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I. INTRODUCTION

An important task in quantum-information processing is
the transfer of quantum states from one locationsAd to an-
other locationsBd. In a quantum-communication scenario
this is rather explicit, since the goal is the communication
between distant partiesA and B se.g., by means of photon
transmissiond. Equally, in the interior of quantum computers
good communication between different parts of the system is
essential. The need is thus to transfer quantum states and
generate entanglement between different regions contained
within the system. There are various physical systems that
can serve as quantum channels, one of them being a quantum
spin system. This can be generally defined as a collection of
interacting qubits on a graph, whose dynamics is governed
by a suitable Hamiltonian, e.g., the Heisenberg orXY Hamil-
tonian. One way to accomplish this task is by multiple ap-
plications of controlled swap operations along the communi-
cation line. Every external manipulation, however, inevitably
induces noise in the system. It is therefore desirable to mini-
mize the amount of external control on the system, to the
point that they do not require any external manipulation
whatsoever.

Quantum communication over short distances through a
spin chain, in which adjacent qubits are coupled by equal

strength has been studied in detail, and an expression for the
fidelity of quantum state transfer has been obtainedf1,2g.
Similarly, in Ref.f3g, near perfect state transfer was achieved
for uniform couplings provided a spatially varying magnetic
field was introduced. The propagation of quantum informa-
tion in rings has also been investigatedf4g.

In our work we focus on the situation in which state trans-
fer is perfect, i.e., the fidelity is unity, and in which we can
design networks such that this can be achieved over arbi-
trarily long distances. We will also consider the case in
which no external control is required during the state trans-
fer, i.e., we consider the case in which we have, after manu-
facturing the network, no further control over its dynamics.
In general this will lead us to think about more complicated
networks than the linear chain or chains with preengineered
nearest-neighbor interaction strengths. We provide two alter-
native methods for understanding how perfect state transfer
is achieved with preengineered couplings. This paper ex-
pands and extends the work done inf5g. Subsequent work
has examined the extension of this problem to higher excita-
tion subspacesf6g. The subject of perfect state transfer has
been independently studied in the first and second excitation
subspaces inf7g, where its implementation in an array of
quantum dots was considered.

More specifically, we address the problem of arrangingN
interacting qubits in a network such that it allows for perfect
transfer of any quantum state over the longest possible dis-
tance. Two qubits are coupled via anXY interaction if an
edge connects the two corresponding sites. We show further
how one can use these networks to transfer entangled quan-
tum states and to generate entanglement between distant sites
in the network. The connection between our approach and
the continuous-time quantum random walk is highlighted
and, in a particular example, contrasted with the correspond-
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ing result for the classical continuous-time random walk.
The paper is organized as follows. In Sec. II we set the

scene by introducing the problem of perfect state transfer in
quantum spin systems. In Sec. III we derive a necessary con-
dition for our problem in the case of graphs with mirror
symmetry. This is used in Sec. IV to give a limitation of the
transfer in chains with uniform couplings. In Sec. V we in-
vestigate hypercube geometry as a way to enlarge the previ-
ously found limit and compare our result to a classical ana-
log in Sec. VI. The quantum walk on the hypercube is found
useful to derive amodulatedspin chain in Sec. VII that al-
lows perfect transfer over arbitrary distances. We will exhibit
a beautiful group-theoretic interpretation of this chain in Sec.
VIII. In Secs. X and XI we consider applications for en-
tanglement transfer and the introduction of arbitrary phase
gates on the fly.

II. STATE TRANSFER IN QUANTUM SPIN SYSTEMS

In order to set the scene, let us first consider quantum
state transfer over a general quantum network. We define a
general finite quantum network to be a simple, connected,
finite graphGª hVsGd ,EsGdj, whereVsGd denotes the finite
set of its vertices andEsGd the set of its edges. Two vertices
i , j PVsGd are adjacent ifsi , jdPEsGd. To any such graphG
one can associate an adjacency matrixAsGd whose elements
satisfy

AijsGd ª H1 if si, jd P EsGd,

0 otherwise.
J s1d

A quantum spin system associated with such a graph is de-
fined by attaching a spin-1

2 particle to each vertex of the
graph. To each vertexi PVsGd we can therefore associate a
Hilbert spaceHi .C2. The Hilbert space associated withG is
then given by

HG = ^
iPVsGd

Hi = sC2d^N, s2d

whereNª uVsGdu denotes the total number of vertices inG.
We define the distancedsi , jd between any two vertices

i , j PVsGd to be the number of edges of the shortest path
betweeni and j , i.e., the graph geodesic between the two
vertices.

Consider the dynamics of the system to be governed by
the quantum-mechanical Hamiltonian

HG =
1

2 o
si,jdPEsGd

Jijfsi
xs j

x + si
ys j

yg. s3d

We use the symbolssi
x,si

y, and si
z to denote the familiar

Pauli matrices acting on the on-site Hilbert spaceHi, andJij
is the coupling strength between theith and j th sites on the
graph. Note thatJij =Jji sinceHG is Hermitian. The totalz
component of the spin, given by

stot
z
ª o

iPVsGd
si

z, s4d

is conserved, i.e.,fstot
z ,HGg=0. Hence the Hilbert spaceHG

decomposes into invariant subspaces, each of which is a dis-
tinct eigenspace of the operatorstot

z .

For the purpose of quantum state transfer, it suffices to
restrict our attention to theN-dimensional eigenspace ofstot

z ,
which corresponds to the eigenvalues2−Nd /2. Let us denote
this subspace bySG. Initial quantum states that are in this
subspace will remain there under time evolution. A basis
state inSG corresponds to a spin configuration in which all
the spins except one are down and one spin is up. Such a
basis state can hence be denoted by the ketu jl, wherej is the
vertex inG at which the spin is up. Thushu jl u j PVsGdj de-
notes a complete set of orthonormal basis vectors spanning
SG.

When restricted to the subspaceSG, HG is represented, in
the above-mentioned basis, by anN3N matrix which is
identical to the adjacency matrixAsGd of the underlying
graphG.1 The time evolution of the system under the action
of the HamiltonianHG can be interpreted as acontinuous-
time quantum walkon G sfirst considered by Farhi and Gut-
mann in 1998f8g; see alsof9gd. This is because the latter is
defined as the time evolution in anN-dimensional Hilbert
space spanned by stateshu jlj, wherej PVsGd, with a Hamil-
tonian given by the adjacency matrix ofG.

The spin system on the graphG described above plays the
role of asnoiselessd quantum channel. We see below that the
continuous-time quantum walk onG can be viewed as a
quantum state transfer along the channel.

The process of transmitting a quantum state fromA to B
proceeds in four steps:

s1d Initialization of the spin system to the state
u0lª u0A0¯00Bl, which corresponds to the configuration of
all spins down. This state is a zero-energy eigenstate ofHG.2

s2d Creation of the quantum stateuclAPHA sat vertexAd
which is to be transmitted. LetuclA=au0lA+bu1lA with
a ,bPC and uau2+ ubu2=1.

s3d Time evolution of the system for an interval of time,
say t0.

s4d Recovery of the state at vertexB, the latter being
given by the reduced density matrixrB acting onHB.

The state of the entire spin system after step 2 is given by

uCst = 0dl = ucA00¯ 00Bl = au0A00¯ 00Bl

+ bu1A00¯ 00Bl = au0l + bu1l. s5d

It evolves in timet to

uCstdl = au0l + o
j=1

N

b jstdu jl s6d

with complex coefficients a ,b jstd, where
1=uau2+o j=1

N ub jstdu2. The initial conditions are given by
bAs0d=b and b js0d=0 for all j ÞA. The coefficienta does
not change in time, asu0l is the zero-energy eigenstate ofHG.
Hence, it does not even acquire a phase factor during the
evolution of the state.

1In Ref. f16g it was shown, starting fromG, how to construct
graphs whose adjacency matrix governs the time evolution in
higher-excitation subspaces.

2Experimentally, this initialization can, for example, be achieved
by application of a magnetic field to align the spins.
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The output state at B after a timet is given by the reduced
density matrix

rBstd ª TrHG\hBj
uCstdlkCstdu = S1 − ubBstdu2 abB

* std
a*bBstd ubBstdu2

D .

s7d

A measure of the overlap between the input state
rAª uclkcu and the output state is the fidelity

FsrA,rBstdd ª TrÎrA
1/2rBstdrA

1/2 = ÎkcurBstducl

= Îuau2s1 − 2ubBu2 + bBb* + bB
* bd + ubBu2 s8d

where it is understood thatbB depends ont.
Since theu0lA component of the stateuclA is invariant

under the evolution, it suffices to focus on the evolution of
the u1lA component of the state, i.e., to the choicea=0 and
b=1 in Eq. s5d. It is therefore convenient to consider the
transfer fidelity

fABstd ª bBstd ; kBue−iHGtuAl, s9d

where uAl;u1l= u1A0¯00Bl and uBl;uNl= u0A0¯01Bl and
we have taken"=1.

Here we focus only onperfect state transfer. This means
that we consider the condition

ufABst0du = 1 for some 0, t0 , `, s10d

which we interpret to be the signature of perfect communi-
cationsor perfect state transferd betweenA andB in time t0.
The effect of the modulus ins10d is that the state atB, after
transmission, will no longer beucl, but will be of the form

au0l + eifbu1l. s11d

The phase factoreif is not a problem becausef is indepen-
dent of a and b and will thus be a known quantity for the
graph, which we can correct for with an appropriate phase
gate.

The perfect communication distancedsA,Bd is given by
the distance on the graph, for which perfect state transfer is
possible. For a fixed number of qubitsN, our aim is to find
quantum networks which maximizedsA,Bd. We achieve this
in two different ways.s1d By fixing the nearest-neighbor
couplings to be identical but considering more complicated
graphsssee Secs. IV and Vd. s2d By considering linear chains
but allowing the nearest-neighbor couplings to be different
sSecs. VII and VIIId.

Note that if there is perfect communication betweenA and
B in a timet0, then perfect communication also occurs for all
times t satisfying

t = s2n + 1dt0, wheren P Z, s12d

provided the graph is mirror symmetricssee Sec. IIId.

III. CONDITIONS FOR PERFECT STATE TRANSFER
IN SYSTEMS WITH MIRROR SYMMETRY

In the rest of the paper, we will examine different graphs
for the purposes of perfect state transfer. These graphs will

have mirror symmetry. By mirror symmetry, we mean that
the graph is identical from the points of view ofA andB. So,
a linear chain withA andB at opposite ends is an example of
such a system. The obvious question is how can we tell if a
proposed graph will permit perfect state transfer? A neces-
sary condition, as we will show, is that the ratios of differ-
ences of the eigenvalues of the HamiltonianHG must be
rational provided the graph is mirror symmetric.

With a system capable of perfect state transfer, initialized
in the stateuAl, at timet0 we have the state

e−iHGt0uAl = eifuBl s13d

but by the definition of a symmetric system,A and B are
entirely equivalent, and thus after another period of timet0,
we have the state

e−iHG2t0uAl = e−iHGt0eifuBl = ei2fuAl s14d

and thus the system is periodic, up to a phase 2f, with period
2t0. Thus we conclude thata mirror symmetric system must
be periodic if it is to allow perfect state transfer. This may be
written most simply as

zkAue−iHG2t0uAlz = 1 s15d

for some time 0, t0,`.
Let us examine the general state of a periodic system with

period 2t0. We can write

ucs2t0dl = o
j

aje
−i2Ejt0u jl = ei2fo

j

aju jl s16d

for eigenstatesu jl of HG with corresponding eigenvaluesEj.
Hence for all of the stationary statesuil, we have the condi-
tion

2Eit0 − 2f = 2kip s17d

where theki’s are integers. Eliminatingf between two of
these, we get that

sEi − Ejd2t0 = 2pski − kjd s18d

and eliminating thet0 between any two of thesesEi8ÞEj8d
gives

Ei − Ej

Ei8 − Ej8
=

ki − kj

ki8 − kj8
P Q, s19d

whereQ denotes the set of rational numbers. As theki’s are
integers, this implies that the ratio is rational. Hence, a sym-
metric system capable of perfect state transfer must be peri-
odic, which is equivalent to the requirement that the ratios of
the differences of the eigenvalues are rational.

IV. LIMITATIONS FOR PERFECT COMMUNICATION
OF A UNIFORMLY COUPLED CHAIN

It is desirable to maximize the distance over which com-
munication is possible for a fixed number of qubits. The
optimal arrangement, in this case, is just a linear chain ofN
qubits, whereA andB are the qubits at opposite ends of the
chain.
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Let us start with theXY chain of qubits, with uniform
couplings Ji,i+1=1 for all 1ø i øN−1. The Hamiltonian
reads

H =
1

2o
i=1

N−1

si
xsi+1

x + si
ysi+1

y . s20d

In this case, one can computefABstd explicitly by diagonal-
izing the Hamiltonian or the corresponding adjacency ma-
trix. The eigenstates and the corresponding eigenvalues are
given by

uk̃l =Î 2

N + 1o
n=1

N

sinS pkn

N + 1
Dunl, s21d

Ek = − 2 cos
kp

N + 1
, s22d

with k=1,… ,N. Thus

fABstd =
2

N + 1o
k=1

N

sinS pk

N + 1
DsinS pkN

N + 1
De−iEkt. s23d

Perfect state transfer from one end of the chain to
another is possible forN=2 and 3, where we find that
fABstd=−i sinstd and fABstd=−fsinst /Î2dg2, respectively.

We have shown that perfect state transfer is possible for
chains containing two or three qubits. We will now prove
that it is not possible to get perfect state transfer forNù4.

A chain is symmetric about its center. Hence the condition
Eq. s19d for perfect state transfer applies, i.e.,

Em − En

Em8 − En8
P Q s24d

where theEm’s are eigenvalues of the unmodulated chain, as
given in s22d. We will explicitly show that there is a set of
eigenvalues for which this expression does not hold for all
Nù4.

We are free to choose any values for the indicessprovided
Em8ÞEn8d, so let us choose thatm=2, n=N−1, m8=1, and
n8=N. Hence we see, using Eq.s22d, that we require

cosf2p/sN + 1dg
cosfp/sN + 1dg

P Q s25d

to hold for perfect state transfer. To find the values ofN for
which this holds, we make use of algebraic numbers. An
algebraic number xis a complex number that satisfies an
equation of the form

a0x
n + a1x

n−1 + ¯ + an−1x + an = 0, s26d

with integral coefficientsai. Every algebraic numbera sat-
isfies a unique polynomial equation of least degree. The de-
gree of this polynomial is called thedegreeof a.

If a satisfies a monic polynomialsi.e., a polynomial with
a0=1d then it is called analgebraic integerof degreen. Note
that an algebraic integer of degreen is also an algebraic
number of degreen. Rational numbers are algebraic numbers
with degree 1, and numbers with degreeù2 are irrational.

Lehmer provedsfor example, seef10gd that if N.1 and
gcdsk,N+1d=1, then cosfpk/ sN+1dg is an algebraic integer
of degreef(2sN+1d) /2, wheref is the Euler phi function.

For nù3 it can be shownf11g that

fsnd ù
n

eglog logn + 3/log logn
s27d

holds, with g<0.5772 Euler’s constant. Using this bound,
and by inspection of values not covered by the bound, we see
that f(2sN+1d /2)ù3 for Nù6.

We need to prove that if cosu is an algebraic number of
degreeù3, the quotient

cos 2u

cosu

is irrational, whereu=p / sN+1d.
Assume that this expression is rational, i.e.,

cos 2u

cosu
=

p

q
, p,q P Z. s28d

Using the trigonometric identity

cos 2u = 2 cos2u − 1 s29d

we can write

scosud2 −
p

2q
cosu −

1

2
= 0 s30d

which has rational coefficients. According to the definition,
cosu is therefore algebraic with degreeø2. Given that, from
Eq. s27d, cosu is an algebraic number of degreeù3, then we
have a contradiction and thereforescos 2ud /cosu must be
irrational.

Hence we see that forNù6 perfect state transfer is im-
possible because degsNdù3. This simply leavesN=4 and
N=5 unproved, which can be done by straightforward evalu-
ation. Thus forNù4

cos 2u

cosu
¹ Q.

Hence, perfect state transfer is impossible for unmodulated
chains of lengthNù4.

V. PERFECT STATE TRANSFER OVER GREATER
DISTANCES

Perfect state transfer over arbitrary distances is impossible
for a simple unmodulated spin chain. Clearly it is desirable
to find a graph that allows state transfer over larger distances,
and to that end we examine thed-fold Cartesian product of
the two-link sthree-vertexd chainG. We denote this byGd.

In general the Cartesian product of two graphs
Gª hVsGd ,EsGdj and Hª hVsHd ,EsHdj is a graphG3H
whose vertex set isVsGd3VsHd and two of its verticessg,hd
and sg8 ,h8d are adjacent if and only if one of the
following holds: sid g=g8 and hh,h8jPEsHd; sii d h=h8 and
hg,g8jPEsGd.
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Let A=s1,1,1,… ,1d and B=s3,3,3,… ,3d denote the
antipodal points ofGd.

We prove that forany dimension d

ufABstdu = 1 for t = t0 =
p

Î2
. s31d

Hence,t0 is the time for perfect communication between the
verticesA andB of Gd.

Let hlisGd ,1ø i ø uVsGduj and hl jsHd ,1ø j ø uVsHduj de-
note the set of eigenvalues of the graphsG and H, respec-
tively. The eigenvalues of the adjacency matrix of their Car-
tesian productG3H are precisely the numberslisGd
+l jsHd, with 1ø i ø uVsGdu and 1ø j ø uVsHdu, where each
number is obtained as many times as its multiplicity as an
eigenvalue of the adjacency matrixAsG3Hd. This is be-
cause

AsG 3 Hd = AsGd ^ 1VsHd + 1VsGd ^ AsHd, s32d

where1VsHd is the uVsHdu3 uVsHdu identity matrix ssee, e.g.,
f12gd.

The eigenvalues of the adjacency matrix ofGd are given
by

h jÎ2u j P h0, ± 1, ± 2,…, ± djj s33d

and therefore the ratios of differences of the eigenvalues are
all rational.

As already observed, the Hamiltonian of a system coupled
via nearest-neighborXY interactions is identical to the adja-
cency matrix. This will hold equally for the Cartesian prod-
uct of G. Hence,

H = AsGdd = o
j=0

d−1

1^ j
^ AsGd ^ 1^d−j−1, s34d

e−iHt = se−iAsGdtd^d. s35d

Thus, if we select a timet=p /Î2, then we get perfect state
transfer along each dimension. Each term in the tensor prod-
uct of s35d applies to a different element of the basissfor
example, each acts on a different 1 in the definition ofA, or
a different 3 inBd. We therefore achieve perfect state transfer
betweenA andB fas well as between any qubit and its mir-
ror, such ass1,1,1,2,3d→ s3,3,3,2,1dg. The fidelity of the
state transfer is simply thedth power of the fidelity for the
original chains23d.

Perfect transfer of a single-qubit state can also be
achieved between the antipodes of a one-link hypercube in
any arbitrary dimensiond, in a constant timet0=p /2. This is
because perfect transfer occurs across a chain of two qubits
in this time.

We can also extend this to the one-link hypercube which
is coupled via the Heisenberg interaction. This is because, in
the case of a two-qubit chain, the Hamiltonian in the single-
excitation subspace is represented by a matrix with identical
diagonal elements, and hence is the same as the Hamiltonian
of anXY model up to a constant energy shift, which just adds
a global phase factor.

Note that perfect transfer is possible across a ring of four
spin-1/2 particles. The topology of this is exactly the same
as a two-fold Cartesian product of a one-link chain, hence it
is a special case of the hypercube we have been discussing
swhether it is coupled with the Heisenberg orXY couplingd.

VI. CLASSICAL CONTINUOUS-TIME RANDOM WALK
ON THE HYPERCUBE

In the previous section we showed that for hypercubes
generated from both the one-linkstwo-vertexd and the two-
link sthree-vertexd chain, the perfect state transfer timet0 is
independent of the dimensiond. In this section we will in-
vestigate the behavior of the mean hitting time of the classi-
cal continuous-time symmetric random walk onGd, which
we denote bytcl, and compare it tot0. We will focus our
attention on the two-link hypercube, since in the quantum
case it provides us with a greater communication distance
dsA,Bd than does the one-link hypercube. Unliket0, we
show thattcl grows exponentially with the dimensiond fEq.
s52dg. We also note that the case of the one-link hypercube
has previously been studiedf13g.

A two-link hypercubeGd is generated by taking thed-fold
Cartesian product of the graphGª hVsGd ,EsGdj where
VsGd=h1,2,3j and EsGd={h1,2j ,h2,3j}. Hence, the state
space for the classical continuous-time random walk onGd is
h1,2,3jd. Transitions are allowed from a vertexxPGd to
x±ei whereei is the ith unit vector andx is a d-dimensional
vector with componentsxi, i.e., transitions are allowed to all
the nearest neighbors with equal probability.

If T is the random variable defined as the hitting time of
B, for a random walk starting atA, then

tcl ª EsTd s36d

whereEsTd denotes the expectation value ofT. The random
variableT can be written as

T = o
i=1

N

Xi , s37d

where N is a random variable which gives the number of
jumps that the random walker undergoes in going fromA to
B, and theXi’s are the holding times between successive
jumps. We have

EsTd = ESo
i=1

N

XiD = EsNdEsX1d = EsNd, s38d

where we have made use of the fact that theXi’s are inde-
pendent and identically distributed with meanEsXid=1. Note
thatEsNd is the mean hitting time of the corresponding jump
chain, which is a discrete-time Markov chain. Hence, to es-
timate the mean hitting timetcl of the continuous-time ran-
dom walk, it suffices to consider the discrete-time random
walk given by the jump chain of the original walk.

All the information that we need is contained within the
3d33d transition matrixP. An elementPA,B is the probabil-
ity of transition fromA to B; hence afterN steps the prob-
ability of hitting B sirrespective of whether it has previously
hitd is
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which we shall denote asP1,3d
N , and hence

EsNd = o
n=2d

`

nP1,3d
n p

m=2d−1

n−1

s1 − P1,3d
m d. s39d

Since we have a two-link hypercube, it will always take at
least 2d steps to get from one corner to the opposite one. In
fact, because we have a two-link hypercube, it will always
take an even number of steps to hit the opposite corner. Thus,
P1,3d

m =0 for oddm andm,2d.
So, all we are interested in is the elementP1,3d

2n , which we
expect to tend toward a constant value for largen, i.e.,
sP2P2nd1,3d< P1,3d

2n as n→`. Thus, we are confronted with
the problem of finding the first element in the eigenvector of
P2 which has eigenvalue 1ssee, for example,f14gd.

Take, as an example, the special case ofd=2 where the
first row of P2n is given by

San 0
1

6
0

1

3
0

1

6
0 bnD .

The 0’s occur because in an even number of steps, you can-
not get to a point that is odd. Forn=1, an= 1

3 sthe probability
of returning to the start noded and bn=0 sthe probability of
getting to the exit noded. The sum of all the elements in the
row must be 1, and hencean+bn= 1

3 for all n. We find a
recursion relation forbn,

1
9 + 1

3bn=bn+1, and asn→`, we find
that bn→ 1

6.
Let us return to the general case. The location of a given

node of the hypercube can be represented byux1,x2,… ,xdl
wherexi P h1,2,3j, i.e., xi specifies, for theith dimension,
which of the three nodes we are positioned on. All of the
properties of a given node depend only onr andd, wherer is
a count of the number ofxi =2. For example, the transition
rate from one node atr to an adjacent node is

Pnearest neighbor=
1

d + r
. s40d

This quantity can be understood because the transition prob-
ability is the same for all connected nodes, and allxi =1 or 3
are only connected toxi =2 in the ith dimension, whereas
xi =2 has two links.

Given that all properties of a node depend only onr and
d, which must also be true for the eigenvectora. Hence, we
can denote the elements ofa by ar. The element of the ei-
genvector that we are interested in corresponds to the posi-
tion u1,1,… ,1l, i.e., r =0, so we want to find the elementa0.
We will now find the elements ofa, the eigenvector ofP2.

In two steps, there are only five ways to get to a specific
lattice point at a distancer =2k.

s1d Start at that point, make one step away, and then
make the same step in reverse. This happens with a probabil-
ity

preturn=
1

d + 2k
S d − 2k

d + 2k + 1
+

4k

d + 2k − 1
D . s41d

s2d Start at a distance 2k−2. There are 4s 2
2kd equivalent

jumps, which each occur with probability

2

sd + 2k − 2dsd + 2k − 1d
. s42d

s3d Start at a distance 2k+2. There ares 2
d−2kd of these

jumps, each occurring with probability

2

sd + 2k + 2dsd + 2k + 1d
. s43d

s4d Start at a distance 2k and go around two edges of a
square se.g., u1,2l→ u1,1l→ u2,1ld. There are 4ksd−2kd
points from which this type of move will get us to the spe-
cific node we are interested in, and this transition happens
with a probability

1

d + 2k
S 1

d + 2k + 1
+

1

d + 2k − 1
D . s44d

s5d Start at a distance 2k and travel the length of a chain
se.g., u1,2l→ u2,2l→ u3,2ld. There ared−2k such jumps,
each occurring with probability

1

sd + 2kdsd + 2k + 1d
. s45d

Knowing these, it is possible to write down the elements
P2·a, so we can solve for the eigenvector:

4S2k

2
D 2

sd + 2k − 2dsd + 2k − 1d
a2k−2

+ Sd − 2k

2
D 2

sd + 2k + 2dsd + 2k + 1d
a2k+2

+
1

d + 2k
S s4k + 2dsd − 2kd

d + 2k + 1
+

4ksd − 2k + 1d
d + 2k − 1

Da2k = a2k.

s46d

Starting with the special case ofk=0, we see that

a0 =
d

d + 2
a2 s47d

and the general solution

a2k =
d + 2k

d + 2k + 2
a2k+2 s48d

can then be proved by induction. We thus have the required
elements, and just need to normalize them, remembering that
there are 2d−2ks 2

d−2kd identical elementsa2k,

o
k=0

fd/2g

2d−2kS d

2k
Da2k = 1. s49d

This gives that

a2k =
d + 2k

2d3d−1 s50d

and, in particular,
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a0 =
3

2
3−d. s51d

We know that, asn→`, P1,3d
2n →a0. Taking this value for all

n, we can evaluate Eq.s39d to find that the mean hitting time
is given by

tcl = EsTd = o
n=d

`

2na0p
m=d

n−1

s1 − a0d = 2d − 2 +
2

a0
<

4

3
3d.

s52d

The quantum analog of this mean hitting time is given by
the time for perfect state transfer between the antipodal
pointsA andB. We proved in the previous section that this
time is a constantt0=p /Î2. On comparing this with Eq.
s52d, we conclude that the graphGd provides an example of
a graph for which the quantum case leads to an exponential
separation.

VII. PROJECTING A HYPERCUBE ONTO A SPIN CHAIN

Encouraged by the ability of the hypercube to allow per-
fect state transfersSec. Vd, we examine the one-link hyper-
cube from a different angle. Such a graph falls into a general
category of graphsG that have the property that the vertices
can be arranged in columns so that there are no edges be-
tween the vertices within any column, and edges only join
vertices in adjacent columns. Further, each vertex in column
i must have the same number of incomingsfrom column i
−1d and outgoingsto columni +1d edges as all other vertices
in that column. See Fig. 1 for an example.

Representing the one-linkd-dimensional hypercube in
such a form, we allow the graphG to consist ofNC columns.
The size of each columnsthe column occupationd is given by
biª uGiu=s i−1

NC−1d and the vertices in eachGi are labeledGij ,
j =h1,… ,bij. The ith column isi −1 edges away from a cor-
ner ssayAd of the hypercube.

The only edges are between vertices of adjacent columns.
From each column there must be a set of edges going for-
ward to the next column, and another set going back to the
previous one. These are denoted in the following manner:

Pi
for

ª ˆsGij ,kd: j P h1,…,bij,k P h1,…,r ij‰, s53d

Pi
back

ª ˆsGij ,kd: j P h1,…,bij,k P h1,…,sij‰, s54d

wherer i andsi denote the number of forward and backward
edges, respectively, for theith column. Clearly, if all the
edges are to have ends,uPi

foru= uPi+1
backu. Since there is only a

single qubit in the first columnsb1=1d, each vertex in the
second column has only a single edge going backward
ss2=1d. With this constraint, and thatsi and r i must be inte-
gers for all 1ø i øNC, we require that

bir i = bi+1si+1, s55d

r i

si+1
=

NC − i

i
. s56d

The solution that we will choose for this isr i =NC− i, si = i
−1, which certainly satisfies all conditions. Thus we have a
graph such that for every pair of numberssi , jd, Gij is con-
nected withNC− i vertices inGi+1 and each vertex inGi+1 is
connected withi −1 vertices inGi.

Let us define the vectors that span thecolumn spaceHC,

ucol il ª
1

Îbi
o
j=1

bi

uGijl. s57d

Childset al. f9g note that the evolution with the adjacency
matrix HG of G for this general class of networkssnot just
the hypercubed, starting inG11, always remains in the col-
umn spaceHC because every vertex in columni is connected
to the same number of vertices in columni +1 and every
vertex in columni +1 is connected to the same number of
vertices in columni.

Thus, we can restrict our attention to the column space
HC for the purpose of perfect state transfer fromG11 to GNC1.
The matrix elements of the adjacency matrix ofG, restricted
to this subspace are given by

Ji ª kcol i uHGucol i + 1l = ÎisNC − id, s58d

J =1
0 J1 0 0 … 0

J1 0 J2 0 … 0

0 J2 0 J3 … 0

0 0 J3 0 … 0

] ] ] ] � JNC−1

0 0 0 0 JNC−1 0

2 . s59d

This can be seen as follows:

kcol i uHGucol i + 1l =
1

Îbibi+1
o
j=1

bi

o
j8=1

bi+1

kGi,juHGuGi+1,j8l

=
1

Îbibi+1

bisNC − id = ÎisNC − id.

s60d

FIG. 1. An example of a five-column graph that allows perfect
state transfer between either end.
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Hence, the above graph exhibits the same behavior as the
XY chain with “engineered” coupling strengthsJi:

H =
1

2 o
i=1

NC−1

Jissi
xsi+1

x + si
ysi+1

y d. s61d

Such a chain must allow perfect state transfer over any
length NC swhere uAl;ucol 1l, uBl;ucol NCld because the
hypercube does. In the next section we prove that this is the
case using a more physically motivated derivation.

The number of vertices in the graphG is given by uGu
=2NC−1; hence it hascommunication distanceof log2uGu. The
two-link hypercube in contrast has communication distance
2 log3uGu. One should note, however, that the degree of each
vertex is bounded linearly.

Some examples of this graph are provided here for differ-
ent numbers of columns. ForNC=2, two-qubit chainsd=1
one-link hypercubed; for NC=3, squaresd=2 one-link hyper-
cubed; for NC=5, for example, Fig. 1 which reduces to an
engineered chain, as shown in Fig. 2.

For the purpose of perfect state transfer, we have stated
that thed-dimensional, one-link hypercube is equivalent to
the graphG. The equivalence is obvious for the case ofd
=1 and 2. The general proof arises by considering how the
Cartesian product of a graph is taken when you extend the
product fromsd−1d to d dimensions.

Assume the numbers of vertices in two adjacent columns
are ni and ni+1 in the sd−1d-dimensional hypercube. In the
si +1dth column of thed-dimensional hypercube, there must
still be the ni+1 vertices, plus each of the vertices in the
previous column have one more edgesfrom taking the Car-
tesian productd. Hence the total number of vertices isni
+ni+1. Assuming that thesd−1d-dimensional hypercube has
column occupations given by a binomial distribution, this
specifies that thed-dimensional hypercube does as well.
Since we know that these column occupations hold ford
=2, then by induction this must hold for anyd.

What this does not prove is that the edges between verti-
ces are correct. This is because they are not necessarily cor-
rect. While a hypercube must have a specific set of edges, the
construction of the graphG did not specify which vertices
had to be connected to which other ones, we just made sure
we got the correct number of forward and backward edges.
In that sense, the general graphG is a “scrambled” hyper-
cube. No matter what this scrambling is,G still reduces to
the same chain.

VIII. STATE TRANSFER OVER ARBITRARY DISTANCES

Suppose we haveNC qubits in a chain, with only one
qubit in stateu↑ l;u1l and all others in stateu↓ l;u0l. We

previously labeled these asu jl, denoting that the single exci-
tation is on thej th qubit. One may associate a fictitious spin
1
2sNC−1d particle with this chain and relabel the basis vec-
tors as uml, where m=−1

2sNC−1d+ j −1, as illustrated in
Fig. 2.

The input vertex uAl can be labeled asu j =1l
or um=−1

2sNC−1dl and the output vertexuBl as u j =NCl or
um= + 1

2sNC−1dl. Now, consider the Hamiltonian

H = lJx =
1

2
l o

i=1

NC−1

Jissi
xsi+1

x + si
ysi+1

y d s62d

which has the same matrix form as Eq.s59d, with a scaling
constantl.

This corresponds to the flipped spin hopping between the
vertices j and j +1 with a probability amplitude ofJj. Now,
let us chooseH to be proportional to the angular momentum
operatorJx or Jy for some spinJ= 1

2sNC−1d particle. In this
case the matrix elementsJj are 1

2
ÎjsNC− jd sthese are the

same as the elements derived in the previous section up to a
numerical factord. The evolution of the excitation in the
chain is governed by the operator

Ustd = exps− ilt Jxd, s63d

which represents a rotation of the fictitious spin
J= 1

2sNC−1d particle. The matrix elementsk j8uUu jl are well
known. Thus working outf15g or looking up an appropriate
representation of SU2 gives

fABstd = kBuUstduAl = F− i sinSlt

2
DGNC−1

. s64d

Thus we get perfect transfer of the state fromu1l to uNCl in a
constant timet0=p /l. We can selectNC−1 to be divisible by
4 and this eliminates the phase shift caused by the factor of
−i.

Note that the case ofNC=2 is just the same as an un-
modulated spin chain of the same length, so the calculation
done previouslys23d is expected to give the same result. This
it does, provided we remember that in the current situation
the coupling strength isl /2, whereas it was simply set to 1
in the original situation.

Is there any other interqubit interaction in the chain that
gives Hamiltonian s59d when restricted to the single-
excitation subspace? The first choice is theXY model with
modulated interactions, another one is the Heisenberg model.
If we try the Heisenberg model of the form

1

2 o
j=1

NC−1

Jjs j · s j+1, s65d

we obtain

FIG. 2. CouplingsJn that admit perfect state transfer fromA to
B in a five-qubit chain. Eigenvaluesm of the equivalent spin-2
particle are also shown. This is the projection of Fig. 1 onto a chain.
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1
D1 J1 0 0 … 0

J1 D2 J2 0 … 0

0 J2 D3 J3 … 0

0 0 J3 D4 … 0

] ] ] ] � JNC−1

0 0 0 0 JNC−1 DNC

2 s66d

whereDj =
1
2sok=1Jkd−Jj−1−Jj. In order to get rid of the di-

agonal elements in the matrix above we can apply a mag-
netic field in thez direction, i.e., we add an extra term to Eq.
s65d,

1

2 o
j=1

NC−1

Jjs j · s j+1 + o
j=1

NC

Bjs j
z, s67d

with Bj =
1
2sJj−1+Jjd−f1/2sNC−2dgok=1

NC−1Jk.
All this means that we can distribute a quantum state over

any distance with fidelity equal to 1 as long as we engineer
the interqubit interactions, e.g., the interqubit distances in the
chain, and apply a suitable spatially varying magnetic field.

IX. SCALING RELATIONS AND ENERGY
CONSIDERATIONS

In the previous section we showed that a spin chain with
engineered interactions can be used to transfer a quantum
state in fixed timet0. To compare the computational com-
plexity of the proposed spin chain, it is customary to con-
sider what happens to the energy of the system as the number
of spins in the chain increases. One physical assumption that
we might make, for example, is that the maximum coupling
strength is a fixed size. This maximum occurs at the middle
of the chain and is

lJbN/2c , lN.

Hence, to keep this coupling a constant strength,l must
scale with 1/N and t0=p /l must scale withN.

A second concern is what might happen if we tried to
extract our state at a timet0−dt. The fidelity of the state
transfer is easily approximated from Eq.s64d so for smalldt
we get

fABst0 − dtd < 1 −
p2sNC − 1d

8
Sdt

t0
D2

.

Finally, we could ask the question about what happens in
the presence of manufacturing errors. In particular, we shall
consider what happens if the errors affect only the eigenval-
ues of the system. This is not the entire story for the spin
chain, because we should also consider what happens to the
eigenvectorssand, in particular, how well they maintain their
symmetry about the center of the chain since all the eigen-
vectors are either symmetric or antisymmetricd. However, in
the case of a double application of the chainswhich corre-
sponds to nothing happening to the stored stated, we learned
in Sec. III that it is only the eigenvalues that matter.

Let us assume that we have made some manufacturing
errors when producing our spin chain, i.e., we have some

errors that are time independent. The ideal energies of the
eigenstates areEi and the actual energies areEi8:

fAA = kAue−iH2t0uAl,

uAl = o
i

aiuil = o
i

aie
−2it0Eiuil,

fAA = o
i

uaiu2e−2it0sEi8−Eid.

We can estimate the worst case for the fidelity of the identity
transformation, by taking the worst error to beEi8−Ei =d and
by assuming thatt0d!1. The error is then

e = u1 − fAAu,

e < 2t0d,

i.e., it scales linearly withN.

X. USING THE CHAIN FOR ENTANGLEMENT
TRANSFER

The idea of the rotation of the large spin particle and
subsequent calculation can also tell us more about the sys-
tem. For example, in the same time that we get perfect state
transfer from qubit 1 toNC, we also get perfect state transfer
from qubit j to NC+1− j . Under the action of theJx rotation,
these transfers all have the same phase. This means that the
chain can be used to move an entangled state from one end
of the chain to another. We can start with the Bell state
1/Î2su01l+ u10ld on the first two qubits:

1
Î2

su1l + u2ld. s68d

In time t0=p /l this will evolve to the state

1
Î2

suNCl + uNC − 1ld, s69d

having thus transferred the Bell state to the other end of the
chain. Note that we cannot use the state 1/Î2su00l+ u11ld
because this contains a term with two spins in it, and we
have restricted ourselves to the subspace of only a single
spin. We point out, however, that the results off6g show that
we will also get perfect state transfer in higher-excitation
subspaces and thus, in principle, such a state could be trans-
ferred.

The chain can also be used to distribute an entangled pair
between two distant parties. If we create a Bell state

1
Î2

su0lNIu0lC + u1lNIu1lCd s70d

between a noninteracting qubitsNId and the first qubit on the
chain sCd, then the overall Hamiltonian will be of the form

H8 = 1 ^ H. s71d

Note that the stateuilC is exactly the same as the stateuil that
we were talking about before with the engineered chain, but
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we have to be careful not to confuse those states with the
states of the noninteracting qubit. The states70d then evolves
as

1
Î2

su0lNIe
−iHtu0lC + u1lNIe

−iHtu1lCd s72d

so after the samet0, the entangled pair will be the noninter-
acting qubit and theNCth qubit on the chain.

1
Î2

su0lNIu0lC + eifu1lNIuNClCd. s73d

This prescription is sufficient to transfer the entanglement of
any general two-qubit density matrix from being between the
noninteracting qubit and the first qubit att=0 to being be-
tween the noninteracting qubit and theNCth qubit on the
chain. This can be understood by seeing how the most gen-
eral density matrix evolves. What we require is that

TrHG\hAjfrs0dg = TrHG\hBjfrst0dg. s74d

Such a density matrix can be written as

rs0d = o
si,j ,i8,j8dPh0,1j

ai ji 8 j8ui j lki8 j8u, s75d

rstd = o
si,j ,i8,j8dPh0,1j

ai ji 8 j8e
−iH8tui j lki8 j8ueiH8t. s76d

So if a single component of this density matrix evolves, giv-
ing perfect transfer, so will all the components and therefore
so will the density matrix as a whole. This component
evolves as

e−iH8tuilNIu jlCki8uNIk j8uCeiH8t ; uilNIse−iHtu jlCdki8uNIsk j8uCeiHtd.

s77d

After time t0, if j or j8 were 1, then they will have changed to
NC, and if they were 0, they remain as 0. Tracing out the
effect of all the spins except for the noninteracting one and
the NCth qubit will return precisely the same two-qubit den-
sity matrix as was initially set up. This then allows the den-
sity matrix to be split over the length of the chain.

If we want to transmit the complete density matrix, we
just use two of our engineered chainssC1 andC2d in parallel
sNC1

=NC2
d. The new Hamiltonian can be written as

H9 = H ^ H s78d

and an exactly analogous argument now applies so that if we
create the desired statefwhich could be the Bell state
1/Î2su00l+ u11ld, for exampleg across the first qubits ofC1

andC2, then after timet0, the state has been perfectly trans-
mitted to being on theNCth qubits of the two chains. For an
example, see Fig. 3.

This scheme will work for both the engineered spin chain
and the hypercubesssince the density matrix can be created
between the corners of two hypercubesd. It is, however, un-
necessary in the case of the spin chain, since the work off6g
shows that state transfer occurs in all excitation subspaces,
not just the single-excitation subspace, as assumed here. The

extension of this to multiqubit entangled states does still
yield an advantage since these multiqubit states can be trans-
mitted across the same chainsone qubit at a timed while only
having access to the qubits at either end of the chain.

XI. Jy AND ARBITRARY PHASE GATES

As previously noted, theJx rotation introduces a phase
shift, depending on the length of the chain. There are several
ways in which this can be avoided. The simplest is just to
select the correct length of chain. In the case of the engi-
neered chainsand also the one-link hypercubed, if sNC−1d is
divisible by 4, then there is no phase shiftssincei4=1d. Simi-
larly with the two-link hypercube, if the dimension of the
hypercube is even, there is no phase shift.

Another choice is to use theJy rotation fwhich does not
give the factor of −i in Eq. s64dg:

Jy = H =
1

2 o
j=1

NC−1

Jjss j
ys j+1

x − s j
xs j+1

y d

= i1
0 − J1 0 0 … 0

J1 0 − J2 0 … 0

0 J2 0 − J3 … 0

0 0 J3 0 … 0

] ] ] ] � − JNC−1

0 0 0 0 JNC−1 0

2 . s79d

Using this in conjunction with theJx rotation, it is possible,
along with the transfer of a state through our spin chain
network, to apply an arbitrary phase gate to it during trans-
mission, simply by choosing the correct linear combination
of Jx and Jy. Assume that we have pickedNC such thatJx
gives a phase shift ofi. A combination of

gJx ± Î1 − g2Jy s80d

will thus yield a phase shifteif where

tansfd =
±g

Î1 − g2
, s81d

meaning that the initial stateucl will have evolved to the
state

FIG. 3. Scheme for transferring an arbitrary two-qubit density
matrix r, using two engineered spin chainssC1 and C2d. This ex-
ample has a chain length ofNC=6.
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au0l + eifbuNCl. s82d

The final alternative for negating the phase shift, or ap-
plying an arbitrary phase gate during transmission, would be
to apply a uniform global magnetic field in thez direction.
Applying a field strengthB shifts the energy of the single-
spin excitation byBsNC−2d /2 and the ground state energy is
shifted byBNC/2. Assuming transmission of the state occurs
in a timet0, thenB can be selected to give the desired phase
shift f by

B =
f − sp/2dsNC − 1d

t0
. s83d

XII. SUMMARY

We have shown that perfect state transfer is possible
across a network of qubits, allowing only control over the
initial design of the network, and no dynamical control.

When the couplings between adjacent qubits are con-
strained to be equal, we showed that examples of such net-
works are the one- and two-linkd-dimensional hypercubes.

Perfect state transfer for three- or more-link hypercube ge-
ometries is shown to be impossible. The transfer time is in-
dependent of the dimension of the hypercube and for com-
parative purposes, we calculated the expected hitting time in
the classical continuous-time random walk, which increases
exponentially with the dimension.

We have also proposed a spin chain ofN qubits with
nonuniform couplings that allows both state and entangle-
ment transfer. This chain can be interpreted in two ways:
first, as a projection of ansN−1d-dimensional one-link hy-
percube and second, as a rotation in thex direction of a
fictitious spinsN−1d /2 particle.

Finally, we have shown how to effect entanglement trans-
fer and how to introduce phases on the transferred quantum
states on the fly.
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