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We present unified, systematic derivations of schemes in the two known measurement-based models of
qguantum computation. The first mod@htroduced by Raussendorf and Briegig?hys. Rev. Lett.86, 5188
(2001)]) uses a fixed entangled state, adaptive measurements on single qubits, and feedforward of the mea-
surement results. The second mo(®bposed by NielsedPhys. Lett. A308 96 (2003] and further simpli-
fied by Leung/[Int. J. Quant. Inf.2, 33(2004]) uses adaptive two-qubit measurements that can be applied to
arbitrary pairs of qubits, and feedforward of the measurement results. The underlying principle of our deriva-
tions is a variant of teleportation introduced by Zhou, Leung, and Chy&hys. Rev. A62, 052316(2000 ].
Our derivations unify these two measurement-based models of quantum computation and provide significantly
simpler schemes.
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[. INTRODUCTION measurements and simple quantum gates are used to imple-
) . ment other quantum gates that are difficult to apply directly
What physical resources are needed to simulate the eveg_17].
lution (_)f an arbltra_ry phy5|cal_ _system? In th_e context of in-" Raussendorf and BriegdlL3] overturned this conven-
formation processing, the ability to perforamiversalcom-  tjona| wisdom, showing that it is possible to perform univer-
putation is equivalent to 'ghe a}blllty to simulate an art_)ltrarysa| quantum computation usingsequence of single-qubit
evolution—any computation is performed by evolving ameasurements alopecting on some fixed entangled state
computing machine, and conversely, a universal computinga|ied acluster statg14]. Once the cluster state is prepared,
machine can be used to simulate the evolution of any systemy, fyrther interactions are required, and the only aspect of
In the standard quantum circuit model of quantum com+he computation that must remain coherent is the storage of
putation[1-3], a quantum computation involves initializing quantum information. More preciselgny quantum circuit
quantum systems—typicallgubits or two-level quantum ;5 depthd and breadtt may be simulated using a single,
systems—that are then acted on by a sequenagiahtum  fixeq cluster state of(bd) qubits. Each simulation of a
gates followed by some measurements. In this model,q,anwm gate is successful up to an additional known Pauli
simple quantum gateay, acting on one or two qubits at a g0y Since the act of measuring the cluster state is irrevers-
time) can be used to build up aarbitrary unitary transfor- e this model is referred to as thme-way quantum com-
mation. Nonunitary evolution such as dissipation can also b‘f)uter (IWQC) model.
simulated in this model by introducing and later discarding’ afior the 1WQC was introduced, a very different
ancilla qubits. _ _ _ _ measurement-based scheme for quantum computation was
Since measurement is generally irreversible, until recently.-o4,,ced by one of ugl5], following the line of thought
the conventional wisdom has held that the processing oaeveloped in[16,9,11. We ’wiII refer to this model as a
quantum information should t_>e kep_t coherent and measurga|enortation-based model of quantum computatiC),
ments should be delayed until the final readout of computagjnce it is conceptually derived from teleportation. The TQC
tion results. A notable exception to this rule of thumb is coq similar physical resources to the 1WQ@ultiple-
quantum teleportatiopd], in which a measurement by one ¢ hiy measurements, quantum memory, and feedforward.
party determines the correction that a remote party shoglghe initial TQC scheme proposed [15] uses four-qubit
apply to recover a quantum state. Another notable exceptiog,easyrements. It also requires a nondeterministic number of
is the use of syndrome measurements in quantum error COLteps to perform each quantum gate. Simpler TQC schemes
rection[5]. S_yndrome measurements reveal the error that hagqre |ater proposefil7-19, with the simplest using only
occurred without measuring the encoded quantum stalgy,q_quhit measurements and performing each gate determin-
thereby preserving its coherence. Indeed, there are many ai%’[ically (up to a known Pauli error
proaches to fault-tolerant quantum computation in which 11,4 TQC is easy to understand since it is similar to the
standard model of quantum computation. In comparison, the
conceptual basis for the 1IWQC is less clear. The prescrip-
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schemes. It is also unclear what makes the cluster stateten of circuit simulation with Pauli errors, and describing
good substrate for quantum computation, and more genethe TQC and 1WQC models of quantum computation in
ally, what makes a good or bad substrate. Finally, the 1WQGnore detail. We emphasize some conceptual ideas that may
formalism is heavily based on the stabilizer language develbe useful elsewhere. Section 1l reviews one-bit teleportation
oped by Gottesmaj21]. Although this language is powerful, and presents useful techniques obtained from it. The tech-
it is also rather specialized, being limited primarily to the niques are used to derive a simplified TQC scheme in Sec.
analysis of situations in which operations from a specialy A, Section IV C explains how one-bit teleportation can be
set—the Clifford group—are being applied. Furthermore, thg,seq to derive a scheme that simulates arbitrary circuits us-
connection between the stabilizer language and the corrqﬁg a circuit-dependent entangled initial state, single-qubit

sponding picture in terms of state vectors is not alV"‘"‘y%easurements, and feedforward. Section IV D explains sev-

straightforward. . o
On the other hand, the IWQC has important advantageeral techniques to remove the dependence of the initial state

over the TQC. First, no quantum interactions are requireé§n the circuit being simulatedexcept for its breadth and

after the initial preparation of the cluster state. Second, thgepth' We conclude the paper in Sec. V. Our initial system-

cluster state is independent of the computation to be pelf‘:ltIC derivation of 1WQC-like schemes based on teleportation

formed, except for its breadth and depth: arbitrary interac@n be found ir23].
tions can be extracted from the fixed cluster state. Third,
there may be physical systems in which a clgster state offers || THE QUANTUM CIRCUIT MODEL, THE TQC,
Ezﬁ)ezzrémental advantages over more conventional approaches AND THE 1WQC

Our initial goal in undertaking the research reported here In this section, we summarize the circuit model of quan-
was to identify simple underlying principles for the IWQC tum computation as a way of introducing the notation used
and to systematically derive schemes similar to the proposeiiroughout the paper. We describe a notion of circuit simu-
1WQC. We eventually found such a systematic derivatioriation that is crucial to our discussion. Then, we outline the
using teleportation as an underlying princip®8], in accord  main features of the TQC and the 1WQC that motivate our
with the conjecture that the IWQC and the TQC are closelyerivation. Since we derive simplified TQC and 1WQC
related. Our improved conceptual understanding of theschemes, a full summary of the existing schemes will be
1WQC proved valuable, for we subsequently found muchomitted. Finally, we describe a diagrammatic representation
simpler 1WQC-like schemd®4] by choosing a simpler un- of the IWQC, which we call theubstrate representation
derlying principle, known as “one-bit teleportatiof’10].
Such simplification is reminiscent of the work[ih0], which
simplifies the systematic fault-tolerant gate construction pro-
posed in[9]. We then realized that one-bit teleportation also ~ Any unitary evolution can be built from simple quantum
simplifies schemes in the TQC mode&ks]. gates(say, acting on one or two qubits at a timé circuit

We have therefore unified the 1WQC and the TQC moddiagram represents a partially ordered set of unitary evolu-
els and obtained simplified measurement-based quantutions and measurements. The input states and measurement
computation schemes. The IWQC schemes we derive congutcomes may be included. In a circuit diagram, time runs
bine the conceptual simplicity of the TQC with the practical from left to right. Each horizontal line represents quantum
advantages of the IWQC. We have also identified one-bifnformation propagating forward in time, or equivalently,
teleportation as a single principle underlying both ap-quantum storage. Often, each line represents one qubit of
proaches to measurement-based quantum computation.  quantum information. A unitary gate is represented by a box

During the course of our investigation and preparation ofon the lings), and a symbol for the gate is written inside the
the manuscript, several related results have been reported.pox. Thus, the circuit symbol for a single-qubit gateis
different explanation of the 1WQC model in terms of va- given by
lence bond solids was reported by Verstraete and Cék
Whereas our 1WQC-like schemes differ from the original (1)
schemes 0f 13,20, an exact explanation of the latter in
terms of teleportation was given by Aliferis and one of usIn the basig|0),/1)}, the matrix representations of some use-
[27]. A partial explanation of the IWQC model in terms of ful single-qubit gates are given by
one-hit teleportation was reported very recently by Jorrand 1/1 1
and Perdrix[28], while schemes similar to our simplified X,z z,=¢l%Z H :__< ) 2)
TQC schemes were independently reported by Pef@gk V211 -1
One of us has combined the 1WQC model with linear optics herel X Y. 7 are used to represent the Pauli operators
[22]. Several results announced after our initial posting ma;)N R u P uli op
also be of interest. These include a model of measurement- 10 0 1
based universal quantum Turing machip@g], a more effi- I= (0 1)’ = (1 O)’
cient method to combine the 1WQC with linear optjdd],
and a new fault-tolerance study in the 1WQ&2]. )

The structure of the paper is as follows. We begin in Sec. Y= (0 - ) 7= (1 0 ) 3)
Il by briefly reviewing the circuit model, introducing a no- i 0/ 0 -1

A. The quantum circuit model
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The action of the Pauli operators on each qubit generates A single-qubit measurement along the computational ba-
a group, called the Pauli group. The Clifford group consistssis {|0),/1)} is equivalent toM. It has the circuit symbol
of those unitary operators that preserve the Pauli group by

conjugation. For example, j s

HXH=2, HZH=X. ) Throughout the paper, a double line coming out of a mea-
The only two-qubit gates we will use are within the Clifford surement box represents the classical measurement outcome,
group—for example, the controlled-phase and the and a single line represents the postmeasurement quantum
controlledNOT gates. They are denoted byMZ) and A(X)  state. A single-qubit measurement along the basis
respectively, and their circuit symbols are given by {U']0),U"|1)} (U unitary) is equivalent toM 17y, which is
equivalent to the sequence of operatidhsM,, and finally
UT on the post-measurement quantum state. Whenever the
NZ): A(X): post-measurement quantum state is irrelevant, the measure-

ment is simply depicted as
N —H— 5) ply aep

The target of A(X) is taken to be the second qubit. The II (16)
“upside down” controlledNoT with the first qubit as the tar- ) ) o )

get is denoted by/(X). In contrast,A(Z) is symmetric be- and convers_ely, we |d_ent|fy subcircuits of the form given by
tween the two qubits, as is evident in the notation of @&y. ~ Ed- (16) as single-qubit measurements.

In the basig|00),/01),/10),|11)}, the matrix representations of " @ddition to complete two-qubit measurements, we will
A(Z) and A(X) are given by also useincompletetwo-qubit measurements. For example,

Mzsz measures the parity defined in the computational basis.

100 O 1000 As another exampléyltzyz7 IS €quivalent to the sequence
010 O 0100 of operationsU®1, M.z, andUT®].
A(2Z) = 001 ol A(X) = 000 1l (6) We will often encounter a measurement of the form
000 -1 0010 A
We will repeatedly use the following identities involving 17
A(X) and A(2): where U,V are arbitrary single-qubit gates. The classical
(I © HYA(Z)(I ® H) = A(X) ) outcome | corresponds to the  measurement
’ of (U™XU)® (V'ZV), becausgH ® 1)A(Z)(U®V) maps the
(H® H)AX)(H @ H) = V(X) ® * eigenspace ofU™XU)® (VIZV) onto the +1 eigenspace
' of Z® 1. However,M ytxy)evizy) does not give rise to the
AMZDX® DAZ) =X® Z, (9)  correct postmeasurement quantum state in(Eg. This re-
quires an extra measuremeMt;+», on the first qubit and an
ADZeNAZ)=Za 1, (10)  extra gate(V'ZV)* on the second qubit if the outcome of
Muytzy is k. In other words, the following circuit iequiva-
AX)(X® DAX) =X ® X, (11 lentto Eq.(17):
=]
AX)( @ XAX) =1 ® X, (12) | Munxys vz H mau -
_] trrk
AX)Z®DAX) =Z 1, (13) ViZ'vE g
where double-lined boxes are used to represent the measure-
AX) (1 ®@ Z2AX)=Zx Z. (14  ments.

We emphasize that it is useful to view a circuit as an
abstract representation of the evolution of quantum or clas-
sical information. A quantum circuit is often used to repre-
sent physical registers and transformations, but such associa-

forV?/gaQ;TmC%?]m_zZtatgg'c five measurements. since Usi tion is not generally necessary, as is manifest in our
nly sldeprojective measur S, S USING giscussion of circuit simulations in the next section.
generalized measurements trivializes the problem. A projec-

tive measurement can be specified by orthogonal subspaces
of the measured Hilbert space: the measurement projects the
state onto one subspace and outputs the subspace label.We now describe a notion of circuit simulation useful in

Common ways to specify a measurement include a partitiothe 1IWQC and the TQC models. Most measurements in the
of a basis or the eigenspaces of a Hermitian operatoTQC and 1WQC models output random outcomes and in-
Throughout the paper, a measurement of a Hermitian operaluce Pauli errors that are known functions of the measure-
tor O is denoted byM. ment outcome. However, the presence of such known errors

Equation(7) shows thatA(Z) and A(X) differ only by the
action of single-qubit unitary gates. Given the ability to per-
form single-qubit unitaries, eithek(Z) or A(X) is universal

B. Circuit simulation with Pauli errors
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is not a hindrance to the computation, provided subsequernhe computation to proceed with a deterministic number of
measurements are adapted accordingly. Since our schemsteps. The universality of the TQC model follows from the
share the same feature, it is useful to introduce some conveapility to simulate any single-qubit gaté and a two-qubit
tions that simplify later discussions of simulation. gate such ad(X).

A quantum circuit consists of ancilla preparations, gates, The crucial ingredient of the simulation is teleportation

and measurements endowed with a partial time-ordering. Wey), which transmits a qubity) using the following circuit:
can group together operations that can be performed in par-

allel in a time step, although the grouping may not be unique. I
The minimal number of time steps is called fbgical depth [¥) H 7~ ¢
of the circuit. For each grouping a, an input statd) 4 P = di
specifies a sequence of quantum stéftgs} where|;) is the i
quantum state at the end of thtd time step of the compu- xdzel— [¢)
tation. We say that a circu@@’ simulatesC with Pauli errors (19

if there is a grouping of so that, for any input statey, and . . N
any given Pauli erroP, applyingC’ on the inputP|y) pro- When two qubits are connected on the left side of a circuit

duces a sequence of stafesy;) whereP; are known Pauli  diagram, as the bottom two qubits are in E§9), they de-
errors. These Pauli errors redefine the intermediate states afi@te @ two-qubit maximally entangled staléog)=(|00)
the final measurement outcomes, but do not affect the in+|11))/2. The dashed box performs Bell measurement
tended computation. From now on, we will simply say thatalong the basis

C’ simulatesC to mean that’ simulatesC with Pauli errors.

As a simple example, a unitary gate simulates the identity if
and only if it is in the Pauli group. As a second example, a
unitary gate simulates itself if and only if it is in the Clifford

1 1
|Dop) = —=(|00) +[11)), [P, = —=(|00) - [11)),
V2 V2

group.
Our notion of simulation is defined to ensure an important Do) = i_(|01> +110), | D)= i_(|01> ~110)
property—circuit simulation is preserved under the compo- 0 V2 ' ! V2 ’

sition of circuits. Therefore, to simulate a circuit, it suffices
to compose simulations of individual circuit elements. Uni- The teleportation circuit can be verified by rewriting the ini-
versality can then be proved by showing how to efficientlytial state|y)|®y, as gzc,d|q>cd>®(zcxd|¢>).

simulate all possible circuit elements required for universal The teleportation circuit, Eq(19), simulates the identity
quantum computation. Furthermore, even though a circuiate(in the sense described in Sec. . Bn fact, it does so
element may act on part of an entangled state, it is sufficierdven when the postmeasurement correckf’ is omitted:

to verify the simulation of a circuit element for all possible for any input statex?z®|«), the output from the teleportation
pure state inputs. circuit without correction is simplyXa9z°*¢|) (up to a glo-

In the context of measurement-based quantum computaal phase, as is our convention throughout the pajeom
tion, initial (or ancillg state preparation and read out of com- now on, Pauli corrections are always omitted in what we calll
putation results can be simulated as follows. We will onlyteleportation.
need initial states that can be prepared by a simple measure- Suppose we want to simulate a single-qubit dateCon-
ment, up to known Pauli errors. For example, measuring &ider a circuit in which we apply the gat# =UZPX2 to the
single qubit in the computational basis with outcorde input statex®z°|y) and perform teleportation on the resulting
{0, 1} results in the statx“/0). Similarly, a measurement stateU|y). Following Eq.(19), the output quantum state of
of two qubits in the Bell basis produces a singlet state up tahe circuit isX%Z°U|4). In other words, the following circuit
a known Pauli error. Throughout the paper, we suppress th€imulatesU:
known Pauli errors in the ancillas whenever their effects are

straightforward, so as to keep the discussion and the simula- xzb|y) - ﬁ’»
L
L

I

tion circuits simple. We also omit physically irrelevant global
phase factors that arise from the composition of Pauli errors.
We restrict our attention to measurements that are determin- 4
istically affected by known Pauli errors, so that the actual XeZUW) (20)
outcomes and the knowledge of the Pauli errors can be used o . o

to determine the Pauli-error-free measurement outcomes. Fdhe circuit in Eq.(20) can be divided into subcircuits, each
example, the result of a measurement in the computation&f Which can be simulated by a single two-qubit measure-
basis is simply flipped by aX error and unaffected by z ~ ment. T_he_ first subcwcwtth_e dashed box in the lower left
error. Now, it suffices to focus on simulating a universal setcorne is just the preparation of the staj@g). It can be

of unitary gates in the measurement-based model of quantugimulated by a single Bell measurement, up to a Pauli error.
computation. The rest of the circuit(U’ ®I) followed by a Bell measure-

ment, is just a two-qubit measurement along a rotated Bell
C. The TQC model basis{(U'T®1)|®.y}. Composing these two measurements
In this section, we review some elements of the TQC. Ouprovides a simulation of E¢20), and thus a simulation df,
review follows the simplified approach £f9], which allows in the TQC model.

L7~
ey

JA)

I
S
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An alternative simulation is applicable to gates in the information flow

Clifford group[9]: YRR
; o o o 4Te o o ¢ o o o o
Xz ) HH A 11@?1@1?11111
C) ﬂ\: d SRR B B : I;uaniumega .
:{ X'z
U Uly) 1) t 7 x t t 72ttt ot
m ments: e in Z direction

The above is simply a simulation of the identity by telepor- h o
tation followed by a simulation of) by itself. More specifi- t in X direction

cally, the above cir%ui;t teleports the input sta@z°|y) to *\ in X-Y plane

produce the stat&®97°*|y), and then applies the gaté. . N
The output state is thugX®9z"*¢|y). Using the facU is in Couﬁlgs'ylh AJscg:?erggltlZﬂd(;agragﬂ;ﬂl(}/(\)/r?c computation. Figure
the Clifford group, the output state can be rewritten as o ' '
X&' 72" Uy for knowna’ b’

The simulation of two-qubit gates is similar to that de- In the IWQC model, once the cluster state is prepared, an

arbitrary circuit C can be simulated using only single-qubit
measurements. The first step is to “imprint” the circli@nto
e cluster state by deleting qubits from the lattice to obtain
some graph state that depends®rRoughly speaking, this
graph consists of horizontal lines of vertices, each line cor-
responding to a qubit i€, and vertical edges connecting
eighboring lines corresponding to interactions between the
. g ) ) simulated qubits. The qubits in the graph are then measured
lattion of tWO'qu't gates in the Clifford group. . from the left to the right. Each measurement propagates
Note that in the TQC model we assume the ability toquantum information from the measured qubit to its unmea-

apply measurements to any subset of the qubits, without Woig,, o 4 vight neighbor. In general, the measurement basis will

rying .abqut the respective Iogatiqns of those qubits, jl.JSt as iﬂepend on previous measurement outcomes. Each region of
the ?rcwt mﬁdel.tTh_e 1t—hQC IS s_ltmplydalrr:aethod for imple- t{:e graph is used to simulate a circuit element. Qubits enter-
menting eact gate in the circuit model by a Sequence Oy 3 region from the left boundary carry the input state of
measurements. the circuit element, and qubits exiting at the right boundary
D. The one-way quantum computer model carry the output. When composing element-wise simulation
. . . . I in the IWQC model, the output registers of one region have
Since we will present a simple systematic derivation of

. . . .~ to match the input registers of the next region. A schematic
1WQC-like schemes, we omit the details of the existing P g g

. ; 2diagram for a computation in the IWQC model is given in
1WQC schemes, and refer interested readers to the ingeniogk g 1 P Q g

schemes discussed [1.3,20,33,34 Instead, we focus on

features of the 1WQC that differ from the TQC model. detail in[20]. The : . e
. ) . precise protocols and their verification are
The IWQC is based on an mput' state known gscibe_— beyond the scope of this paper. Interpretations in terms of
ter state[14]. The cluster state consists of a two-dlmensmnal\/a'ence bond solidi26] and teleportatioi27,37] have been

Equargr:alttic_e (?f qubir:i{ Tr? sliml_JIate_ a ﬁomputatit())m(n?:u-_ reported recently. In this paper, the derivation is based on a
Its with logical depthm, the lattice Is chosen to be of Size igraran underlying principle and the schemes are signifi-
O(n) X O(m). One way of defining the cluster state is as theCantly simpler than those discussed 20]

result of a two-stage preparation procedui¢:prepare all
lattice sites in the state+)=(|0)+|1))/42, and (i) apply
A(Z) between each pair of qubits that are adjacent in the E. The substrate representation
lattice. Since the\(Z) operations all commute, it does not
matter in what order they are applied. Note that this prescrip- Circuit representations of a computation in the 1WQC
tion is merely a convenient way of defining the cluster statemodel turn out to be rather unwieldy. Instead, we prefer to
and there is no need to actually prepare it by following theseise a more concise “substrate representation” in which we
steps. label each vertex in the graph representing the cluster with
The cluster states naturally generalizegtaph statesfor ~ the measurement to be performed. The measurement bases
which an arbitrary graph defines the adjacency relatiormay depend on previous measurement outcomes, and this
[34-36. We will use a feature of any graph state called thedependency should be indicated in the labeling. Note that the
deletion principle When one of the qubits is measured in theinterdependence of the measurement outcomes and measure-
computational basis, the unmeasured qubits will be left in anent bases specifies a partial order in which the qubits must
different graph statéup to known Pauli errojscorrespond- be measured. An example of the substrate representation is
ing to the graph obtained by deleting the measured qubiEg. (44), in Sec. IV C 2, which simulates the circuit in Eq.
from the original graph. (39).

to [19]. Instead, we will present a simplified simulation in
Sec. IVA.

Comparing Eqgs(20) and(21), the latter simulation has a
simpler teleportation measurement but a more complicate
initial state (I ® U)|®yg. This tradeoff is useful in the simu-

Simulation of a circuit using the 1WQC is discussed in
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The substrate representation for simulating a certain cirtions, we will systematically derive schemes in the TQC and
cuit often visually resembles the simulated circldf. Eq.  the 1IWQC models using these simulation circuits.
(39)]. One can identify the different physical qubits that Consider procedures analogous to the simulation circuits
carry the propagating quantum state at different times witi{20) and(21), but based on one-bit teleportation. To simulate
propagation of quantum information in time, and the variousa single-qubit gatéJ acting on an input stat)) with Pauli
regions of the graph state corresponding to different quanturarror X2Z°, a simulation circuit can consist of first applying
gates with the action of those gates themselves. U’ =UZPX2 before either form of one-bit teleportation:

Ill. ONE-BIT TELEPORTATION AND SIMPLE
SIMULATION CIRCUITS

ZUN)

(29
All the measurement-based models of quantum computa-
tion share the common feature that measurements are not
performed solely on the qubits storing the data. The reason is
that doing so would destroy the coherence essential to quan- |0) —@ XU [4) (25)
tum computation. Instead, ancilla qubits are prepared, and
then measurements are used to interact the data with the We will see that Eqs(24) and(25) are most useful in the
ancilla. By choosing the measurements and initial states ofQC model. In the IWQC model, more specialized simula-
the ancilla carefully, we can ensure that coherence is prdion circuits are required. To simulate the rotatid@p our
served. Even more remarkably, with suitable choices of ansimulation circuit takes the input sta¥Z°|y) and applies
cilla and measurements, it is possible to effect a universal seéf-1)2¢, followed by Z-teleportation. When the measurement
of quantum gates. outcome isc, the output state iZ°Z_ya s X?Z" ¢). Using the
In this section, we introduce two circuits that offer per- identity X3Z(_1)agX3=Z,, the output state ig(azb+cza| ).
haps the simplest example of these principles in action, thenis is summarized in the circuit
one-bit teleportation circuits introduced ii0]. We will .
show how the one-bit teleportation circuits can be used to X Zbp) E Z(_l)ag ci
derive simulation circuits for a universal set of quantum woba
gates. These simulation circuits are, again, based solely on 10) Xz Zol) (26)

measurements and interaction with an ancilla. In later S€Gyhere we have commuteti(X) andZ,_ya,. Similarly, for the
tions, we will see that these simulation circuits can be user%<

to derive both m rement-based models of ntum ate Xy, consider a simulation circuit with an input state
poutaetione 0 easurement-based models of quantum co BZ° ), a gateXypy applied to the input, followed by

: : P . X-teleportation. When the measurement outcome,ishe
The one-bit teleportation circuits are as folloji<]: . L
! portation cireul l output state iSXIX_y)baX3Z ) =X39Z°X,|¢). This is sum-

Z-teleportation: marized in the circuit
) — X 2'y) —PfEardl A= d
0) —B—— Z°|¥) (22) 0y {HH—— Xtz X0 27
X -teleportation: where we have commutetl(X) andX_yp,.
) —P— A d method 1o 1o amuiate e identty on bt mputs Using
|0) _ XUep) (23) X-teleportation followed by a self-simulation df(Z). More

specifically, two X-teleportation circuits are applied to the
These circuits are analogous to teleportation in that theywo-qubit input X21Z° & X3227%|y), followed by applying
move a qubit from one register to another and simulate thé\(2):

identity operation. The circuits are named after the Pauli cor- X1 2 X% 22 )

rections required to fully recover the input state. The circuits

are easily verified10]. Note that theZ- and X-teleportation \ —P— A&

circuits can be interconverted by using the input stalte) pany Z‘= d

and applying Eqs(4) and (8). Moreover, the teleportation g ?

circuit in Eq. (19) can be viewed as a composition of a

Z-teleportation followed by aiX-teleportation(by rewriting 10) @ (x4 2% & X% 2% ) A (2)] )

the statd®oy) as A(X)(H®1)|00)). Thus, either one of Egs. |0) @ 28)
(22) or (23) alone can be viewed as a fundamental primitive

from which all results due to Eqé19), (22), and(23) can be  When the measurement outcomes of the Xvteleportation
obtained. steps ared; and d,, the output state of the circuit is

We now derive from Eqg22) and(23) some useful simu-  A(Z)(Xa*hzP1@ X32+d275%)|y). Using Eqgs.(9) and (10), the
lation circuits for a universal set of gates. In subsequent se@utput state is (X21+dizbrtardz g Xaztdazbarartdi) A (Z)| ).
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Thus in Eq.(28), a;=a; +d;, b;=b;+a,+d,, aj=a,+d,, and 0y g H i
Mirdiiarey 0) ~H oA HH AR

We can derive useful simulation circuits from E@8). =
Suppose we commutd(Z) to the left of the controlled- Mzsz
NOTs, and reorder the qubits so that the second qubit from = — (33
the top becomes the last:

We can apply Eq(33) to Eqg. (32), and identify the opera-

X‘”\‘Zbl @X°22"2 ) tions involving the second quhbifrom the top in Eq. (32) as
— dy a two-qubit measurement on the first and third qubits. This
B—E: gives a simulation circuit foA(Z):
10 @ | (X°1 2% © X% Z% ) A(Z) ) X1z X2 7" [y) (X128 © X2 2% )A(Z)|9)
i ' @1 7Z°%1 @ X% Z%
Mzsz|| .

O =

Furthermore, for the same input state, the following circuits

: 34
produce the same outcomes and corresponding post- (349
measurement states: The operations in the dashed box can be implemented by
_ : My followed by M, on the first qubi{see Eq(18) in Sec.
—@—@:J ] [l A]. With this argument we have rederived Gottesman’s

_ ; remote controlledioT using a single-qubit ancilla and two
_@_@:] (30) two-qubit measurementi39], and shown that it is easily
Thus Eq.(29) implies the following: understqod as a consequence of one-bit teleportation and the
simple circuit identitieg18) and (30).
X1 2% & X°2 Z%2 |¢)) (X*1 2% © X2 Z%2 ) A(Z) )
IV. MEASUREMENT-BASED UNIVERSAL QUANTUM
COMPUTATION SCHEMES

A, @: dq In this section we derive simple variants of both the TQC
Ho P d anq 1WQC m(_)dels of computatlo_n using t_he pr|n0|p[es de-
I>@ N @: 2 scribed in earlier sections. Following the discussion in Sec.
(31) Il B, it suffices to show how to perform a universal set of
— h gates in each measurement-based model of quantum compu-

where, according to Eq30), the outputX errors in Eq(31)  tation. We will first see that the simulation circuits derived in
are obtained by addingy,d, to a},a; defined in Eq(29). The the previous section immediately give a universal scheme in
results are simplya;,a,. Finally, rewrite both controlled- the TQC model. This scheme is much simpler than those
NOTs using Eq(7), and note that the state in the dashed boxPased on teleportatiofA similar simplified scheme was re-

in Eq. (31) is stabilized byH ®H, giving a “remoteA(Z)”  Ported independently if29].) Then we discuss a method to

construction: further reduce the required resources in the TQC model by
, , , identifying and simulating certain subunits of a circuit. We
XUZh@XmzRy) (X2 gX2Z2%R)A(Z)lY) then turn to the IWQC model and present a systematic deri-

vation of universal quantum computation schemes using
primitives discussed in the previous section.

10) —@ @_@: h A. Derivation of simplified TQC schemes
|0>—@ @_@: dz 1. Universality

L, - (32) Consider the universal set consisting of the single-qubit
) gates and\(Z). A single-qubit gate can be performed in the
If we perform a remote controlledoT by performingH be- TQC model using either Eq24) or Eq.(25)—the operations
fore and after the remot&(2) according to Eq(7), we ob- i, the dashed boxes are of the form of L), with V in the
tain the well-known remote\(X) circuit due to Gottesman cjifford group andV'ZV in the Pauli group. Thus Eq18)
[38]. The current derivation is based only on composing theyithout the Pauli correctioWZV can be used to implement

simulation of the desired gate, and is different from the deri{24) and (25) imply the following simulation circuits:

vation in[10].

Our last simulation circuit foA(Z) uses the standafdnd X970 b <
easily-verified result that the following circuit implements Mortxvnex k .
M7 on the two input qubits: |0) ——X"Z°Uly) (35
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- =d possible left multiplications ofJ'ZU and V'zV, which can
XZPp) Mt zuny02 k easily be compensated for in the next pseudosimulation in-
[4+)— ————— ZF XU ) (36) volving the same qubit.

The reduced-cost combined pseudosimulations use mea-
surements of complexity comparable to those required in
Egs. (35 and(36). Altogether, a computation using A(Z)
gates andh computation qubits can be pseudosimulated in
TQC usingm ancillary qubits, 2n two-qubit measurements,
and 2n+n single-qubit measurements. In comparison, a full

In Egs. (35 and (36) the ancillas can be prepared up to
known Pauli errors thatommutewith the subsequent two-
qubit measurements. Simulation circuits fofZ) can be ob-
tained from Eqs(32) and (34):

X127 © X°2 252 |4p) (X*1 2% © X2 Z%2 ) A(Z) ) simulation[say, using Eqs(35) and(38)] requires 31 ancil-

\ — / lary qubits, 4n two-qubit measurements, andnén single-

qubit measurements.

_______________ Mzgx

{10y {H}¢ n

: : B. Derivation of schemes similar to the 1WQC starting

IO)E k2 from the TQC

MX@Z - B .

— 0 (37) In this and subsequent subsections, we present our deri-

vation of 1WQC-like schemes using one-bit teleportation as
e o1 2% 0 592 25 A2 _the underlying principle,_pre_ser\{ing thg conceptual sir_nplic-
Xazhox2z2y) @ M) ity of the TQC. The derivation is motivated by the differ-
=di / ences between the TQC and 1WQC models. The TQC and
Moo 0000 1WQC models differ in three main respects.
+) - | B+ (a) The TQC model is similar to the circuit model in that

M Z no action is required on a qubit unless a nonidentity gate is

XQRZ . . o
applied. In contrast, in the IWQC model, it is necessary to
= dz (38) keep measuring qubits simply to propagate quantum infor-
mation forward on the lattice.

In the abovek; should be added to the value lof from Eq. (b) In the TQC model, interactions are effected by multi-
(32), andk, should be added tb;. The stateA(Z)|+)|+) in qubit measurements. In contrast, no interactions are used in
Eq. (37) can be prepared by a two-qubit measurement. Irthe 1IWQC model after the initial preparation of the cluster
both Egs.(37) and (38), the ancillas can be prepared up to state. In some sense, all interactions are built into the initial
known Z errors, which have no effect other than flipping the state before the computation begins.
measurement outcomes of subsequdgt,; andMzgx. The (c¢) In the IWQC model, a circui€ can be simulated
simulation (37) uses two ancillary qubits, three two-qubit using aC-dependent graph state, which can in turn be pro-
measurements, and two single-qubit measurements, and isiced from aC-independent cluster state. Thus, the built-in
logical depth is 3. The simulatiof88) uses one ancillary interactions in the 1IWQC model can be made independent of
qubit, two two-qubit measurements, and two single-qubitC. In contrast, a TQC simulation has a one-to-one correspon-

measurements, but its logical depth is 4. dence withC.
These differences suggest a strategy to derive 1IWQC-like
2. Reduced-cost combined pseudosimulations schemes using the principles of the TQC model: every gate is

performed by simulation circuits based on teleportation or

In the TQC model, how many single- and two-qubit mea-one-bit teleportatiofisuch as Eqs(20), (21), (26), (27), and
surements are required to simulate a circiitonsisting of  (32)]. Suppose the goal is to simulate a circditwith n
single-qubit gatesm A(Z) gates, andh final single-qubit  qubits andm time steps.
measurements on teecomputation qubits? We can do better  (a) Each gate irC will be simulated by circuits like Egs.
than the method described above by combining some of thge), (27), and(32). Furthermore, in each time step, identity
gates in the circuit into larger subunits, and simulating thegates will be explicitly simulated on qubits that are not being
subunits directly in the TQC model. In particular, without acted on. Thus, each qubit will be “teleported” in each step.
loss of generality, there are single-qubit gatésV; for i Matching the output of one gate simulation to the input of
=1, ... m, such thaC only consists ofn “composite” gates the next, we obtain a circuil’ that “teleports” each of tha
(UTeV,NA(2)(U;® V,) applied in order, followed by single- gubits m times, with the desired gates performed along the
qubit measurements. way. C' contains initial|0) states, one- or two-qubit gates,

Starting from Eqs(32) and(34) and using Eq(18), ana- and single-qubit measurements. Note that in this circuit we
logues of Egs.(37) and (38) can be used to attempt the do not interpret a two-qubit gate followed by a single-qubit
simulation ofW=(UT® V" A(Z)(U® V) for any single-qubit measurement as an incomplete two-qubit measurement, as
gatesU andV. These analogues of Eq87) and(38) simply  we did in the TQC. The reason is that in the next step we will
have My tzyrexs Mxavitzy, and Myrtzyrez in place of  build the two-qubit gates into the initial state, leading to an
Mzex, Mxsz and Mz., respectively. We call these ana- equivalent circuit containing only single-qubit measure-
logues “pseudosimulations,” becaugéis simulated up to ments.
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(b) To build interactions into the initial state, we apply for A(Z) denotes an optional gate. We will see that it is more
standard circuit identities to rewri@ so that all two-qubit  efficient to simulateA(Z) and Z rotations together. Thus, a
gates occur before thé-dependent single-qubit gates, fol- circuit should be decomposed into cycles, each with two
lowed by single-qubit measurements. The circuits used tgteps:(i) arbitrary X rotations, andii) arbitrary Z rotations
simulate each gate are chosen to facilitate this step. The r@nd optional nearest-neighba(Z) gates.
sulting circuitC” consists of(i) two-qubit gates acting on

circuit-independent product states afiid circuit-dependent 2. Simulation using one-bit teleportation
single-qubit gates followed by single-qubit measurements. ! . . . o
We regard the stathy,) after step(i) as a new initial state We first describe the simulation circuits for the elemen-

and the remaining single-qubit gates and measurement {7y Steps just described. We use E27) to simulateX,,
step(ii) as single-qubit measurements in redefined bases. Wgstated here:
can thus interpret” as starting from a&-dependent initial @ i
state|y;), followed by single-qubit measurements. We will X2 ) —4 EX('Dbe d;

see thaty) is like the circuit-dependent graph state in the |0} — Xatdzb Xl (40)
original 1WQC scheme. Schemes derived in this way will be

called IWQGg schemes, with T standing for the underlying we will identify H|0)=|+) as part of the initial state prepa-
principle of teleportation, and G for an initial graph state.ration. We simulate an optional(Z) gate andZ rotations in
Besides being an intermediate step to our final model, thg single step, by composing a self-simulation of an optional

1IWQGCrg model is also useful in its own right if the simu- A (z) with simulations ofZ rotations as follows:
lated circuit is known at the time of the initial state prepara-

tion and the interactions can be selectively implemei(fted

X% 2% ® X2 7% |y)

example, in[22,31). Z( 10 PG
(c) We want to modify the 1IWQg; schemes to start with ¥ | | (——————— ‘
a fixed, universal initial state analogous to the cluster state. Z1rze; " c2
The idea is to find a circuit that simulates a two-qubit gate or
the identity gate depending on the choices of the subsequent 10) —D
single-qubit measurements. In other words, the interactions 10) D
built into the initial state are “optional,” in the sense they (X1 2% @ X2 2% )(Zo, © Zo, )A(ZF 1) (41)

may or may not be implemented. The desired universal ini-
tial state simply has an optional interaction built in whereverin the aboveA(2) is performed itk=1, and not itk=0. The
the interaction may occur. We call the resulting modelstate afterA(2) is (X21ZPrrak g X272 1K) A (Z)Ky). After
1WQG;. the Z rotations and teleportation, the final output is
(XPuzbrrazeey g x2zberakeer) (2, © Z, ) A(Z)4). Therefore,
C. Derivation of a scheme using circuit-dependent graph ?jl)él' 8;=8p, by=bytapk+cy, andb;=b,*+ak+c, in Eq.
states(1WQCrc) Finally, we chain together the simulation circuits for the
1. A universal circuit decomposition repeating cycles ofi) arbitrary X rotations andii) arbitrary
Z rotations and optional nearest-neighbd{Z) gates. The
resulting circuit to simulate Eq39), with two cycles for two
qubits, is

The most general quantum circwit can be viewed as
consisting of alternating steps @f) arbitrary single-qubit
gates andii) optionalnearest-neighbon (2) gatesbecause
H andA(Z) can be composed to make swap gatéée want
gate-simulation circuits in which the interactions can be per-
formed before theC-dependent single-qubit gates. Thus,
simulation circuits like Eqs(26) and (27) are preferred to
ones like Eqs(24) and (25). Such choices preserve univer- 0)
sality since any single-qubit gate has an Euler angle decom- 10)
positionU=Z, X, Z, . The circuitC now contains cycles of
(i) arbitrary Z rotations,(ii) arbitrary X rotations,(iii) arbi-
trary Z rotations, and(iv) optional nearest-neighbak(2)
gates, represented mathematically5&) wherek can be
freely chosen fron{0,1}. Since aA(Z) commutes with theZ
rotations before and after, tlzerotations can be merged. For
example, two cycles on two qubits can be represented by

B |

(39)

where 6, are arbitrary angles of rotation, and the dotted line S (42

~
N
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Each arrow in Eq(42) indicates where the output of a cer- right when the simulated circuit is known at the time of
tain teleportation step matches the input of the subsequeinitial state preparation.
teleportation. The values @f andb/ can be read from Eqgs. o , . .
(40) and(41). The circuit of Eq.(42) generalizes easily to D. Derivation O.f _s_chemes using a universal family
qubits with multiple optionalA(Z) gates. of initial states (IWQCr) ) .

The simulation(42) can be simplified by(i) rewriting We now present methods for performing an optional
AX) as (1@ H)A(Z2) (1@ H), (i) canceling out consecutive (). Composing the optional(2) simulation with the
Hadamard gateinceH?=1), (iii ) rewriting H|0) as|+), and 1WQG,;; scheme described in the previous section, we ob-

(iv) absorbingH before a single-qubit measurement as partIain various 1IWQE schemes.

of the measurement. We thus obtain a simpler simulation 1. The remoteA(Z) approach (1)
scheme for Eq(39): Consider the circuit32) that simulates\(2):
= Ko A~ dii My Circuit Substrate

/ WdQ M, representation representation

|[+) Z e H ¢l Ny 9
. e -2
/ Sl )2 B o
4
+) I catlafl = & M; - (46)
[+) HH e, db; M; Note that we have explicitly labeled all the qubits. The cir-

cuit in Eq.(46) starts with a graph state, and applies the gate
) Pyt HI A= il NI Z2@ZHA(2) to qubits 1 and 4. On the other hand, the de-
) A N letion principle from[13] (see Sec. Il Dshows that, if thed
/’ | 120, 2i 72 gates on qubits 2 and 3 are simply omitted, and those qubits
are measured along0),|1)}, then qubits 1 and 4 are disen-
|+) tangled, and an identity gate is simulated instead.
[+) ——— Substituting the initial graph state of E@L6) for the op-
d (43 tional A(Z) in Eqg. (45), the initial graph state for our first
1WQG; scheme is given by
We can view the operations in the dashed boxes as single- = -
qubit measurements, and the rest of the circuit as an initial |
state|). Note that|;) is a graph state, as defined in Sec.
Il D. The circuitC determines whether eacdt(Z)¥=1 or A(2)
in |¢). The substrate representation of E4g) is

- HprH SE S 50 55 U0 0 08 58
BTy 7 1 NS SR {0 S G SO SO 0 G

* (47

This graph state can be used to simulate a 4-qubit circuit for
9 cycles of(i) arbitrary X rotations andii) arbitrary Z rota-
tions and optional nearest-neighbt(Z). The region corre-

where the measurements are as specified in(&8). The
initial graph state for am-qubit circuitC with m time steps
can be chosen to be

2m sponding to the simulation of one cycle is marked by a
dashed box. The above state can in turn be obtained by “de-
-~ b o . o leting” qubits denoted by empty circléby measuring them
n in the computational basisn the following cluster state:
l (45)

Equations(44) [with measurements specified in E@3)]
and (45) form a complete recipe for the simulation of a
known quantum circuit by the 1WQg scheme. This ap-
proach is generally more efficient than the circuit-
independen{1WQG;) schemes described in the following
section. Indeed, the 1WQg approach is useful in its own (48
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This cluster state-based simulation requires six physical qu- I if =0,

bits per logical qubit per cycle. A2 _

® XgA(2) = .

( )( 0) ( ) (I ®X7T/2)A(X) if 0:_7_7.

2. The remoteA(Z) approach (ll) 2
The remoteA(Z) described in the previous section re- The gateA=(1®Xz,)A(X) is locally equivalent toA(X),

quires two ancilla qubits pek(Z). We can save resources by and is universal given the ability to perform all smg!e-qublt
relaxing the exact simulation condition, and use the follow-92t€s. Thus, we can perform optional nearest-neighbor

ing circuit; gates by introducing pairs o’((Z) with a variabIgX rotation
L interspersed between each pair. This observation can be used
Circuit Substrate to extend 1WQGg to a scheme with a fixed initial state. The
representation representation . . .
idea is to represent a quantum computation as a set of repeat-
1. ing subunits. A subunit consists of the followin@) arbitrary
9 X rotations,(ii) arbitraryZ rotations and®; oqqA(2); j+1, (iii)
[+) @-@: d interspersedX rotations, (iv) arbitrary Z rotations and
3 ®i o0adM(2)ij+1, (V) arbitrary X rotations,(vi) arbitraryZ ro-

(49) tations and®; e\ (2); 41, (Vi) interspersedX rotations,

whereH’ =(Z+Y)/\2 andH’ followed by M, is simply My. and (vi?i) arbitrary Z rotations an'd®i gve#\(z)i,i+1- where
Let Ry be theZ-rotationZ_ye+1,,,. The above circuit imple- subscripts on\(Z) denote the qubits being acted on. Follow-
ments the gatéR,® Ry)A(Z), and yields a IWQE scheme ing the discussion in Sec. IV C 2, the initial graph state is
from the 1IWQG¢ model in Sec. IV C 2, because arbitraty given by

rotations are always simulated with the optiondZ). Sub-

stituting Eq.(49) into Eq. (45) gives another universal initial

graph state

@
1 L 3 1 L 3 3 L I;Iﬁ:l;ﬁﬁ:
. . . - . . . . . ® @

» L é > é‘ b L b > L (52)

(50 In this diagram, qubits corresponding to the interspebéed
which can again be obtained from the cluster state by dele fotations are markeq by extra (_:ircl_es. The above state can be
ing the cites marked by empty circles: sed to simulate a five-qubit circuit for two cycles.

: The above graph state can also be produced from a cluster
state, though the resulting scheme is not as efficient as the
first approach.

4. The routing approach

In the routing approach, a qubit can be teleported to an

(51)  interaction or a non-interaction site. The interaction is always

applied at the interaction site, but it may be applied to the
This scheme requires only four physical qubits per logicalquantum data or to some dummy state.
qubit per cycle. Using X teleportation, it is possible to teleport a given

The above schemes are quite efficient in terms of thénput state to one of several possible destinations. To see how

number of physical qubits per logical operation. Moreover,this works, we consider the case of two destinations:
such efficiency is achieved with remarkably little manipula-
tion; rather, it arises from following simple guidelines in a |} DD ) ——

systematic derivation. |0) @ = |0 7
3. The cancellation approach 10) . @k (593

The cancellation approach uses the fact that in 1\W§QC Examining this circuit identity and comparing with the cir-
the angle of single-qubit rotations can be entirely determineduit for X-teleportation, we see that by measuring the third
by the measurement basis, and can be chosen online. Tlgebit we can effect aX-teleportation of the first qubit to the
idea is to intersperse two consecutivdZ) gates with a second. Alternately, if we had decided instead to measure the
single-qubit rotation so that proper choices of the angle osecond qubit, we would have been able to effect an
rotation allow the two interactions to add up or cancel out. InX-teleportation of the first qubit to the third. Thus, we are
particular, able to choose to route the stat@ to one of two destina-
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tions. The other qubit will be in a known stgte=|0) or |[1).  viously known schemes in either approach. Most impor-
After this X-teleportation, the next simulation step is a tantly, our derivation has elicited a simple underlying prin-
Z-teleportation that will perforni\(Z) on the path meant for ciple for the IWQC.

interaction and on the other pathZ rotations are also per- We have also outlined a variety of tools and techniques
formed at the same time. In the previous step, the qubit stat®r designing schemes for measurement-based quantum
was teleported to the desired destination, and the unwantesbmputation. Our schemes have many variants, indicating
destination is in some known random stae. The the flexibility of our constructions. We hope that the library
Z-teleportation can also be constructed to take its input fronof tools we have described will be of use both in developing
either location, using the identity further insight into the power and limitations of
measurement-based quantum computation, and in designing

k) — 1WQC schemes suited to a particular information processing

[4) @— = [} — task or physical implementation. To illustrate how our sys-

10) —DED 10) —d tematic method and tools can be applied, we derive a IWQC
N D . (54)  scheme for the bit-reversal operation in the Appendix. This

scheme was presented [i83], but no network explanation

We can combine the teleportation steps as in , and . )
P b &a) had previously been given.

we obtain a simplified circuit analogous to E@3). The
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either the top or the bottom vertex intp the rightmost vertex The pit-reversal operation on qubits is defined on the

of the diamond. Thus, we see that this state can be used {Qmputational basis agx)|Xo) < [Xn) = [Xo) -+ [Xa)xp). A

simulate a five-qubit circuit for four cycles. simple 1WQC scheme was presented[81]. Following
[31], we illustrate the idea fan=4, while similar results hold
for arbitraryn. The substrate representation of the scheme in
[31] is given by

In this paper we have explained how one-bit teleportation
can be used as a simple underlying principle to systemati-
cally derive measurement-based schemes for universal quan-
tum computation. These derivations provide a single unified
approach that encompasses schemes similar to both the
1WQC (one-way quantum compudemodel introduced in
[13], and the TQC(teleportation-based model of quantum
computation introduced il 15]. However, our schemes have
the added advantage of being significantly simpler than pre-

V. CONCLUSION

(A1)
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where then=4 leftmost (rightmos}) qubits carry the input H = je iZm4gmiXml4gmiZml4 (A2)
(outpud. Every qubit in the input or thé2n-1) X (2n-1)

middle block is measured in thébasis. To derive EqAL),

we first depict a classical circuit for the bit-reversal opera-

tion: and following our procedure in Sec. IV C, we obtain a
z1 D D 5 Za 1WQGC;¢ scheme with substrate representation:

0 C/ L L CJ U\ NZEAN O

T2 P b—P o X3

0 b—P b—( &P 0

z3 S b—b SPaRS Z2

0 - b— b— &P 0

T4 8> S S T

Note that the above is a valid quantum circuit for bit-reversal
as well. AddingH to each of the input and output qubits in
bit-reversal preserves the operation. Furthermore, rewriting
A(X) using Eq.(7), we obtain the following quantum circuit
decomposition for bit-reversal:

Finally, we can simplify the above to become E41) by

Iﬁ;}) b "E‘"H"gg”ﬂ— I|JE)4)) making the replacement:

H | #1) H

|0) —E+-E-HE+HEHHEHEH-EHHE— |0)

|z3) —HRHEHH-EH-ERHEH-EH-EHHE— |22)

|0) —H~-E-E-E+-EH-E -H— |0) . .

|2.4) —E--E--E--E-- - |z1) due to EQ.(49). (The extraZ rotations on the two qubits

always occur together, and compose to become a Pauli op-

Using the Euler angle decomposition eration)
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