

The algorithm calls the juggle subroutineUs2n/3nd
=UsN1/3 log Nd times, drawing a new value ofs and recom-
puting the third register after each call. Each call moves the
hidden variable fromZ to Y with independent probability
Vs2−n/3/nd; therefore, with high probabilitysomecall does
so. Note that this juggling phase does not involve any data-
base queries. Also, as in Theorem 9, “drawing”s really
means preparing a uniform superposition over all possibles.
Finally, the probability that the hidden variable ever visits the
basis stateu0l^n/3uxBl is exponentially smallsby the union
boundd, which justifies our having disregarded it. j

A curious feature of Theorem 10 is the trade-off between
queries and computation steps. Suppose we had runQ itera-
tions of Grover’s algorithm or, in other words, madeQ que-
ries to f. Then, providedQøÎN, the marked stateuxl would
have occurred with probabilityVsQ2/Nd, meaning that

ÕsN/Q2d calls to the juggle subroutine would have been suf-
ficient to find x. Of course, the choice ofQ that minimizes
max hQ,N/Q2j is Q=N1/3. On the other hand, had we been

10For if there are multiple marked items, then we can reduce to the
unique marked item case by using the Valiant-Vazirani hashing
technique described in Theorem 9.

SCOTT AARONSON PHYSICAL REVIEW A71, 032325s2005d

032325-14



willing to spend ÕsNd computation steps, we could have
found x with only a singlequery.11 Thus, one might wonder
whether some other algorithm could push the number of que-
ries belowN1/3, without simultaneously increasing the num-
ber of computation steps. The following theorem rules out
that possibility.

Theorem 11. In the DQP model,VsN1/3d computation
steps are needed to search anN-item database for a unique
marked item. As a consequence, there exists an oracle rela-
tive to which NPúDQP; that is, NP-complete problems are
not efficiently solvable by sampling histories.

Proof. Let N=2n and f : h0,1jn→ h0,1j. Given a sequence
of quantum circuitsU=sU1,… ,UTd that queryf and assum-
ing thatxP h0,1jn is the unique string such thatfsxd=1, let
uctsxdl be the quantum state afterUt is applied but before
Ut+1 is. Then the “hybrid argument” of Bennettet al. f38g
implies that, by simply changing the location of the marked
item from x to x*, we can ensure that

iuctsxdl − uctsx * dli = OSQt
2

N
D ,

wherei i represents trace distance andQt is the total number
of queries made tof by U1,… ,Ut. ThereforeOsQt

2/Nd pro-
vides an upper bound on the probability of noticing thex
→x* change by monitoringvt, the value of the hidden vari-
able afterUt is applied. So by the union bound, the probabil-
ity of noticing the change by monitoring the entire history
sv1,… ,vTd is at most of order

o
t=1

T
Qt

2

N
ø

TQT
2

N
.

This cannot beVs1d unlessT=VsN1/3d or QT=VsN1/3d, ei-
ther of which implies anVsN1/3d lower bound on the total
number of steps.

To obtain an oracle relative to whichNPúDQP, we can
now use a standard and well-known “diagonalization
method” due to Baker, Gill, and Solovayf39g to construct an
infinite sequence of exponentially hard search problems,
such that any DQP machine fails on at least one of the prob-
lems, whereas there exists an NP machine that succeeds on
all of them. We omit the details. j

X. DISCUSSION

The idea that certain observables in quantum mechanics
might have trajectories governed by dynamical laws has re-
appeared many times: in Schrödinger’s 1931 stochastic ap-
proach f1g, Bohmian mechanicsf2g, modal interpretations
f5,20,21g, and elsewhere. Yet because all of these proposals
yield the same predictions for single-time probabilities, if we
are to decide between them, it must be on the basis of inter-
nal mathematical considerations. One message of this paper

has been that such considerations can actually get us quite
far.

To focus attention on the core issues, we restricted atten-
tion to the simplest possible setting: discrete time, a finite-
dimensional Hilbert space, and a single orthogonal basis.
Within this setting, we proposed what seem like reasonable
axioms that any hidden-variable theory should satisfy: for
example, indifference to the identity operation, robustness to
small perturbations, and independence of the temporal order
of spacelike-separated events. We then showed that not all of
these axioms can be satisfied simultaneously. But perhaps
more surprisingly, we also showed that certain subsets of
axiomscanbe satisfied for quite nontrivial reasons. In show-
ing that the indifference and robustness axioms can be simul-
taneously satisfied, Sec. V revealed an unexpected connec-
tion between unitary matrices and the classical theory of
network flows.

As mentioned previously, an important open problem is to
show that the Schrödinger theory satisfies robustness. Cur-
rently, we can only show that the matrixPST sr ,Ud is robust
to exponentiallysmall perturbations, not polynomially small
ones. The problem is that if any row or column sum in the
Ustd matrix is extremely small, then thesr ,cd-scaling process
will magnify tiny errors in the entries. Intuitively, though,
this effect should be washed out by later scaling steps.

A second open problem is whether there exists a theory
that satisfies indifference, as well as commutativity for all
separablemixedstatessnot just separable pure statesd. A third
problem is to investigate other notions of robustness—for
example, robustness to smallmultiplicativerather than addi-
tive errors.

On the complexity side, perhaps the most interesting
problem left open by this paper is the computational com-
plexity of simulating Bohmian mechanics. We strongly con-
jecture that this problem, like the hidden-variable problems
we have seen, is strictly harder than simulating an ordinary
quantum computer. The trouble is that Bohmian mechanics
does not quite fit in our framework: as discussed in Sec. II B,
we cannot have deterministic hidden-variable trajectories for
discrete degrees of freedom such as qubits. Even worse, Bo-
hmian mechanics violates the continuous analogue of the
indifference axiom. On the other hand, this means that by
trying to implementssayd the juggle subroutine with Bohm-
ian trajectories, one might learn not only about Bohmian
mechanics and its relation to quantum computation, but also
about how essential the indifference axiom really is for our
implementation.

Another key open problem is to show better upper bounds
on DQP. Recall that we were only able to show DQP#EXP,
by giving a classical exponential-time algorithm to simulate
the flow theory FT. Can we improve this tossayd
DQP#PSPACE? Clearly it would suffice to give a PSPACE
algorithm that computes the transition probabilities for some
theoryT satisfying the indifference and robustness axioms.
On the other hand, this might not benecessary—that is, there
might be an indirect simulation method that does not work
by computingsor even sampling fromd the distribution over
histories. It would also be nice to pin down the complexities
of simulating specific hidden-variable theories, such asFT
andST .

11One should not make too much of this fact; one way to interpret
it is simply that the “number of queries” should be redefined asQ
+T rather thanQ.
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