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Information-capacity description of spin-chain correlations
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Information capacities achievable in the multi-parallel-use scenarios are employed to characterize the quan-
tum correlations in unmodulated spin chains. By studying the qubit amplitude damping channel, we calculate
the quantum capacit®, the entanglement assisted capa€lfy and the classical capaci€y of a spin chain
with ferromagnetic Heisenberg interactions.
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[. INTRODUCTION Our results apply for the whole class of Hamiltonians for
) i . ) , which the total magnetization along a fixed direction is con-
Spin chains are gaining increasing attention as naturaleryed. In the present work we confine ourself to the case in
candidates of quantum channgls-5]. An unknown quan-  which one bit is transferred through the chain. This situation
tum state can be prepared on one end of the chain and the@rresponds to studying the sectors in which only a few spins
transferred to the other end by simply employing the abilityare up. We believe, however, that the present approach can
of the chain to propagate the state by means of its dynamic@e further extended to other spin sectors.
evolution. This procedure does not require any gating and The paper is organized in two distinct parts. In the first
therefore can be implemented without any need for a moduene we introduce the spin chain communication lines and we
lation of the couplings between the spins. Especially this lastliscuss some models in detaiSec. I). In the second part
aspect may be of importance for solid-state quantum infor{Sec. Il)) instead we give a brief overview of channel capaci-
mation. Several aspects of quantum communication usingjes and, by studying the qubit amplitude damping channel
spin chains have been already obtained starting from thbkl2], we calculate the quantum capao@y the entanglement
original proposal by BosEl]. The fidelity of the transmitted assisted capacit@g, and the classical capaci@ of the spin
state can be increased if the sender and the receiver c&hain models presented in Sec. Il. As explained in detail
encode or decode the state using a finite number of §pins throughout the paper the above quantities are computed in
Even perfect transmission can be achieved if the exchangeg®?™munication scenarios where many “copies” of the spin
couplings of the chain are chosen appropriaf@yor if it system are gvallable_ and “not” for t_hose scenarios where the
possible to perform measurements on the quantum spins §PMmunicating parties make multiple uses of the “same”
the chain[6]. Moreover, it was recently shown that a phase-SPin chain. The paper ends in Sec. IV with the conclusions.
covariant cloner can be realized using an unmodulated spin Il. MODEL
network [7] and that the spin chain approach to quantum '
communication seems to be realizable in solid-state devices Given a collection oN spins coupled by means of a time-
with present day technolod]. independen'g Han_"nilyonian it is possib_le to define a quantum
Another interesting aspect which is emerging recently ischannel by identifying two set of spins of the samfday,
the interconnection between quantum information and conSetsA and B) as two quantum registers. A first partihe
densed matter theof®]. Examples are the study of nonlocal Sender of the messagencodes some information @énand a
(quantum correlations of spin systems in a variety of situa- second partythe receivertries to recover such information
tions (see[10] and references thersior reformulation of the ~ from B some later time [1,2,4]. Formally, one assumes that
density matrix renormalization group in the framework of the encoding procedure takes place by initially decoupling
quantum information theory11]. In this paper we would like the spinsA from the remaining spins without disturbing them
to further explore the use of concepts born in quantum inforfrom their initial fiduciary stateoo, preparingA on some
mation for the characterization of spin chains. Here we proinput message,, and finally allowingpa and oy to interact
pose to use the information capacities of quantum channef§r @ given timet through the Hamiltonian of the system. At
as a tool to characterize some aspects of dynamical correl#lis point we consider the stapg(t) of the spinsB, obtained
tions in a spin chain. By calculating the capacities of thefrom the spin chain statR(t) =U(t)(pa® op)U(t) by tracing
channel, obtained by identifying two separate sections of theway all the degrees of freedom of the system but those
chain as the extremes of a communication line, one can ifelative toB. [Here U(t) is the unitary evolution of the sys-
fact get some information about the strength of the correlatem. The resulting completely positive, trace preserving
tions among the interconnecting spins. In some sense this (€PT) mapping
equivalent to assigning to any couple of subsets of the spins _ — T1(B) t
inqthe sample thegvalges of %/he cgrresponding capacitiez n Pa— M) =pe®=Tr [VO(pa® oU'®], (1)
order to create a “road map” of the information fluxes in thewhere Tf® means trace over all the spins tjtdefines the
system. guantum channel we are interested in. A caveat is in order.

1050-2947/2005/18)/03231412)/$23.00 032314-1 ©2005 The American Physical Society



V. GIOVANNETTI AND R. FAZIO PHYSICAL REVIEW A 71, 032314(2009

Equation(1) does not provide a proper description of anyan anisotropy parameter, a3} are associated with exter-

realistic scenario where the communicating parties keep onally applied magnetic fields.

operating on their quantum registers over an extended period In the following we will assume the input sAtand output

of time. In fact, after a first “reading out” of the signal from setB of Eq. (1) to contain, respectively, the firktand lastk

the spin chain at timg the stateo, of the spins not belong- spins of the chain, and that all the spins Bugre initially

ing to A will change, thus making Edq1) unable to describe prepared in the same eigenstéfg of o,. [Here||) and|1)

the state ofB for later times. As a matter of fact, in our are the eigenstates @f, associated, respectively, with the

system any repeateh time) manipulation of the quantum eigenvalues —1 and 41If the two communicating parties

registers will necessarily introduce memory effects in theare allowed to use the entire Hilbert space of their quantum

communication for which a satisfying quantum information memory, Eq.(1) yields ak-qubit channel which, in general,

theory is still missing'some preliminary results on quantum is too complex to be analyzed on a complete basis. In the

channels with memory can be found in REE3]). present paper we consider thus a simplification of this sce-
Having the previous observations in mind, Ed4) can  nario where the sender and receiver use theipins to en-

still be used to provide a quite complete characterization otode a single logical qubit. This approach is clearly ineffi-

the correlations between the registérsand B. Technically  cient from an informational theoretical point of view, but on

the mapM is defined in the Hilbert spack 4 of the con-  the positive side, the resulting maps can be treated analyti-

figurations ofA and depends of) H;;, oo, and on the choice cally.

of A andB. A common approacfil,2,7] used to quantify the

correlations between the setsandB of the chain is then to 1. Encoding one logical qubit with one-spin-up vectors

consider the fidelity associated with, by computing the

average fidelity between the input staggsand their output

counterpartspg(t). Here we observe that a more detailed iy=110 11l 1) 3)

characterization of such correlations can be obtained by ’

treating M of Eq. (1) as the CPT map of a real memoryless which forj=1, ... N represents the state of the chain where
channel. The correlations betwedrandB can then be ana- the jth spin is prepared in the eigenstaté and the other

lyzed by means of the information capacit[d?,14-1§as-  N-1 ones in||). Suppose that at time=0 the sender pre-
sociated withM. These quantities are related to the mini- nares her or his spins in

mum “amount of redundancy” over multiple uses of the

channel M needed to achieve perfect message [W)a= a| O)a+ Bld)a, (4)
transmission—i.e., unitary fidelity: higher values of the ca-

pacities correspond to stronger correlations between inpwhere «,8 are complex amplitudeg/1), is the state ofA
and output states. Depending on the natexg., classical or with all spins down, ande,)4 is a given normalized super-
quantum of the information propagating through the channelposition of|j) with j referring to spins of the input memory
one can define different capacities #f and each of them A—i.e.,
are obtained by maximizing over all possible coding and
decoding strategies which act over multiple channel uses )
(see Sec. Il From the discussion that follows E@l) it |po)a= 2 cilj)- (5)
should be evident that the capacities of the mdpmight not 1=

provide a proper description of the communication perfor-ginca the Hamiltonian of Eq2) commutes with the total

mances of the spin chain. As a matter of fact, they onlygsin component along thedirection, one can show that at
account for those scenarios where many parallel “copies” of;,a t the whole chain is described 9]

the same system are simultaneously operated by the two

As in Refs.[1,2] we introduce the one-spin-up vector

k

communicating parties but fail to describe those scenarios Nk
where the communicating parties make successive multiple (W) =ao|/0)+B>, > ¢ fi (0], (6)
uses of the “same” spin chain. jr=1i=1 ’

with ||}) the state of the chain with all spins down and with
A. Solvable models

() = (i aciHUA
Examples of a spin chain channel where the information fis® (ile s) ()
capacities ofM can be solved exactly are provided by argee for instance, Ref1] for the explicit functional depen-
chain of 1/2 spins coupled through a ferromagnetic Heisengence off.

i ) ISR j.s(t) from the evolution time]. According to Eq.
berg interactiorf1]. The system Hamiltonian is ’ ; o i ;
(1) the state oB at timet is finally obtained from Eq(6) by

S N _ tracing over all the remaininijl—k spins—i.e.,
H=->, 3 (oo + oy0 + yo,0)) = > kB, (2

Gi.j) i=1
where the first summation is performed on the nearest- +\naf| D)B<¢]’_|+\/’7—7a*ﬁ
neighbor spins of the chainr,,, are the Pauli operators
associated with théth spin, J; are coupling constantg; is ~ with

pe(t) =[|al?+ (1 = )81 D)e(O| + 7|82 p1)e( 1]
$pe(l, (8)
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j'=N-k+1
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k
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In Eqg. (8) the two orthonormal vectordl)g and |¢;)g are,
respectively, the state & with all spins down and

Nk
2 2 fj’,j(t)|j,>/\'/7]-

j'=N-k+1 J=1

|[pD)s (10)

Apart from an irrelevant unitary transformatipf9] the map
associated withpg(t) of Eq. (8) is a qubit amplitude damping

channel[1,2] of efficiency » which acts on the orthonormal

basis{| O)g,|#1)s}. For the sake of clarity let us identify)
and |O)g with the same logical qubit stat®) and |¢p;)a,

|1 with |1). In this notation we can express the input state

|W), and the output statgg(t) as density matricep and p’
of the same qubit Hilbert spack . Equation(8) becomes
thus

p'=D,p), (11

with D, the amplitude damping map characterized by the

Kraus operator§l2]

Ao=10)0] + V7|11,

Ay =1 - 70)1]. (12)

Equation(11) describes a quantum channel in which the logi-

cal information ofA represented by the coefficienisand 8
of Eq. (4) is transferred to the output memoB with an

accuracy which can be estimated by calculating the capaci-

ties of the magD,. The calculation of the capacities X, is
presented in Sec. Il A.

2. Encoding one logical qubit with two-spin-up vectors

Consider the case where in E@) the vector|p,)a is
replaced by a normalized superpositia#), of states)j, €)
where thejth and¢th spins of the chain are iff) while the
remaining are if|)—i.e.,

k
|¢2>AE 2 dj,€|ja€>-

j>€=1

(13)
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(14) is slightly more complex. In fact fomy+7,<1 the
component ¢,), of the input state undergoes three possible
processes: with probabilityy, it is rotated into the output
state |¢5)g, with probability 7, it is damped to|O)g, and
finally with probability 73=1-7,— 7, it is transformed in the
density matrixog. In this respect, the mag4) is similar (but

not equa) to a channel that, with probability;, decoheres
the input and transformig,) , into o while with probability
1-m, applies to it an amplitude damping channel transfor-
mation of quantum efficiencyy,/(1-175).

A compact description of Eq14) is obtained by identi-
fying |O)a,|O)g with the logical qubit statd0) and |p,)a,
|p5)g With |1). With this notation, the transformati¢ti4) can
be expressed as a two-parameter CPT map,

P =T, (P, (15)
with Kraus operators given by
Ao = [0)(0] +|1)(1
Ar= 7|01,
A = \ms|6)(1). (16

Here |¢;) are the eigenvectors afg associated with the ei-

genvalueg;>0: according to Eq(A8) they are orthogonal

with respect td0) and|1) and there are at moktof them.
The capacity of the chann@];m2 is derived in Sec. Il B.

Ill. CHANNEL CAPACITIES

The quantities we are interested in this paper are the quan-
tum capacity Q, the classical capacityC, and the
entanglement-assisted capaciti@s and Qg. The quantum
capacityQ measures the maximum amount of quantum in-
formation that can be reliably transmitted though the mdp

per channel usgl5]. Intuitively, this quantity is related to the
dimension of the largest subspace of the multi-use-input Hil-
bert space which does not decohere during the communica-
tion process. The value @ (in qubits per channel usesan

be computed as

Q = supQ,/n, (17)

In other words, the sender still uses the state with no spin ugith

to “transfer” a, but now a selected superposition of two-

spin-up states is employed to “transfe8’ In this case one
can show that the output state of the memBris

pe(t) = (la?+ 7, 8P| D)e(Ol| + 7|83 bl b5l
+\maB| D)e(dyl +\Vma' Bldyps(C]
+(1 = n.— m)| BP0,

where|¢5)g is a superposition of two-spin-up statesBénd
og is a density matrix of one-spin-up states Bfwhose
eigenvectors are orthogonal with respect gz and |¢5)g
(see Appendix A for detaijs For 7,+7,=1 the mapping
(14) reduces to a qubit amplitude damping chariPglwith

(14)

max{S(M*“"(p)) = S(M"® 150 (P))}. (18)

peH®n

Q=

On the one hand, the “sup” in E¢L7) is evaluated oven
parallel channel useg0], where the channel map is de-
scribed by the superoperator which transforms the input
statesp of H®" into the output stated1®"(p). On the other
hand, for fixed values ofi, the maximization in Eq(18) is
performed on all possible input density matriges H®".

The quantity in the brackets is the coherent information of
the channel15,21], S(p)=-Tr{p log, p] is the von Neumann
entropy, and® is a purification[12] of p e H®" defined in

the extended space obtained by adding an ancillary space

qguantum efficiencyy=7;,. However, in the general case, Eq. Hanc to H®".
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The classical capacit€ gives the maximum amount of showing that in this case maximizatidi8) over parallel
classical information that can be reliably transmitted throughuses is not necessary. Moreover, we derive the capa€ities
the channel per channel use: here, in the multi-use scenariand C, (classical capacity achieved with unentangled code-
the goal is to identify the largest set of orthogonal inputwords which were originally given in Ref{18] without an
messages which remain distinguishalfle., orthonormgl  explicit derivation.
during the propagation. In this case, the system is not re- The mapD, is completely characterized by the parameter
quired to preserve the phases of superpositions of differeny and can be seen as an instance of the #apssociated
messagesC characterizes thus the ability of the chanfdl  with the lossy bosonic channg7-29 (see Appendix B for
in preserving occupation numbers but not its decoherenceetails. In particularD,, has the useful property that by con-
effects on the transmitted signals. catenating two amplitude damping channel with quantum ef-

As in the case of Eq(17), in calculating the classical ficiencies# and 7', one obtains a new amplitude damping
capacity it is necessary to perform a maximization over mulchannel with efficiencyy?’'—i.e.,

tiple uses of the channe\1—i.e. [16], D (Do) =D (p) (22
=y = Fogy'\P)

C = supCy,/n, (19 ) . .
n which applies for any input staje
Quantum capacityAn important simplification in calcu-

whereC, is the classical capacity of the channel which can_.. : . . . .
be achieved if the sender is allowed to encode the inform I_atlng the quantit(17) derives by introducing the following

tion on codewords which are entangled only up to epresentation of the CPT map,,

n-parallel-channel uses. The value@fis obtained by maxi- D,(p) =TrV(p ® |0ye(O)V'T, (23)
mizing the Holevo informatiof22] at the output oh paral- ] ) ) ]
lel channel uses, over all possible ensemigspl—i.e., obtained by adding to the Hilbert spaéé, of the input

logical qubitA an auxiliary Hilbert spacé{. and introduc-
C,= max {5(M®n(p)) -> §k5(M®"(PO)}. (20) ing the unitary operato¥ which in the computational basis
k

Gope HED {/00),/01),/10),|/12)} of HA® H, is given by the 4< 4 matrix
with {§} probabilities andp= 2, ¢, the average message 1 0 0 0
transmitted. The optimizatio(19) could be avoided if the - P
. . . . . 0 7 Vi- O
additivity conjecture of the Holevo information is true V= —_ — (24)
[14,23: in this case in fact the optimal ensemblgg, p,} 0 -V1-n g O
which achieve the maximum in EqO) are separable with 0 0 0 1

respect to then parallel uses an@ coincides withC;. . )
The last capacities we consider are the entanglementD EG: (23), Trc[---]is the partial trace over the elements of
assisted classical capaci®y and its quantum counterpa®:  the auxiliary spacéc. The complementary channél, of
[17,18. These quantities give, respectively, the maximumD,, is defined by replacing this operation with the partial
amount of classical or quantum information that can be sertrace overH,,—i.e.[30],
reliably through the channel per channel use, assuming that ~
the sender and receiver share infinite prior entanglement. To D,(p) = TralV(p ® |0)c(0)V']. (25
calculateCg it is not requested to perform a regularization
over parallel channel uses as in the case of Efg. and
(19). Here instead one has to maximize the quantum mutu
information for the single-channel ug&7,18,24—i.e.,

Ce = max{S(p) + SM(p)) = S(M & Iand (D))}, (2D)
pe

Upon a swapping operatiddwhich transformsA into C and
aMice versa, the transformation of E(5) can be seen as a
mapping from the Hilbert spack , onto itself. Moreover, by

direct calculation one can verify that

D,(p) = SD1-,(p)S. (26)

where now® is a purification of the input message= .  Using the composition rule of E422) it is thus possible to
The entanglement-assisted quantum capacity can then be ofhow that, for;=0.5, one ha$31]

tained axg=Cg/2 by means of quantum teleportatifib] ~
and superdense codirig6]. The relevance o relies on D, (p) = SD(1-,,(D,(p)S. (27)
the fact that this quantity gives a simple upper bound for the o o
other capacities. Moreover, it is conjectured to provide arf The quantum capacity in the cage<0.5 is simple to com-
equivalence class for quantum chanrdlg]. pute and will be discussed at the end of this secfidiis

In the next sections we will focus on the capacities of the'€lation shows that for the chann®l, is degradable; i.e.,
CPT maps associated with spin chain models introduced ifhere exists a CPT map defined by the super operator
Secs. A1 and Il A 2. S Dy, -+) Swhich connects the output stai®,(p) with

the output stateD,(p). According to a theorem proved by
Devetak and Shof30], this condition guarantees that the
“sup” in Eq. (17) is achieved fom=1 (single-channel use
In this section we analyze in detail the qubit amplitudein other words, Eq(27) guarantees the additivity of the co-
damping channel. In particular we calculate its capaity —herent information for the chann@l,. For »=0.5 the quan-

A. Capacities of the amplitude damping channel
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FIG. 1. Plot of the capacitie§n bits per channel usg®f the 032 07 n 0.6 B 3

qubit amplitude damping channé?, as a function of the noise
parameten;. The curvesQ, C, andC, represent, respectively, the FIG. 2. Plot of the optimal populationg associated with the

quanFum capaci.ty, enta.nglement-'assisted classical capa(;ity, and t%te|1> which provide the capacities of the amplitude damping
classical capacity achievable with unentangled encodings: the)fhannelD,/, as a function of the transmissivity. The upper curve
have been obtained by solving numerl_cally the maximizations of oo o 16 the entanglement assisted capad@ieand Qc: for given
E_qs.(36), (38?’ and(_42). For =1 (no-n0|s_e limiy both Q and C, 7 it has been obtained by finding that valuepoivhich maximizes
give one qubit per bit for channel use, while as a consequence of trme function at the right-hand side of E€88). The lower curve
supeniense coding effef26] C_E glve_s two t!ts per chalwnel USES. refers to the classical capacity; through Eq.(42). Finally the
Fo_r 7=0.5 we have, respectl\_/eI}Q—O, Ce=1, _and C1=04717 intermediate curve refers to the quantum capa@ityhrough Eqg.
(this result is in agreement V\,”th what found in REB3)). As a (36): this function is not defined fo< 0.5 because for this value
consequence of the noncloning theorég7,37 for #<0.5 the the Q is null (see Fig. 1L For »=0.5 the optimal populatiop of

quantum capacityQ nullifies. The curve Qg represents the ho qiantum capacity is bigger than the corresponding population of
entanglement-assisted quantum capacity and is obtained by Slmp&ll and lower than that o€

dividing by 2 the values ofCg. The classical capacitf of the
channel is lower bounded b$; and upper bounded by (@naxi-
mum entropy of a bjtand byCg. If the additivity conjecturg23] S(D,(p)) =Hx(\s(7), (33

applies to this channel, the®=C,. with H, the binary entropy function defined in EQC4).

_ . . .. Analogously, by applying the mafD, ®1,,J) to & we get
tum capacity ofD, derives thus by solving the maximization i,e state described by the<#d complex matrix of Eq(C1),
(18) for n=1. which has entropy equal to

In the computational basi§0),/1)} of H,, the most gen-
eral input state of the map,, can be parametrized as fol- (D), ® 1and(P)) = Ho(A (1 - 7). (34)
lows: . . . .
The quantity we need to maximize to obt&ris hence given
1-p v b
. ( Py ) P
vy P I(p. |79 = Ha(\i(m) = Ho(A\ (1 = 7)), (39)

wherepe[0,1] is the_population associated with _the Sftatewhich depends fromp only through the parameterp
|1) and |y|s\,'(;—p)p is a goherenge term.. A punﬂcgtmn €[0,1] and|y2<[0,(1-p)p]. As discussed in Appendix C
O =|D)®P| of p is then obtained by introducing an ancillary the maximization(17) is achieved by choosing=0, which

qult SystemHanC and ConSidering the state gives a quantum Capacity equa| to
@) =\1-pl0) @ [Ry) + Vpl1) @ Ry), (29) Q= max{Hy(7p) = Hal(1 - np)}. (36)
pell,

with unit vectors ofH 4, such that . . .
Ro anc For any giveny=0.5 this expression has been solved nu-

(Ro|Ry) = v/N(1 - p)p. (30)  merically and the results are plotted in Fig. 1. In Fig. 2,
N ) instead, we have reported, as a function of the paramgter
From the Kraus decompositiofi2) one can verify that the the optimal value of the populatiop which provides the

mapD,, transforms this state into the output maximum of the right-hand-side term of EG6).
1-p Iy Let us now consider the low-transmissivity regimg
D,(p) :( _77 VY ) (30) <0.5. In this case, the same noncloning argument given in
gy 7P Ref. [32] for the erasure channel and in R§27] for the

lossy bosonic channel can be used to prove that the quantum

The matrix(31) has eigenvalues capacityQ of D, nullifies. An alternative proof of this fact

A7) =[1£\(1 - 29p)2 + 4742112, 32 can be obtained by noticing that the composition r{#8)
() =13 7P) 7] (32 implies that the quantum capacity of the chaniglis an
which gives an output von Neumann entropy equal to increasing function of the transmissivity. This thesis then
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follows from the fact that forp=0.5 the right-hand-side term ( 1+\(1-29p)2 + 41 7|2>
of Eqg. (36) nullifies. xX=H; 5
Entanglement-assisted capacifp calculate this capacity
we need to perform the maximization of E@1) for all 1+ (1= 29p)% + 49|y l?
possible input states. The quantum mutual information of - % kH2 5 , (40

the channel can be obtained by summing the coherent infor-

mation J(p,|4? of Eq. (35) to the input entropy of the _ B
message—i.e., using the parametrization introduced in th&Nere Nowp==2p and ==,y are the parameteras)
previous section: associated with the average input message>, &p. Ac-

cording to Eq.(20) the capacityC; is obtained by maximiz-
ing x over all possible choices @k, v, andé,. To solve this
1+(1-2p)2+4 y|2> problem we first derive an upper bound 16y and then we
2 . show that there exist an encoding, 7y, and & which
achieves such an upper bound.
(37) From the propertyi) of the binary entropyC4) given in
Appendix C 1, we can maximize the first term in the right-
According to property(i) of Appendk C 1 the last term in hand side of Eq(40) by choosingy=0. Moreover, one has
the right-hand side of this expression is a decreasing function
of |y i.e., it is maximum fory=0. From the previous sec- 1+(1 - 29p)%+ 45 wnl?
tion, we know that the same property applies also to > &H> 2
J(p,|¥/%): we can thus conclude that, for apy [0, 1], the K

1(p,|Y13) = I(p,|#?) + Hz(

function I(p,|y?) achieves its maximum value foy=0. In 1+V1-45(1-np?
other words, we can compute the entanglement assisted ca- =2 &H, 2
pacity Cg as K

( 1+/1-45(1- n)(Ekgkka)
= H, , (4

Ce= mg‘ﬁ]{Hz(p) +Hy(7p) —Hx((1-7n)p)}. (38 2

pel0,

. L ) where the first inequality derives from the propefty of
This maximization can now be solved numerically: the re-Hz(Z) and from the fact thalt7k|2$(1—pk)pk while the sec-
sulting plot is given in Fig. 1. The optima's that saturate 4 inequality is consequence of the propéiiy. Replacing
the maximization OT EQ(?’S) are reported in Fig. ,2' the above relation in Eq40) we obtain an upper bound for

Classical capacity Wl_th unentangled encodmgs 'the ¥ which does not depend op and which depends of and
case of the lossy bosonic chanigg] with constrained input D only throughp=S,£&p. By maximizing this expression

average photon number the additivity property of the HoIevoOVer all possible choices of the varialgiave get the follow-
information has been provg@8]. Unfortunately, this deriva- ing upper bound of;:

tion relies on some specific properties of the coherent input

state of the bosonic channel: even thoughand D, are T
strongly related, it is hence difficult to use the resul{28] C, < max Hy(7p) - H2<1 *N1-4y(1 - 9P ) _

to establish the additivity conjecture for the qubit amplitude pel0,1] 2

damping channe(see also Appendix B Here we will not (42)

discuss further this problem, and simply we will focus on the

capacityC,, which measures the maximum amount of clas-thg right-hand-side term of this inequality is indeed the

sical information that can be reliably transmitted using only,,5) e of C,. This can be shown by noticing that for apy
encodings that are not entangled over parallel channel USES[0, 1] andd>1, the parameters

[14,16,23. The quantityC, is a lower bound folIC and co-
incides with it provided the additivity conjecture holds. The

classical capacitfC; can be calculated by solving the maxi- &=1d. pe=p,
mization of Eq.(20) in the case oh=1. Consider the en-
semble of messages where with probabiffythe channel is v = €™M (1=p)p, (43)

prepared in the input state,

with k=1, ... d, produce a Holevo informatiog of Eq. (40)
1-py 7’; which is coincident with the quantity in the brackets on the
Pk = ; (39 right-hand side of Eq(42). The quantities(43) provide
hence optimal encoding strategies . On one hand, any
ensemble element, of this encoding has a maximum abso-
with p, and y, defined as in Eq28). Using the result of the lute value of the coherence terg: this minimizes the nega-
previous section we can express the associated Holevo infotive term of the Holevo information. On the other hand, the
mation as average message=>,&p has minimum valugy|—i.e.,

Y Pk
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d d

y=2 &n=\(1-ppX €™d=0,
k=1 k=1

(44)

PHYSICAL REVIEW A 71, 032314(2005

to be the identity everywhere but on the subspace of
Ha®Hce generated by the orthonormal vectors
{|00),|01),]10),|®,)}. On this subset we definéto have the

which maximizes the positive contribution to the Holevo in- Matrix representation

formation. This property of the chann@, is a common

feature of many other channels whose classical cap&ity

has been solvef8,34]. The value ofC; obtained by maxi-
mizing the right-hand-side term of E12) has been plotted
in Fig. 1, while the optimap’s are plotted in Fig. 2.

B. Capacities of the channelZ,,

In this section we analyze in detail the CPT nigp,, of

Eq. (15 associated with the spin chain communication lineith

of Sec. Il A 2. In this case we calculate the capaci@C
and we provide a lower bound fa@3.

The map(T%,,2 is described by the positive parametexs
and 7, of Egs. (A4) and (A5) that satisfy the relatiory,
+m,<1. In particular, forn,=1-m, 7, , reduces to an
amplitude damping map of transmissivigy—i.e.,

T,y 1-7,(P) =D, (),

for any input statep. Moreover, the following composition
rule applies:

(45)

Ly Ty (P)) = T () (46)

with 7{= .7 and 75= 9+ 7,75 An interesting way to

express'fnm2 is finally provided by concatenating two am-

plitude damping channels with a CPT m&ghat transforms
one of the eigenvectors of the matiix (say,|Z;)) into og
itself—i.e.,

Tnl,nz(p) = P(D;l/(l—nz)(pl—nz(p)))! (47)

where the first amplitude damping chanr*iéi_,]2 acts as
usual or|0) and|1), while the second orB”, ,; _,,, Is instead

!,_
1+Np - —

N V772773
/_ V 172 —
1+vm 1+\m
I — r/_
V= -\ Vg =7 , (50
| J"_
/7Y V7 72t P3N
!/_ / 3
1+ 1-m

173=1-m,— 1,. The complementary maﬁm2 is finally
obtained by substituting in E¢48) the trace ove€ with the
trace onA [30]. From Egs.(45) and (46) one can easily
verify that for », = 7, the following relation applies for any
input p:

TP =SD (T, (0))S, (51)

1772

with S the swapping operation which transformsin C.
SinceD,?z,,71 is CPT, the above equation shows that fgr
= g, the mapT,]ll,72 is degradable: the quantum capacity of
this channel can be hence computed from @&) for n=1.
A straightforward generalization of the qubit amplitude
damping channel analysis shows that B3p) still applies by

replacing\.(#) of Eq. (32) with

1_
)\1(77]_7 772) = 27]3p
2
X[li\/(l— 2m,p ) + 4|y 2]_
1-mp (1-173p)

52
defined on the subspace generatedZy and|1). The main %2
consequence of E@47) is that any capacity df‘”lmz cannot The quantum capacity o, , becomes hence
be greater than the corresponding capacity)ginz. In fact, 72
by applying the CPT transformatior® andD;h,(l_,?Z) to the 1-(1-)
output of an amplitude damping channel of transmissivity Q= maxy(1-np)|H S S U
] ! 73 2 1-

1-7, one can simulate the corresponding outpufZpf, . p<l0.] 3P

Quantum capacityAs in 'the case oD, we can prove that 1-1-m)p
7,4, 1S degradable when its quantum capacity is not null. In —Hz 1- : (53)

1772 73P

fact, as in Eq.(23) define the unitary operatdr of the ex-
tended Hilbert spac@{,® Hc such that, for any of Hp,

TymP) = Tre[V(p ® |0)c(0)VT]. (48)

An example ofV can be obtained by introducing the follow-
ing vector of H,® Hc:

|D,) = > \"Ei|§i>A @ |&e,

(49)

where|{)a € Ha are the eigenvectors of; introduced in Eq.
(16) while |£)c is an orthonormal set of states Hf- that are
orthogonal td0)¢ and|1)c. The statd®,) is a purification of
og 0N Ha® He. The unitary operato¥ can now be chosen

Notice that as in the case of E@6) the maximization over
the input parametey of Eq. (28) has been saturated by set-
ting y=0 [the proof goes as in Eq36)]. A plot of Q as a
function of »; and %, is reported in Fig. 3 by solving nu-
merically the maximization omp. The above results do not
apply for »;<n,: in this case in 1‘actil),72,,71 is not CPT.
However, a noncloning argument can be used to prove that in
this parameter region, the quantum capacityZ’glf,,,2 nulli-
fies[35].

Entanglement-assisted capacifjhe analysis ofCg pro-
ceeds as in the case of the amplitude damping channel. Here
Eq. (38) is replaced by
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FIG. 3. Plots of the capacitig@n bits per channel usg®sf the
channelT,, , of Eq.(15) as a function ofp, [0,1-7,] obtained
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IV. CONCLUSIONS

In the previous section we calculated the capacifie€e,
andC, for the qubit amplitude damping chanril, and for
the channell,, , . As discussed in Sec. Il A, by identifying
the parameters), %, and », with the quantities of Eqg9),
(A4), and(A5) we can use these results to analyze the cor-
relations between distant points of the chain. A detailed
analysis of the fidelity for state transfé) in the case ok
=1 and uniform coupling;; is given in Ref.[1]. Such a
paper solves the dependence mfrom the evolution time
and from the length of the chain. In particular [if] it is
shown that the maximum value a@f drops with the distance
between the encoding sp#(at the siter) and the decoding
spin B (at sites) as|r—s|7?%. Since according to Sec. Ill A
the quantum capacit§) vanishes when the transmissivity is
=<0.5, this implies that long chains are not suitable to directly
transmit quantum information using the scheme of Sec.
A1 with k=1. Even though the communication scenarios
described by means of E¢l) are incompletdsee the dis-
cussion of Sec. )| it is interesting to see in which way the
above difficulties can be overcome. One possibility is to op-
timize the values o by tailoring the interactiod; ; between
the spins as proposed in R¢8]. Alternatively one can use
registers withkk>1 and then optimizing the value afof Eq.

(9) by means an appropriate choi@ of the coefficients;
of Eq. (5).

Yet a different approach would require the partition of the
chain in smaller segments so to transfer information faith-
fully along the chain through swaps between neighboring

for different », (this parameter increases from 0 to 1 moving alongsegments analogously to the ideas of quantum repeaters in-
the arrows. In both graphics the dashed curve is the capacity of artroduced in[36]. Breaking the chain can be achieved by

amplitude damping channel with efficiency %> which according

applying locally external magnetic fields. A combination of a

to Eq.(47) provides an upper bound for the corresponding capacittime-dependent control of part of the chain together with

of T2y (a) Quantum capacity) obtained by solving numerically
the maximization ovep of Eq. (53). Notice that forz,> 7, Q
nullifies [35]. (b) Entanglement-assisted classical capa€ity of
Eq. (54).

1-(1-
Ce= max{Hz(p)+(1—n3p)[H2<M>
pE[O,l] 1 7]3p
1—(1—771)|O)H
“H\ |- 54
2( 1-7p (54)

A numerical plot of this expression is given in Fig. 3.
Lower bound for G. The analysis ofC,; for the channel
7—771"72 is slightly more difficult than that foD, as the con-
vexity properties used in Eq41) do not hold in this case.
Here thus we gives a lower bound Gy obtained by assum-

ing the encoding Eq43):

1-(1-
C,= maX{(l—nsp){Hz<M)
pel0,1] 1-mp

RN m?_np)]
H2(2+2 LT } (59

perfect transmission of small segments may lead to an im-
provement of the performances of spin chains to transport
quantum information. On the other hand, the quantum capac-
ity of the chain can be boosted by giving access the sender
and receiver to a free two-way classical communication line
[18,37). In this case, the ability of the channel in transmitting
quantum signal can be increased by means of entanglement
distillation protocols and teleportation. For instaries no-
ticed also in[1]), since any two-qubit entanglement state is
distillable [38], the two-way quantum capacitQ,., of the
chain is strictly greater than zero also whénis null. To
compute the exact value @,.,,, One needs to find the op-
timal distillation protocol forM: unfortunately this is quite a
challenging task.
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APPENDIX A: DERIVATION OF Eq. (14)

The Hamiltonian(2) preserves the total spin component
along thez axis. The set of two-spin-up statgs() is hence
transformed into itself with unitary matrix elements
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fiojre (@ =G, €le ™m0y, (A1) APPENDIX B: RELATION WITH THE BOSONIC
LOSSY CHANNEL
Using this transformation it is possible to show that at time

the spin chain state becomes In the lossy bosonic channél, [27-29 an input bosonic

mode described by the annihilation operatorinteracts,

N through a beam splitter of transmissivity with the vacuum
W)=alO)+B X d;(0)]j,0), (A2)  state|@), of an external bosonic mode described by the an-
j>t=1 nihilation operatorb. Any input statep of the modea is
where, forj>¢=1,... N, hence transformed by this map according to the equation
K £,(p) = Tr[U(p ® |D)(BPUT], (B1)
b () = >E€ ldj'f'f”*j"”(t) (A3 \here the trace is performed over the external moded
] =

whereU is the beam splitter unitary operator defined by
are the time evolved of the coefficiedit, of Eq. (13). Equa-

tion (A2) shows that only the fraction UTaU=za+ V1 - b, (B2)
N _ I

UbUu=17b-1-7a. B3
m= > ld 0P (A4) Vb= vl-n (B3

J> 6Nkt By restricting the inpute to the Hilbert space spanned by

of [ W(t)) has two spins up iB. Analogously, the vacuum state and the one-photon Fock state the(B&p
has the same Kraus decompositida) of the qubit magD,,.

N-k Some capacities of the chanrg) have been solved under

m= > |dM(t)|2 (A5)  constrained average input photon number: the classical ca-
j>=1 pacity C is given in Ref.[28] while the entanglement-

assisted capacit@: and a lower bound fo@ which is sup-

is the probability of ¥(t)) having both two spins up outside posed to be thigh are given in RERI]. Unfortunately, since

of B, while an average input photon number constraint cannot prevent
N-k N the average message 8f, from being supported on Fock
Bm=l-p-p=2 2 d; (D)2 (A6)  states with more than one phottapart from the trivial case
(=1 j=N-k+1 of zero average photon numbethe results obtained in

. . i ) [28,39 provide only trivial upper bounds for the correspond-

is th_e probability o_f having one spin up and the other ing capacities of D,. For instance, consider the
outside ofB. By taking the partial trace of EqA2) over the  gptanglement-assisted case where the capacities of both the
first N—k spins of the chain we obtain the state of the quantnannels can be computed. In the input Hilbert space we are

tum memoryB of Eqg. (14). In such an expression, considering here, the average photon number of the transmit-
N ted message is provided by the average population associated
o d (). €Y [ A7 with the one-photon Fock state. A fair comparison between
[#2 j>g=2,\,_k+1 bl . ONm (A7) the capacities oD, and&,, can be hence obtained by taking

_ _ the value ofCg associated with a lossy bosortig, channel
is a rotation of|¢,)s that can be compensated for at the where the average input photon number is given by the
decoding stage. On the other hang,of Eq.(14) is a density  populationp of Eq. (38) which maximizes the entanglement-
matrix of B formed by states with one-spin up vectors—i.e., assisted capacity dP,,. According to[39] the capacity of,
N-K iS(ther; giv?n bchEg(p)+g(77p)—g((1—n)p), whereg(x)
_ =(x+1)logy(x+1)—xlog, x. A simple numerical analysis can
78 ;1 (Ol ¢ ON GO/ 7 (A8 he Lsed to verify that this quantity is always bigger than the
corresponding valu€3g) of D,
with The channel®,, and&, share many common features. In
particular€, obeys the same composition ruleof, given in
— Eqg. (22) and it is degradable, since for any ingubne has

N
(e =2 dj (OO ns(6),
j=N-k+1 ~
' £,(p) = PSE1_,(p)SP, (B4)

N

€)= 2 |di (b (A9)
j=N-k+1

where nowP=¢™' andSis the swap operator which trans-
forms a in b and vice versa. This relation was used #9)]
without explicitly proving it and applies to all Gaussian
Notice that the rank ofrg is at most equal to the maximum channels of the forni23) where the external bosonic mobe
number of orthogonal one-spin-up statesBef-that is, k.  is prepared in a circularly symmetric input. For the sake of
Moreover, the support afg is clearly orthogonal tol)z and ~ completeness, here we give an explicit derivation of (B4)
|p5)e. in the case of the purely lossy bosonic channel.
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Consider a generic input stageof the bosonic channel,
with characteristic functiod'(w)=Tr,[pDa(x)]—i.e.,

d’u

p= f —T(w)Da(= ), (BS)
v

where D,(u) =exd ua’- u'a] is the displacement operator

of the input modea [40]. As shown in[29], the channek,,
transformsp into

d2
gn(p)=f ff'(M)Da(— K, (B6)
with
I () = T(\ e -2, (87)

Analogously it is possible to verify that the complementary

PHYSICAL REVIEW A 71, 032314(2009

T (1) = D(=\1 - pu)e 2, (89)
Suppose now;=0.5 and apply the lossy maf _,,,, to the

state of Eq(B6): according to the composition ru{@2) this
will transform its symmetric characteristic function to

(1) = P61 = p)e 2 =T' (= ), (B10)
producing the state
d2,LL~,
Ea-pin €)= | —T'(wDa(w).  (B11)

This proves the identityB4) since under the unitary trans-
formation PSthe annihilation operataa is transformed into
—-b and the statéB11) becomes equal to the outp(&8) of
the composite map.

APPENDIX C: SOME USEFUL RELATIONS
In this appendix we provide some relations used in Sec.

mapé&, [defined as in Eq(25) by replacing the partial trace ||| to derive the capacities of the qubit amplitude damping

overb with the partial trace ovea in the Eq.(B1)] produces
the transformation

~ d?u~
EW(P)=17MF'(M)Db(- ), (B8)

whereDy(u) is the displacement operator of the mddand
where

channel.

1. Entropy of exchange

The output statéD, ® 1,,J)(P) associated with the puri-
fication |®) of Eq. (29 can be expressed in the computa-
tional basis{|00),/01),/10),|11)} of HA® Hane (here |0)anc
=|R,) while |1),,. is proportional to the component (R;)
orthogonal tgRy)). This gives the & 4 matrix

> V(L -pp-|A? — 3
1-p+(1 ﬂ)r Q-ny 1p_pp bl \ny VN(L=p)p -y
A1 -p)p-[A? A
(- gy WP (1—7/)(|0— i 0 0
1-p 1-p
2 12 (€1
I 0 ) Bl VA -pp-ly
v 1-p 1-p
—
——s N -pp- A ks
V(L =p)p - [A? 0 Yy 1 . MP~1 -
[
The matrix(C1) has eigenvalues 2-times degeneratend H,(x) = - xlog, x - (1 = x)log,(1 — X) (Co

As={1£\[1-2A1-ppP+4L - p|AD2= N1~ 7),
(C2)

with N, the eigenvalues oD,(p) given in Eq.(32). The
exchange entropy associated wijtlis hence given by

S((Dn ® ﬂanc)(q))) = _A+ In A+ —A_InA_= HZ(A+)1
(C3

where, forx [0, 1],

is the binary entropy41]. Some useful relations df,(2) are
the following.

(i) The functionH,(z) is decreasing with respect to the
variable|1/2+z. This property is a consequence of the fact
that the entropy associated with a binary stochastic variable
is maximum when the probabilities associated with different
outcomes are equal. o

(i) The functionH,((1+y1-2%)/2) is convex with re-
spect toz. This property can be easily verified and is related
with the convexity of the entanglement of formation with
respect to concurrence in qubit systefig].
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2. Dependence ony of the coherent information

PHYSICAL REVIEW A 71, 032314(2005

the problem can be reduced to studying the properties of the

As discussed in the text, the quantum capa@itgf D, is function
obtained by maximizing the functiod(p,|y|?) of Eg. (35) e\ - 200y
over all values ofpe[0,1] and |y|?e[0,(1-p)p]. For 7 fx) = (1 -V(1 -2+ 4XY> (5
=1/2, this expression is decreasing|#¥; i.e., for any|g| Y 1+(1 - 2x)?+ 4xy

€[0,1] it achieves the maximum value fgr=0. The proof

of this result is quite tedious, but can be obtained analyticalln the domairx e [0,1-y], for anyy [0, 1]. One can then

by studying the partial derivative of E¢B5) with respect to

the parametefy|?>. We skip all the details of this analysis J(p,

verify that f,(x) is decreasing inx: this guarantees that

|v/?) is monotonically decreasing ifyl?, yielding the

which is not of fundamental interest and simply observe thathesis.
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