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Perfect pattern formation of neutral atoms in an addressable optical lattice
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We propose a physical scheme for formation of an arbitrary pattern of neutral atoms in an addressable
optical lattice. We focus specifically on the generation of a perfect optical lattice of simple orthorhombic
structure with unit occupancy, as required for initialization of a neutral atom quantum computer. The scheme
employs a compacting process that is accomplished by sequential application of two types of operations: a flip
operator that changes the internal state of the atoms, and a shift operator that selectively moves the atoms in
one internal state along the lattice principal axis. Realizations of these elementary operations and their physical
limitations are analyzed. The complexity of the compacting scheme is analyzed and we show that this scales
linearly with the number of lattice sites per row of the lattice.
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[. INTRODUCTION eliminated by repeating the compacting scheme. This recur-
areion increases the total pattern formation time by the total
nfluration of additional cooling and imaging cycles, but does
computation[1—3], simulation of many-body systenfg], not re;ult in any increase in the scallng of the pattern _forma-

tion, i.e., the algorithmic complexity of the scheme is un-

and implementation of topological quantum computing h 4 Th ibili f ) h .
[5-9]. In standard optical lattices, small lattice constantschanged. The possibility of preparing any homoatomic or

present a serious obstacle to implementing quantum Compl51_eteroatomic pattern of neutral atoms to an arbitrarily high

tation, since it is difficult to address individual qubits with an degree of perfection makes this scheme atiractive for initial-

external field. An optical lattice with a large lattice constant'Zation of quantum simulations of condensed phase systems,

. . in addition to initialization of quantum computation.
is in principle addressablgand can allow for the quantum : . C L
state manipulation of individual atoms by an optical field. Before proceeding, we briefly discussthe possibility of

) o - uantum computation using an imperfect pattern of atoms
High addressability and controllability and low decoherencq?vith vacant sitgs, anti) othegr possib?e appro%ches to prepa-

make addressable lattices promising candidates for largxtion of an optical lattice with single occupancy at each site.
scale quantum computer implementation. _ .. One can imagine starting with a known imperfect lattice pat-

The present work focuses on preparation of the initializatern, and then instead of simplifying the distribution, devis-
tion of an addressable optical lattice for the purposes oOfng a quantum algorithm that accounts for the known loca-
quantum computing. The objective is a perfectly filled, regu-tions of the vacancies. Our analysis of this procedure
lar optical lattice, with each site occupied by a single atom insuggests that even if the vacancy locations are known, they
its motional ground state and in a specific internal state. Weill cause bottlenecks in quantum information flow. These
consider one-dimensional (1D), orthorhombic two- bottlenecks eventually occur when the computer size, i.e.,
dimensional2D), and three-dimension&BD) lattices. After  the number of atomic qubits, or equivalently, the number of
loading and laser-cooling atoms in the optical lattice, half theoccupied lattice sites, is scaled up. In fact, we maintain that
sites have a single atom and half are vacant. In order to usle probability of finding a “good” sublattice, where “good”
this system for scalable quantum computation, a perfect latmeans that each filled site is connected to another filled site,
tice with each site occupied by a single atom is required. Wes exponentially small for any constant filling factbrThis is
propose here an efficient, feasible schemectompactinghe  because the probability that there will be “insurmountable”
optical lattice, i.e., for removing vacant sites to the edge oblocks of defectdgaps in any chosen sublattice increases
the lattice, thus creating a smaller lattice, but one more suitrapidly with its size. The site percolation threshold has the
able for quantum computation. following values for lattices of various dimensions{1ID),

The scheme presented here can as well be used to maRe59 (2D), and 0.31(3D) [10,11]. So an initial filling factor
arbitrary patterns of neutral atoms in an addressable opticdl=0.5 does exceed the percolation threshold in a three-
lattice. These include lattices with fractional occupation, adimensional lattice. While this implies a nonzero probability
specific translational and rotational lattice symmetry, a brothat distant qubits are connected, it does not guarantee that
ken symmetry, and heteroatomic patterns. Another importarthey are connected via independent routes, nor even that they
property of the scheme is that it can be applied recursively tare connected at all. Perhaps more importantly, the mapping
reach any desired accuracy of the pattern formation. After af a quantum algorithm onto an imperfectly filled lattice may
large number of elementary operations, the lattice can bbe a hard classical computational problem. Based on these
cooled and imaged again. The remaining defects can beonsiderations, an imperfect lattice structure does not appear

Neutral atoms trapped in an optical lattice constitute
attractive system for implementation of scalable quantu
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practical for realization of a scalable quantum computer. be implemented using perpendicular arrangements of two
Three other approaches to the preparation of an opticgPD) or three(3D) pairs of laser beams with slightly different

lattice with single occupancy at each site have been theoretfrequencies. The difference in frequencies for each pair

cally explored. The quantum phase transition from the superliminates undesired optical interference between tf&h

fluid (SP to Mott insulator(MI) phas€/12,13, observed in  Such an optical lattice witta=5 um can be made with

[14], can prepare a singly occupied optical lattice with moreCO,-laser beam$19] or with blue-detuned lighf21]. The

than 90% fidelity when the lattice constant is smél  blue-detuned standing waves consist of two beams propagat-

~0.5 um,Uy=1 uK) [13,14. The lattice depth must be in- ing at a shallow angl@, with respect to each other, giving a

creased adiabatically to move from the SF to the MI phasédattice constana=\/[2 sin(6,/2)].

For the larger lattice constants required to make the lattice A pair of counterpropagatingalong thez axis) linearly

addressabléa~5.0 um), the tunneling strength diminishes polarized laser beams of identical wavelengtigenerates a

exponentially, rendering the time scale of this adiabaticstanding wave characterized by the electric field

transfer unrealistically long. Another proposal for preparing = _

unit occupancy in an optical lattice uses the dipole interac- E(@ = V2E([€"? cogkz- 0I2)e — e""? cogkz+ 6I2)e.].

tion between atoms in excited Rydberg std®46] to create (1

an energy barrier to double site occupatiddg]. A third . . . —

alternative involves adiabatic loading of one optical IatticeHere 0is the relative arlgle between the Ilneqr polarization

from another that has been preloaded with one or more a yectors Of. both beam=2a/A, andE, is the §!ngle-beam

oms at every site by making use of the Mott-insulator quan-'eld amplitude. In the absence of any additional external

tum phase transitiofil8]. The adiabatic loading error is es- field, the_resulti_ng 1D periodic lattice potentld(2) (z is 'Fhe
timated to be 10%. Use of this approach with aaddressable propagation axis of the beajndepends on the magnetic hy-

lattice, or starting from a smaller lattice which is then trans-perflne sublevef1]. It can be characterized by the following

formed to an adiabatic lattice, would relax the difficult adia- relation:
biaticity requirement discussed above. U U, . ]

The alternative schemes mentioned above are designed to ~ U(2) = > cod f)cog2k2) + E) sin(f)sin(2kz), (2
prepare an optical lattice where each site is occupied by a
single atom. In contrast, the scheme proposed in this pape&vhere UozgaEg and Ulzé&Eng/F describe the well
can also be used to design an arbitrary pattern of atoms antkpths of the potential 82=0 and s, respectivelyx is the
vacancies in an optical lattice, as well as patterns of differentharacteristic polarizability of a given transitioR, is the
types of atoms. Another difference between the scheme praetal angular momentum of the relevant atomic hyperfine
posed here and those based on the SF-MI transition is that, igvel, andmg is the magnetic hyperfine sublevel. Note that
the scheme proposed here, the result can be checked beforéna potentials for all magnetic hyperfine sublevels coincide
quantum calculation is begun, and any errors corrected.  for #=0. If the linear polarization of one of the lattice beams

The paper is structured as follows. After briefly character-is rotated, the periodic potential is shifted, to an extent that
izing the optical lattice systerfSec. 1), we first explain the depends on the internal state of the trapped atom.
principles of the compacting scheni®ec. Ill). Description We focus here on an optical lattice filled with atoms of
of the compacting elements—site-selectiflip of internal  133Cs, although the proposed scheme is also applicable to
atomic states and state-selectaleft operations—follows in  other alkali-metal atoms. Thes6S, ;, electronic ground state
Sec. 1V, together with analysis of the corresponding heatingof *3Cs consists of two hyperfine levels of total angular
The flip operation we propose here can also be used tmomentumF=3 and 4, with energy splitingAE=E¢_,
implement single-qubit operations, and provides an approachE-_,=9.1926 GHz. Any pair of the availableF2 1 mag-
for doing this in an addressable optical lattice. We make aetic hyperfine sublevels of a single atom can in principle be
detailed analysis of the heating of atoms due to their interused to define a qubit.
action with an addressing laser beam during the flip opera- One-dimensional as well as multidimensional orthorhom-
tions and provide a systematic analysis of the motional heabic arrangements with approximately 20 sites per dimension
ing of atoms in a general time-dependent optical latticeand 100uK depth are readily achievable. The lower-
potential, to assess and minimize the extent of heating duringimensional arrangements can be conveniently realized as
shift operations. Section V provides a detailed analysis of thgublattices of a 3D lattice, which has the benefit of removing
compacting algorithm and its corresponding complexity,the requirement for additional confining potentials when
demonstrating a favorable scaling of the compacting reworking with 1D and 2D lattices. After loading, cooling, and
sources with the lattice size. Section VI summarizes and corimaging the optical latticas described in Appendix )A
cludes. Technical details of both physical and algorithmiceach lattice site is either vacant or occupied with a single

aspects are summarized in Appendixes. atom with equal probability. For 1D, 2D, and 3D lattice po-
tentials and the occupation probability of 0.5, this results in
Il. ADDRESSABLE OPTICAL LATTICE 10, 200, and 4000 atoms, respectively, and hence in the same

number of qubits. Imaging of the lattice carried out during
A 1D optical lattice can be realized by interfering two the cooling process provides a map of the lattice occupancy
linearly polarized laser beanf49]. Higher-dimensional lat- in which the presence or absence of an atom at each site is
tices with a simple orthorombifearly cubi¢ structure can specified. The vacant sites are then removed to the lattice

032324-2



PERFECT PATTERN FORMATION OF NEUTRAL ATOMS. PHYSICAL REVIEW A 71, 032324(2005

edge to create a smaller but perfect lattice, as described in the
next section. /VW
ll. COMPACTING SCHEME VW\
We now describe the scheme for compacting the imper-
fectly filled optical lattice into a smaller lattice in which each
site is occupied by a single atom with 100% fidelity. As
noted above, the scheme can also be applied to form any

arbitrary desired lattice occupation pattern. Our procedure d

exploits the ability to move a subset of trapped atoms to fill

vacant sites. Mathematically, this compacting of the lattice is

equivalent to sequentially removing vacant sites to the lattice 0 2/ al 3

edges. We define two elementary physical operations that are
SUfflCIent to compact the lattice. These &t@the flip opera- FIG. 1. Compacting schemé) All atoms of the lattice are in a

tor F;, which toggles the internal state of an atom at positiorsingle internal state and are shifted b/2 as a result of rotation of
I=(i,j,k) between two differenthyperfing levels, and(2) the relative polarization anglé from 0 to 7. (b) The state of the
the shift operato;, which moves an atom from positidn mobile atoms is then flipped, e.g., from:=+1 (filled circles to

to a neighboring positiod=(i’,j’ k') with &’ =a1 for one me=-1. This is accompanied by a change in shift direction, denoted
of a=i,j,k o by the arrows(c) Rotation of the angl® back froms to 0 moves

Compacting of the imperfectly filled lattice results from them=+1 atom baCk.to its or'g'nal. position and. thee:=-1 atom
: . . forward to the next lattice site, providing the desired compacting of
translating some of the atoms, which we refer tonazbile . : .
. . : . the lattice structure(d) The mobile atoms are then flipped back to
atoms, to fill vacant sites, while the rest, which we -

. L e ) . the original state. The net effect is a shift of the right-hand atom by
tionary atoms, remain fixed .Wlthm th.elr latttice S.truc.:ture. At- one site to the left, or, equivalently, of the corresponding vacancy
oms are translated by rotating the linear polarization of ON&y one site to the right.
of the lattice beams by an anglerelative to the counter-
propagating bearfisee Eq.(2)]. We refer to the state of a
mobile atom as thenobilestate, and that of a stationary atom
as thestoragestate. The identity of these atoms can chang .
during the compacting procedure. We do require, howeveP"Y atoms remain uncha}nged. o
that all the participating atoms are trapped in the lattice po-, (3 Change the relative polarizatioi=7—0. The sta-

tential at all times. This requirement translates into the contionary atoms inmg= +1 states are shifted back to their

dition that only internal atomic states with nonzero magneticor'gfnal posmons(shﬁ of +a/2) while the mobile atoms n
hyperfine quantum numben: can be used in the compacting m':‘_l. states are sh|_fted forward to the nex} vacant Iat.t|ce
procedure, sincen-=0 states would become deconfined dur-Site (shift of —a/2). This step changes the lattice occupation

ing the shift operation a#= /2. Possible choices of suitable map _ . _

compacting states are|Cs 65,,,F=3,me=-1) and (4) The mobile atoms inmz=-1 states are selectively

ICs 65,,,,F=3,me=+1), or |Cs 65,,,F=3,m-=+1) and flipped back to thg storage statg=+1. .

|Cs 6,,,F=4,me=+1). We demonstrate the scheme here The procedure is repeated until all vacant sites have been

for stor/zi’ge ste,lte':snF: +1 and mobile statesy = -1 moved to the edge of the lattice. The same methodology can
The compacting scheme is illustrated in Fig. 1 for a shorC'€arly be applied to generate any partial occupation pattern

segment of a 1D lattice. Here atoms are compacted to th%f one or more atom types.
left. Note that in this simple example, the stationary atom is
at the same location in space after the compacting is com-  IV. ELEMENTARY COMPACTING OPERATIONS
pleted. This is not essential and is of course not implemented
in the realistic case when an imperfect lattice is compacted to
make a smaller perfect lattice in its center. We start with all The compacting scheme requires that we can make an
atoms in the storage state-=+1, and use the occupancy atom at a single site undergo a flip transition, while none of
map obtained from the lattice imaging to identify which at- its neighbors make the transition. We describe here our ap-
oms are to be made mobile and which are to remain statiorproach to accomplishing this in multidimensional optical lat-
ary in the first stage of compacting. We then undertake théices. It uses an independent “addressing” beam, which is a
following steps. far-off-resonant, circularly polarized laser beam tightly fo-
(1) Change the relative polarizatiof=0— 7. All atoms  cused on the atom to be flipped. The circularly polarized
are initially in the storage statez=+1 and all move by beam shifts the stationary and mobile atomic states differ-
-a/2, wherea is the lattice constant and the negative signently, so that the resonance transition between them is
indicates direction to the left. Formally, this operation keepsshifted. The addressing beam will have nonzero intensity at
the lattice occupation structure invariant and hence acts onontarget atoms, especially those that lie along the address-
this as identity. ing beam axis. However, as long as the Rayleigh range is

(2) At 6=, the mobile atoms are selectively flipped into
éhe mobile internal staten-=-1, while the states of station-

A. Flip operation and site selectivity
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reasonably much smaller than the lattice spacing, the res@mounts to~10* vibrational quanta per 3@s flip operation
nance frequency shift will be much smaller at nontarget siteg.23].

In the presence of the addressing beam, a pulse from a spa- Another heating mechanism is due to the photon recoil
tially homogeneous source can be used to flip the targetom the radiation used to implement the flip operations. In
atom. The requirement is that the pulse time be long comthe case of microwave excitation or copropagating Raman
pared to the inverse of the difference between the resonangams, the photon recoil is negligible. But for the orthogonal
frequency shifts of the target and the nearest nontarget akaman beams, unless the pulse is slow enough to resolve the
oms. In that case, nontarget atoms will be far enough offi5 s vibrational states, the target atom will receive a sig-
resonance that they will not be flipped. These flip pulses capficant photon recoil kick. In the Lamb-Dicke limit, the

be driven either by direct microwave excitation or by co- robability of vibrational excitation per pulse is not high, but
propagating stimulated Raman beams. The parameters r%

; . : . .this would still likely be the dominant source of heating in
quired for the addressing beam are easily attained. For i he compacting sequence
stance, a uW laser beam at 877 nm, focused to a waist of P g seq ’

1.2 um, gives a 1 MHz relative Stark shift, 2.5 times larger Driving the site-selective flip transition with pulses can
tﬁa#thét of the nearest neighbor. T also be carried out if the pulse is shaped, e.g., like a Black-

Another way to get site selectivity is to drive an off- Man pulse24], in order to minimize off-resonant excitation.
resonant stimulated Raman transition using tightly focuse®n€ could also use a square pulse, but this requires that all
perpendicular laser beams, so that only atoms at the targBpntarget atoms lie close to the first minimum of the result-
site experience appreciable intensity from both beams. A#g Sinc function25]. In either realizationsr pulses require
advantage to this approach is that, since there is no need ¥§'Y stable and repeatable field intensity. A flip operation can

frequency-resolve the transitions at different sites, the fligalternatively be implemented using adiabatic two-photon
can be accomplished much more quickly. passage. We describe this option in Appendix B.

Site-selective flip operations can cause heating in several The site-selective flip operation described here can also be
distinct ways. To our knowledge, these have not been anaiSed to perform single-qubit operations on neutral atoms in a
lyzed in detail before. The first is due to the impulse that3D Optical lattice. In that case, it can be applied to atoms in
both target and nontarget atoms can feel during the procedd® magnetic-field-insensitivel-=0 states. The essence of
of turning on the spatially inhomogeneous beams, includingia.‘he single-qubit gate is that an addressing laser beam shifts
either the addressing beam or the tightly focused stimulatef® hyperfine transition frequency in a spatially selective

Raman beams. However, when the frequency of these beary, While microwave radiation actually drives the transi-
is tuned between the first-excited-state fine structure leveldons. To understand the benefits of this approach, it is useful

(6P, and @, in C9), the ac Stark shifts due to the two tO consider alternatives. Doppler-free stimulated Raman tran-
levels are opposite. For any individual ground state sublevefitions using tightly focused laser beams have been used to
there is a magic frequency where the two Stark shifts cancefddress individual ion§26], and could in principle be ap-

To avoid this heating, one simply needs to use the magiflied to neutral atoms. Such an approach, however, is prob-
frequency for the storage hyperfine sublevel, for instancelematic in three-d|m¢n5|onal lattices where other atoms are
877 nm for theF=3, mz=1 hyperfine sublevel. The differ- necessarily present in the path of a laser beam. This problem

ence in frequency between the Raman beams is negligible diPuld be avoided by using two orthogonal Raman beams, but
the scale needed to avoid this heating effect. this introduces the possibility of unwanted vibrational exci-

A second heating mechanism only applies when an adt@tion due to the Raman beams. With pulsed transitions, the

dressing beam is used, and it results because the addressfge Of the pulse is quite sensitive to the alignment and power
beam necessarily Stark-shifts the mobile sublevel. Therefor@f the focused laser beams. The optical-shift-microwave
the trapping potential of an atom in that state is the sum ofransition combination is far less sensitive to the intensity of
those due to the optical lattice light and the addressing lightth€ 1aser light at the atom. Site selectivity can also be ob-
The vibrational frequencies are thus different for the twotained by using a magnetior electrig field gradient to cre-

hyperfine sublevels. Flip transitions between the storage an@€ @ position-dependent Zeemén Stark shift. A draw-
mobile sublevels can be made in two limits. If the pulse timeback of this approach is that the field gradient inevitably

is long compared to the inverse of the vibrational state splitintroduces undesired phase shifts on other qubits in a regis-
ting, so that the vibrational states are resolved, then the atof§'- In contrast, the operation presented here has only a mini-
can make a transition to the new vibrational ground stateMal effect on qubits that are not specifically being addressed.
and there will be no heating. If the pulse time is shorter tharln Summary, the optical-microwave combination gate allows
the inverse of the vibrational state splitting, then the origina@ Single atom to be addressed in the middle of the 3D array,
vibrational wave function will be projected onto a superpo-in @ relatively ahgnmgnt-lnsensmve way, while barely affect-
sition of states in the new basis. These levels will tend tdnd the other atoms in the ensemble.

dephase, and the atom will no longer be in the vibrational
ground state when it is returned to the storage state. This
heating is significantly reduced when the addressing beam is
weakened, which requires that the microwave pulse be The shift operator moves the lattice trapped atoms over a
longer. Calculations of this heating effect have been perdistancea/2, wherea is the lattice constant. All the atoms to
formed in the context of making single-qubit operations in abe moved are initially prepared in a storage state, eng.,
site-addressable optical lattice, and the resulting heating +1. It is easily seen from Eq2) that the atoms will move

B. Shift operation and state selectivity
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30 ' ' y ' lattice potential (characterized byU,=100uK and a
o ) =5.3um) and to establish upper bounds on the resulting
I e vibrational heating of the trapped atom. We first studied a
20+ ~ yd ] simplified modeboth analytically and numericallgsee Ap-
N N i pendix Q, in order to demonstrate the analytical validity of
:IE 15 77 i ‘\ //' Pt our numerical tools. The numerical approach is based on a
w NS Fourier grid representation of quantum states and operators,
10r SN T and the Chebyshev polynomial method for quantum propa-
S AN gation. The methodology is described in detail[28-30.
\/’_' The explicit time dependence of the potential was approxi-
0 . . . . mated in discrete steps, with a time stez=1/U, chosen to
0 02 0~4e (n)0'6 038 1 ensure the accuracy of the final results to withia0>.

In the simplied situation when the lattice potential mini-
mum is assumed to be independent of the polarization vector
difference, the heating can be described as a transformation
of the initial stationary state into a coherent state with maxi-
mal displacement determined by the energy transferred from
the lattice to the atonisee Appendix € The extent of heat-
ing can be measured in terms of the decrease in fidelity as-
sociated with the shiftF=[(W¥;|¥:)|?=|(v=0|¥})|?, which
when the linear polarization vector of one of the latticecorresponds to the projection of the final coherent state onto
beams is rotated. Rotating the relative angle of polarizadion the vibrational ground state of the translated potential. We
by 7 moves all the atoms bya/2. Switching the internal refer to the vibrational heating resulting from this transfor-
state of the mobile atoms to the mobile state, and slowlynation as “inertial.” It is seen to give rise to a sigmoidal
returning the polarization to its original valu#=0, retumns jncrease ofF as the pulse duratiom increases and can be
the stationary atoms back to their original positions, whileg,pnressed by suitable choice ofisee Appendix © The
each mobile atom is moved forward another/2, so that it reajistic case when the potential well depth is not constant
is separated bg from its original location. with 6, has to be studied numerically. For the parameters

As seen from Eq(2), at #=0 the atoms are confined only U,=100 K, a=5.3 um, the potential minimum decreases
by the first term of the potential. Ag increases, the second from U, to Uy/8 and increases again 1d, as the angle
term starts to dominate the optical lattice potential. At between polarizations is rotated through The vibrational
=/2, where the well depth 84, only this state-sensitive frequency is also modulated. Physically, the trapped atoms
term confines the atoms. Further rotationéew increases are first accelerated asapproachesr/2 and are then decel-
the well depth back to its original valug,. We assume that erated wher®> /2. This process of acceleration and decel-
the relative angle between the polarization vectors of theration of the motion, absent in the simplified case, gives rise
lattice beamsg, is a linear function of time, i.e. §=gt. to a second contribution to vibrational heating that dramati-

The highest vibrational heating occurs for the largestcally modifies the total amount of vibrational heating found
variation of the potential during the shift operation. For for atoms trapped in the realistic potential.
ground state Cs atoms witime|=1 in the blue-detuned op- This analysis shows that in the realistic case, the vibra-
tical lattice, the potential well depth changes by a factor oftional heating may be decomposed into two contributions,
approximatelyU,/U,=8 during one shift operation. The cor- the inertial contribution and a second contribution deriving
responding change in the frequency of the lowest vibrationalrom the acceleration of the lattice potential reference frame.
levels is illustrated in Fig. 2. Vibrational excitation of atoms The inertial contribution can be essentially eliminated by
during shift operations has been addressed experimentally [ggitable timing of the shift operation just as in the case of the
Mandel et al. [27] in a small-wavelength, nonaddressablesimplified potentialAppendix Q, although the precise time
optical lattice. The analysis was restricted to the simplifiegduration must now be determined by simulations. The com-
case when the well depth is independentdadnd provided bined effect of both heating mechanisms will depend on the
an estimate of vibrational excitation to the=1 state when ratio Ug/U;, which in turn is determined by the lattice de-
the well depth decreases by a factor of Watrm/2. tuning and by the choice of atomic internal states. Compari-

We have made a detailed study of vibrational heating deson of Fig. 3 below with the corresponding behavior for the
riving from shift operations in an addressable lattice, in ordesimplified potential(Appendix C, Fig. 11 shows that for
to determine the extent of vibrational heating over a broagmall values otJo/U; <3 the inertial contribution to heating
range of optical lattice parameters. Initially each lattice atomiS dominant. The experimental estimates by Manetehl.
is in its vibrational ground state, with enerdy,. A shift ~ [27], obtained forU,/U;~2, appear to fall into this cat-
operation displaces the lattice potential and vibrationally ex€gory, although we note that these are made in a different
cites atoms in the moving potential reference frame. Thigparameter range. For higher ratiog/U,, the potential ac-
heating can be quantified by the total energy of a movingeleration dorl]inates the heating mechanism, giving rise to a
particle relative to the zero-point enerdlf)—U,. We have slower rise inF as a function ofr.
employed both analytical and numerical techniques to get Optimal conditions can be achieved by varying time du-
insight into the dynamics of atoms in such a time-varyingration 7, well depthU, (see Fig. 4 and the ratidJ,/U; (Fig.

FIG. 2. Change of the lowest vibrational eigenstates of the pe
riodic potential for the atomic state€s 65,,,,F=4,me=-1) as a
function of the rotation of the relative polarization angle The
energy is measured relative to the potential minimum. The vibra
tional frequency for the transition-8 1 is 10.5 kHz for§=0 and
3.66 kHz for9=m/2.
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From imaging during laser cooling, we have a map of the
lattice occupation. Our goal is to move the atoms so that they
form a single contiguous block with no vacancies, i.e., a
perfect finite lattice. The primitive operation in this analysis
is the shift of an atom or group of atoms by one lattice site.
We define the costtime) for this operation to be one unit.
The physical implementation of this operation was discussed
in Sec. IV B, where we showed that moving a groupnof
atoms through one lattice site requires two movements of the
trapping potentialtwo elementary shifjsand 2 flip opera-
tions (see Fig. 1 Note that there are only two elementary
8 shifts because all atoms move in a shift. For fault-tolerant
T (ms) computation[31] we need to havé(n) parallel operations
o R _ _ ~ [32], so for evaluating the scalability of the scheme we as-
FIG. 3. Minimal fidelity F as a function of the shift operation g,me that the spin flips can be achieved in parallel. This is a
time 7, calculated numerically with the full potential at five differ- good assumption, since the time required for a spin flip is
ent values ofJy/U4. The minirrlal fidelity provides a measure of the ,ch smaller(by a factor of 100-1000than the time to
vibrational heating, with smak corresponding to greater heating. move the trapping potential. In fact, we can ignore the spin
At small valuesUo/U,, the vibrational heating is dominated by the flip cost altogether. We may also ignore the cost of classical
inertial contribution and the rise &F with 7 is very similar to that ~computations required to plan and implement the compacting
obtained with the simplified potentiéee Fig. 1L As Uy/U; in- procedure since, with proper optimization, this cost scales at
creases, the additional vibrational heating contribution from accelimost linearly with the total number of lattice sites. Therefore,
the total cost is essentially determined by the shift opera-

08 |

(SRR N

Fidelity
o g
&~ N

02|

=1

eration of the potential now increases, making the risE sfower.

The inertial contribution has the same origin as that obtained witions. ) o
the simplified potentialAppendix Q and is similarly fully control- We first study the 1D lattice to show the solution in a

lable by suitable timing of the shift operation. The plot shows thatSimple setting. Then we consider the 2D lattice, which pre-
for given durationr, a higher fidelity can be obtained with a larger S€Nts additional challenges. Finally, we generalize the tech-

value of the potential ratit/U;. niques of the 2D lattice to the 3D lattice.

A. One-dimensional lattice

3) by suitable choice of internal atomic states. Figure 3 The one-dimensional lattide, hasn sites. The site occu-
shows that f0tU0/U1_:8, the atoms can be s_hlfted on a time pation probability isp,c. Our goal is to move the atoms so
scale of 5-6 ms without appreciable heatiisge also Fig. that they form a line of atoms with no gaps in between.
4). Itis evident that even for fairly fast shift operations, .9., Here, we use the simplest possible algorithm, which we
with 7<2 ms, the atoms remain deeply trapped in the latticecall COMPACT, to remove the vacancies. The algorithm
although recooling of the lattice may be required after manymoves the atoms to the left so that all the vacancies move to
such operations. the right. Thus after running the algorithm we end up with a
line of atoms at the left of the lattice. The one-dimensional
algorithm COMPACT consists of the following two steps.
V. EFFICIENCY OF COMPACTING (1) Find the leftmost vacancy. If there are no atoms to
) o the right of this vacancy, the compacting is complete and the
To systematically analyze the efficiency of the compact-zigorithm terminates.
ing scheme, we consider here finite 1D, 2D, and 3D lattices (2) Let G be the set of atoms that are to the rightwof
with 50% initial site occupatiom, (i.e., the initial filling).  Shift all the atoms irG left by one step. Return to the step 1

and repeat.
1 = We say that a vacancy is at the right side if all the atoms
— 500K are to its left. Since there are at mesvacancies and each
08 Tk T operation can take one vacancy to the right side, the number
ook of operations needed is. On average there ard —pyJn

vacancies, so the expected number of shifts required is
—PocdN- Also, if there are exactly vacancies that are not on
the right side, then the number of operations needed will
bev.

Clearly, the cost of this algorithm in the average case can
be lowered by finding the center of mass of the set of atoms
and compacting them around this. However, this modifica-
tion does not improve the worst-case cost.

06 |

Fidelity

04 |

02}

FIG. 4. Minimal fidelitleZ during a shift operation for time B. Two-dimensional lattice

durationz, shown as a function of the well depthy,. Calculations We consider a finite two-dimensional square lattiGg,
were carried out using the fultealistio potential withUq/U;=8. with N=n? sites. We denote a sublatti€g; (1si<j=n) as
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® ol t h bl FIG. 6. Binary tree describing the recursion of BALANCE
. . . e ) when it is givenS, -, i.e., a 7X 7 lattice, viz., the one considered in
hd e s e L L LR Fig. 5. The nodes of the tree show the starting and ending rows of
e o o0 L2 L) hd the sublattices balanced in each step. The root of the tree has depth
o o L e o0 4 or level 0. The maximum depth [#0g, n] [34] which is 3 in this
K] ° ° oo o o case, since=7. Note that at the last level, i.e., at the leaves of the
© @ tree, all the lattices consist of one row only. Hence no balancing

needs to be done at this point. Thus the total number of balancing
FIG. 5. Movement of atoms during the balancing process for asteps idlog, nl.

7 X7 lattice.(a) shows the first halving and balancing, correspond-
ing to the zeroth level of the binary tree from Fig.(6) shows the
balancing corresponding to the second level of the tf®@eshows
the balancing corresponding to the third level of the t(dgis the
final result where all the rows are balanced. The horizontal shade
rectangles show the partitioning of the lattice into halves. The gra;p
circles represent atoms that are to be moved in the correspondi

step. The black circles represent atoms that do not move in that'® right. . )
step. The cost of the balancing procedure is somewhat more

difficult to evaluate. We can represent the recursion by a
binary tree of depthlog, n] [34] as shown in Fig. 6. The

. nodes of the tree are labeled by the first and last rows of the
note;he t(f)tatl num!oe{hof at(\)wms in the sublattgeandny the sublattice §; passed as input to BALANCE. The set of
number of atoms In the row. nodes at the same deptlhare said to be at level. The root

par1t—2e two-dimensional compacting procedure has tWols defined to be at depth 0. During each recursive step, the

2 , number of rows in the sublattice is halved, so the depth of
(1) "BALANCE(S, p). !—|er_e the atoms are first moved so the tree idlog, n]. The total number of shifts required is the
that they are equally distributed among all the rows. Th

d . . 2 €um of the number of shifts required at each level of the tree.
general idea is to divide the lattice into two halves, e.g., the

top half and the bottom halFig. 5. Then, atoms are moved
from the top half to the bottom half or vice versa, so that
each half contains the same number of atéangifference of
one atom is allowed when the total number of atoms is)odd
After this, each half of the lattice is given as input to this
procedure again, thus recursively balancing all the rows. Fig-
ure 5 illustrates this procedure for ax7 lattice. A more
detailed description of the algorithm can be found in Appen-
dix D. The recursive procedure can be summarized graphi-
cally by a binary tree structur@-ig. 6), described below, in
order to find its cost.

(2) 2ROW-COMPACT. The atoms in each row are then
compacted as in the 1D case, except that here all rows can be
compacted in parallel since mobile atoms can be moved to-
gether as a group. Figure 7 illustrates this procedure for a
7X7 lattice that has already been balanced according to
Fig. 5.

A detailed list of the logical steps GBALANCE(S, ) is © @
given in Appendix D. We now analyze the cost of the entire £, 7. Movement of atoms during the row-compacting process
procedure. First we analyze the cost of ROW-COMPACT. Itfor the 7x 7 balanced lattice obtained at the end of the balancing
is the same as doing the 1D compacting on each row, but Wehown in Fig. 5. The gray circles represent atoms that are to be
can do all the rows in parallel, so the worst-case cost iS moved in the corresponding step. The black circles represent atoms
[33] (there being onlyn sites per row, thus requiring at most that do not move in that step.

n-1 moves to get an atom to the lefThe average-case cost

is again(1—pycn, since there are on averafe—p,.)n va-
(dfancies per row. Additionally, it is the maximum number

f internal vacancies among all rows, then the cost since

e have to move all the vacancies beyond the last atom on

all rows between and including rowsandj. Let N(S;) de-

(b)

[C}
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Note that the number of atoms to be moved during a balancDepth/ Level
ing step does not cause a problem, since they can move iy y-patance)
parallel as a group. Thus we basically need to count the
number of shifts that the atoms have to make at each level'*
For a sublattice ok rows the atoms only need to malke2] 2 ybatance) QA QI Go
shifts at most, since that is the largest number of rows of the

two halves that are being balanced. At deghttmne number of 3 (xz-balance)
rows in a sublattice is at most/24*1 [35]. There are ¢!
such sublattices to be balanced at degphtiNow, the balanc-
ing of aIIthese_ sublattices can be_ done in parallel. First move FIG. 8. Binary tree describing the recursion of BALANCE
all the atoms in all these sublattices that need to be moved T ) . -

. 1 ot . when it is givenS, 3.1 z3as input, i.e.n=3. The nodes of the tree
up. This takes a.t most/ 2™ shifts. Then shitt all the atqms show the indices of the sublattices balanced in each step. The root
in all the subIatugis th.at need to be moved down. Thls_ alsQs the tree has depth or level 0. The maximum depth[isg2n]
take,S at mo;h/Z shifts. Thus the total number of shifts [34] which is 4 in this case sinae=3 to the even levels correspond
required is  n/2+n/2+n/4+:--+(log; niterm9<n/2 {5 hajancing with respect to the first set of indi¢tkee halving plane
+(n/2)Zo(1/2)"=3n/2, where the first term in the summa- s parallel to thexy plang, while the odd levels correspond to
tion is only n/2 (not doubled because there is only one balancing with respect to the second set of indi¢i® halving
direction in which to move the atoms the first time the latticeplane is parallel to thez plang. Note that at the last level, i.e., at
is halved. Also note that one would expect to be able tahe leaves of the tree, all the lattices consist of one row only and
balance each level of the binary tree in one step on averagbience no balancing needs to be done. Thus the number of nontrivial
This would imply that the average complexity of balancing isbalancing steps is[@g; nl.
=~log, n shift operations. Numerical simulations suggest that
this is indeed the case. (2) ROW-COMPACT. The atoms in each row are then

Putting together the two components of the cost analysisompacted in a fashion similar to the 1D case, except now
leads to the conclusion that in the two-dimensional latticethe operations for all the rows can be done in parallel, since
with N=n? sites, the compacting procedure takes at nmost we can move a three-dimensional group of atoms together in
+3/2n=5/2n=5/2|N steps[neglecting term®(log N)]. a single shift.

A detailed list of the logical steps for
3BALANCE(S; 1,,0) is given in Appendix E. Now we ana-
C. Three-dimensional lattice lyze the cost of the entire procedure. First we analyze ROW-
. . . . . COMPACT. The analysis is identical to that for the two-
We consider a three-dimensional cubic lattlgg, , with dimensional case, namely, a worst-case costnofnd

e . ]
N=n® sites. The compacting procedure for this three-g e aqe case cost 6F—p,.Jn. Additionally, if v is the larg-
dimensional case is a generalization of that for the two-

dimensional case. One key difference is that the notion ofSt number of internal vacancies in any row, then the cost is
rows now needs to be defined. For example, the lattice is in’
the positive octant of the coordinate system, and its thre
sides coincide with the axes. Taking the lattice spacing to b
the unit along the axes, the lattice sites are given by th
coordinatedi, j,k) with 1<i,j,k<n, where the first coordi-
nate is thex coordinate, the second coordinate is theoor-

z-balance)

4 (stop)

The analysis of balancing for the three-dimensional lattice
fs similar to that of the two-dimensional lattice. During each
Fecursion step the lattice is halved along #yeor xz plane,
8o the depth of the recursion i@y, n] [34]. We can repre-
sent the recursion by a binary tree of depflo@ nl, where
dinate, and the third coordinate is theqordinate._V\_/e define ter:/ée lei\(aerl]se c;onr(rjezggnlgvtglshilg/rlrr\egsrt)gﬁds?g lﬁg;sagp?;‘zllghé?
row R;; to be the ordered set of lattice sitéd,i.j)|1<l |5yice parallel to thexz plane(see Fig. 8 The sum of the
=nj. Thelth position in the rowR;; corresponds to the site ,,mper of shifts required for each level of the tree gives us
(|"’J)-_ _ _ o the total number of shifts required during the execution of
Define a sublattice j with (1<si=<j<n,1<k<I<n)  the algorithm. We will do the counting separately for the odd
to consist of the set of lattice sit¢éa,b,c)|[1<a<n,i<b  and even levels. Since mobile atoms can be moved in paral-
<j;k=c=I}. LetN(§ ;) denote the total number of atoms |e|, we only need to count the number of shifts that the atoms

in the sublattices ;.. have to make during each balancing step. For a sublattice of
The three-dimensional lattice compacting procedure conk rows along the direction in which we halve the sublattice
sists also of two parts. atoms, we only need to makk/2] shifts. At depth & and

(1) 3BALANCE(SLH;LH,O). The atoms are moved so that 2d+1 the relevant number of rows in the sublattice /g1
they are equally distributed among th&rows. The second (taking the root to be at depth (86]. As in the 2D case, we
parameter in the function call corresponds to the current reparallelize the required shifts for all the sublattices at a given
cursion depth. The general idea is the same as in the case dépthk, by doing all the shifts in the same direction in par-
the two-dimensional lattice. The difference is now that weallel. Since there are two directions, the number of shifts
alternately balance the two halves made by planes parallel t@quired at each depth is twice that required for a single
thexy plane and thexz plane, using the recursion depdhto  sublattice at that depth. Then the total number of shifts at the
implement this alternation of balancing. even levels isn/2+n/2+n/4+n/8---([log, nlitermg<n/2
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+(n/2)2_,(1/2)"=3/2n. The first term in the sum is only consistent with fault-tolerance requirements for quantum
n/2 (not doubled because there is only one direction in computation[15]. For example, assuming the error rate of
which to move the atoms the first time the lattice is halved.atom loss equal to 16 per shift operation time scale, com-
For the odd levels a similar argument holds, except that th@acting a half-occupied 3D lattice with 20 sites per dimen-
first term isn because there are two sublattices at that stageion can reach a fidelity above 0.99 in less than one second
and balancing them may require moving atoms in oppositevithin the first cycle. A second cycle improves the result to
directions. Then the total number of moves required at thdidelity ~0.998 in less time, since fewer operations are re-
odd levels is  n+n/2+n/4+n/8---([log, nltermg quired to implement this cycle. Recursive pattern formation
<nZ;_(1/2)"=2n. Adding together the total moves at the can thus be seen as a process that is correcting thlessi-
even and odd levels gives us the total number of move§al errors by fixing defects at a speed higher than they oc-
required: (3/2n+2n=(7/2)n. Thus, in the three- CuUr, thereby removing any propagation of these errors, as
dimensional lattice witiN=n?3 sites, the lattice can be com- required for fault tolerance.

pacted in at m03(7/2)n+nz(g/z)nz(g/z){m steps[again ]n summary, _the scheme pregented here allows the prepa-
neglecting termsO(logN)]. As in the case of the two- ration of an arbitrary homoatomlc or heteroatomic pattern_of
dimensional lattice, one would expect that the balancing aff€utral atoms. State preparation can be accomplished in a
each level of the binary tree can be typically done in on ault-tolerant manner, and the prepared state can be checked

step. This would imply that the average cost of balancing ibefore it is used. We expect that this approach will find im-

2log,]n steps. However, we do not have a rigorous proof o _ediate application in the preparation. of quantum states in
this estimate. site-addressable large-wavelength optical lattices.

VI. SUMMARY AND CONCLUSIONS ACKNOWLEDGMENTS

We have presented an experimentally viable scheme for We thank Ronald de Wolf and Kenneth Brown for helpful
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trapped in an optical lattice of large lattice constant. TheDefense Advanced Research Projects AgeiRPA) and
proposed compacting scheme allows preparation of a unihe Air Force Laboratory, Air Force Material Command,
formly filled optical lattice of orthorhombic structure, where USAF, under Agreement No. F30602-01-2-0524. D.S.W.
each lattice site is occupied with a single atom in a specifi@lso acknowledges support from the National Science Foun-
internal level and motional ground state. We have proposeéation.
physical mechanisms for the realization of two elementary
compacting operations, namely, the flip of the internal state APPENDIX A: LOADING AND COOLING
of atoms and th(_alr_ shift W|th|n_th_e lattice structure. We have OF OPTICAL LATTICE
analyzed the efficiency of their implementation in some de-
tail, with particular attention devoted to the study of mo- A magneto-optical trag37] can be used to load well-
tional heating during the elementary operations. Mechanismspaced far-off-resonant optical lattice sites with many atoms
to control this heating were proposed, based on analytic antN=10-100 [20]. Atoms are lost in pairs during laser cool-
numerical solutions of the atomic dynamics in the time-ing, as a result of photon-assisted collisi¢88,39. Eventu-
dependent lattice potential. Our analysis of the complexity ofally, the sites initially occupied by an odd number of atoms
the compacting process demonstrates its scalability with thbecome singly occupied, while sites initially occupied by an
size of the quantum computer in one, two, and three dimeneven number of atoms are left empty. The filling factor that
sions. results from this combined loading and cooling process ap-

The scheme presented here is feasible with current tectproaches a maximum of 0.5. Such loading of a far-off-
nology. Our detailed study of physical feasibility togetherresonant optical lattice with Cs atoms has been demonstrated
with algorithmic scaling shows that we can achieve a singleexperimentally for a lattice of a small lattice constant
cycle of the entire compacting scheme in less than one se¢=-0.5 um), achieving a filling factor of~0.44[38].
ond, starting from a half-filled lattice of approximately 8000 Trapped atoms can then be brought to the vibrational
sites. If the elementary steps are implemented perfectly, theground state of their lattice sites using Raman sideband cool-
this guarantees a perfect pattern formation in a single cycldng [40—44. This procedure has been experimentally dem-
If this is not the case, the scheme may be applied recursivelgnstrated in 1D[42,44], 2D [41], and 3D[40,43 optical
to achieve any desired accuracy. After a complete compactattices. In[43], the 3D ground state was populated by up to
ing cycle, the lattice can be optically cooled and imaged tdb5% of atoms, corresponding to over 80% in each dimen-
identify any remaining errors. Thus even if implementationsion. It was shown that the cooling was limited by the
of the elementary steps is imperfect or if decoherence introrescattering of cooling photons. This mechanism is dramati-
duces errors during compacting, these accumulated errors acally reduced at the low densities associated with large lat-
reset to zero. The most serious limitation derives from atomice constants. Even with a &m lattice constant, a 150K
losses due to scattering of lattice photons or to inelastic coldepth lattice leaves the atoms well within the Lamb-Dicke
lisions with stray particles. Fortunately, the rate of these prolimit required for efficient sideband cooling. It is reasonable
cesses is expected to lie below a threshold value of 1D to expect nearly 100% vibrational ground state population
terms of the typical elementary operation time scale. This isfter Raman sideband cooling.
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frequency-chirped fieldfor a description of the chirped field
and its interaction with matter see for instarjd®,46)).

The atom-field Hamiltonian in the interaction representa-
tion is

2

H() = Ho+ Hi(0) = 2 hafiXi] + [WouD) oy + H.c]
i=0

Q, +[Wio(t)og,+ H.cl (B1)
where o7 =j)i| and Wj(t) is the time-dependent coupling
strength given by the external optical field. Canonical trans-
formation of this system with coupling fields detuned from
resonance with the intermediate state results in an effective

|0) two-level systeni47,48:
FIG. 9. The three-level quantum system coupled by two optical Heft(t) =Ho + Hgganct Hy er(t)
fields in aA configuration{);; is the Rabi frequency for coupling of 2 W, (t)|2 W (t)|2
i it A i i . =(E: -\ /: 01! 12
the states and j; A;; is the detuning from a resonaneg; =(E; - 2 ﬁwi|l><|| + 0'61+ 0'%2
—-E)/h. i=0 Aoy Agp
+ Woz075, + Woa002 (B2)

With a 150uK deep, 5um spaced lattice, the vibrational
level spacing is well below the expected minimum polariza-where Wy,=(Wy;W;,/2)(1/A1,—1/Aq,) is the effective cou-
tion gradient cooling temperature of/Z, so the polariza-  pling strength between the stat@ and|2), andA;; is the
tion gradient cooling limit should be obtaing¢d0]. With a  detuning of the field from the atomic transition between lev-
temperature so small compared to the lattice depth, there wilsi andj. Application of a linearly chirped field for one of
be negligible site hopping during cooling. Therefore the at-the transitions 6-1 or 2— 1 results in a robust and com-
oms can be imaged during the cooling for as long as needeglete flip operation.
1D COG, lattices have recently been imagddd]. In a similar
way, it should be possible to use0.6 numerical aperture
optics to image successive 2D planes, and thereby construct APPENDIX C: VIBRATIONAL HEATING
the site occupancy map of a 3D lattice. Since the localized IN SHIFT OPERATION
atoms in .the 3D lattice will scatter I|gh'_[ coherently, there will This appendix complements Sec. IV B where the vibra-
be significant interference between light scattered from at:

oms in the image plane and light from nonimaged planestlonal excitation(heating of atoms during the shift operation

Information can be obtained from such sianals. particularl if|‘s investigated in the most general situation characterized by
the ratio of the lattice spacing to the ing in ,V\I/Javelen tﬁ/i a strong variation of the lattice vibrational spectrum with
P 9 ging 9N Sime. This investigation is carried out using numerical simu-

;Vr? élv\?g?ﬁ:tn\}vﬁhdig"legxsﬁdé t?ifcteh: ng(':ggn 'gépe'fn?i'::éatt;]oenlation of the dynamics of atoms in a time-varying potential,
site occupancy of each site in an a'rbitraril half-filled Iatticeand requires benchmark calculations that demonstrate the ac-
pancy Y curacy and reliability of the simulation results. These are

) o o . )
with greater than 99% reliabilit}22]. Once the lattice occu rovided here, where we focus on the simplified case when

pation map is known, the compaction procedure can begi : . . ! e
(Secs. Il and IV. After the first compaction, one would ﬁwe lattice potential well depth is constant with variatiorgof

expect the sites to be 99% filled. From this more regularln the vicinity of the minimum, we can approximate the pe-

: .rigdic potential of the lattice with a second-order Taylor ex-
arrangement of atoms, the site occupancy can be detgrmln% nsion, yielding the harmonic vibrational frequeneay
with negligible error. When compaction is repeated, |mper—:k\52U0/m wherek=27/). Comparison with the results of

fse()CJergg\;vl;(:gr? of the vacancy locations ceases to be 8irec_tdiagqnalization of the periodic potential ;hows that the
' fractional difference from the true frequency-sl03, and
that the anharmonicity of the periodic potenfiedanifested
in the deviation ofwyy+1=(E,=k+1—E,=)/% from the har-
monic frequencyis linear in the vibrational quantum num-
The flip operation can also be implemented using adiaberk and is only 3% fok=20. These facts justify the use of
batic two-photon passage. Consider a three-level optical syshe harmonic approximation to get analytical insights into
tem in aA configuration(see Fig. 9where two ground states the process of vibrational heating.
|0y and |2) are coupled indirectly via an intermediate state The motion of the simplified potential, induced by rota-
|1), using a pair of laser fields. Adiabatic passage occursion of the polarization vector of one of the lattice beams, is
when the initial and target levels coupled off-resonantlylinear in time and induces a transfer of enerdy=my?
through the intermediate state sweep through their dresseeimAz?/ 7 into the system. Herm is the atom mass, antiz
state resonance as a result of interaction with a linearlys the total distance of the potential translation over the du-

APPENDIX B: ADIABATIC FLIP OPERATION

032324-10



PERFECT PATTERN FORMATION OF NEUTRAL ATOMS. PHYSICAL REVIEW A 71, 032324(2005

0.15 T T T T T T T T y 1 T T —X

IT —  analytcal - harmonic potential o8 D S - amoric o

o (o] imul - harmonic p 1 - X simulation - periodic potential

X simulation - periodic potential J

~ 0.lH - 206 .
) 3 '
N— N - L: 04 .
E 0.05} . 02 7

1 1 . 1 . 1 1
L 9 0 3 2 S
T (ms)
% L ; - z . g FIG. 11. Minimal fidelity|~: as a function of the shift operation
T (ms) L

time scale for the simplified cagsee the text for explanati@riThe
FIG. 10. Maximal vibrational heating of the initial ground state excellent agr?emef‘t between analytic and numerical results shows
that the classical picture of the process based on the coherent state

populationAE as a function of the total time scateof the shift representation correctly reproduces the atomic dvnamics induced b
operation. The analytical and numerical simulation results in the pres : r y reproduces ic dy Ics Indu y

harmonic approximation are compared with each other and with théhe time-vgryi_ng poten_tial. For short time scale_s, the anharmonicity
numerical simulation using the simplified periodic potentige the of the periodic potentl_al _sllghtly reducgs the f'd.e“ty. compared to
text for explanation The analytic and numerical results are indis- the results obtained within the harmonic approximation.
tinguishable on this scale.

ration 7. AE is the maximum energy that can be transferredcrease the total vibrational energy of a trapped atom. Conse-
into vibrational motion during the beginning or end of a quently, choosing the duration of the shift operatierto
translation. Onset of the potential translation at tit¥d  correspond to an integer multiple of the vibrational period of
causes displacement of the initially stationary vibrationalthe coherent stat€=2#/w can result in complete elimina-

state with respect to the moving potential reference frameton of the vibrational heating within the simplified model.
The displacement transforms the stationary initial state into a

vibrating coherent state with a maximal displacement,Qf.

This displacement is related to the transferred energy via

AE:%mwzxﬁ]ax whenceX .= (V2/w)(Az/ 7). The maximal APPENDIX D: 2D BALANCE

energy in the system a=1 is 2E. The analytical and nu-

merical results for the harmonic and periodic potential show ZBALANCE(S,m).; see Sec. V for definitions.

perfect agreement, demonstrated in Fig. 10, and hence justify Input S ;.

the applied harmonic approximation and the coherent state Goal Balance the rows ir5 ; so thatOk,l we have|n,

representation. _ _ _ ~ -n|<1, wherei<k,l<j. Equivalently, each row has at
To further characterize the quality of the shift operation, eastn,,,,=IN(S§ )/(j—i+1)] atoms.
we define a fidelity measur&=|(¥;|¥)|*>=|(v=0|¥?, Algorithm

which corresponds to the projection of the final coherent (1) Let I=(j—i+1) denote the number of rows ig . If
state onto the vibrational ground state of the translated pd=1 RETURN.
tential. In this simplified case, the fidelity can be evaluated (2) Let m=i+[l/2| be a middle row of§ ;. For balancing,
analytically, yielding the expressidR=exg—(mw/4h)x2,]  We need to have,.,=(m-i+1)ny, atoms in the sublattice
=exd—(m/2wh)AZ2/ 72]. As can be seen in Fig. 11, the fi- Sim .
delity remains low for shift operation times less than 0.5 ms, (3 If [N(Sm)>nregl, shift [N(S ) —nreg] atoms down
whereafter it rises sharply. For shift times longer than 2 md"om S m t0 Sy.q. .
the fidelity is very close to unity, and thus provides a good (4 If [N(§ m) <Nregl, shift [neq=N(S )] atoms up from
estimate of the time scale necessary to preserve adiabaticitn+1; 10 § m

Exploration of this simplified model provides insight into ~ (5) “BALANCE (1)
the control and minimization of vibrational heating. The on-
set of the potential motion generates a coherent state from
the initial vibrational ground state. In the moving reference
frame, the potential motion first displaces the initial state to
the negative momentum and negative coordinate region of
the phase space, while setting its motion along the classical 3BALANCE(S,m;kJ ,d+1); see Sec. V for definitions.
phase space trajectory corresponding to the coherent state. Input SublatticeS ., and recursion depttl.
When 6=p7= the actual motional phase of the coherent Goal Balance the rows ir§ j so that[,, such thati
state accumulated during the evolutie'®”) determines <a,b<j and .4 such thatk<c,d<I| we have|n,.—n 4
whether halting the potential at this time will reduce or in- <1, wheren, . represents the number of atoms in the row

APPENDIX E: 3D BALANCE
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Rsc. Equivalently, each row should have at leas, (5) Let Nygg=Nmin(m=i+1)(I-k+1) be the minimum num-
=IN(S j)/ (j—i+1)(I-k+1)| atoms. ber of atoms that are required to beSny .
Algorithm (6) If [N(S k) > Nregl, Shift[N(S 1) —Nreg] atoms from
(1) If i=j andk=I then RETURN. Only one row so N0 § mk, t0 Sy jik-
balancing needed. (7) It [N(S mk)) <DNregls Shift Neq=N(S ) atoms from
(2 If d is odd, go to 10; else if i Sﬂ+1,j;k3| to S mk-
=j *BALANCE(S j4,d+1). RETURN. (8) "BALANCE (Sy+1jk,,d+1).
(3) If sublatticeS j,, contains only oney plane(i.e., i (9) RETURN.
=), then go to 10. (10) If k=I"BALANCE(S j;,d+1). RETURN.

(4) Let I=j—i+1 be the number of planes parallel to the  (11) Do steps 4 to 8, replacing indic€s j) with indices
Xy plane. Therm=i+|[l/2] defines a middle plane parallel to (k,I).
the xy plane. (12) RETURN.
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