PHYSICAL REVIEW A 71, 032312(2005
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We propose a class of qubit networks that admit perfect state transfer of any two-dimensional quantum state
in a fixed period of time. We further show that such networks can distribute arbitrary entangled states between
two distant parties, and can, by using such systems in parallel, transmit the higher-dimensional systems states
across the network. Unlike many other schemes for quantum computation and communication, these networks
do not require qubit couplings to be switched on and off. When restrictiidcobit spin networks of identical
qubit couplings, we show that 2 lgl§ is the maximal perfect communication distance for hypercube geom-
etries. Moreover, if one allows fixed but different couplings between the qubits then perfect state transfer can
be achieved over arbitrarily long distances in a linear chain. This paper expands and extends the work done by
Christandlet al, Phys. Rev. Lett.92, 187902(2004).
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[. INTRODUCTION strength has been studied in detail, and an expression for the
. . . . . fidelity of quantum state transfer has been obtaifit@|.

An important task in quantum-information processing isgjmjlarly, in Ref.[3], near perfect state transfer was achieved
the transfer of quantum states from one locatiéin to an- o yniform couplings provided a spatially varying magnetic
other location(B). In a quantum-communication scenario field was introduced. The propagation of quantum informa-
this is rather explicit, since the goal is the communicationtion in rings has also been investigafed.
between distant partied and B (e.g., by means of photon In our work we focus on the situation in which state trans-
transmissioh Equally, in the interior of quantum computers fer is perfect i.e., the fidelity is unity, and in which we can
good communication between different parts of the system islesign networks such that this can be achieved over arbi-
essential. The need is thus to transfer quantum states amrily long distances. We will also consider the case in
generate entanglement between different regions containeihich no external control is required during the state trans-
within the system. There are various physical systems thder, i.e., we consider the case in which we have, after manu-
can serve as quantum channels, one of them being a quantafturing the network, no further control over its dynamics.
spin system. This can be generally defined as a collection dft general this will lead us to think about more complicated
interacting qubits on a graph, whose dynamics is governeHetWOka than thg linear phaln or chains with pr_eenglneered
by a suitable Hamiltonian, e.g., the Heisenberg®rHamil- nearest-neighbor interaction strengths. We provide two alter-

tonian. One way to accomplish this task is by multiple ap_native methods for understanding how perfect state transfer

plications of controlled swap operations along the communiiS_achieved with preengineered couplings. This paper ex-

L : ; - ands and extends the work done[8]. Subsequent work
cation line. Every external manipulation, however, mewtablyﬁas examined the extension of this [pﬁrjoblem toqhigher oxcita

in(_juces noise in the system. It is therefore desirable to min'fion subspace§s]. The subject of perfect state transfer has

mize the amount of external. control on the system, to .th een independently studied in the first and second excitation

point that they do not require any external man'pmat'onsubspaces 7], where its implementation in an array of

whatsoever. L . guantum dots was considered.

Quantum communication over s_hort distances through d More specifically, we address the problem of arrandihg

spin chain, in which adjacent qubits are coupled by equafnteracting qubits in a network such that it allows for perfect
transfer of any quantum state over the longest possible dis-
tance. Two qubits are coupled via afY interaction if an

*Electronic address: matthias.christandl@qubit.org edge connects the two corresponding sites. We show further
"Electronic mail: n.datta@statslab.cam.ac.uk how one can use these networks to transfer entangled quan-
*Electronic mail: dorlas@stp.dias.ie tum states and to generate entanglement between distant sites
SElectronic mail: artur.ekert@qubit.org in the network. The connection between our approach and
'Electronic mail: alastair.kay@qubit.org the continuous-time quantum random walk is highlighted
Electronic mail: alandahl@mit.edu and, in a particular example, contrasted with the correspond-
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ing result for the classical continuous-time random walk. For the purpose of quantum state transfer, it suffices to
The paper is organized as follows. In Sec. Il we set theestrict our attention to thi-dimensional eigenspace of,,,
scene by introducing the problem of perfect state transfer invhich corresponds to the eigenval(#@-N)/2. Let us denote
quantum spin systems. In Sec. Il we derive a necessary cotthis subspace byg. Initial quantum states that are in this
dition for our problem in the case of graphs with mirror subspace will remain there under time evolution. A basis
symmetry. This is used in Sec. IV to give a limitation of the state inSg corresponds to a spin configuration in which all
transfer in chains with uniform couplings. In Sec. V we in- the spins except one are down and one spin is up. Such a
vestigate hypercube geometry as a way to enlarge the prevbasis state can hence be denoted by théjketherej is the
ously found limit and compare our result to a classical anavertex inG at which the spin is up. Thu§j)|j € V(G)} de-
log in Sec. VI. The quantum walk on the hypercube is foundnotes a complete set of orthonormal basis vectors spanning
useful to derive anodulatedspin chain in Sec. VIl that al- s..
lows perfect transfer over arbitrary distances. We will exhibit  When restricted to the subspaSg, Hg is represented, in
a beautiful group-theoretic interpretation of this chain in Secthe above-mentioned basis, by &hx N matrix which is
VIII. In Secs. X and XI we consider applications for en- jdentical to the adjacency matriA(G) of the underlying
tanglement transfer and the introduction of arbitrary phasgjraphG.! The time evolution of the system under the action
gates on the fly. of the HamiltonianHg can be interpreted as @ntinuous-
time quantum wallon G (first considered by Farhi and Gut-
Il. STATE TRANSFER IN QUANTUM SPIN SYSTEMS mann in 1999 8]; see alsd9]). This is because the latter is
In order to set the scene, let us first consider quantundefined as the time evolution in ad-dimensional Hilbert
state transfer over a general quantum network. We define gpace spanned by statgp}, wherej e V(G), with a Hamil-
general finite quantum network to be a simple, connectedonian given by the adjacency matrix 6f
finite graphG:={V(G),E(G)}, whereV(G) denotes the finite The spin system on the graghdescribed above plays the
set of its vertices an&(G) the set of its edges. Two vertices role of a(noiselessquantum channel. We see below that the
i,j e V(G) are adjacent ifi,|) € E(G). To any such grapls continuous-time quantum walk o& can be viewed as a
one can associate an adjacency mai($s) whose elements quantum state transfer along the channel.

satisfy The process of transmitting a quantum state frarto B
o proceeds in four steps:
A(G) = {1 if (i,]) € EG), 1) (1) Initialization of the spin system to the state
. 0 otherwise. |0):=10,0- --00g), which corresponds to the configuration of

ésl_ll spins down. This state is a zero-energy eigenstategozf
(2) Creation of the quantum stalt#), € H, (at vertexA)
which is to be transmitted. Let)a=a|0)p+B|1)a With
a,BeC and|a?+|8?=1.
(3) Time evolution of the system for an interval of time,

A quantum spin system associated with such a graph is d
fined by attaching a spié-particle to each vertex of the
graph. To each verteke V(G) we can therefore associate a
Hilbert spacei; = (2. The Hilbert space associated wihis
then given by

say to.
Hog= ® H;=(C?®N, (2) (4) Recovery of the state at verteB, the latter being
ieV(G) given by the reduced density matiiyg acting onHg.
whereN:=|V(G)| denotes the total number of vertices@n The state of the entire spin system after step 2 is given by
We define the distancd(i,j) between any two vertices |W(t=0)) = |1)400- - 005) = @|0,00- - - 00g)
i,j e V(G) to be the number of edges of the shortest path
betweeni and j, i.e., the graph geodesic between the two + |1400- -~ 00g) = a|0) + B]1). (5)
vertices. _ It evolves in timet to
Consider the dynamics of the system to be governed by N
the quantum-mechanical Hamiltonian )
) WD) = al0)+ 3 B0 (6)
He=> 2 Jilofol+aloll. ) =
2ij)cE@©) with complex coefficients  «, B;(1), where

We use the symbols™,¢?, and o7 to denote the familiar 1=|af?+3{,|Bi(V]?. The initial conditions are given by
Pauli matrices acting on the on-site Hilbert spatgandJ; ~ Ba(0)=/ and 5(0)=0 for all j # A. The coefficienta does

is the coupling strength between tia andjth sites on the Notchange in time, d) is the zero-energy eigenstatetdg.
graph. Note thatl;=J; sinceHg is Hermitian. The totak Hence_, it does not even acquire a phase factor during the
component of the spin, given by evolution of the state.

O'tzot = 2 O'iz1 (4)

| V(G) ln Ref. [16] it was shown, starting fronG, how to construct

_ ) _ graphs whose adjacency matrix governs the time evolution in
is conserved, i.e[ot,,Hg]=0. Hence the Hilbert spacks  higher-excitation subspaces.

decomposes into invariant subspaces, each of which is a diS-2ExperimentaIIy, this initialization can, for example, be achieved
tinct eigenspace of the operatef,,. by application of a magnetic field to align the spins.
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The output state at B after a tinhés given by the reduced have mirror symmetry. By mirror symmetry, we mean that

density matrix the graph is identical from the points of view AfandB. So,
9 . a linear chain withA andB at opposite ends is an example of
pa(t) = Tr W ()W ()] = (1 ~[Be®* apBp(t) ) such a system. The obvious question is how can we tell if a
B Mae) o Bty  |Be(D)? proposed graph will permit perfect state transfer? A neces-

@) sary condition, as we will show, is that the ratios of differ-
ences of the eigenvalues of the Hamiltonidg must be
A measure of the overlap between the input stateational provided the graph is mirror symmetric.

pai= )y and the output state is the fidelity With a system capable of perfect state transfer, initialized
17, [ in the statdA), at timet, we have the state
Fpapa(t) = TrVpa “pe(t)pa = V(¢ps(D)] 4 SiHgt i
— . S & Malo ) = €4|B) (13)
= V|1 - 2Bgl* + BeB + BaB) +|Bal* (8) _ .
o but by the definition of a symmetric syster,and B are
where it is understood thg depends on. entirely equivalent, and thus after another period of tig)e

Since the|0), component of the statBl), is invariant e have the state
under the evolution, it suffices to focus on the evolution of , , A _
the |1), component of the state, i.e., to the choige0 and e Meo|p) = e7Helod 9|B) = €29 A) (14
B=1in Eq. (5). It is therefore convenient to consider the

transfer fidelity and thus the system is periodic, up to a phagevth period

2ty,. Thus we conclude tha mirror symmetric system must
fag(t) == Ba(t) = (Ble7He!|A), (9)  be periodic if it is to allow perfect state transférhis may be
written most simply as
where|A)=|1)=|1,0---00g) and |B)=|N)=]0,0---01g) and _
we have takeri=1. [(AleHeZo|A)| = 1 (15)
Here we focus only omperfect state transfefThis means

: " for some time G<ty<oe.
that we consider the condition 0

Let us examine the general state of a periodic system with
|fag(to)) =1 for some 0< ty < o, (10)  period 2,. We can write

which we interpret to be the signature of perfect communi- [(2tp)) = >, aye Eil|j) =24 ajlj) (16)
cation (or perfect state transfebetweenA andB in time t,. j j
The effect of the modulus ifL0) is that the state &8, after

transmission, will no longer bpy), but will be of the form for eigenstategj) of Hg with corresponding eigenvalués.

Hence for all of the stationary statg$, we have the condi-
a|0) + €¢|1). (11  fion

The phase factog? is not a problem becausg is indepen- 2Bty 2¢ =2 (17)
dent of a e_md,B and will thus be a }(nown quanuty for the where thek’s are integers. Eliminatings between two of
graph, which we can correct for with an appropriate phasqhese we get that
gate. '
The perfect communication distandéA,B) is given by (Ei — Ej)2tg = 27(k; — k) (18
the distance on the graph, for which perfect state transfer is L
possible. For a fixed number of qubits our aim is to find and eliminating the, between any two of these; # E;/)
guantum networks which maximizA, B). We achieve this 9'V€S
in two different ways.(1) By fixing the nearest-neighbor E -E ki = k;
couplings to be identical but considering more complicated E —E, ki—k, <
graphs(see Secs. IV and V(2) By considering linear chains a R

Q. (19

"

but allowing the nearest-neighbor couplings to be differenivhere() denotes the set of rational numbers. As ke are

(Secs. VIl and V). integers, this implies that the ratio is rational. Hence, a sym-
Note that if there is perfect communication betwéeand  metric system capable of perfect state transfer must be peri-

B in a timet,, then perfect communication also occurs for all odic, which is equivalent to the requirement that the ratios of

timest satisfying the differences of the eigenvalues are rational.

t=(2n+1t, wheren e 7, (12

IV. LIMITATIONS FOR PERFECT COMMUNICATION

provided the graph is mirror symmetrisee Sec. Il
OF A UNIFORMLY COUPLED CHAIN

lll. CONDITIONS FOR PERFECT STATE TRANSFER It is desirable to maximize the distance over which com-
IN SYSTEMS WITH MIRROR SYMMETRY munication is possmlg for_ a flxed_ n_umber_of qub|ts_. The
optimal arrangement, in this case, is just a linear chailN of
In the rest of the paper, we will examine different graphsqubits, whereA andB are the qubits at opposite ends of the
for the purposes of perfect state transfer. These graphs withain.
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Let us start with theXY chain of qubits, with uniform Lehmer provedfor example, se¢l10]) that if N>1 and
couplings J;jx;=1 for all 1<i<N-1. The Hamiltonian gcdk,N+1)=1, then coprk/(N+1)] is an algebraic integer
reads of degree(2(N+1))/2, whered is the Euler phi function.

N For n=3 it can be showil1l] that
H=>2 0101+ 0] 07,y (20) n
2iz1 (1) (27)

=

e”’log logn + 3/log logn
In this case, one can computgg(t) explicitly by diagonal- N , . .
izing the Hamiltonian or the corresponding adjacency mal10lds, with y~0.5772 Euler’'s constant. Using this bound,

trix. The eigenstates and the corresponding eigenvalues afiftd PY inspection of values not covered by the bound, we see
that p(2(N+1)/2)=3 for N=6.

given by ; . )
" We need to prove that if cagis an algebraic number of
- 2 kn degree=3, the quotient
k) = > sin( u >|n), (21)
N+1.5 \N+1 cos X
cosé
k

Ex=-2 COSNTWl’ (22) is irrational, wheref=m/(N+1).

Assume that this expression is rational, i.e.,
with k=1,...,N. Thus

cos¥ _p 7 28
2 X [ ak ) . [ mkN e cosé q P.q &2
fap(t) = —— > sinl —— |sin| —— |e7E. (23
N+1is \N+1 N+1 Using the trigonometric identity

Perfect state transfer from one end of the chain to cos ¥=2co2h-1 (29
another is possible foN=2 and 3, where we find that _
fag(t)=—i sin(t) and fg(t)=—[sin(t/v2)]?, respectively. we can write

We have shown that perfect state transfer is possible for p 1
chains containing two or three qubits. We will now prove (cos#)?>— —cosf-==0 (30

that it is not possible to get perfect state transferNee 4. 2q 2
A chain is symmetric about its center. Hence the conditionvhich has rational coefficients. According to the definition,

Eq. (19) for perfect state transfer applies, i.e., cosd is therefore algebraic with degree2. Given that, from
E_E Eq.(27), cos@is an algebraic number of degree3, then we
— () (24)  have a contradiction and therefofeos 29)/cosé must be

Em —Ew irrational.

where theE,'s are eigenvalues of the unmodulated chain, as Hence we see that fLNBG perfect state transfer is im-
given in (22). We will explicitly show that there is a set of PosSible because d@g=3. This simply leavesN=4 and

eigenvalues for which this expression does not hold for alf\=5 unproved, which can be done by straightforward evalu-
N=4. ation. Thus folN=4

We are free to choose any values for the indigesvided cos ¥
E.r #E,), so let us choose that=2, n=N-1, m'=1, and
n’=N. Hence we see, using E®2), that we require

¢ Q.

cosd

Hence, perfect state transfer is impossible for unmodulated

cog2m/(N+1)] e (25)  chains of lengtiN=4.
cogm/(N+1)]
to hold for perfect state transfer. To find the values\ofor V. PERFECT STATE TRANSFER OVER GREATER
which this holds, we make use of algebraic numbers. An DISTANCES
algebraic number Xs a complex number that satisfies an
equation of the form Perfect state transfer over arbitrary distances is impossible
N - B for a simple unmodulated spin chain. Clearly it is desirable
X'+t X "+ - tayx+a, =0, (260 tofinda graph that allows state transfer over larger distances,

with integral coefficientss,. Every algebraic number sat- ~ and to that end we examine thiéfold Cartesian product of
isfies a unique polynomial equation of least degree. The ddhe two-link (three-vertex chainG. We denote this byz".
gree of this polynomial is called théegreeof a. In general the Cartesian produ_ct of two graphs
If « satisfies a monic polynomigl.e., a polynomial with ~ G:={V(G),E(G)} and H:={V(H),E(H);} is a graphGxH
a,=1) then it is called aralgebraic integeiof degreen. Note ~ Whose vertex set i¥(G) X V(H) and two of its vertice$g, h)
that an algebraic integer of degreeis also an algebraic and (g',h’) are adjacent if and only if one of the
number of degrea. Rational numbers are algebraic numbersfollowing holds: (i) g=g’ and{h,h’} e E(H); (ii) h=h" and
with degree 1, and numbers with degre@ are irrational. {9.9'} e E(G).
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Let A=(1,1,1,..,1) and B=(3,3,3,...,3) denote the Note that perfect transfer is possible across a ring of four

antipodal points ofGC. spin-1/2 particles. The topology of this is exactly the same
We prove that forany dimension d as a two-fold Cartesian product of a one-link chain, hence it
is a special case of the hypercube we have been discussing
fag®)=1 fort=ty= 1_ (31) (whether it is coupled with the HeisenbergXY coupling.

v VI. CLASSICAL CONTINUOUS-TIME RANDOM WALK

Hence t, is the time for perfect communication between the ON THE HYPERCUBE
verticesA andB of GY.

Let {\(G),1<i<|V(G)|} and {\j(H),1=<j=<|V(H)|} de-
note the set of eigenvalues of the grafhsandH, respec-
tively. The eigenvalues of the adjacency matrix of their Car

tesian pr(.)ductG.x H are preC|se.Iy the numbers;(G) vestigate the behavior of the mean hitting time of the classi-
+Xj(H), with 1<i<|V(G)| and I=j<|V(H)|, where each .5 continuous-time symmetric random walk @9, which

number is obtained as many times as its multiplicity as afye denote byty, and compare it td,. We will focus our
eigenvalue of the adjacency matrd(GX H). This is be-  sitention on the two-link hypercube, since in the quantum
cause case it provides us with a greater communication distance
_ d(A,B) than does the one-link hypercube. Unlikg we
AGX H)=AG) ® 1y +1 ® A(H), 32 . ) - .
( )=AG) @ v * v ) (32 show thatty grows exponentially with the dimensiah[Eq.
wherelyyy is the|V(H)|[ X |V(H)| identity matrix (see, e.g., (52)]. We also note that the case of the one-link hypercube

In the previous section we showed that for hypercubes
generated from both the one-lirflwo-vertex and the two-
link (three-vertex chain, the perfect state transfer tirggis
‘independent of the dimensiah In this section we will in-

[12]). has previously been studi¢d3].
The eigenvalues of the adjacency matrixGst are given A two-link hypercubeG is generated by taking thgfold
by Cartesian product of the grap&:={V(G),E(G)} where
_ V(G)={1,2,3 and E(G)={{1,2,{2,3}}. Hence, the state
{iv2je{0,x1,+2,.., +d} (33)  space for the classical continuous-time random wallGBis

rtl,z,?}d. Transitions are allowed from a vertexe G to
X+ e whereg is theith unit vector andk is ad-dimensional
ector with componentg;, i.e., transitions are allowed to all
e nearest neighbors with equal probability.
If T is the random variable defined as the hitting time of
B, for a random walk starting &, then

and therefore the ratios of differences of the eigenvalues a
all rational.

As already observed, the Hamiltonian of a system couple
via nearest-neighboXY interactions is identical to the adja-
cency matrix. This will hold equally for the Cartesian prod-
uct of G. Hence,

d-1 te == E(T) (36)
H=AGH =D 19 @ A(G) ® 1291, (34)  whereli(T) denotes the expectation value Bf The random
i=0 variableT can be written as
N
“iHt _ (CAG)N@d
er=(E (39 T=3 X, (37)

Thus, if we select a timé==/42, then we get perfect state =1

transfer along each dimension. Each term in the tensor prodvhere N is a random variable which gives the number of
uct of (35 applies to a different element of the basisr  jumps that the random walker undergoes in going frro

example, each acts on a different 1 in the definitiohpbr B and theX’s are the holding times between successive
a different 3 inB). We therefore achieve perfect state transfefjumps. We have

betweenA andB [as well as between any qubit and its mir-
ror, such ag1,1,1,2,3—(3,3,3,2,1]. The fidelity of the
state transfer is simply thdth power of the fidelity for the
original chain(23).

Perfect transfer of a single-qubit state can also bevhere we have made use of the fact that Xye are inde-
achieved between the antipodes of a one-link hypercube ipendent and identically distributed with meB¢X;)=1. Note
any arbitrary dimensiod, in a constant timé,=/2. Thisis  thatli(N) is the mean hitting time of the corresponding jump
because perfect transfer occurs across a chain of two qubithain, which is a discrete-time Markov chain. Hence, to es-
in this time. timate the mean hitting timég, of the continuous-time ran-

We can also extend this to the one-link hypercube whichdom walk, it suffices to consider the discrete-time random
is coupled via the Heisenberg interaction. This is because, iwalk given by the jump chain of the original walk.
the case of a two-qubit chain, the Hamiltonian in the single- All the information that we need is contained within the
excitation subspace is represented by a matrix with identica8? x 39 transition matrixP. An elementP, g is the probabil-
diagonal elements, and hence is the same as the Hamiltonidty of transition fromA to B; hence afteiN steps the prob-
of anXY model up to a constant energy shift, which just addsability of hitting B (irrespective of whether it has previously
a global phase factor. hit) is

N

(T) = E(E xi> = F(N)E(Xp) = E(N), (39)

i=1
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(PXPX ... XP)sd, (2) Start at a distancek>2. There are @2“) equivalent
N jumps, which each occur with probability
which we shall denote a8} 5, and hence 2 42
o n-1 (d+2k-2)(d+2k-1)
EN)= 2 nPig [T (1-Ply). (39 (3) Start at a distanceka2. There are($,%) of these
n=2d m=2d-1 . . . .
jumps, each occurring with probability

Since we have a two-link hypercube, it will always take at 5
least 21 steps to get from one corner to the opposite one. In )
fact, because we have a two-link hypercube, it will always (d+2k+2)(d+2k+1)
tanlfe an even number of steps to hit the opposite corner. Thus, (4) Start at a distancekand go around two edges of a
P10 for oddm andm<2d. square (e.g., [1,2—|1,1)—|2,1)). There are K(d-2k)

So, all we are interested in is the ebmﬁ’é?y, which we  points from which this type of move will get us to the spe-
expect to tend toward a constant value for lamgei.e., cific node we are interested in, and this transition happens
(PZPZ“)l,gd%Pi',’Sd asn—o, Thus, we are confronted with with a probability

(43

the problem of finding the first element in the eigenvector of 1 1 1
P2 which has eigenvalue (see, for exampld,14)). ( + ) (44)
Take, as an example, the special casel®2 where the d+2k\d+2k+1 d+2k-1
first row of P?" is given by (5) Start at a distancek2and travel the length of a chain
1 1 1 (e.g.,]1,2—|2,2—13,2). There ared—2k such jumps,
(an 0 5 0 3 0 5 0 bn>. each occurring with probability
1
The 0’s occur because in an even number of steps, you can- (45)

not get to a point that is odd. Fa=1, an:% (the probability (d+2k)(d+2k+1)
of returning to the start nofleand b,=0 (the probability of Knowing these, it is possible to write down the elements
getting to the exit node The sum of all the elements in the p2.3, so we can solve for the eigenvector:
row must be 1, and henman+bn=% for all n. We find a
. . 1 1 _ - 2k 2
recursion relation foby, §+3b,=by.,, and asn— , we find 4 CY
thatb,— L. 2 ) (d+2k-2)(d+2k-1)
Let us return to the general case. The location of a given (d — 2k 2
+

node of the hypercube can be representedxpy,, ..., Xy ) Qo2
wherex; €{1,2,3, i.e., x; specifies, for théth dimension, 2 /(d+2k+2)(d+2k+1)

which of the three nodes we are positioned on. All of the 1 [(4k+2)(d-2k) 4k(d-2k+1)
properties of a given node depend onlyraandd, wherer is + d+ 2k d+ 2k+ 1 + d+ 2k—1 Aoy = Ag-
a count of the number of;=2. For example, the transition
rate from one node atto an adjacent node is (46)
1 Starting with the special case kEO, we see that
Phearest neighbor m (40) d
_ . N =4 % (47)
This quantity can be understood because the transition prob-
ability is the same for all connected nodes, and@ll or 3 and the general solution
are only connected tg;=2 in theith dimension, whereas
x;=2 has two links. gz 9T (48)
Given that all properties of a node depend onlyroand KT+ 2k + 272

d, which must also be true for the eigenvecéomHence, we
can denote the elements afby a,. The element of the ei-
genvector that we are interested in corresponds to the po
tion|1,1,...,1), i.e.,r=0, so we want to find the elemeay.
We will now find the elements dd, the eigenvector oP?. [di2]

<2k>a2k =1.

can then be proved by induction. We thus have the required
glements, and just need to normalize them, remembering that
Sk 2k d-2ky iy

there are 22(%%) identical elementsy,

In two steps, there are only five ways to get to a specific > od-
lattice point at a distance=2k. k=0

(1) Start at that point, make one step away, and the his gives that
make the same step in reverse. This happens with a probabil-
ity _d+2k

K= S od1
1 ( d-2k 4K 243
preturn: + . (41) . .
d+2k\d+2k+1 d+2k-1 and, in particular,

(49)

(50)
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PP ={(Gy,k:j e {1,....bLke{1l,..r}}, (53

PPa*= {(G, k) e {1,....bhke{l,...,s}}, (54

wherer; ands, denote the number of forward and backward
edges, respectively, for thigh column. Clearly, if all the
edges are to have end®®|=|PP%. Since there is only a
single qubit in the first columrib;=1), each vertex in the
second column has only a single edge going backward
(s,=1). With this constraint, and tha andr; must be inte-

gers for all I=i=<N¢, we require that

biri = Bi1Si+1, (55
FIG. 1. An example of a five-column graph that allows perfect -
. ri  Nc-i
state transfer between either end. — = (56)
Si+1 I

The solution that we will choose for this is=N¢—i, §=i

-1, which certainly satisfies all conditions. Thus we have a
on _ _ graph such that for every pair of numbdisj), G; is con-
We know that, ag;i— o, P} ,— ao. Taking this value for all  npected withNe-i vertices inG,,; and each vertex i5;,; is

n, we can evaluate E@39) to find that the mean hitting time connected withi — 1 vertices inG;.

3
ag= 53-". (51)

is given by Let us define the vectors that span tw@umn spacé-,
oo 2 4 by
ty=E(T) =2 2ng[] (1-a)=2d-2+—~ 3" lcol i) = =30 G; ). (57)
n=d m=d ) 3 \c"bi j=1 J
(52)

Childset al.[9] note that the evolution with the adjacency
The quantum analog of this mean hitting time is given bymatrix Hg of G for this general class of networKsot just
the time for perfect state transfer between the antipoddihe hypercubg starting inG,;, always remains in the col-
points A and B. We proved in the previous section that this Umn spacé{c because every vertex in columfs connected
time is a constant,=w/\2. On comparing this with Eq. to the same number of vertices in colurmnl and every
(52), we conclude that the grap®® provides an example of Vertex in columni+1 is connected to the same number of

a graph for which the quantum case leads to an exponenti¥ertices in columni. _
separation. Thus, we can restrict our attention to the column space

'H for the purpose of perfect state transfer fr@m to GNCl.

The matrix elements of the adjacency matrixGfrestricted
VII. PROJECTING A HYPERCUBE ONTO A SPIN CHAIN to this subspace are given by

Encouraged by the ability of the hypercube to allow per- 3= (col i|Hg|col i + 1) = \FNC— i) (58)
fect state transfeSec. \j, we examine the one-link hyper- ' ’
cube from a different angle. Such a graph falls into a general

category of graph§& that have the property that the vertices 0J 0 0 0
can be arranged in columns so that there are no edges be- J, 0 J, O 0
tween the vertices within any column, and edges only join 0J 0 J 0
. . . . 2 3

vertices in adjacent columns. Further, each vertex in column J= (59)
i must have the same number of incomifigppm columni 0 01J 0 0
-1) and outgoingto columni+1) edges as all other vertices oo et
in that column. See Fig. 1 for an example. 000 0J 0

Representing the one-link-dimensional hypercube in Ne=t
such gform, we allow the graph to consist o_ﬂ\lp cqlumns. This can be seen as follows:
The size of each columfthe column occupationis given by
bi:=|Gi|=("c7}) and the vertices in eacB; are labeleds;;, bi bisy
j={1,...,b;}. Theith column isi—1 edges away from a cor- (coli|Hg]coli +1) = =E 2 (GjjIHg|Giry )
ner (sayA) of the hypercube. VEIMi+1j=1 jr=1

The only edges are between vertices of adjacent columns. 1 R
From each column there must be a set of edges going for- = =—=Db;(Nc—1) = Vi(Nc —1).
ward to the next column, and another set going back to the Vbibiyy
previous one. These are denoted in the following manner: (60)
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Jh= V14 v/2-3 V/3-2 V41 previously labeled these @9, denoting that the single exci-
—— o oo @ tation is on thejth qubit. One may associate a fictitious spin

n=1 2 3 4 5 %(Nc—l) particle with this chain and relabel the basis vec-

m=—2 -1 0 1 9 tors as|m), where m=—%(NC—1)+j—1, as illustrated in
A B Fig. 2.

The input vertex |A) can be labeled as|j=1)
FIG. 2. Couplings], that admit perfect state transfer fromto  or |m:—%(NC—1)) and the output vertexB) as |j=N¢) or

B in a five-qubit chain. Eigenvaluem of the equivalent spin-2  |m= "‘%(Nc—l»- Now, consider the Hamiltonian
particle are also shown. This is the projection of Fig. 1 onto a chain.

Hence, the above graph exhibits the same behavior as the Nc-1
XY chain with “engineered” coupling strengtlis H=N\J= 5)\ > J(otol Vo) (62
Ne-1 i=1
1 C
H= E E Ji(of(aﬁl + 0'iyo'iy+1)- (61)
i=1 which has the same matrix form as E§9), with a scaling

Such a chain must allow perfect state transfer over ang°nStani. _ _ _
length Ne. (where |A)=|col 1), |By=|col No)) because the  This corresponds to the flipped spin hopping between the

hypercube does. In the next section we prove that this is th¥erticesj andj+1 with a probability amplitude o8;. Now,

case using a more physically motivated derivation. let us chooseH to be proportional to the angular momentum
The number of vertices in the gragh is given by|G| operatorJ, or J, for some spin]:%(Nc—l) particle. In this

=2NcL; hence it hagommunication distancef log,|G|. The  case the matrix element} are 5\j(Nc—]) (these are the

two-link hypercube in contrast has communication distance&ame as the elements derived in the previous section up to a

2 log;|G|. One should note, however, that the degree of eachumerical factor The evolution of the excitation in the

vertex is bounded linearly. _ __ chain is governed by the operator
Some examples of this graph are provided here for differ-

ent numbers of columns. FiM-=2, two-qubit chain(d=1

one-link hypercubk for Nc=3, squardd=2 one-link hyper- U(t) = exp(= it 3y, (63)
cube; for Ne=5, for example, Fig. 1 which reduces to an
engineered chain, as shown in Fig. 2. which represents a rotation of the fictitious spin

For the purpose of perfect state transfer, we have stateji:%(Nc_l) particle. The matrix element§’|U]|j) are well

that thed-dimensional, one-link hypercube is equivalent to known. Thus workin . .
; ) i . g ouf15] or looking up an appropriate
the graphG. The equivalence is obvious for the casedof éepresentation of SU2 gives

=1 and 2. The general proof arises by considering how th
Cartesian product of a graph is taken when you extend the -
product from(d-1) to d dimensions. _ N -
Assume the numbers of vertices in two adjacent columns Fag(t) = (BU(]A) = {_' Sm(?)} :
aren; andn;,, in the (d-1)-dimensional hypercube. In the
(i+1)th column of thed-dimensional hypercube, there must
still be the n,,; vertices, plus each of the vertices in the
previous column have one more eddem taking the Car-
tesian produgt Hence the total number of vertices i
+n;;1. Assuming that théd-1)-dimensional hypercube has
column occupations given by a binomial distribution, this
specifies that thed-dimensional hypercube does as well.

(64)

Thus we get perfect transfer of the state fridmto |[Ng) in a
constant timéy,=/\. We can seledil-—1 to be divisible by
4 and this eliminates the phase shift caused by the factor of

Note that the case dic=2 is just the same as an un-
modulated spin chain of the same length, so the calculation
; . done previously23) is expected to give the same result. This
Since we know that these column occupations hold dor it does, provided we remember that in the current situation

=2, then by induction this must hold for amly : . : :
What this does not prove is that the edges between vert‘tgethzogﬂg?r?alstsrﬁgg;gf/2’ whereas it was simply set to 1

ces are correct. This is because they are ot necessarily cor- Is there any other interqubit interaction in the chain that
rect. Wh|l_e a hypercube musF haveaspguﬂc s_et of edges, tQﬁ‘ves Hamiltonian (59) when restricted to the single-
construction of the grapl did not specify which vertices excitation subspace? The first choice is ¥¥ model with

had to be connected to which other ones, we just made su odulated interactions, another one is the Heisenberg model.
we got the correct number of forward and backward edgeﬁf we try the Heisenberg model of the form

In that sense, the general graghis a “scrambled” hyper-
cube. No matter what this scrambling {3, still reduces to
the same chain. Nc-1

- 2 JJO'J . (Tj+1, (65)
VIIl. STATE TRANSFER OVER ARBITRARY DISTANCES 2 j=1

Suppose we havél: qubits in a chain, with only one
qubit in state|1)=|1) and all others in statg| )=|0). We  we obtain
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D, JJ 0 O 0 errors that are time independent. The ideal energies of the
J D, J, O 0 eigenstates ark; and the actual energies &g:
0 J, D3 0 fan=(Ale™"0|A),
0 0 J D, 0 (66) |
ST It A =2 afi) = 2 ae2oki),
¢ [ i
0 0 0 0 Jn-1 Dn.
. . — [2a=2ito(E{ -E;)
whereD;=5(Zy-1J0) ~Jj-1-J;. In order to get rid of the di- fAA‘g || e o= 75,

agonal elements in the matrix above we can apply a mag-
netic field in thez direction, i.e., we add an extra term to Eq. We can estimate the worst case for the fidelity of the identity

(65), transformation, by taking the worst error to Be—E; = and
Ne-1 Ne by assuming that,6<1. The error is then
1
52 JjUj'O'j+1+2 BJ'O']'Z, (67) 6:|1_fAA|'
j=1 =1
with Bj=5(Jj_1+J) ~[1/2(Nc-2)JZRS 3, €= 2ty5,

All this means that we can distribute a quantum state ovef e it scales linearly with\.
any distance with fidelity equal to 1 as long as we engineer
the interqubit interactions, e.g., the interqubit distances in the X. USING THE CHAIN FOR ENTANGLEMENT
chain, and apply a suitable spatially varying magnetic field. TRANSFER

The idea of the rotation of the large spin particle and
IX. SCALING RELATIONS AND ENERGY subsequent calculation can also tell us more about the sys-
CONSIDERATIONS tem. For example, in the same time that we get perfect state

In the previous section we showed that a spin chain witransfer from qubit 1 tdNc, we also get perfect state transfer

engineered interactions can be used to transfer a quantuffPm qubitj to Nc+1-j. Under the action of thé, rotation,
state in fixed timet,. To compare the computational com- these transfers all have the same phase. This means that the

plexity of the proposed spin chain, it is customary to con-chain can t_)e used to move an entangled §tate from one end
sider what happens to the energy of the system as the numbg the chain to another. We can start with the Bell state
of spins in the chain increases. One physical assumption thaf v2(|01)+[10)) on the first two qubits:

we might make, for example, is that the maximum coupling 1

strength is a fixed size. This maximum occurs at the middle —(1)+|2)). (68)

of the chain and is V2

Mz~ AN. In time ty=a/\ this will evolve to the state
. . 1
Hence, to keep thls_coupllng a constant strengthmust =(No) + [N - 1), (69)
scale with 1N andty=7/\ must scale with\. V2

A second concern is what might happen if we tried to
extract our state at a timg-—a4t. The fidelity of the state
transfer is easily approximated from E&4) so for smallst

having thus transferred the Bell state to the other end of the
chain. Note that we cannot use the statg/2(J00)+|11))

we get because this contains a term with two spins in it, and we
have restricted ourselves to the subspace of only a single
fslto= o) =1 - m(Nc - 1) (§>2 spin. We point out, however, that the resylts[@]‘show that_
ABL0 3 ty) we will also get perfect state transfer in higher-excitation

) ) _subspaces and thus, in principle, such a state could be trans-
Finally, we could ask the question about what happens ifgrred.
the presence of manufacturing errors. In particular, we shall The chain can also be used to distribute an entangled pair

consider what happens if the errors affect only the eigenvalyetween two distant parties. If we create a Bell state
ues of the system. This is not the entire story for the spin

chain, because we should also consider what happens to the
eigenvectorgand, in particular, how well they maintain their
symmetry about the center of the chain since all the eigen-
vectors are either symmetric or antisymmetridowever, in  between a noninteracting quithtl) and the first qubit on the
the case of a double app”cation of the Ché"fnch corre- chain (C), then the overall Hamiltonian will be of the form
sponds to nothing happening to the stored gtate learned H' =1®H 71)
in Sec. lll that it is only the eigenvalues that matter. '

Let us assume that we have made some manufacturingote that the statg) is exactly the same as the stéethat
errors when producing our spin chain, i.e., we have someve were talking about before with the engineered chain, but

1
E(|O>NI|O>C+ [ Dl Do) (70
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we have to be careful not to confuse those states with the J, =_ /1.5 v/2-4 +/3-3 /4-2 /5.1

states of the noninteracting qubit. The staté) then evolves C @:E
as Co

n=1 2 3 4 5

1 _ _ 6
T§(|0>Nle 0y + [Dnie™ 1)) (72) A walt tg B
N

so after the samg), the entangled pair will be the noninter-

acting qubit and th&l:th qubit on the chain. : : : : : :: ’

FIG. 3. Scheme for transferring an arbitrary two-qubit density
matrix p, using two engineered spin chaif; and C,). This ex-
This prescription is sufficient to transfer the entanglement obmple has a chain length di-=6.
any general two-qubit density matrix from being between the

noninteracting qubit and the first qubit &0 to being be-  gytension of this to multiqubit entangled states does still

tween the noninteracting qubit and theth qubit on the  yie|q an advantage since these multiqubit states can be trans-
chain. This can be understood by seeing how the most gefitted across the same chdme qubit at a timewhile only

1 )
E(|O>NI|O>C+e|¢|1>NI|NC>C)- (73

eral density matrix evolves. What we require is that having access to the qubits at either end of the chain.
Tralp(0)]=Try yeilp(to)]. (74)

Such a density matrix can be written as XI. Jy AND ARBITRARY PHASE GATES
p(0) = D ai iG], (75) As previously noted, thé, rotation introduces a phase

shift, depending on the length of the chain. There are several

ways in which this can be avoided. The simplest is just to

_ L iR select the correct length of chain. In the case of the engi-
p(t) = > agjirpe i G)E (76) neered chairtand also the one-link hypercubéf (N;—1) is

(iji"i"eio.y divisible by 4, then there is no phase slffincei*=1). Simi-

So if a single component of this density matrix evolves, giv-larly with the two-link hypercube, if the dimension of the

ing perfect transfer, so will all the components and therefordlypercube is even, there is no phase shift.

so will the density matrix as a whole. This component Another choice is to use thg rotation[which does not

(i.ji"j"e{0,1

evolves as give the factor of +in Eq. (64)]:
CIHN T il el Mt 1 _iHt s . i Ne-1
e il et Inei |c™ = (™™D (G| ce™)- J=H= 1 S 3 (oYX, - ol,y)
(77) y 2 a R+ 7+
After timet,, if j or j’ were 1, then they will have changed to 0 -J O 0 0
Nc, and if they were 0, they remain as 0. Tracing out the J 0 -J, 0 0
effect of all the spins except for the noninteracting one and 0 3 0 3 0
2 ~J3

the N¢cth qubit will return precisely the same two-qubit den- =i
sity matrix as was initially set up. This then allows the den- 10 0 J 0 .. 0
sity matrix to be split over the length of the chain. : : :

If we want to transmit the complete density matrix, we
just use two of our engineered chaii@, andC,) in parallel 0 0 0 0 I O
(Nclchz). The new Hamiltonian can be written as

(79

~Ine1

Using this in conjunction with thé, rotation, it is possible,
H'=H ® H (78)  along with the transfer of a state through our spin chain
network, to apply an arbitrary phase gate to it during trans-
and an exactly analogous argument now applies so that if wgission, simply by choosing the correct linear combination
create the desired stafevhich could be the Bell state of J, and J,. Assume that we have picked such thatl,
1/v2(|00)+|11)), for examplg across the first qubits &€,  gives a phase shift df A combination of
andC,, then after time,, the state has been perfectly trans- JE—
mitted to being on thécth qubits of the two chains. For an a1 =9, (80)
example, see Fig. 3. ; ; i
This scheme will work for both the engineered spin chainWIII thus yield a phase shife” where
and the hypercubesince the density matrix can be created ty
between the corners of two hypercupds is, however, un- tan(¢) = m (81)
necessary in the case of the spin chain, since the wo[r&]of "
shows that state transfer occurs in all excitation subspacesjeaning that the initial statgy) will have evolved to the
not just the single-excitation subspace, as assumed here. Thate
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a|0) + €B|Ng). (82 Perfect state transfer for three- or more-link hypercube ge-

) ) ] ) ometries is shown to be impossible. The transfer time is in-

The final alternative for negating the phase shift, or apyependent of the dimension of the hypercube and for com-

plying an arbitrary phase gate during transmission, would bgarative purposes, we calculated the expected hitting time in

to apply a uniform global magnetic field in tiedirection.  the classical continuous-time random walk, which increases

Applying a field strengtlB shifts the energy of the single- exponentially with the dimension.

spin excitation byB(Nc—2)/2 and the ground state energy is  \ye have also proposed a spin chain Nfqubits with

shifted byBNc/2. Assuming transmission of the state occursponyniform couplings that allows both state and entangle-

in a timet,, thenB can be selected to give the desired phasenent transfer. This chain can be interpreted in two ways:

shift ¢ by first, as a projection of afiN-1)-dimensional one-link hy-
& - (m12)(Ne - 1) per_qube aqd second, as a rotation in théirection of a
B= . (83) fictitious spin(N-1)/2 particle.
to Finally, we have shown how to effect entanglement trans-

fer and how to introduce phases on the transferred quantum

states on the fly.
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