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tum correlations in unmodulated spin chains. By studying the qubit amplitude damping channel, we calculate
the quantum capacityQ, the entanglement assisted capacityCE, and the classical capacityC1 of a spin chain
with ferromagnetic Heisenberg interactions.
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I. INTRODUCTION

Spin chains are gaining increasing attention as natural
candidates of quantum channelsf1–5g. An unknown quan-
tum state can be prepared on one end of the chain and then
transferred to the other end by simply employing the ability
of the chain to propagate the state by means of its dynamical
evolution. This procedure does not require any gating and
therefore can be implemented without any need for a modu-
lation of the couplings between the spins. Especially this last
aspect may be of importance for solid-state quantum infor-
mation. Several aspects of quantum communication using
spin chains have been already obtained starting from the
original proposal by Bosef1g. The fidelity of the transmitted
state can be increased if the sender and the receiver can
encode or decode the state using a finite number of spinsf2g.
Even perfect transmission can be achieved if the exchange
couplings of the chain are chosen appropriatelyf3g or if it
possible to perform measurements on the quantum spins of
the chainf6g. Moreover, it was recently shown that a phase-
covariant cloner can be realized using an unmodulated spin
network f7g and that the spin chain approach to quantum
communication seems to be realizable in solid-state devices
with present day technologyf8g.

Another interesting aspect which is emerging recently is
the interconnection between quantum information and con-
densed matter theoryf9g. Examples are the study of nonlocal
squantumd correlations of spin systems in a variety of situa-
tionssseef10g and references thereind or reformulation of the
density matrix renormalization group in the framework of
quantum information theoryf11g. In this paper we would like
to further explore the use of concepts born in quantum infor-
mation for the characterization of spin chains. Here we pro-
pose to use the information capacities of quantum channels
as a tool to characterize some aspects of dynamical correla-
tions in a spin chain. By calculating the capacities of the
channel, obtained by identifying two separate sections of the
chain as the extremes of a communication line, one can in
fact get some information about the strength of the correla-
tions among the interconnecting spins. In some sense this is
equivalent to assigning to any couple of subsets of the spins
in the sample the values of the corresponding capacities in
order to create a “road map” of the information fluxes in the
system.

Our results apply for the whole class of Hamiltonians for
which the total magnetization along a fixed direction is con-
served. In the present work we confine ourself to the case in
which one bit is transferred through the chain. This situation
corresponds to studying the sectors in which only a few spins
are up. We believe, however, that the present approach can
be further extended to other spin sectors.

The paper is organized in two distinct parts. In the first
one we introduce the spin chain communication lines and we
discuss some models in detailssSec. IId. In the second part
sSec. IIId instead we give a brief overview of channel capaci-
ties and, by studying the qubit amplitude damping channel
f12g, we calculate the quantum capacityQ, the entanglement
assisted capacityCE, and the classical capacityC1 of the spin
chain models presented in Sec. II. As explained in detail
throughout the paper the above quantities are computed in
communication scenarios where many “copies” of the spin
system are available and “not” for those scenarios where the
communicating parties make multiple uses of the “same”
spin chain. The paper ends in Sec. IV with the conclusions.

II. MODEL

Given a collection ofN spins coupled by means of a time-
independent Hamiltonian it is possible to define a quantum
channel by identifying two set of spins of the samplessay,
setsA and Bd as two quantum registers. A first partysthe
sender of the messaged encodes some information onA and a
second partysthe receiverd tries to recover such information
from B some later timet f1,2,4g. Formally, one assumes that
the encoding procedure takes place by initially decoupling
the spinsA from the remaining spins without disturbing them
from their initial fiduciary states0, preparingA on some
input messagerA, and finally allowingrA ands0 to interact
for a given timet through the Hamiltonian of the system. At
this point we consider the staterBstd of the spinsB, obtained
from the spin chain stateRstd=UstdsrA ^ s0dU†std by tracing
away all the degrees of freedom of the system but those
relative toB. fHereUstd is the unitary evolution of the sys-
tem.g The resulting completely positive, trace preserving
sCPTd mapping

rA → MsrAd ; rBstd = TrsBdfUstdsrA ^ s0dU†stdg, s1d

where TrsBd means trace over all the spins butB, defines the
quantum channel we are interested in. A caveat is in order.
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Equations1d does not provide a proper description of any
realistic scenario where the communicating parties keep on
operating on their quantum registers over an extended period
of time. In fact, after a first “reading out” of the signal from
the spin chain at timet, the states0 of the spins not belong-
ing to A will change, thus making Eq.s1d unable to describe
the state ofB for later times. As a matter of fact, in our
system any repeatedsin timed manipulation of the quantum
registers will necessarily introduce memory effects in the
communication for which a satisfying quantum information
theory is still missingssome preliminary results on quantum
channels with memory can be found in Ref.f13gd.

Having the previous observations in mind, Eq.s1d can
still be used to provide a quite complete characterization of
the correlations between the registersA and B. Technically
the mapM is defined in the Hilbert spaceHA of the con-
figurations ofA and depends ont, Hint, s0, and on the choice
of A andB. A common approachf1,2,7g used to quantify the
correlations between the setsA andB of the chain is then to
consider the fidelity associated withM, by computing the
average fidelity between the input statesrA and their output
counterpartsrBstd. Here we observe that a more detailed
characterization of such correlations can be obtained by
treatingM of Eq. s1d as the CPT map of a real memoryless
channel. The correlations betweenA andB can then be ana-
lyzed by means of the information capacitiesf12,14–18g as-
sociated withM. These quantities are related to the mini-
mum “amount of redundancy” over multiple uses of the
channel M needed to achieve perfect message
transmission—i.e., unitary fidelity: higher values of the ca-
pacities correspond to stronger correlations between input
and output states. Depending on the naturese.g., classical or
quantumd of the information propagating through the channel
one can define different capacities ofM and each of them
are obtained by maximizing over all possible coding and
decoding strategies which act over multiple channel uses
ssee Sec. IIId. From the discussion that follows Eq.s1d it
should be evident that the capacities of the mapM might not
provide a proper description of the communication perfor-
mances of the spin chain. As a matter of fact, they only
account for those scenarios where many parallel “copies” of
the same system are simultaneously operated by the two
communicating parties but fail to describe those scenarios
where the communicating parties make successive multiple
uses of the “same” spin chain.

A. Solvable models

Examples of a spin chain channel where the information
capacities ofM can be solved exactly are provided by a
chain of 1/2 spins coupled through a ferromagnetic Heisen-
berg interactionf1g. The system Hamiltonian is

H = − o
ki,jl

"Jijssx
i sx

j + sy
i sy

j + gsz
i sz

jd − o
i=1

N

"Bisz
i , s2d

where the first summation is performed on the nearest-
neighbor spins of the chain,sx,y,z

i are the Pauli operators
associated with theith spin,Jij are coupling constants,g is

an anisotropy parameter, andBi are associated with exter-
nally applied magnetic fields.

In the following we will assume the input setA and output
setB of Eq. s1d to contain, respectively, the firstk and lastk
spins of the chain, and that all the spins butA are initially
prepared in the same eigenstateu↓l of sz. fHere u↓l and u↑l
are the eigenstates ofsz associated, respectively, with the
eigenvalues −1 and +1g. If the two communicating parties
are allowed to use the entire Hilbert space of their quantum
memory, Eq.s1d yields ak-qubit channel which, in general,
is too complex to be analyzed on a complete basis. In the
present paper we consider thus a simplification of this sce-
nario where the sender and receiver use theirk spins to en-
code a single logical qubit. This approach is clearly ineffi-
cient from an informational theoretical point of view, but on
the positive side, the resulting maps can be treated analyti-
cally.

1. Encoding one logical qubit with one-spin-up vectors

As in Refs.f1,2g we introduce the one-spin-up vector

u jl ; u↓↓ ¯ ↓↑↓ ¯ ↓l, s3d

which for j =1, . . . ,N represents the state of the chain where
the j th spin is prepared in the eigenstateu↑l and the other
N−1 ones inu↓l. Suppose that at timet=0 the sender pre-
pares her or his spins in

uClA ; au ⇓ lA + buf1lA, s4d

where a,b are complex amplitudes,u⇓ lA is the state ofA
with all spins down, anduf1lA is a given normalized super-
position of u jl with j referring to spins of the input memory
A—i.e.,

uf1lA ; o
j=1

k

cju jl. s5d

Since the Hamiltonian of Eq.s2d commutes with the total
spin component along thez direction, one can show that at
time t the whole chain is described byf2g

uCstdl ; au ⇓ l + b o
j8=1

N

o
j=1

k

cj f j8,jstdu j8l, s6d

with u⇓l the state of the chain with all spins down and with

f j ,sstd ; k j ue−iHt/"usl s7d

fsee, for instance, Ref.f1g for the explicit functional depen-
dence off j ,sstd from the evolution timetg. According to Eq.
s1d the state ofB at timet is finally obtained from Eq.s6d by
tracing over all the remainingN−k spins—i.e.,

rBstd = fuau2 + s1 − hdubu2gu ⇓ lBk⇓ u + hubu2uf18lBkf18u

+ Îhab* u ⇓ lBkf18u + Îha*buf18lBk⇓ u, s8d

with
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h = o
j8=N−k+1

N Uo
j=1

k

cj f j8,jstdU2

. s9d

In Eq. s8d the two orthonormal vectorsu⇓ lB and uf18lB are,
respectively, the state ofB with all spins down and

uf18lB ; o
j8=N−k+1

N

o
j=1

k

cj f j8,jstdu j8l/Îh. s10d

Apart from an irrelevant unitary transformationf19g the map
associated withrBstd of Eq. s8d is a qubit amplitude damping
channelf1,2g of efficiencyh which acts on the orthonormal
basishu⇓ lB, uf18lBj. For the sake of clarity let us identifyu⇓ lA

and u⇓ lB with the same logical qubit stateu0l and uf1lA,
uf18lB with u1l. In this notation we can express the input state
uClA and the output staterBstd as density matricesr andr8
of the same qubit Hilbert spaceHA. Equations8d becomes
thus

r8 = Dhsrd, s11d

with Dh the amplitude damping map characterized by the
Kraus operatorsf12g

A0 = u0lk0u + Îhu1lk1u,

A1 = Î1 − hu0lk1u. s12d

Equations11d describes a quantum channel in which the logi-
cal information ofA represented by the coefficientsa andb
of Eq. s4d is transferred to the output memoryB with an
accuracy which can be estimated by calculating the capaci-
ties of the mapDh. The calculation of the capacities ofDh is
presented in Sec. III A.

2. Encoding one logical qubit with two-spin-up vectors

Consider the case where in Eq.s4d the vector uf1lA is
replaced by a normalized superpositionuf2lA of statesu j ,,l
where thej th and,th spins of the chain are inu↑l while the
remaining are inu↓l—i.e.,

uf2lA ; o
j.,=1

k

dj ,,u j ,,l. s13d

In other words, the sender still uses the state with no spin up
to “transfer” a, but now a selected superposition of two-
spin-up states is employed to “transfer”b. In this case one
can show that the output state of the memoryB is

rBstd = suau2 + h2ubu2du ⇓ lBk⇓ u + h1ubu2uf28lBkf28u

+ Îh1ab* u ⇓ lBkf28u + Îh1a*buf28lBk⇓ u

+ s1 − h1 − h2dubu2sB, s14d

whereuf28lB is a superposition of two-spin-up states ofB and
sB is a density matrix of one-spin-up states ofB whose
eigenvectors are orthogonal with respect tou⇓ lB and uf28lB
ssee Appendix A for detailsd. For h1+h2=1 the mapping
s14d reduces to a qubit amplitude damping channelDh with
quantum efficiencyh=h1. However, in the general case, Eq.

s14d is slightly more complex. In fact forh1+h2,1 the
componentuf2lA of the input state undergoes three possible
processes: with probabilityh1 it is rotated into the output
state uf28lB, with probability h2 it is damped tou⇓ lB, and
finally with probabilityh3=1−h1−h2 it is transformed in the
density matrixsB. In this respect, the maps14d is similarsbut
not equald to a channel that, with probabilityh3, decoheres
the input and transformsuf2lA into sB while with probability
1−h3 applies to it an amplitude damping channel transfor-
mation of quantum efficiencyh1/ s1−h3d.

A compact description of Eq.s14d is obtained by identi-
fying u⇓ lA,u⇓ lB with the logical qubit stateu0l and uf2lA,
uf28lB with u1l. With this notation, the transformations14d can
be expressed as a two-parameter CPT map,

r8 = Th1,h2
srd, s15d

with Kraus operators given by

A0 = u0lk0u + Îh1u1lk1u,

A1 = Îh2u0lk1u,

A1+i = Îh3ziuzilk1u. s16d

Here uzil are the eigenvectors ofsB associated with the ei-
genvalueszi .0: according to Eq.sA8d they are orthogonal
with respect tou0l and u1l and there are at mostk of them.

The capacity of the channelTh1,h2
is derived in Sec. III B.

III. CHANNEL CAPACITIES

The quantities we are interested in this paper are the quan-
tum capacity Q, the classical capacityC, and the
entanglement-assisted capacitiesCE and QE. The quantum
capacityQ measures the maximum amount of quantum in-
formation that can be reliably transmitted though the mapM
per channel usef15g. Intuitively, this quantity is related to the
dimension of the largest subspace of the multi-use-input Hil-
bert space which does not decohere during the communica-
tion process. The value ofQ sin qubits per channel usesd can
be computed as

Q ; sup
n

Qn/n, s17d

with

Qn ; max
rPH^n

hS„M^nsrd… − S„sM^n
^ 1ancdsFd…j. s18d

On the one hand, the “sup” in Eq.s17d is evaluated overn
parallel channel usesf20g, where the channel map is de-
scribed by the superoperator which transforms the input
statesr of H^n into the output statesM^nsrd. On the other
hand, for fixed values ofn, the maximization in Eq.s18d is
performed on all possible input density matricesrPH^n.
The quantity in the brackets is the coherent information of
the channelf15,21g, Ssrd=−Trfr log2 rg is the von Neumann
entropy, andF is a purificationf12g of rPH^n defined in
the extended space obtained by adding an ancillary space
Hanc to H^n.
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The classical capacityC gives the maximum amount of
classical information that can be reliably transmitted through
the channel per channel use: here, in the multi-use scenario,
the goal is to identify the largest set of orthogonal input
messages which remain distinguishablesi.e., orthonormald
during the propagation. In this case, the system is not re-
quired to preserve the phases of superpositions of different
messages:C characterizes thus the ability of the channelM
in preserving occupation numbers but not its decoherence
effects on the transmitted signals.

As in the case of Eq.s17d, in calculating the classical
capacity it is necessary to perform a maximization over mul-
tiple uses of the channelM—i.e. f16g,

C ; sup
n

Cn/n, s19d

whereCn is the classical capacity of the channel which can
be achieved if the sender is allowed to encode the informa-
tion on codewords which are entangled only up to
n-parallel-channel uses. The value ofCn is obtained by maxi-
mizing the Holevo informationf22g at the output ofn paral-
lel channel uses, over all possible ensembleshjk,rkj—i.e.,

Cn ; max
jk,rkPH^nHS„M^nsrd… − o

k

jkS„M^nsrkd…J , s20d

with hjkj probabilities andr;okjkrk the average message
transmitted. The optimizations19d could be avoided if the
additivity conjecture of the Holevo information is true
f14,23g: in this case in fact the optimal ensembleshjk,rkj
which achieve the maximum in Eq.s20d are separable with
respect to then parallel uses andC coincides withC1.

The last capacities we consider are the entanglement-
assisted classical capacityCE and its quantum counterpartQE
f17,18g. These quantities give, respectively, the maximum
amount of classical or quantum information that can be sent
reliably through the channel per channel use, assuming that
the sender and receiver share infinite prior entanglement. To
calculateCE it is not requested to perform a regularization
over parallel channel uses as in the case of Eqs.s17d and
s19d. Here instead one has to maximize the quantum mutual
information for the single-channel usef17,18,24g—i.e.,

CE ; max
rPH

hSsrd + S„Msrd… − S„sM ^ 1ancdsFd…j, s21d

where nowF is a purification of the input messagerPH.
The entanglement-assisted quantum capacity can then be ob-
tained asQE=CE/2 by means of quantum teleportationf25g
and superdense codingf26g. The relevance ofCE relies on
the fact that this quantity gives a simple upper bound for the
other capacities. Moreover, it is conjectured to provide an
equivalence class for quantum channelsf18g.

In the next sections we will focus on the capacities of the
CPT maps associated with spin chain models introduced in
Secs. II A 1 and II A 2.

A. Capacities of the amplitude damping channel

In this section we analyze in detail the qubit amplitude
damping channel. In particular we calculate its capacityQ,

showing that in this case maximizations18d over parallel
uses is not necessary. Moreover, we derive the capacitiesCE
and C1 sclassical capacity achieved with unentangled code-
wordsd which were originally given in Ref.f18g without an
explicit derivation.

The mapDh is completely characterized by the parameter
h and can be seen as an instance of the mapEh associated
with the lossy bosonic channelf27–29g ssee Appendix B for
detailsd. In particularDh has the useful property that by con-
catenating two amplitude damping channel with quantum ef-
ficienciesh and h8, one obtains a new amplitude damping
channel with efficiencyhh8—i.e.,

Dh8
„Dhsrd… = Dhh8srd, s22d

which applies for any input stater.
Quantum capacity. An important simplification in calcu-

lating the quantitys17d derives by introducing the following
representation of the CPT mapDh:

Dhsrd ; TrCfVsr ^ u0lCk0udV†g, s23d

obtained by adding to the Hilbert spaceHA of the input
logical qubitA an auxiliary Hilbert spaceHC and introduc-
ing the unitary operatorV which in the computational basis
hu00l,u01l,u10l,u11lj of HA ^ HC is given by the 434 matrix

V ;1
1 0 0 0

0 Îh Î1 − h 0

0 − Î1 − h Îh 0

0 0 0 1
2 . s24d

In Eq. s23d, TrCf¯g is the partial trace over the elements of

the auxiliary spaceHC. The complementary channelD̃h of
Dh is defined by replacing this operation with the partial
trace overHA—i.e. f30g,

D̃hsrd ; TrAfVsr ^ u0lCk0udV†g. s25d

Upon a swapping operationSwhich transformsA into C and
vice versa, the transformation of Eq.s25d can be seen as a
mapping from the Hilbert spaceHA onto itself. Moreover, by
direct calculation one can verify that

D̃hsrd = SD1−hsrdS. s26d

Using the composition rule of Eq.s22d it is thus possible to
show that, forhù0.5, one hasf31g

D̃hsrd = SDs1−hd/h„Dhsrd…S. s27d

sThe quantum capacity in the caseh,0.5 is simple to com-
pute and will be discussed at the end of this section.d This
relation shows that for the channelDh is degradable; i.e.,
there exists a CPT map defined by the super operator
S Ds1−hd/hs¯d S which connects the output stateDhsrd with

the output stateD̃hsrd. According to a theorem proved by
Devetak and Shorf30g, this condition guarantees that the
“sup” in Eq. s17d is achieved forn=1 ssingle-channel used:
in other words, Eq.s27d guarantees the additivity of the co-
herent information for the channelDh. For hù0.5 the quan-
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tum capacity ofDh derives thus by solving the maximization
s18d for n=1.

In the computational basishu0l,u1lj of HA, the most gen-
eral input state of the mapDh can be parametrized as fol-
lows:

r ; S1 − p g*

g p
D , s28d

where pP f0,1g is the population associated with the state
u1l and uguøÎs1−pdp is a coherence term. A purification
F;uFlkFu of r is then obtained by introducing an ancillary
qubit systemHanc and considering the state

uFl ; Î1 − pu0l ^ uR0l + Îpu1l ^ uR1l, s29d

with uR0,1l unit vectors ofHanc such that

kR0uR1l = g/Îs1 − pdp. s30d

From the Kraus decompositions12d one can verify that the
mapDh transforms this state into the output

Dhsrd = S1 − hp Îhg*

Îhg hp
D . s31d

The matrixs31d has eigenvalues

l±shd ; f1 ± Îs1 − 2hpd2 + 4hugu2g/2, s32d

which gives an output von Neumann entropy equal to

S„Dhsrd… = H2„l+shd…, s33d

with H2 the binary entropy function defined in Eq.sC4d.
Analogously, by applying the mapsDh ^ 1ancd to F we get
the state described by the 434 complex matrix of Eq.sC1d,
which has entropy equal to

S„sDh ^ 1ancdsFd… = H2„l+s1 − hd…. s34d

The quantity we need to maximize to obtainQ is hence given
by

Jsp,ugu2d ; H2„l+shd… − H2„l+s1 − hd…, s35d

which depends fromr only through the parametersp
P f0,1g and ugu2P f0,s1−pdpg. As discussed in Appendix C
the maximizations17d is achieved by choosingg=0, which
gives a quantum capacity equal to

Q ; max
pPf0,1g

hH2shpd − H2„s1 − hdp…j. s36d

For any givenhù0.5 this expression has been solved nu-
merically and the results are plotted in Fig. 1. In Fig. 2,
instead, we have reported, as a function of the parameterh,
the optimal value of the populationp which provides the
maximum of the right-hand-side term of Eq.s36d.

Let us now consider the low-transmissivity regimeh
,0.5. In this case, the same noncloning argument given in
Ref. f32g for the erasure channel and in Ref.f27g for the
lossy bosonic channel can be used to prove that the quantum
capacityQ of Dh nullifies. An alternative proof of this fact
can be obtained by noticing that the composition rules22d
implies that the quantum capacity of the channelDh is an
increasing function of the transmissivityh. This thesis then

FIG. 1. Plot of the capacitiessin bits per channel usesd of the
qubit amplitude damping channelDh as a function of the noise
parameterh. The curvesQ, CE, andC1 represent, respectively, the
quantum capacity, entanglement-assisted classical capacity, and the
classical capacity achievable with unentangled encodings: they
have been obtained by solving numerically the maximizations of
Eqs.s36d, s38d, ands42d. For h=1 sno-noise limitd both Q andC1

give one qubit per bit for channel use, while as a consequence of the
superdense coding effectf26g CE gives two bits per channel uses.
For h=0.5 we have, respectively,Q=0, CE=1, and C1=0.4717
sthis result is in agreement with what found in Ref.f33gd. As a
consequence of the noncloning theoremf27,32g for h,0.5 the
quantum capacityQ nullifies. The curve QE represents the
entanglement-assisted quantum capacity and is obtained by simply
dividing by 2 the values ofCE. The classical capacityC of the
channel is lower bounded byC1 and upper bounded by 1smaxi-
mum entropy of a bitd and byCE. If the additivity conjecturef23g
applies to this channel, thenC=C1.

FIG. 2. Plot of the optimal populationsp associated with the
state u1l which provide the capacities of the amplitude damping
channelDh, as a function of the transmissivityh. The upper curve
refers to the entanglement assisted capacitiesCE andQE: for given
h it has been obtained by finding that value ofp which maximizes
the function at the right-hand side of Eq.s38d. The lower curve
refers to the classical capacityC1 through Eq.s42d. Finally the
intermediate curve refers to the quantum capacityQ through Eq.
s36d: this function is not defined forh,0.5 because for this value
the Q is null ssee Fig. 1d. For hù0.5 the optimal populationp of
the quantum capacity is bigger than the corresponding population of
C1 and lower than that ofCE.
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follows from the fact that forh=0.5 the right-hand-side term
of Eq. s36d nullifies.

Entanglement-assisted capacity. To calculate this capacity
we need to perform the maximization of Eq.s21d for all
possible input statesr. The quantum mutual information of
the channel can be obtained by summing the coherent infor-
mation Jsp, ugu2d of Eq. s35d to the input entropy of the
message—i.e., using the parametrization introduced in the
previous section:

Isp,ugu2d ; Jsp,ugu2d + H2S1 +Îs1 − 2pd2 + 4ugu2

2
D .

s37d

According to propertysid of Appendix C 1 the last term in
the right-hand side of this expression is a decreasing function
of ugu2; i.e., it is maximum forg=0. From the previous sec-
tion, we know that the same property applies also to
Jsp, ugu2d: we can thus conclude that, for anypP f0,1g, the
function Isp, ugu2d achieves its maximum value forg=0. In
other words, we can compute the entanglement assisted ca-
pacity CE as

CE ; max
pPf0,1g

hH2spd + H2shpd − H2„s1 − hdp…j. s38d

This maximization can now be solved numerically: the re-
sulting plot is given in Fig. 1. The optimalp’s that saturate
the maximization of Eq.s38d are reported in Fig. 2.

Classical capacity with unentangled encodings. In the
case of the lossy bosonic channelEh with constrained input
average photon number the additivity property of the Holevo
information has been provedf28g. Unfortunately, this deriva-
tion relies on some specific properties of the coherent input
state of the bosonic channel: even thoughEh and Dh are
strongly related, it is hence difficult to use the result off28g
to establish the additivity conjecture for the qubit amplitude
damping channelssee also Appendix Bd. Here we will not
discuss further this problem, and simply we will focus on the
capacityC1, which measures the maximum amount of clas-
sical information that can be reliably transmitted using only
encodings that are not entangled over parallel channel uses
f14,16,23g. The quantityC1 is a lower bound forC and co-
incides with it provided the additivity conjecture holds. The
classical capacityC1 can be calculated by solving the maxi-
mization of Eq.s20d in the case ofn=1. Consider the en-
semble of messages where with probabilityjk the channel is
prepared in the input state,

rk ; S1 − pk gk
*

gk pk
D , s39d

with pk andgk defined as in Eq.s28d. Using the result of the
previous section we can express the associated Holevo infor-
mation as

x ; H2S1 +Îs1 − 2hpd2 + 4hugu2

2
D

− o
k

jkH2S1 +Îs1 − 2hpkd2 + 4hugku2

2
D , s40d

where nowp=okjkpk andg;okjkgk are the parameterss28d
associated with the average input messager;okjkrk. Ac-
cording to Eq.s20d the capacityC1 is obtained by maximiz-
ing x over all possible choices ofpk, gk, andjk. To solve this
problem we first derive an upper bound forC1 and then we
show that there exist an encodingpk, gk, and jk which
achieves such an upper bound.

From the propertysid of the binary entropysC4d given in
Appendix C 1, we can maximize the first term in the right-
hand side of Eq.s40d by choosingg=0. Moreover, one has

o
k

jkH2S1 +Îs1 − 2hpkd2 + 4hugku2

2
D

ù o
k

jkH2S1 +Î1 − 4hs1 − hdpk
2

2
D

ù H2S1 +Î1 − 4hs1 − hdsok
jkpkd2

2
D , s41d

where the first inequality derives from the propertysid of
H2szd and from the fact thatugku2ø s1−pkdpk, while the sec-
ond inequality is consequence of the propertysii d. Replacing
the above relation in Eq.s40d we obtain an upper bound for
x which does not depend ongk and which depends onjk and
pk only throughp=okjkpk. By maximizing this expression
over all possible choices of the variablep we get the follow-
ing upper bound ofC1:

C1 ø max
pPf0,1g

HH2shpd − H2S1 +Î1 − 4hs1 − hdp2

2
DJ .

s42d

The right-hand-side term of this inequality is indeed the
value of C1. This can be shown by noticing that for anyp
P f0,1g andd.1, the parameters

jk = 1/d, pk = p,

gk = e2pik/dÎs1 − pdp, s43d

with k=1, . . . ,d, produce a Holevo informationx of Eq. s40d
which is coincident with the quantity in the brackets on the
right-hand side of Eq.s42d. The quantitiess43d provide
hence optimal encoding strategies forC1. On one hand, any
ensemble elementrk of this encoding has a maximum abso-
lute value of the coherence termgk: this minimizes the nega-
tive term of the Holevo information. On the other hand, the
average messager=okjkrk has minimum valueugu—i.e.,
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g = o
k=1

d

jkgk = Îs1 − pdpo
k=1

d

e2pik/d/d = 0, s44d

which maximizes the positive contribution to the Holevo in-
formation. This property of the channelDh is a common
feature of many other channels whose classical capacityC
has been solvedf28,34g. The value ofC1 obtained by maxi-
mizing the right-hand-side term of Eq.s42d has been plotted
in Fig. 1, while the optimalp’s are plotted in Fig. 2.

B. Capacities of the channelTh1,h2

In this section we analyze in detail the CPT mapTh1,h2
of

Eq. s15d associated with the spin chain communication line
of Sec. II A 2. In this case we calculate the capacitiesQ, CE
and we provide a lower bound forC.

The mapTh1,h2
is described by the positive parametersh1

and h2 of Eqs. sA4d and sA5d that satisfy the relationh1
+h2ø1. In particular, forh2=1−h1, Th1,h2

reduces to an
amplitude damping map of transmissivityh1—i.e.,

Th1,1−h1
srd = Dh1

srd, s45d

for any input stater. Moreover, the following composition
rule applies:

Th18,h28
„Th1,h2

srd… = Th19,h29
srd, s46d

with h19;h1h18 and h29;h2+h1h28. An interesting way to
expressTh1,h2

is finally provided by concatenating two am-
plitude damping channels with a CPT mapP that transforms
one of the eigenvectors of the matrixsB ssay, uz1ld into sB
itself—i.e.,

Th1,h2
srd = PsDh1/s1−h2d8 „D1−h2

srd…d, s47d

where the first amplitude damping channelD1−h2
acts as

usual onu0l andu1l, while the second oneDh1/s1−h2d8 is instead
defined on the subspace generated byuz1l and u1l. The main
consequence of Eq.s47d is that any capacity ofTh1,h2

cannot
be greater than the corresponding capacity ofD1−h2

. In fact,
by applying the CPT transformationsP andDh1/s1−h2d8 to the
output of an amplitude damping channel of transmissivity
1−h2 one can simulate the corresponding output ofTh1,h2

.
Quantum capacity. As in the case ofDh we can prove that

Th1,h2
is degradable when its quantum capacity is not null. In

fact, as in Eq.s23d define the unitary operatorV of the ex-
tended Hilbert spaceHA ^ HC such that, for anyr of HA,

Th1,h2
srd ; TrCfVsr ^ u0lCk0udV†g. s48d

An example ofV can be obtained by introducing the follow-
ing vector ofHA ^ HC:

uFsl ; o
i

ÎziuzilA ^ uzilC, s49d

whereuzilAPHA are the eigenvectors ofsB introduced in Eq.
s16d while uzilC is an orthonormal set of states ofHC that are
orthogonal tou0lC andu1lC. The stateuFsl is a purification of
sB on HA ^ HC. The unitary operatorV can now be chosen

to be the identity everywhere but on the subspace of
HA ^ HC generated by the orthonormal vectors
hu00l , u01l , u10l , uFslj. On this subset we defineV to have the
matrix representation

V ;1
1 +Îh1 − h2

1 +Îh1

Îh2 −
Îh2h3

1 +Îh1

− Îh2
Îh1 − Îh3

−
Îh2h3

1 +Îh1

Îh3
h2 + h3

Îh1

1 − h1

2 , s50d

with h3=1−h1−h2. The complementary mapT̃h1,h2
is finally

obtained by substituting in Eq.s48d the trace overC with the
trace onA f30g. From Eqs.s45d and s46d one can easily
verify that for h1ùh2 the following relation applies for any
input r:

T̃h1,h2
srd = SDh2/h1

„Th1,h2
srd…S, s51d

with S the swapping operation which transformsA in C.
SinceDh2/h1

is CPT, the above equation shows that forh1

ùh2 the mapTh1,h2
is degradable: the quantum capacity of

this channel can be hence computed from Eq.s18d for n=1.
A straightforward generalization of the qubit amplitude
damping channel analysis shows that Eq.s35d still applies by
replacingl±shd of Eq. s32d with

l±sh1,h2d ;
1 − h3p

2

3 F1 ±ÎS1 −
2h1p

1 − h3p
D2

+
4h1ugu2

s1 − h3pd2G .

s52d

The quantum capacity ofTh1,h2
becomes hence

Q ; max
pPf0,1g

Hs1 − h3pdFH2S1 − s1 − h2dp
1 − h3p

D
− H2S1 − s1 − h1dp

1 − h3p
DGJ . s53d

Notice that as in the case of Eq.s36d the maximization over
the input parameterg of Eq. s28d has been saturated by set-
ting g=0 fthe proof goes as in Eq.s36dg. A plot of Q as a
function of h1 and h2 is reported in Fig. 3 by solving nu-
merically the maximization onp. The above results do not
apply for h1øh2: in this case in factDh2/h1

is not CPT.
However, a noncloning argument can be used to prove that in
this parameter region, the quantum capacity ofTh1,h2

nulli-
fies f35g.

Entanglement-assisted capacity. The analysis ofCE pro-
ceeds as in the case of the amplitude damping channel. Here
Eq. s38d is replaced by
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CE ; max
pPf0,1g

HH2spd + s1 − h3pdFH2S1 − s1 − h2dp
1 − h3p

D
− H2S1 − s1 − h1dp

1 − h3p
DGJ . s54d

A numerical plot of this expression is given in Fig. 3.
Lower bound for C1. The analysis ofC1 for the channel

Th1,h2
is slightly more difficult than that forDh as the con-

vexity properties used in Eq.s41d do not hold in this case.
Here thus we gives a lower bound forC1 obtained by assum-
ing the encoding Eq.s43d:

C1 ù max
pPf0,1g

Hs1 − h3pdFH2S1 − s1 − h2dp
1 − h3p

D
− H2S1

2
+

1

2
Î1 −

4h1h2p
2

s1 − h3pd2DGJ . s55d

IV. CONCLUSIONS

In the previous section we calculated the capacitiesQ, CE,
andC1 for the qubit amplitude damping channelDh and for
the channelTh1,h2

. As discussed in Sec. II A, by identifying
the parametersh, h1, andh2 with the quantities of Eqs.s9d,
sA4d, and sA5d we can use these results to analyze the cor-
relations between distant points of the chain. A detailed
analysis of the fidelity for state transfers9d in the case ofk
=1 and uniform couplingJi,j is given in Ref.f1g. Such a
paper solves the dependence ofh from the evolution time
and from the length of the chain. In particular inf1g it is
shown that the maximum value ofh drops with the distance
between the encoding spinA sat the siterd and the decoding
spin B sat sitesd as ur −su−2/3. Since according to Sec. III A
the quantum capacityQ vanishes when the transmissivity is
ø0.5, this implies that long chains are not suitable to directly
transmit quantum information using the scheme of Sec.
II A 1 with k=1. Even though the communication scenarios
described by means of Eq.s1d are incompletessee the dis-
cussion of Sec. IId, it is interesting to see in which way the
above difficulties can be overcome. One possibility is to op-
timize the values ofh by tailoring the interactionJi,j between
the spins as proposed in Ref.f3g. Alternatively one can use
registers withk.1 and then optimizing the value ofh of Eq.
s9d by means an appropriate choicef2g of the coefficientscj
of Eq. s5d.

Yet a different approach would require the partition of the
chain in smaller segments so to transfer information faith-
fully along the chain through swaps between neighboring
segments analogously to the ideas of quantum repeaters in-
troduced in f36g. Breaking the chain can be achieved by
applying locally external magnetic fields. A combination of a
time-dependent control of part of the chain together with
perfect transmission of small segments may lead to an im-
provement of the performances of spin chains to transport
quantum information. On the other hand, the quantum capac-
ity of the chain can be boosted by giving access the sender
and receiver to a free two-way classical communication line
f18,37g. In this case, the ability of the channel in transmitting
quantum signal can be increased by means of entanglement
distillation protocols and teleportation. For instancesas no-
ticed also inf1gd, since any two-qubit entanglement state is
distillable f38g, the two-way quantum capacityQ2-way of the
chain is strictly greater than zero also whenQ is null. To
compute the exact value ofQ2-way one needs to find the op-
timal distillation protocol forM: unfortunately this is quite a
challenging task.
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APPENDIX A: DERIVATION OF Eq. (14)

The Hamiltonians2d preserves the total spin component
along thez axis. The set of two-spin-up statesu j ,,l is hence
transformed into itself with unitary matrix elements

FIG. 3. Plots of the capacitiessin bits per channel usesd of the
channelTh1,h2

of Eq. s15d as a function ofh2P f0,1−h1g obtained
for differenth1 sthis parameter increases from 0 to 1 moving along
the arrowsd. In both graphics the dashed curve is the capacity of an
amplitude damping channel with efficiency 1−h2 which according
to Eq.s47d provides an upper bound for the corresponding capacity
of Th1,h2

. sad Quantum capacityQ obtained by solving numerically
the maximization overp of Eq. s53d. Notice that forh2.h1 Q
nullifies f35g. sbd Entanglement-assisted classical capacityCE of
Eq. s54d.
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f j,,j8,8std ; k j ,,ue−iHt/"u j8,,8l. sA1d

Using this transformation it is possible to show that at timet
the spin chain state becomes

uCstdl ; au ⇓ l + b o
j.,=1

N

dj ,,stdu j ,,l, sA2d

where, for j .,=1, . . . ,N,

dj ,,std ; o
j8.,8=1

k

dj8,8f j,,j8,8std sA3d

are the time evolved of the coefficientdj ,, of Eq. s13d. Equa-
tion sA2d shows that only the fraction

h1 ; o
j.,=N−k+1

N

udj ,,stdu2 sA4d

of uCstdl has two spins up inB. Analogously,

h2 ; o
j.,=1

N−k

udj ,,stdu2 sA5d

is the probability ofuCstdl having both two spins up outside
of B, while

h3 ; 1 − h1 − h2 = o
,=1

N−k

o
j=N−k+1

N

udj ,,stdu2 sA6d

is the probability of having one spin up inB and the other
outside ofB. By taking the partial trace of Eq.sA2d over the
first N−k spins of the chain we obtain the state of the quan-
tum memoryB of Eq. s14d. In such an expression,

uf28lB ; o
j.,=N−k+1

N

dj ,,stdu j ,,l/Îh1 sA7d

is a rotation of uf2lA that can be compensated for at the
decoding stage. On the other hand,sB of Eq. s14d is a density
matrix of B formed by states with one-spin up vectors—i.e.,

sB ; o
,=1

N−K

h3s,duf1s,dlkf1s,du/h3, sA8d

with

uf1s,dlB ; o
j=N−k+1

N

dj ,,stdu j ,,l/Îh3s,d,

h3s,d ; o
j=N−k+1

N

udj ,,stdu2. sA9d

Notice that the rank ofsB is at most equal to the maximum
number of orthogonal one-spin-up states ofB—that is, k.
Moreover, the support ofsB is clearly orthogonal tou⇓ lB and
uf28lB.

APPENDIX B: RELATION WITH THE BOSONIC
LOSSY CHANNEL

In the lossy bosonic channelEh f27–29g an input bosonic
mode described by the annihilation operatora interacts,
through a beam splitter of transmissivityh, with the vacuum
stateuxlb of an external bosonic mode described by the an-
nihilation operatorb. Any input stater of the modea is
hence transformed by this map according to the equation

Ehsrd ; TrbfUsr ^ uxlbkxudU†g, sB1d

where the trace is performed over the external modeb and
whereU is the beam splitter unitary operator defined by

U†aU = Îha + Î1 − hb, sB2d

U†bU = Îhb − Î1 − ha. sB3d

By restricting the inputsr to the Hilbert space spanned by
the vacuum state and the one-photon Fock state the maps23d
has the same Kraus decompositions12d of the qubit mapDh.
Some capacities of the channelEh have been solved under
constrained average input photon number: the classical ca-
pacity C is given in Ref. f28g while the entanglement-
assisted capacityCE and a lower bound forQ which is sup-
posed to be thigh are given in Ref.f39g. Unfortunately, since
an average input photon number constraint cannot prevent
the average message ofEh from being supported on Fock
states with more than one photonsapart from the trivial case
of zero average photon numberd, the results obtained in
f28,39g provide only trivial upper bounds for the correspond-
ing capacities of Dh. For instance, consider the
entanglement-assisted case where the capacities of both the
channels can be computed. In the input Hilbert space we are
considering here, the average photon number of the transmit-
ted message is provided by the average population associated
with the one-photon Fock state. A fair comparison between
the capacities ofDh andEh can be hence obtained by taking
the value ofCE associated with a lossy bosonicEh channel
where the average input photon number is given by the
populationp of Eq. s38d which maximizes the entanglement-
assisted capacity ofDh. According tof39g the capacity ofEh

is then given byCE;gspd+gshpd−g(s1−hdp), wheregsxd
=sx+1dlog2sx+1d−x log2 x. A simple numerical analysis can
be used to verify that this quantity is always bigger than the
corresponding values38d of Dh.

The channelsDh andEh share many common features. In
particularEh obeys the same composition rule ofDh given in
Eq. s22d and it is degradable, since for any inputr one has

Ẽhsrd = PSE1−hsrdSP, sB4d

where nowP=eipb†b andS is the swap operator which trans-
forms a in b and vice versa. This relation was used inf29g
without explicitly proving it and applies to all Gaussian
channels of the forms23d where the external bosonic modeb
is prepared in a circularly symmetric input. For the sake of
completeness, here we give an explicit derivation of Eq.sB4d
in the case of the purely lossy bosonic channel.
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Consider a generic input stater of the bosonic channel,
with characteristic functionGsmd;TrafrDasmdg—i.e.,

r ;E d2m

p
GsmdDas− md, sB5d

whereDasmd;expfma†−m*ag is the displacement operator
of the input modea f40g. As shown inf29g, the channelEh

transformsr into

Ehsrd =E d2m

p
G8smdDas− md, sB6d

with

G8smd ; GsÎhmde−s1−hdumu2/2. sB7d

Analogously it is possible to verify that the complementary

map Ẽh fdefined as in Eq.s25d by replacing the partial trace
overb with the partial trace overa in the Eq.sB1dg produces
the transformation

Ẽhsrd =E d2m

p
G̃8smdDbs− md, sB8d

whereDbsmd is the displacement operator of the modeb and
where

G̃8smd ; Gs− Î1 − hmde−humu2/2. sB9d

Suppose nowhù0.5 and apply the lossy mapE1−h/h to the
state of Eq.sB6d: according to the composition rules22d this
will transform its symmetric characteristic function to

G9smd ; GsÎ1 − hmde−humu2/2 = G̃8s− md, sB10d

producing the state

Es1−hd/h„Ehsrd… =E d2m

p
G̃8smdDasmd. sB11d

This proves the identitysB4d since under the unitary trans-
formationPS the annihilation operatora is transformed into
−b and the statesB11d becomes equal to the outputsB8d of
the composite map.

APPENDIX C: SOME USEFUL RELATIONS

In this appendix we provide some relations used in Sec.
III to derive the capacities of the qubit amplitude damping
channel.

1. Entropy of exchange

The output statesDh ^ 1ancdsFd associated with the puri-
fication uFl of Eq. s29d can be expressed in the computa-
tional basis hu00l,u01l,u10l,u11lj of HA ^ Hanc shere u0lanc
;uR0l while u1lanc is proportional to the component ofuR1l
orthogonal touR0ld. This gives the 434 matrix

1
1 − p + s1 − hd

ugu2

1 − p
s1 − hdg

Îs1 − pdp − ugu2

1 − p
Îhg* ÎhÎs1 − pdp − ugu2

s1 − hdg*
Îs1 − pdp − ugu2

1 − p
s1 − hdSp −

ugu2

1 − p
D 0 0

Îhg 0 h
ugu2

1 − p
hg

Îs1 − pdp − ugu2

1 − p

ÎhÎs1 − pdp − ugu2 0 hg*
Îs1 − pdp − ugu2

1 − p
hSp −

ugu2

1 − p
D 2 sC1d

The matrixsC1d has eigenvalues 0s2-times degenerated and

L± ; h1 ± Îf1 − 2s1 − hdpg2 + 4s1 − hdugu2j/2 ; l±s1 − hd,

sC2d

with l± the eigenvalues ofDhsrd given in Eq. s32d. The
exchange entropy associated withr is hence given by

S„sDh ^ 1ancdsFd… = − L+ ln L+ − L− ln L− ; H2sL+d,

sC3d

where, forxP f0,1g,

H2sxd ; − x log2 x − s1 − xdlog2s1 − xd sC4d

is the binary entropyf41g. Some useful relations ofH2szd are
the following.

sid The functionH2szd is decreasing with respect to the
variableu1/2+zu. This property is a consequence of the fact
that the entropy associated with a binary stochastic variable
is maximum when the probabilities associated with different
outcomes are equal.

sii d The function H2(s1+Î1−z2d /2) is convex with re-
spect toz. This property can be easily verified and is related
with the convexity of the entanglement of formation with
respect to concurrence in qubit systemsf42g.
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2. Dependence ong of the coherent information

As discussed in the text, the quantum capacityQ of Dh is
obtained by maximizing the functionJsp, ugu2d of Eq. s35d
over all values ofpP f0,1g and ugu2P f0,s1−pdpg. For h
ù1/2, this expression is decreasing inugu2; i.e., for anyubu
P f0,1g it achieves the maximum value forg=0. The proof
of this result is quite tedious, but can be obtained analytically
by studying the partial derivative of Eq.s35d with respect to
the parameterugu2. We skip all the details of this analysis
which is not of fundamental interest and simply observe that

the problem can be reduced to studying the properties of the
function

fysxd ; S1 −Îs1 − 2xd2 + 4xy

1 +Îs1 − 2xd2 + 4xy
Dx/Îs1 − 2xd2+4xy

sC5d

on the domainxP f0,1−yg, for anyyP f0,1g. One can then
verify that fysxd is decreasing inx: this guarantees that
Jsp, ugu2d is monotonically decreasing inugu2, yielding the
thesis.
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