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We propose a physical scheme for formation of an arbitrary pattern of neutral atoms in an addressable
optical lattice. We focus specifically on the generation of a perfect optical lattice of simple orthorhombic
structure with unit occupancy, as required for initialization of a neutral atom quantum computer. The scheme
employs a compacting process that is accomplished by sequential application of two types of operations: a flip
operator that changes the internal state of the atoms, and a shift operator that selectively moves the atoms in
one internal state along the lattice principal axis. Realizations of these elementary operations and their physical
limitations are analyzed. The complexity of the compacting scheme is analyzed and we show that this scales
linearly with the number of lattice sites per row of the lattice.
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I. INTRODUCTION

Neutral atoms trapped in an optical lattice constitute an
attractive system for implementation of scalable quantum
computationf1–3g, simulation of many-body systemsf4g,
and implementation of topological quantum computing
f5–9g. In standard optical lattices, small lattice constants
present a serious obstacle to implementing quantum compu-
tation, since it is difficult to address individual qubits with an
external field. An optical lattice with a large lattice constant
is in principle addressable, and can allow for the quantum
state manipulation of individual atoms by an optical field.
High addressability and controllability and low decoherence
make addressable lattices promising candidates for large-
scale quantum computer implementation.

The present work focuses on preparation of the initializa-
tion of an addressable optical lattice for the purposes of
quantum computing. The objective is a perfectly filled, regu-
lar optical lattice, with each site occupied by a single atom in
its motional ground state and in a specific internal state. We
consider one-dimensional s1Dd, orthorhombic two-
dimensionals2Dd, and three-dimensionals3Dd lattices. After
loading and laser-cooling atoms in the optical lattice, half the
sites have a single atom and half are vacant. In order to use
this system for scalable quantum computation, a perfect lat-
tice with each site occupied by a single atom is required. We
propose here an efficient, feasible scheme forcompactingthe
optical lattice, i.e., for removing vacant sites to the edge of
the lattice, thus creating a smaller lattice, but one more suit-
able for quantum computation.

The scheme presented here can as well be used to make
arbitrary patterns of neutral atoms in an addressable optical
lattice. These include lattices with fractional occupation, a
specific translational and rotational lattice symmetry, a bro-
ken symmetry, and heteroatomic patterns. Another important
property of the scheme is that it can be applied recursively to
reach any desired accuracy of the pattern formation. After a
large number of elementary operations, the lattice can be
cooled and imaged again. The remaining defects can be

eliminated by repeating the compacting scheme. This recur-
sion increases the total pattern formation time by the total
duration of additional cooling and imaging cycles, but does
not result in any increase in the scaling of the pattern forma-
tion, i.e., the algorithmic complexity of the scheme is un-
changed. The possibility of preparing any homoatomic or
heteroatomic pattern of neutral atoms to an arbitrarily high
degree of perfection makes this scheme attractive for initial-
ization of quantum simulations of condensed phase systems,
in addition to initialization of quantum computation.

Before proceeding, we briefly discusssid the possibility of
quantum computation using an imperfect pattern of atoms
with vacant sites, andsii d other possible approaches to prepa-
ration of an optical lattice with single occupancy at each site.
One can imagine starting with a known imperfect lattice pat-
tern, and then instead of simplifying the distribution, devis-
ing a quantum algorithm that accounts for the known loca-
tions of the vacancies. Our analysis of this procedure
suggests that even if the vacancy locations are known, they
will cause bottlenecks in quantum information flow. These
bottlenecks eventually occur when the computer size, i.e.,
the number of atomic qubits, or equivalently, the number of
occupied lattice sites, is scaled up. In fact, we maintain that
the probability of finding a “good” sublattice, where “good”
means that each filled site is connected to another filled site,
is exponentially small for any constant filling factorf. This is
because the probability that there will be “insurmountable”
blocks of defectssgapsd in any chosen sublattice increases
rapidly with its size. The site percolation threshold has the
following values for lattices of various dimensions: 1s1Dd,
0.59 s2Dd, and 0.31s3Dd f10,11g. So an initial filling factor
f <0.5 does exceed the percolation threshold in a three-
dimensional lattice. While this implies a nonzero probability
that distant qubits are connected, it does not guarantee that
they are connected via independent routes, nor even that they
are connected at all. Perhaps more importantly, the mapping
of a quantum algorithm onto an imperfectly filled lattice may
be a hard classical computational problem. Based on these
considerations, an imperfect lattice structure does not appear
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practical for realization of a scalable quantum computer.
Three other approaches to the preparation of an optical

lattice with single occupancy at each site have been theoreti-
cally explored. The quantum phase transition from the super-
fluid sSFd to Mott insulatorsMI d phasef12,13g, observed in
f14g, can prepare a singly occupied optical lattice with more
than 90% fidelity when the lattice constant is smallsa
<0.5 mm,U0<1 mKd f13,14g. The lattice depth must be in-
creased adiabatically to move from the SF to the MI phase.
For the larger lattice constants required to make the lattice
addressablesa<5.0 mmd, the tunneling strength diminishes
exponentially, rendering the time scale of this adiabatic
transfer unrealistically long. Another proposal for preparing
unit occupancy in an optical lattice uses the dipole interac-
tion between atoms in excited Rydberg statesf3,16g to create
an energy barrier to double site occupationsf17g. A third
alternative involves adiabatic loading of one optical lattice
from another that has been preloaded with one or more at-
oms at every site by making use of the Mott-insulator quan-
tum phase transitionf18g. The adiabatic loading error is es-
timated to be 10−4. Use of this approach with anaddressable
lattice, or starting from a smaller lattice which is then trans-
formed to an adiabatic lattice, would relax the difficult adia-
biaticity requirement discussed above.

The alternative schemes mentioned above are designed to
prepare an optical lattice where each site is occupied by a
single atom. In contrast, the scheme proposed in this paper
can also be used to design an arbitrary pattern of atoms and
vacancies in an optical lattice, as well as patterns of different
types of atoms. Another difference between the scheme pro-
posed here and those based on the SF-MI transition is that, in
the scheme proposed here, the result can be checked before a
quantum calculation is begun, and any errors corrected.

The paper is structured as follows. After briefly character-
izing the optical lattice systemsSec. IId, we first explain the
principles of the compacting schemesSec. IIId. Description
of the compacting elements—site-selectiveflip of internal
atomic states and state-selectiveshift operations—follows in
Sec. IV, together with analysis of the corresponding heating.
The flip operation we propose here can also be used to
implement single-qubit operations, and provides an approach
for doing this in an addressable optical lattice. We make a
detailed analysis of the heating of atoms due to their inter-
action with an addressing laser beam during the flip opera-
tions and provide a systematic analysis of the motional heat-
ing of atoms in a general time-dependent optical lattice
potential, to assess and minimize the extent of heating during
shift operations. Section V provides a detailed analysis of the
compacting algorithm and its corresponding complexity,
demonstrating a favorable scaling of the compacting re-
sources with the lattice size. Section VI summarizes and con-
cludes. Technical details of both physical and algorithmic
aspects are summarized in Appendixes.

II. ADDRESSABLE OPTICAL LATTICE

A 1D optical lattice can be realized by interfering two
linearly polarized laser beamsf19g. Higher-dimensional lat-
tices with a simple orthorombicsnearly cubicd structure can

be implemented using perpendicular arrangements of two
s2Dd or threes3Dd pairs of laser beams with slightly different
frequencies. The difference in frequencies for each pair
eliminates undesired optical interference between themf20g.
Such an optical lattice witha<5 mm can be made with
CO2-laser beamsf19g or with blue-detuned lightf21g. The
blue-detuned standing waves consist of two beams propagat-
ing at a shallow angleub with respect to each other, giving a
lattice constanta=l / f2 sinsub/2dg.

A pair of counterpropagatingsalong thez axisd linearly
polarized laser beams of identical wavelengthl generates a
standing wave characterized by the electric field

Eszd = Î2E0feiu/2 cosskz− u/2de− − e−iu/2 cosskz+ u/2de+g.

s1d

Here u is the relative angle between the linear polarization
vectors of both beams,k=2p /l, andE0 is the single-beam
field amplitude. In the absence of any additional external
field, the resulting 1D periodic lattice potentialUszd sz is the
propagation axis of the beamsd depends on the magnetic hy-
perfine sublevelf1g. It can be characterized by the following
relation:

Uszd =
U0

2
cossudcoss2kzd +

U1

2
sinsudsins2kzd, s2d

where U0= 2
3ãE0

2 and U1= 1
3ãE0

2mF /F describe the well
depths of the potential atu=0 andp, respectively,ã is the
characteristic polarizability of a given transition,F is the
total angular momentum of the relevant atomic hyperfine
level, andmF is the magnetic hyperfine sublevel. Note that
the potentials for all magnetic hyperfine sublevels coincide
for u=0. If the linear polarization of one of the lattice beams
is rotated, the periodic potential is shifted, to an extent that
depends on the internal state of the trapped atom.

We focus here on an optical lattice filled with atoms of
133Cs, although the proposed scheme is also applicable to
other alkali-metal atoms. The 6s 2S1/2 electronic ground state
of 133Cs consists of two hyperfine levels of total angular
momentum F=3 and 4, with energy splittingDE=EF=4
−EF=3=9.1926 GHz. Any pair of the available 2F+1 mag-
netic hyperfine sublevels of a single atom can in principle be
used to define a qubit.

One-dimensional as well as multidimensional orthorhom-
bic arrangements with approximately 20 sites per dimension
and 100mK depth are readily achievable. The lower-
dimensional arrangements can be conveniently realized as
sublattices of a 3D lattice, which has the benefit of removing
the requirement for additional confining potentials when
working with 1D and 2D lattices. After loading, cooling, and
imaging the optical latticesas described in Appendix Ad,
each lattice site is either vacant or occupied with a single
atom with equal probability. For 1D, 2D, and 3D lattice po-
tentials and the occupation probability of 0.5, this results in
10, 200, and 4000 atoms, respectively, and hence in the same
number of qubits. Imaging of the lattice carried out during
the cooling process provides a map of the lattice occupancy
in which the presence or absence of an atom at each site is
specified. The vacant sites are then removed to the lattice
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edge to create a smaller but perfect lattice, as described in the
next section.

III. COMPACTING SCHEME

We now describe the scheme for compacting the imper-
fectly filled optical lattice into a smaller lattice in which each
site is occupied by a single atom with 100% fidelity. As
noted above, the scheme can also be applied to form any
arbitrary desired lattice occupation pattern. Our procedure
exploits the ability to move a subset of trapped atoms to fill
vacant sites. Mathematically, this compacting of the lattice is
equivalent to sequentially removing vacant sites to the lattice
edges. We define two elementary physical operations that are
sufficient to compact the lattice. These ares1d the flip opera-

tor F̂I, which toggles the internal state of an atom at position
I =si , j ,kd between two differentshyperfined levels, ands2d
the shift operatorŜIJ, which moves an atom from positionI
to a neighboring positionJ=si8 , j8 ,k8d with a8=a±1 for one
of a= i , j ,k.

Compacting of the imperfectly filled lattice results from
translating some of the atoms, which we refer to asmobile
atoms, to fill vacant sites, while the rest, which we callsta-
tionary atoms, remain fixed within their lattice structure. At-
oms are translated by rotating the linear polarization of one
of the lattice beams by an angleu relative to the counter-
propagating beamfsee Eq.s2dg. We refer to the state of a
mobile atom as themobilestate, and that of a stationary atom
as thestoragestate. The identity of these atoms can change
during the compacting procedure. We do require, however,
that all the participating atoms are trapped in the lattice po-
tential at all times. This requirement translates into the con-
dition that only internal atomic states with nonzero magnetic
hyperfine quantum numbermF can be used in the compacting
procedure, sincemF=0 states would become deconfined dur-
ing the shift operation atu=p /2. Possible choices of suitable
compacting states are uCs 6S1/2,F=3,mF=−1l and
uCs 6S1/2,F=3,mF= +1l, or uCs 6S1/2,F=3,mF= +1l and
uCs 6S1/2,F=4,mF= +1l. We demonstrate the scheme here
for storage statesmF= +1 and mobile statesmF=−1.

The compacting scheme is illustrated in Fig. 1 for a short
segment of a 1D lattice. Here atoms are compacted to the
left. Note that in this simple example, the stationary atom is
at the same location in space after the compacting is com-
pleted. This is not essential and is of course not implemented
in the realistic case when an imperfect lattice is compacted to
make a smaller perfect lattice in its center. We start with all
atoms in the storage statemF= +1, and use the occupancy
map obtained from the lattice imaging to identify which at-
oms are to be made mobile and which are to remain station-
ary in the first stage of compacting. We then undertake the
following steps.

s1d Change the relative polarizationu=0→p. All atoms
are initially in the storage statemF= +1 and all move by
−a/2, wherea is the lattice constant and the negative sign
indicates direction to the left. Formally, this operation keeps
the lattice occupation structure invariant and hence acts on
this as identity.

s2d At u=p, the mobile atoms are selectively flipped into
the mobile internal statemF=−1, while the states of station-
ary atoms remain unchanged.

s3d Change the relative polarizationu=p→0. The sta-
tionary atoms inmF= +1 states are shifted back to their
original positionssshift of +a/2d while the mobile atoms in
mF=−1 states are shifted forward to the next vacant lattice
site sshift of −a/2d. This step changes the lattice occupation
map.

s4d The mobile atoms inmF=−1 states are selectively
flipped back to the storage statemF= +1.

The procedure is repeated until all vacant sites have been
moved to the edge of the lattice. The same methodology can
clearly be applied to generate any partial occupation pattern
of one or more atom types.

IV. ELEMENTARY COMPACTING OPERATIONS

A. Flip operation and site selectivity

The compacting scheme requires that we can make an
atom at a single site undergo a flip transition, while none of
its neighbors make the transition. We describe here our ap-
proach to accomplishing this in multidimensional optical lat-
tices. It uses an independent “addressing” beam, which is a
far-off-resonant, circularly polarized laser beam tightly fo-
cused on the atom to be flipped. The circularly polarized
beam shifts the stationary and mobile atomic states differ-
ently, so that the resonance transition between them is
shifted. The addressing beam will have nonzero intensity at
nontarget atoms, especially those that lie along the address-
ing beam axis. However, as long as the Rayleigh range is

FIG. 1. Compacting scheme.sad All atoms of the lattice are in a
single internal state and are shifted by −a/2 as a result of rotation of
the relative polarization angleu from 0 to p. sbd The state of the
mobile atoms is then flipped, e.g., frommF= +1 sfilled circlesd to
mF=−1. This is accompanied by a change in shift direction, denoted
by the arrows.scd Rotation of the angleu back fromp to 0 moves
themF= +1 atom back to its original position and themF=−1 atom
forward to the next lattice site, providing the desired compacting of
the lattice structure.sdd The mobile atoms are then flipped back to
the original state. The net effect is a shift of the right-hand atom by
one site to the left, or, equivalently, of the corresponding vacancy
by one site to the right.
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reasonably much smaller than the lattice spacing, the reso-
nance frequency shift will be much smaller at nontarget sites.
In the presence of the addressing beam, a pulse from a spa-
tially homogeneous source can be used to flip the target
atom. The requirement is that the pulse time be long com-
pared to the inverse of the difference between the resonance
frequency shifts of the target and the nearest nontarget at-
oms. In that case, nontarget atoms will be far enough off
resonance that they will not be flipped. These flip pulses can
be driven either by direct microwave excitation or by co-
propagating stimulated Raman beams. The parameters re-
quired for the addressing beam are easily attained. For in-
stance, a 2mW laser beam at 877 nm, focused to a waist of
1.2 mm, gives a 1 MHz relative Stark shift, 2.5 times larger
than that of the nearest neighbor.

Another way to get site selectivity is to drive an off-
resonant stimulated Raman transition using tightly focused
perpendicular laser beams, so that only atoms at the target
site experience appreciable intensity from both beams. An
advantage to this approach is that, since there is no need to
frequency-resolve the transitions at different sites, the flip
can be accomplished much more quickly.

Site-selective flip operations can cause heating in several
distinct ways. To our knowledge, these have not been ana-
lyzed in detail before. The first is due to the impulse that
both target and nontarget atoms can feel during the process
of turning on the spatially inhomogeneous beams, including
either the addressing beam or the tightly focused stimulated
Raman beams. However, when the frequency of these beams
is tuned between the first-excited-state fine structure levels
s6P1/2 and 6P3/2 in Csd, the ac Stark shifts due to the two
levels are opposite. For any individual ground state sublevel,
there is a magic frequency where the two Stark shifts cancel.
To avoid this heating, one simply needs to use the magic
frequency for the storage hyperfine sublevel, for instance,
877 nm for theF=3, mF=1 hyperfine sublevel. The differ-
ence in frequency between the Raman beams is negligible on
the scale needed to avoid this heating effect.

A second heating mechanism only applies when an ad-
dressing beam is used, and it results because the addressing
beam necessarily Stark-shifts the mobile sublevel. Therefore
the trapping potential of an atom in that state is the sum of
those due to the optical lattice light and the addressing light.
The vibrational frequencies are thus different for the two
hyperfine sublevels. Flip transitions between the storage and
mobile sublevels can be made in two limits. If the pulse time
is long compared to the inverse of the vibrational state split-
ting, so that the vibrational states are resolved, then the atom
can make a transition to the new vibrational ground state,
and there will be no heating. If the pulse time is shorter than
the inverse of the vibrational state splitting, then the original
vibrational wave function will be projected onto a superpo-
sition of states in the new basis. These levels will tend to
dephase, and the atom will no longer be in the vibrational
ground state when it is returned to the storage state. This
heating is significantly reduced when the addressing beam is
weakened, which requires that the microwave pulse be
longer. Calculations of this heating effect have been per-
formed in the context of making single-qubit operations in a
site-addressable optical lattice, and the resulting heating

amounts to,10−4 vibrational quanta per 30ms flip operation
f23g.

Another heating mechanism is due to the photon recoil
from the radiation used to implement the flip operations. In
the case of microwave excitation or copropagating Raman
beams, the photon recoil is negligible. But for the orthogonal
Raman beams, unless the pulse is slow enough to resolve the
atom’s vibrational states, the target atom will receive a sig-
nificant photon recoil kick. In the Lamb-Dicke limit, the
probability of vibrational excitation per pulse is not high, but
this would still likely be the dominant source of heating in
the compacting sequence.

Driving the site-selective flip transition withp pulses can
also be carried out if the pulse is shaped, e.g., like a Black-
man pulsef24g, in order to minimize off-resonant excitation.
One could also use a square pulse, but this requires that all
nontarget atoms lie close to the first minimum of the result-
ing sinc functionf25g. In either realization,p pulses require
very stable and repeatable field intensity. A flip operation can
alternatively be implemented using adiabatic two-photon
passage. We describe this option in Appendix B.

The site-selective flip operation described here can also be
used to perform single-qubit operations on neutral atoms in a
3D optical lattice. In that case, it can be applied to atoms in
the magnetic-field-insensitivemF=0 states. The essence of
the single-qubit gate is that an addressing laser beam shifts
the hyperfine transition frequency in a spatially selective
way, while microwave radiation actually drives the transi-
tions. To understand the benefits of this approach, it is useful
to consider alternatives. Doppler-free stimulated Raman tran-
sitions using tightly focused laser beams have been used to
address individual ionsf26g, and could in principle be ap-
plied to neutral atoms. Such an approach, however, is prob-
lematic in three-dimensional lattices where other atoms are
necessarily present in the path of a laser beam. This problem
could be avoided by using two orthogonal Raman beams, but
this introduces the possibility of unwanted vibrational exci-
tation due to the Raman beams. With pulsed transitions, the
size of the pulse is quite sensitive to the alignment and power
of the focused laser beams. The optical-shift–microwave
transition combination is far less sensitive to the intensity of
the laser light at the atom. Site selectivity can also be ob-
tained by using a magneticsor electricd field gradient to cre-
ate a position-dependent Zeemansor Starkd shift. A draw-
back of this approach is that the field gradient inevitably
introduces undesired phase shifts on other qubits in a regis-
ter. In contrast, the operation presented here has only a mini-
mal effect on qubits that are not specifically being addressed.
In summary, the optical-microwave combination gate allows
a single atom to be addressed in the middle of the 3D array,
in a relatively alignment-insensitive way, while barely affect-
ing the other atoms in the ensemble.

B. Shift operation and state selectivity

The shift operator moves the lattice trapped atoms over a
distancea/2, wherea is the lattice constant. All the atoms to
be moved are initially prepared in a storage state, e.g.,mF
= +1. It is easily seen from Eq.s2d that the atoms will move
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when the linear polarization vector of one of the lattice
beams is rotated. Rotating the relative angle of polarizationu
by p moves all the atoms by −a/2. Switching the internal
state of the mobile atoms to the mobile state, and slowly
returning the polarization to its original valueu=0, returns
the stationary atoms back to their original positions, while
each mobile atom is moved forward another −a/2, so that it
is separated bya from its original location.

As seen from Eq.s2d, at u=0 the atoms are confined only
by the first term of the potential. Asu increases, the second
term starts to dominate the optical lattice potential. Atu
=p /2, where the well depth isU1, only this state-sensitive
term confines the atoms. Further rotation tou=p increases
the well depth back to its original valueU0. We assume that
the relative angle between the polarization vectors of the
lattice beams,u, is a linear function of time, i.e.,u=bt.

The highest vibrational heating occurs for the largest
variation of the potential during the shift operation. For
ground state Cs atoms withumFu=1 in the blue-detuned op-
tical lattice, the potential well depth changes by a factor of
approximatelyU0/U1=8 during one shift operation. The cor-
responding change in the frequency of the lowest vibrational
levels is illustrated in Fig. 2. Vibrational excitation of atoms
during shift operations has been addressed experimentally by
Mandel et al. f27g in a small-wavelength, nonaddressable
optical lattice. The analysis was restricted to the simplified
case when the well depth is independent ofu and provided
an estimate of vibrational excitation to thev=1 state when
the well depth decreases by a factor of 2 atu=p /2.

We have made a detailed study of vibrational heating de-
riving from shift operations in an addressable lattice, in order
to determine the extent of vibrational heating over a broad
range of optical lattice parameters. Initially each lattice atom
is in its vibrational ground state, with energyU0. A shift
operation displaces the lattice potential and vibrationally ex-
cites atoms in the moving potential reference frame. This
heating can be quantified by the total energy of a moving
particle relative to the zero-point energykEl−U0. We have
employed both analytical and numerical techniques to get
insight into the dynamics of atoms in such a time-varying

lattice potential scharacterized byU0=100mK and a
=5.3 mmd and to establish upper bounds on the resulting
vibrational heating of the trapped atom. We first studied a
simplified modelboth analytically and numericallyssee Ap-
pendix Cd, in order to demonstrate the analytical validity of
our numerical tools. The numerical approach is based on a
Fourier grid representation of quantum states and operators,
and the Chebyshev polynomial method for quantum propa-
gation. The methodology is described in detail inf28–30g.
The explicit time dependence of the potential was approxi-
mated in discrete steps, with a time stepDt<1/U0 chosen to
ensure the accuracy of the final results to within,10−5.

In the simplied situation when the lattice potential mini-
mum is assumed to be independent of the polarization vector
difference, the heating can be described as a transformation
of the initial stationary state into a coherent state with maxi-
mal displacement determined by the energy transferred from
the lattice to the atomssee Appendix Cd. The extent of heat-
ing can be measured in terms of the decrease in fidelity as-
sociated with the shift,F̃= zkCi uC flz2= zkv=0uC flz2, which
corresponds to the projection of the final coherent state onto
the vibrational ground state of the translated potential. We
refer to the vibrational heating resulting from this transfor-
mation as “inertial.” It is seen to give rise to a sigmoidal
increase ofF̃ as the pulse durationt increases and can be
suppressed by suitable choice oft ssee Appendix Cd. The
realistic case, when the potential well depth is not constant
with u, has to be studied numerically. For the parameters
U0=100mK, a=5.3 mm, the potential minimum decreases
from U0 to U0/8 and increases again toU0 as the angle
between polarizations is rotated throughp. The vibrational
frequency is also modulated. Physically, the trapped atoms
are first accelerated asu approachesp /2 and are then decel-
erated whenu.p /2. This process of acceleration and decel-
eration of the motion, absent in the simplified case, gives rise
to a second contribution to vibrational heating that dramati-
cally modifies the total amount of vibrational heating found
for atoms trapped in the realistic potential.

This analysis shows that in the realistic case, the vibra-
tional heating may be decomposed into two contributions,
the inertial contribution and a second contribution deriving
from the acceleration of the lattice potential reference frame.
The inertial contribution can be essentially eliminated by
suitable timing of the shift operation just as in the case of the
simplified potentialsAppendix Cd, although the precise time
duration must now be determined by simulations. The com-
bined effect of both heating mechanisms will depend on the
ratio U0/U1, which in turn is determined by the lattice de-
tuning and by the choice of atomic internal states. Compari-
son of Fig. 3 below with the corresponding behavior for the
simplified potentialsAppendix C, Fig. 11d shows that for
small values ofU0/U1,3 the inertial contribution to heating
is dominant. The experimental estimates by Mandelet al.
f27g, obtained forU0/U1<2, appear to fall into this cat-
egory, although we note that these are made in a different
parameter range. For higher ratiosU0/U1, the potential ac-
celeration dominates the heating mechanism, giving rise to a

slower rise inF̃ as a function oft.
Optimal conditions can be achieved by varying time du-

rationt, well depthU0 ssee Fig. 4d and the ratioU0/U1 sFig.

FIG. 2. Change of the lowest vibrational eigenstates of the pe-
riodic potential for the atomic stateuCs 6S1/2,F=4,mF=−1l as a
function of the rotation of the relative polarization angleu. The
energy is measured relative to the potential minimum. The vibra-
tional frequency for the transition 0→1 is 10.5 kHz foru=0 and
3.66 kHz foru=p /2.
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3d by suitable choice of internal atomic states. Figure 3
shows that forU0/U1=8, the atoms can be shifted on a time
scale of 5–6 ms without appreciable heatingssee also Fig.
4d. It is evident that even for fairly fast shift operations, e.g.,
with t,2 ms, the atoms remain deeply trapped in the lattice,
although recooling of the lattice may be required after many
such operations.

V. EFFICIENCY OF COMPACTING

To systematically analyze the efficiency of the compact-
ing scheme, we consider here finite 1D, 2D, and 3D lattices
with 50% initial site occupationpocc si.e., the initial fillingd.

From imaging during laser cooling, we have a map of the
lattice occupation. Our goal is to move the atoms so that they
form a single contiguous block with no vacancies, i.e., a
perfect finite lattice. The primitive operation in this analysis
is the shift of an atom or group of atoms by one lattice site.
We define the coststimed for this operation to be one unit.
The physical implementation of this operation was discussed
in Sec. IV B, where we showed that moving a group ofn
atoms through one lattice site requires two movements of the
trapping potentialstwo elementary shiftsd and 2n flip opera-
tions ssee Fig. 1d. Note that there are only two elementary
shifts because all atoms move in a shift. For fault-tolerant
computationf31g we need to haveOsnd parallel operations
f32g, so for evaluating the scalability of the scheme we as-
sume that the spin flips can be achieved in parallel. This is a
good assumption, since the time required for a spin flip is
much smallersby a factor of 100–1000d than the time to
move the trapping potential. In fact, we can ignore the spin
flip cost altogether. We may also ignore the cost of classical
computations required to plan and implement the compacting
procedure since, with proper optimization, this cost scales at
most linearly with the total number of lattice sites. Therefore,
the total cost is essentially determined by the shift opera-
tions.

We first study the 1D lattice to show the solution in a
simple setting. Then we consider the 2D lattice, which pre-
sents additional challenges. Finally, we generalize the tech-
niques of the 2D lattice to the 3D lattice.

A. One-dimensional lattice

The one-dimensional latticeLn hasn sites. The site occu-
pation probability ispocc. Our goal is to move the atoms so
that they form a line of atoms with no gaps in between.

Here, we use the simplest possible algorithm, which we
call COMPACT, to remove the vacancies. The algorithm
moves the atoms to the left so that all the vacancies move to
the right. Thus after running the algorithm we end up with a
line of atoms at the left of the lattice. The one-dimensional
algorithm COMPACT consists of the following two steps.

s1d Find the leftmost vacancyv. If there are no atoms to
the right of this vacancy, the compacting is complete and the
algorithm terminates.

s2d Let G be the set of atoms that are to the right ofv.
Shift all the atoms inG left by one step. Return to the step 1
and repeat.

We say that a vacancy is at the right side if all the atoms
are to its left. Since there are at mostn vacancies and each
operation can take one vacancy to the right side, the number
of operations needed isn. On average there ares1−poccdn
vacancies, so the expected number of shifts required iss1
−poccdn. Also, if there are exactlyv vacancies that are not on
the right side, then the number of operations needed will
be v.

Clearly, the cost of this algorithm in the average case can
be lowered by finding the center of mass of the set of atoms
and compacting them around this. However, this modifica-
tion does not improve the worst-case cost.

B. Two-dimensional lattice

We consider a finite two-dimensional square latticeLn,n
with N=n2 sites. We denote a sublatticeSi,j s1ø i ø j ønd as

FIG. 3. Minimal fidelity F̃ as a function of the shift operation
time t, calculated numerically with the full potential at five differ-
ent values ofU0/U1. The minimal fidelity provides a measure of the

vibrational heating, with smallF̃ corresponding to greater heating.
At small valuesU0/U1, the vibrational heating is dominated by the

inertial contribution and the rise ofF̃ with t is very similar to that
obtained with the simplified potentialssee Fig. 11d. As U0/U1 in-
creases, the additional vibrational heating contribution from accel-

eration of the potential now increases, making the rise ofF̃ slower.
The inertial contribution has the same origin as that obtained with
the simplified potentialsAppendix Cd and is similarly fully control-
lable by suitable timing of the shift operation. The plot shows that
for given durationt, a higher fidelity can be obtained with a larger
value of the potential ratioU0/U1.

FIG. 4. Minimal fidelity F̃ during a shift operation for time
durationt, shown as a function of the well depthU0. Calculations
were carried out using the fullsrealisticd potential withU0/U1=8.
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all rows between and including rowsi and j . Let NsSijd de-
note the total number of atoms in the sublatticeSi,j andnk the
number of atoms in the rowk.

The two-dimensional compacting procedure has two
parts.

s1d 2BALANCEsS1,nd. Here the atoms are first moved so
that they are equally distributed among all the rows. The
general idea is to divide the lattice into two halves, e.g., the
top half and the bottom halfsFig. 5d. Then, atoms are moved
from the top half to the bottom half or vice versa, so that
each half contains the same number of atomssa difference of
one atom is allowed when the total number of atoms is oddd.
After this, each half of the lattice is given as input to this
procedure again, thus recursively balancing all the rows. Fig-
ure 5 illustrates this procedure for a 737 lattice. A more
detailed description of the algorithm can be found in Appen-
dix D. The recursive procedure can be summarized graphi-
cally by a binary tree structuresFig. 6d, described below, in
order to find its cost.

s2d 2ROW-COMPACT. The atoms in each row are then
compacted as in the 1D case, except that here all rows can be
compacted in parallel since mobile atoms can be moved to-
gether as a group. Figure 7 illustrates this procedure for a
737 lattice that has already been balanced according to
Fig. 5.

A detailed list of the logical steps of2BALANCEsS1,nd is
given in Appendix D. We now analyze the cost of the entire
procedure. First we analyze the cost of ROW-COMPACT. It
is the same as doing the 1D compacting on each row, but we
can do all the rows in parallel, so the worst-case cost isn
f33g sthere being onlyn sites per row, thus requiring at most

n−1 moves to get an atom to the leftd. The average-case cost
is agains1−poccdn, since there are on averages1−poccdn va-
cancies per row. Additionally, ifv is the maximum number
of internal vacancies among all rows, then the cost isv, since
we have to move all the vacancies beyond the last atom on
the right.

The cost of the balancing procedure is somewhat more
difficult to evaluate. We can represent the recursion by a
binary tree of depthdlog2 ne f34g as shown in Fig. 6. The
nodes of the tree are labeled by the first and last rows of the
sublattice Si,j passed as input to BALANCE. The set of
nodes at the same depthd are said to be at leveld. The root
is defined to be at depth 0. During each recursive step, the
number of rows in the sublattice is halved, so the depth of
the tree isdlog2 ne. The total number of shifts required is the
sum of the number of shifts required at each level of the tree.

FIG. 5. Movement of atoms during the balancing process for a
737 lattice.sad shows the first halving and balancing, correspond-
ing to the zeroth level of the binary tree from Fig. 6.sbd shows the
balancing corresponding to the second level of the tree.scd shows
the balancing corresponding to the third level of the tree.sdd is the
final result where all the rows are balanced. The horizontal shaded
rectangles show the partitioning of the lattice into halves. The gray
circles represent atoms that are to be moved in the corresponding
step. The black circles represent atoms that do not move in that
step.

FIG. 6. Binary tree describing the recursion of BALANCE
when it is givenS1,7, i.e., a 737 lattice, viz., the one considered in
Fig. 5. The nodes of the tree show the starting and ending rows of
the sublattices balanced in each step. The root of the tree has depth
or level 0. The maximum depth isdlog2 ne f34g which is 3 in this
case, sincen=7. Note that at the last level, i.e., at the leaves of the
tree, all the lattices consist of one row only. Hence no balancing
needs to be done at this point. Thus the total number of balancing
steps isdlog2 ne.

FIG. 7. Movement of atoms during the row-compacting process
for the 737 balanced lattice obtained at the end of the balancing
shown in Fig. 5. The gray circles represent atoms that are to be
moved in the corresponding step. The black circles represent atoms
that do not move in that step.
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Note that the number of atoms to be moved during a balanc-
ing step does not cause a problem, since they can move in
parallel as a group. Thus we basically need to count the
number of shifts that the atoms have to make at each level.
For a sublattice ofk rows the atoms only need to makedk/2e
shifts at most, since that is the largest number of rows of the
two halves that are being balanced. At depthd the number of
rows in a sublattice is at mostn/2d+1 f35g. There are 2d+1

such sublattices to be balanced at depthd. Now, the balanc-
ing of all these sublattices can be done in parallel. First move
all the atoms in all these sublattices that need to be moved
up. This takes at mostn/2d+1 shifts. Then shift all the atoms
in all the sublattices that need to be moved down. This also
takes at mostn/2d+1 shifts. Thus the total number of shifts
required is n/2+n/2+n/4+¯ +sdlog2 netermsdøn/2
+sn/2don=0

` s1/2dn=3n/2, where the first term in the summa-
tion is only n/2 snot doubledd because there is only one
direction in which to move the atoms the first time the lattice
is halved. Also note that one would expect to be able to
balance each level of the binary tree in one step on average.
This would imply that the average complexity of balancing is
<log2 n shift operations. Numerical simulations suggest that
this is indeed the case.

Putting together the two components of the cost analysis
leads to the conclusion that in the two-dimensional lattice
with N=n2 sites, the compacting procedure takes at mostn
+3/2n=5/2n=5/2ÎN stepsfneglecting termsOslog Ndg.

C. Three-dimensional lattice

We consider a three-dimensional cubic latticeLn,n,n with
N=n3 sites. The compacting procedure for this three-
dimensional case is a generalization of that for the two-
dimensional case. One key difference is that the notion of
rows now needs to be defined. For example, the lattice is in
the positive octant of the coordinate system, and its three
sides coincide with the axes. Taking the lattice spacing to be
the unit along the axes, the lattice sites are given by the
coordinatessi , j ,kd with 1ø i , j ,køn, where the first coordi-
nate is thex coordinate, the second coordinate is they coor-
dinate, and the third coordinate is thez coordinate. We define
row Ri,j to be the ordered set of lattice siteshsl , i , jd u1ø l
ønj. The lth position in the rowRi,j corresponds to the site
sl , i , jd.

Define a sublatticeSi,j ;k,l with s1ø i ø j øn,1økø l ønd
to consist of the set of lattice siteshsa,b,cd u1øaøn, i øb
ø j ;køcø lj. Let NsSi,j ;k,ld denote the total number of atoms
in the sublatticeSi,j ;k,l.

The three-dimensional lattice compacting procedure con-
sists also of two parts.

s1d 3BALANCEsS1,n;1,n,0d. The atoms are moved so that
they are equally distributed among then2 rows. The second
parameter in the function call corresponds to the current re-
cursion depth. The general idea is the same as in the case of
the two-dimensional lattice. The difference is now that we
alternately balance the two halves made by planes parallel to
thexy plane and thexz plane, using the recursion depthd to
implement this alternation of balancing.

s2d 3ROW-COMPACT. The atoms in each row are then
compacted in a fashion similar to the 1D case, except now
the operations for all the rows can be done in parallel, since
we can move a three-dimensional group of atoms together in
a single shift.

A detailed list of the logical steps for
3BALANCEsS1,n;1,n,0d is given in Appendix E. Now we ana-
lyze the cost of the entire procedure. First we analyze ROW-
COMPACT. The analysis is identical to that for the two-
dimensional case, namely, a worst-case cost ofn and
average-case cost ofs1−poccdn. Additionally, if v is the larg-
est number of internal vacancies in any row, then the cost is
v.

The analysis of balancing for the three-dimensional lattice
is similar to that of the two-dimensional lattice. During each
recursion step the lattice is halved along thexy or xz plane,
so the depth of the recursion is 2dlog2 ne f34g. We can repre-
sent the recursion by a binary tree of depth 2dlog2 ne, where
even levels correspond to halving the sublattice parallel to
the xy plane and odd levels correspond to halving the sub-
lattice parallel to thexz plane ssee Fig. 8d. The sum of the
number of shifts required for each level of the tree gives us
the total number of shifts required during the execution of
the algorithm. We will do the counting separately for the odd
and even levels. Since mobile atoms can be moved in paral-
lel, we only need to count the number of shifts that the atoms
have to make during each balancing step. For a sublattice of
k rows along the direction in which we halve the sublattice
atoms, we only need to makedk/2e shifts. At depth 2d and
2d+1 the relevant number of rows in the sublattice isn/2d+1

staking the root to be at depth 0d f36g. As in the 2D case, we
parallelize the required shifts for all the sublattices at a given
depthk, by doing all the shifts in the same direction in par-
allel. Since there are two directions, the number of shifts
required at each depth is twice that required for a single
sublattice at that depth. Then the total number of shifts at the
even levels isn/2+n/2+n/4+n/8¯ sdlog2 netermsdøn/2

FIG. 8. Binary tree describing the recursion of BALANCE
when it is givenS1,3;1,3 as input, i.e.,n=3. The nodes of the tree
show the indices of the sublattices balanced in each step. The root
of the tree has depth or level 0. The maximum depth is 2dlog2 ne
f34g which is 4 in this case sincen=3 to the even levels correspond
to balancing with respect to the first set of indicessthe halving plane
is parallel to thexy planed, while the odd levels correspond to
balancing with respect to the second set of indicessthe halving
plane is parallel to thexz planed. Note that at the last level, i.e., at
the leaves of the tree, all the lattices consist of one row only and
hence no balancing needs to be done. Thus the number of nontrivial
balancing steps is 2dlog2 ne.
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+sn/2don=0
` s1/2dn=3/2n. The first term in the sum is only

n/2 snot doubledd because there is only one direction in
which to move the atoms the first time the lattice is halved.
For the odd levels a similar argument holds, except that the
first term isn because there are two sublattices at that stage
and balancing them may require moving atoms in opposite
directions. Then the total number of moves required at the
odd levels is n+n/2+n/4+n/8¯ sdlog2 netermsd
ønon=0

` s1/2dn=2n. Adding together the total moves at the
even and odd levels gives us the total number of moves
required: s3/2dn+2n=s7/2dn. Thus, in the three-
dimensional lattice withN=n3 sites, the lattice can be com-
pacted in at mosts7/2dn+n=s9/2dn=s9/2dÎ3N stepsfagain
neglecting termsOslog Ndg. As in the case of the two-
dimensional lattice, one would expect that the balancing at
each level of the binary tree can be typically done in one
step. This would imply that the average cost of balancing is
2dlog2en steps. However, we do not have a rigorous proof of
this estimate.

VI. SUMMARY AND CONCLUSIONS

We have presented an experimentally viable scheme for
initializing a quantum computer based on neutral atoms
trapped in an optical lattice of large lattice constant. The
proposed compacting scheme allows preparation of a uni-
formly filled optical lattice of orthorhombic structure, where
each lattice site is occupied with a single atom in a specific
internal level and motional ground state. We have proposed
physical mechanisms for the realization of two elementary
compacting operations, namely, the flip of the internal state
of atoms and their shift within the lattice structure. We have
analyzed the efficiency of their implementation in some de-
tail, with particular attention devoted to the study of mo-
tional heating during the elementary operations. Mechanisms
to control this heating were proposed, based on analytic and
numerical solutions of the atomic dynamics in the time-
dependent lattice potential. Our analysis of the complexity of
the compacting process demonstrates its scalability with the
size of the quantum computer in one, two, and three dimen-
sions.

The scheme presented here is feasible with current tech-
nology. Our detailed study of physical feasibility together
with algorithmic scaling shows that we can achieve a single
cycle of the entire compacting scheme in less than one sec-
ond, starting from a half-filled lattice of approximately 8000
sites. If the elementary steps are implemented perfectly, then
this guarantees a perfect pattern formation in a single cycle.
If this is not the case, the scheme may be applied recursively
to achieve any desired accuracy. After a complete compact-
ing cycle, the lattice can be optically cooled and imaged to
identify any remaining errors. Thus even if implementation
of the elementary steps is imperfect or if decoherence intro-
duces errors during compacting, these accumulated errors are
reset to zero. The most serious limitation derives from atom
losses due to scattering of lattice photons or to inelastic col-
lisions with stray particles. Fortunately, the rate of these pro-
cesses is expected to lie below a threshold value of 10−4 in
terms of the typical elementary operation time scale. This is

consistent with fault-tolerance requirements for quantum
computationf15g. For example, assuming the error rate of
atom loss equal to 10−4 per shift operation time scale, com-
pacting a half-occupied 3D lattice with 20 sites per dimen-
sion can reach a fidelity above 0.99 in less than one second
within the first cycle. A second cycle improves the result to
fidelity ,0.998 in less time, since fewer operations are re-
quired to implement this cycle. Recursive pattern formation
can thus be seen as a process that is correcting thesesclassi-
cald errors by fixing defects at a speed higher than they oc-
cur, thereby removing any propagation of these errors, as
required for fault tolerance.

In summary, the scheme presented here allows the prepa-
ration of an arbitrary homoatomic or heteroatomic pattern of
neutral atoms. State preparation can be accomplished in a
fault-tolerant manner, and the prepared state can be checked
before it is used. We expect that this approach will find im-
mediate application in the preparation of quantum states in
site-addressable large-wavelength optical lattices.
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APPENDIX A: LOADING AND COOLING
OF OPTICAL LATTICE

A magneto-optical trapf37g can be used to load well-
spaced far-off-resonant optical lattice sites with many atoms
sN=10–100d f20g. Atoms are lost in pairs during laser cool-
ing, as a result of photon-assisted collisionsf38,39g. Eventu-
ally, the sites initially occupied by an odd number of atoms
become singly occupied, while sites initially occupied by an
even number of atoms are left empty. The filling factor that
results from this combined loading and cooling process ap-
proaches a maximum of 0.5. Such loading of a far-off-
resonant optical lattice with Cs atoms has been demonstrated
experimentally for a lattice of a small lattice constant
s,0.5 mmd, achieving a filling factor of,0.44 f38g.

Trapped atoms can then be brought to the vibrational
ground state of their lattice sites using Raman sideband cool-
ing f40–44g. This procedure has been experimentally dem-
onstrated in 1Df42,44g, 2D f41g, and 3D f40,43g optical
lattices. Inf43g, the 3D ground state was populated by up to
55% of atoms, corresponding to over 80% in each dimen-
sion. It was shown that the cooling was limited by the
rescattering of cooling photons. This mechanism is dramati-
cally reduced at the low densities associated with large lat-
tice constants. Even with a 5mm lattice constant, a 150mK
depth lattice leaves the atoms well within the Lamb-Dicke
limit required for efficient sideband cooling. It is reasonable
to expect nearly 100% vibrational ground state population
after Raman sideband cooling.
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With a 150mK deep, 5mm spaced lattice, the vibrational
level spacing is well below the expected minimum polariza-
tion gradient cooling temperature of 2mK, so the polariza-
tion gradient cooling limit should be obtainedf20g. With a
temperature so small compared to the lattice depth, there will
be negligible site hopping during cooling. Therefore the at-
oms can be imaged during the cooling for as long as needed.
1D CO2 lattices have recently been imagedf19g. In a similar
way, it should be possible to use,0.6 numerical aperture
optics to image successive 2D planes, and thereby construct
the site occupancy map of a 3D lattice. Since the localized
atoms in the 3D lattice will scatter light coherently, there will
be significant interference between light scattered from at-
oms in the image plane and light from nonimaged planes.
Information can be obtained from such signals, particularly if
the ratio of the lattice spacing to the imaging wavelength is
well chosen. A detailed study of the imaging in this situation
shows that with 15315315 lattices, one can determine the
site occupancy of each site in an arbitrarily half-filled lattice
with greater than 99% reliabilityf22g. Once the lattice occu-
pation map is known, the compaction procedure can begin
sSecs. III and IVd. After the first compaction, one would
expect the sites to be 99% filled. From this more regular
arrangement of atoms, the site occupancy can be determined
with negligible error. When compaction is repeated, imper-
fect knowledge of the vacancy locations ceases to be a
source of error.

APPENDIX B: ADIABATIC FLIP OPERATION

The flip operation can also be implemented using adia-
batic two-photon passage. Consider a three-level optical sys-
tem in aL configurationssee Fig. 9d where two ground states
u0l and u2l are coupled indirectly via an intermediate state
u1l, using a pair of laser fields. Adiabatic passage occurs
when the initial and target levels coupled off-resonantly
through the intermediate state sweep through their dressed-
state resonance as a result of interaction with a linearly

frequency-chirped fieldsfor a description of the chirped field
and its interaction with matter see for instancef45,46gd.

The atom-field Hamiltonian in the interaction representa-
tion is

Ĥstd = Ĥ0 + Ĥ Istd = o
i=0

2

"viuilki u + fW01stds01
+ + H.c.g

+ fW12stds12
+ + H.c.g sB1d

where si j
+ = u jlki u and Wijstd is the time-dependent coupling

strength given by the external optical field. Canonical trans-
formation of this system with coupling fields detuned from
resonance with the intermediate state results in an effective
two-level systemf47,48g:

Ĥeffstd = Ĥ0 + ĤStark+ Ĥ I,effstd

= o
i=0

2

"viuilki u +
uW01stdu2

D01
s01

z +
uW12stdu2

D12
s12

z

+ W02s02
+ + W02

* s02
− sB2d

whereW02=sW01W12/2ds1/D12−1/D01d is the effective cou-
pling strength between the statesu0l and u2l, andDi j is the
detuning of the field from the atomic transition between lev-
els i and j . Application of a linearly chirped field for one of
the transitions 0→1 or 2→1 results in a robust and com-
plete flip operation.

APPENDIX C: VIBRATIONAL HEATING
IN SHIFT OPERATION

This appendix complements Sec. IV B where the vibra-
tional excitationsheatingd of atoms during the shift operation
is investigated in the most general situation characterized by
a strong variation of the lattice vibrational spectrum with
time. This investigation is carried out using numerical simu-
lation of the dynamics of atoms in a time-varying potential,
and requires benchmark calculations that demonstrate the ac-
curacy and reliability of the simulation results. These are
provided here, where we focus on the simplified case when
the lattice potential well depth is constant with variation ofu.
In the vicinity of the minimum, we can approximate the pe-
riodic potential of the lattice with a second-order Taylor ex-
pansion, yielding the harmonic vibrational frequencyv
=kÎ2U0/m, wherek=2p /l. Comparison with the results of
direct diagonalization of the periodic potential shows that the
fractional difference from the true frequency is,10−3, and
that the anharmonicity of the periodic potentialfmanifested
in the deviation ofvk,k+1=sEv=k+1−Ev=kd /" from the har-
monic frequencyg is linear in the vibrational quantum num-
berk and is only 3% fork=20. These facts justify the use of
the harmonic approximation to get analytical insights into
the process of vibrational heating.

The motion of the simplified potential, induced by rota-
tion of the polarization vector of one of the lattice beams, is
linear in time and induces a transfer of energyDE=mv2

=mDz2/t2 into the system. Herem is the atom mass, andDz
is the total distance of the potential translation over the du-

FIG. 9. The three-level quantum system coupled by two optical
fields in aL configuration.Vi j is the Rabi frequency for coupling of
the statesi and j ; Di j is the detuning from a resonancevi j =sEi

−Ejd /".
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ration t. DE is the maximum energy that can be transferred
into vibrational motion during the beginning or end of a
translation. Onset of the potential translation at timet=0
causes displacement of the initially stationary vibrational
state with respect to the moving potential reference frame.
The displacement transforms the stationary initial state into a
vibrating coherent state with a maximal displacement ofxmax.
This displacement is related to the transferred energy via
DE= 1

2mv2xmax
2 , whencexmax=sÎ2/vdsDz/td. The maximal

energy in the system atu=p is 2E. The analytical and nu-
merical results for the harmonic and periodic potential show
perfect agreement, demonstrated in Fig. 10, and hence justify
the applied harmonic approximation and the coherent state
representation.

To further characterize the quality of the shift operation,

we define a fidelity measureF̃= zkCi uC flz2= zkv=0uC flz2,
which corresponds to the projection of the final coherent
state onto the vibrational ground state of the translated po-
tential. In this simplified case, the fidelity can be evaluated

analytically, yielding the expressionF̃=expf−smv /4"dxmax
2 g

=expf−sm/2v"dDz2/t2g. As can be seen in Fig. 11, the fi-
delity remains low for shift operation times less than 0.5 ms,
whereafter it rises sharply. For shift times longer than 2 ms
the fidelity is very close to unity, and thus provides a good
estimate of the time scale necessary to preserve adiabaticity.

Exploration of this simplified model provides insight into
the control and minimization of vibrational heating. The on-
set of the potential motion generates a coherent state from
the initial vibrational ground state. In the moving reference
frame, the potential motion first displaces the initial state to
the negative momentum and negative coordinate region of
the phase space, while setting its motion along the classical
phase space trajectory corresponding to the coherent state.
When u=bt=p the actual motional phase of the coherent
state accumulated during the evolutionse−ivtd determines
whether halting the potential at this time will reduce or in-

crease the total vibrational energy of a trapped atom. Conse-
quently, choosing the duration of the shift operationt to
correspond to an integer multiple of the vibrational period of
the coherent stateT=2p /v can result in complete elimina-
tion of the vibrational heating within the simplified model.

APPENDIX D: 2D BALANCE

2BALANCEsSi,md.; see Sec. V for definitions.
Input. Si,j.
Goal. Balance the rows inSi,j so that∀k, l we haveunk

−nluø1, where i øk, l ø j . Equivalently, each row has at
leastnmin= bNsSi,jd / s j − i +1dc atoms.

Algorithm
s1d Let l =s j − i +1d denote the number of rows inSi,j. If

l =1 RETURN.
s2d Let m= i + bl /2c be a middle row ofSi,j. For balancing,

we need to havenreq=sm− i +1dnmin atoms in the sublattice
Si,m.

s3d If fNsSi,md.nreqg, shift fNsSi,md−nreqg atoms down
from Si,m to Sm+1,j.

s4d If fNsSi,md,nreqg, shift fnreq−NsSi,mdg atoms up from
Sm+1,j to Si,m.

s5d 2BALANCEsSm+1,jd.

APPENDIX E: 3D BALANCE

3BALANCEsSi,m;k,l ,d+1d; see Sec. V for definitions.
Input. SublatticeSi,j ;k,l and recursion depthd.
Goal. Balance the rows inSi,j ;k,l so that∀a,b such thati

øa,bø j and ∀c,d such thatkøc,dø l we haveuna,c−nb,du
ø1, wherena,c represents the number of atoms in the row

FIG. 10. Maximal vibrational heating of the initial ground state
populationDE as a function of the total time scalet of the shift
operation. The analytical and numerical simulation results in the
harmonic approximation are compared with each other and with the
numerical simulation using the simplified periodic potentialssee the
text for explanationd. The analytic and numerical results are indis-
tinguishable on this scale.

FIG. 11. Minimal fidelity F̃ as a function of the shift operation
time scale for the simplified casessee the text for explanationd. The
excellent agreement between analytic and numerical results shows
that the classical picture of the process based on the coherent state
representation correctly reproduces the atomic dynamics induced by
the time-varying potential. For short time scales, the anharmonicity
of the periodic potential slightly reduces the fidelity compared to
the results obtained within the harmonic approximation.
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Ra,c. Equivalently, each row should have at leastnmin

= bNsSi,j ;k,ld / s j − i +1dsl −k+1dc atoms.
Algorithm
s1d If i = j and k= l then RETURN. Only one row so no

balancing needed.
s2d If d is odd, go to 10; else if i

= j 3BALANCEsSi,j ;k,l ,d+1d. RETURN.
s3d If sublatticeSi,j ;k,l contains only onexy plane si.e., i

= jd, then go to 10.
s4d Let l = j − i +1 be the number of planes parallel to the

xy plane. Thenm= i + bl /2c defines a middle plane parallel to
the xy plane.

s5d Let nreq=nminsm− i +1dsl −k+1d be the minimum num-
ber of atoms that are required to be inSi,m;k,l.

s6d If fNsSi,m;k,ld.nreqg, shift fNsSi,m;k,ld−nreqg atoms from
Si,m;k,l to Sm+1,j ;k,l.

s7d If fNsSi,m;k,ld,nreqg, shift nreq−NsSi,m;k,ld atoms from
Sm+1,j ;k,l to Si,m;k,l.

s8d 3BALANCEsSm+1,j ;k,l ,d+1d.
s9d RETURN.
s10d If k= l3BALANCEsSi,j ;k,l ,d+1d. RETURN.
s11d Do steps 4 to 8, replacing indicessi , jd with indices

sk, ld.
s12d RETURN.
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