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Perfect state transfer, effective gates, and entanglement generation in engineered bosonic
and fermionic networks
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We show how to achieve perfect quantum state transfer and construct effective two-qubit gates between
distant sites in engineered bosonic and fermionic networks. The Hamiltonian for the system can be determined
by choosing an eigenvalue spectrum satisfying a certain condition, which is shown to be both sufficient and
necessary in mirror-symmetrical networks. The natures of the effective two-qubit gates depend on the exchange
symmetry for fermions and bosons. For fermionic networks, the gates are entafeglthghus universal for
guantum computationFor bosonic networks, though the gates are not entangling, they allow two-way simul-
taneous communications. Protocols of entanglement generation in both bosonic and fermionic engineered
networks are discussed.
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I. INTRODUCTION state transfer from across a distance. Inspired by the recent

pid experimental development in optical lattidese, e.g.,

. r
Quantum state transfer, two-qubit gates, and entangleme ? X ) ) )
1 : . 3] and references thergjrour discussion will be presented
are esse_nt|al in_quantum information theory and quantuniEn t]erms of fermionic anéoll bosonic networks WiﬂF: the pres-
computation[1]. Recently, there have been many proposals

[2—-12) exploiting thefree evolution of spin networks for ac- tehnecg Zrngbls z?e;:tisogl?aboﬁgir; oé;i;rmosn i?;[r?e?\l:/irrl(esp;erzecr:grs]?
complishing these tasks. The main idea is to minimize the ified to be fermioni qubrt. hall di P
spatial and dynamical control, which is experimentally chal->' '2 (t)h € grm|?rt1|r]c;, as we s 6t1 ﬁcquH t effective t
lenging, on the interactions between qubits. Imperfect state bi?o ali: rsagn\:e? rerﬁoi):pirbli? c;i?s ngm I?e ecoicslyfctgg_in
transfer over homogeneous spin chains has been studi Use gen ; d netw E - P fermioni includi
[2,6] for Heisenberg an&XY Hamiltonians. A measurement- - gineered networks. For termionic ones, including
based state transfer scheh& has been suggested for dual- spin chains, the effective gates are entanglm_g and hence uni-
spin channels. Perfect state trangfg}, state inversiori], versal for quantum computation. For bosonic networks, the

and graph state generatips] have been proposed for engi- gates are not entangling, but they allow two-way communi-

neered spin chains in which the couplings between qubits arréatlon for different pairs of sites simultaneously without mu-

tunable. Quantum computation using permanently couple{;Llal interference. Finally, protocols for entanglement genera-

. . lon and transfer will also be discussed. In contrast to the
spin chains has been propog&dl0]. Furthermore, other dy- . ) .
namical propertied11] of spin chains and state transfer scheme proposed ifi4], these protocols require minimal

schemeg12] have also been studied. spatial and temporal control on individual qubits.

In this paper, we generalize the results{&4,6 for en-
gineered networks. In Ref§3,4] two types of engineered Il. ENGINEERED NETWORKS
networks which accomplish perfect quantum state transfer
have been presented. These networks depend on the kno%
properties of special functions, and hence the choice of th

. | d th K i is limited e particles need not literally be spinless, but they all need
eigenvalue spectrum and the network couplings is limited, o o|arized in the same spin state, and there should not be
One of the aims of this paper is to show how one could

e . . any interactions involving spin. The Hamiltonian is therefore
design” such engineered networks without reference to an

. . : : %f the following form:
special functions. One simply has to choose an eigenvalue

We start with a system consisting of spinless fermigrs
Bsons hopping freely in a network dfl lattice sites. In fact,

spectrum from an infinite set of possibilities satisfying a cer- ; ; N
tain condition[cf. Eq. (12)], which is both sufficient and H=2 w;(aa +afa) + > \n;, (1)
necessary. The network couplings can then be found by solv- @ =1

ing a structured inverse eigenvalue problem. As a Consgynere (i,j) denotes nearest-neighbor coupling; is the
quence of this approach_we note that even a single inﬁmte'Yime-independent coupling constant between the ised
deep square well or a single harmonic well enables perfecj;e j, and \; represents the strength of the external static
potential at sitej. The annihilation operatorg; obey the
standard(antjcommutation relations for bosorigermions
*Electronic address: myung2@uiuc.edu and nj:ajTaj is the number operator. This model may be con-
"Electronic address: sougato.bose@qubit.org sidered as the strong tunneling limit of the Hubbard model
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[15] for fermions and Bose-Hubbard modé6] for bosons. angular momentund =L +S being zero, then a mirror inver-
In particular, for one-dimensional fermionic chains, thission of eigenstates with respect to the center of a linear chain
model can be mapped to spin chains in which spins arean be implemented. This implies that a quantum state at site

coupled through th&Y Hamiltonian x can be transferred perfectly to itsirror-conjugatesite x
N-1 N =N-x+1,
HZEE wi(0o + oo )+}E N(f+1D) (2 i
2q TR 2 U(7)le = al0) + e Bp0, (5)

by the Jordan-Wigner transformatigt7]. Therefore, such where in generaly # 0 and a single-qubit operation on the
spin chains will be classified as fermionic, even though thesite x is required to remove it, in order to reconstruct the
individual spins are distinguishable. original state there.

Since the Hamiltoniatd commutes with the total number In the next section, we will introduce a systematic way to
operatorntot:Eszlnj or the totalz-spin operatonSfot:Eszlof, find the sets oty; and\; for state inversion and hence perfect
the Hilbert space can be decomposed into subspaces consistate transfer even if we did not use any of the above ex-
ing of the eigenstates af, or ;. Furthermore, as the par- amples. Instead of solving the eigenvalue problem, we will
ticles are noninteracting, the eigenstates inrtfparticle sub-  first choosea desired eigenvalue spectriof. Eq. (12)] for
space are the antisymmetrizesymmetrizedi products of the  Hy and the solutions fow; and \; can be found from the
single-particle eigenstates for fermiofimsons. spectrum and the symmetrical propertiesHyf. It is there-

fore an inverse eigenvalue problem.

A. Quantum state transfer

Quantum state transfer over a network is similar to the B. Symmetrical properties of Hy

quantum random walk problem, where a variety of networks  State inversion by free evolution crucially depends(@n

are equivalent to one-dimensional chaj8s18]. Therefore, the reflection symmetry an@db) the eigenvalue spectrum. By
we will now focus on a chain o sites. Forj=1,2,... N, reflection symmetry, we mean f¢r=1,2, ... [N/2],

let |j) be the state where a single fermi@r boson is at the

sitej but is in the empty stat®) for all other sites an¢D) be N =N and o=y #0. (6)

the vacuum state where all sites are empty. For spin chains,

|0) corresponds to the state where all the spins are in th&hus,Hy has double symmetridalso known as persymmet-
spin-down stat¢|) and|j) corresponds to a spin-up stat¢ ric), along both the main diagonal and the second diagonal.
for the jth spin and spin-down for all other spins. The Hamil- We shall now show that if the above symmetries are present
tonian in this single-particle subspace can be written in an Hy, then one only needs the eigenvalue spectrum to satisfy
tridiagonal form, which is real and symmetric: a certain conditior{cf. Eq. (12)] in order to achieve state
inversion. This condition will later be shown not only suffi-

Moop 0 0 cient but also necessary for state transfer in mirror-

w; Ay wp 0 symmetric networks. As a consequence of the above symme-
Hy=l 0 w, A3 - 0 |. (3) tries, the eigenvectodq}zi}\'ﬂaﬂj) have definite parities—

Lo e i.e., being either even or odd with respect to the mirror-

6 O O " \ conjugate operatio— j. In fact, the eigenvectors can be
N-1 &N determined[cf. Eq. (10)] explicitly. However, we need to
The quantum state transfer protocol involves two stepsknow which one would change sign when inverted. This can
initialization and evolution. First, a quantum staté0) be determined by the interlacing property described below.
+4|1) to be sent is encoded at site The initial state of the Let Py(E)=IT}-;(E-E,) be the characteristic polynomi-
network is described bies,)=|0)+ B|x). Then, the network als ofHy and denote th¢th leading principal minofi.e., the
couplingsw; and\; are switched on and the whole system is characteristic polynomial obtained by the fijstows and
allowed to evolve undet(t)=exp(—iHt) for a fixed time  columns of a matrixof the matrixEl-Hy by P;(E), wherel
intervalt=7. The final state becomes is the NX N identity matrix andE is a real number. With
Po=1 and P;=E-\,, the sequence oP;(E) is a Sturm

N
_ N . sequencél9] and forj=1,2,... N, it satisfies a recurrence
Ul = al0) + Bgl i, @ ation
where fj“fx(f):<j|e‘iHT|x>. Any sitey is in a mixed state if P,(E) = (E—\))P;-1(E) _wjz—lpj—Z(E)- (7)

|f)(1| <1, which also implies that the state transfer from _
site x to y is imperfect. Our goal here is to find a set®f  The Sturm sequence has an important property: the Eots

and\; to realize perfect state transfer. of P; interlace those oP;_—i.e.,
In [4], it is shown that when the couplings are chosen . . . _ . .
such thatHy=S,, whereS, is the x component of the spin El,<E3Z<E_,< - <E <Ej'<E. (8

operator of a spirS=(N-1)/2, or alternativelyHy=L -S,
subject to the constraint that ttrecomponent of the total This implies that
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sg Prn-1(E) ] = (- 1)sgri Pr-1(Ex-1)], (9)  equality must holdg’? should be a constant phaéedepen-
N ] ) dent ofk), and hence the condition in E¢L2) follows.
where E,=E, and Py\(E,)=0. We shall show immediately

that this interlacing property of the Sturm sequence deter- 1. Example
mines the parity of the eigenvectors. Two types of spectrum&, =—k andE,=k(k+q) for some
_ rational numbeg andk=0,1,2, ... N, suggested if4] can
1. Parity easily be shown to satisfy Eq12). However, these spectra
It is known that the Coefﬁcientalk, j=2,3,...N, of the are related to some known examples of special functions. To
eigenvectors are giveii9] by illustrate the generality of the method, we consider a4
tridiagonal matrix with the spectrurgy=1, E;=2, E,=3,
= Pi-1(EW o (10 andE;=2(1+m), for any integem= 1. The condition(12) is
010y W) b satisfied with7=7 and ¢y=0. One of the solutions for the
ok . o . K Hamiltonian[of the form of Eq.(3)] is found to be
with aj determined by the normalization condltldi?‘:1|aj|2
=1. We note that the parity of the eigenvectors can be ac0O0
determined by checking the relative sign ahy pair cbdo
of mirror-conjugate  coefficients. For  convenience, 0dbcl (14)
we  consider  sdmf/ak]=sgi Py 1(E)/ w10, wn_1]
=(-1)"sgriPn-1(E)], where (-1)"=sgriw o, - oy 00ca

From Egs.(9) and (10), if the eigenvectors are ordered in \ith a=2+1/(2m), b=m+2-1/(2m), c= J1-1/(4m?), and

/

decreasing eigenvalues—i.&,>E, > --->Ey—the pari- 4= The generality of generating engineered chains for per-
ties of them changalternatively Since Py-1(Ep)>0, the  fect state transfer is thus clear. On the other hand, it is inter-
parity of the highest-energy eigenstgtg) is only deter-  esting to note that in the limim>1, one may want to put
mined by (-1)". It is even(i.e., v=0), if all w;>0. As the a~2, b~m c~1, andd=m. However, sincea~O(1), al-
parity changes alternatively, once the parityl@j is known,  thoughms 2, changingb from m+2 to m would cause a
the parities of all other eigenvectors can be inferred immesarge error. This is also confirmed numerically. Therefore, in
diately. These can be summarized as such a limit, the requirement of precision is very high. In this
60 = (- D&y, (11) sense, energy spectra that yield more uniform coupling are

- more desirable from the engineering point of view.
fork=0,1,... N-1, Whereﬁng}\‘zlaﬂ 2 2. Continuous systems

An interesting consequence of E42) can also be found

C. Mirror inversion in infinite-dimensional systems. The eigenvalue spectra al-

Next, we require, for some time interval the eigenvalue lowed by Eq.(12) correspond to some canonical systems
spectrum ofHy to satisfy the relation such as harmonic well or infinite square well. In those cases,
e skic the necessary criterion for state inversion—namely, the par-

eT= (-1, (12 ity of the eigenstates—is automatically satisfied. For ex-

whered, is independent ok and the sign has to be taken 2MPle, the energy spectrum of an infinite square well is qua-
consistently for allk. For simplicity, we assume ath;>0. dratic B, =k’ fork=1,2,3,... ?[‘1(1 theigenfunctions/(x)
ConsidetU(7)|x)=32N1eEir|g)(g|x). When|g,) is replaced have a defl_mte pa_nty/k(x) :(—1)_ Hid(X). One can show that
with (-1)™[8)), together with the relation in Eq12), the (also mentioned iN21]) any single-particle wave function
completeness relation ==N-2e)(@&], and the double- Y(x.1) at x will be transported(up to a — sign to -,
inversion relatione,|j)=(&/j), one can show that Wix,h=-W(~x,t+7), for a period ofr=2mh/E,, whereg,
' is the ground state energy. This property has been discussed
U(n)|x) = e, (13)  recently in the literature on fractional wave- function revivals
[22], but its relevance to quantum communication and its
From Eq. (5), consequently, quantum states can be transconnection to the above general theory linking eigenvalue
ported from any site to its mirror-conjugate site after a  spectrum to perfect state transfer has not been appreciated.
fixed periodr. Once a spectrum is determined, the search foFor example, one can think of the following strategy for
the solutions ofw; and \; becomes an inverse eigenvalue communicating perfectly through those continuous systems.
problem. There are some efficient algorithms available in theye can encode the information of a qugliiot necessarily
literature for accomplishing the task—for examp&®9] and  qubit) to the spin degree of freedom of a boson or fermion in
references therein. a stateW(x,t=0) which is initially localized aroundck. At t

Here we also note that the condition in E42) is not = the particle will arrivex and the information can be
only sufficient but alsmecessaryor perfect state transfer in - extracted.

mirror-symmetric networks. To prove that it is necessary, we
set for some time 7, 1=[(X]U(7|X)|=|Z(e|x)|%€% D. Effective two-qubit gates

<3 [(&|x)[>=1, where®=eE(-1)* and we have used  Two identical fermions(bosons at sitesx andy is de-
the normalization condition in the last step. As the abovescribed by the antisymmetriz§dymmetrized product state
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|Xy>:(1/\s§)(|x>|y>i|y>|x)), with — (4) sign for fermions E. Entanglement generation and communication

(bosong. = Similarly, the two-particle eigenstatese) The entanglement generation protocol§6hcan now be

=(1N2)(ledle) £|e)ley) are also antisymmetrized or sym- generalized. These protocols require minimal spatial and

metrized accordingly. For many fermion excitations, thetemporal control of the individual qubits and are also advan-

states are more convenient to be represented by a Slater dageous in that, after extracting the entangled states atsites

terminant. Besides, in the mapping of spin states to fermionieindx, the whole procedures can be repeated by replacing the

states, we adopt the conventiph5] that the site indices are extracted state with the corresponding initial states. The con-

arranged in ascending order. Thus, in a spin chain havingguration of the intermediate sites or spins will not be

spin-up states at andy but spin-down for all other spins, changed after each cyclexcept the middle site in protocol

the spin state corresponds to the fermionic state if x 1, which can act as a trigger of the evolutioMoreover,

<y andlyx) if y<x. these protocols can be deployed for studying the dynamics of
By effective gate, we mean the configuration of all theentanglement floWj23].

sites after the network evolution is the same as before, except

that the state of the pair of qubits atand X is changed 1. Entanglement generation protocol 1

according to a logic gatel,. The simplest way is to choose  For a linear bosonic or fermionic chain with odd number

all other sites to be emptor all other spins being the spin- of sjtes, the entanglement generation problem can be mapped

down state for spin chaifsUsing similar tricks as before, to the state transfer problem. [i6], only one specific type of

one can show that mapping is discussed—namely, the one proportiona$,to
Here, with the enlarged set of choices for the coupling con-
U(7)|xy) = € 29N[xy). (15) stants, we can generalize the mapping by including the pos-

sibility of nonzero diagonal coupling terms. For the sake of

If y=X, then there is an extra factér1) for fermionic states comparison with protocol 2, we outline briefly the mapping

but not bosonic states, after exchanging the site indices. V\}%elow. . . .
define a new basis witlo0) =|0), |10)=|x), [02) =[x}, and Suppose the coupling constants still satisfy the symmetry

111)=|xx). In this basis, an effective two-qubit gtk can relations in Eq.(6), we consiger a bas_is conisting of maxi-
be constructed readily for any conjugate pair of sikemdx ~ Mally ~ entangled states |J>E(1/\"2)(|J>+ll>) for ]
(see Fig. I =1,2,...n-1, and a statéi) =|n), wheren=5(N+1) is the
position of the middle site. The Hamiltonian in Ed.) acts
in this basis as

1 0 0 0
0 0 eitn 0 N oo O 0
U= 0 €™ 0 0 ’ (16) W Ny wy 0
0 0 0 (-1)7e 2N 0 wr, N\g - 0 , a7
R
where#=1(0) for fermions(bosons. The effective gate for a 0 0 0 V’Ewn_l A,

three-spin chain if6] is a special case ofJ, here. It is
known[24] that any two-qubit gate that can create entanglewhich is also a real and symmetric tridiagonal matrix-hg
ment between two qubits is universal for quantum computatbut the size is about half of)itSuppose the initial state is
tion, when assisted by one-qubit operations. Here we assunf@—i.e., a single boson or fermion at the middle site but
such one-qubit gates are available and we will show that empty for all other sites. The task of entanglement generation
can create entanglement for fermionic chai@d spin for the remote pair of sites located at 1 anisthe same as
chaing and hence is universal for quantum computation. Foro rotate from the unentangled stéfi to the entangled state
bosonic chains, howevedy is not entangling but it allows 7y rps is equivalent to the state transfer problem we have
two-way communication—i.e., transfer states from both endgis.;ssed and can be solved in exactly the same way.
simultaneously. On the other hand, for linear chains with an even number
of sites, a similar protocdl6] can be used for transferring
Ux entanglement fromnow redefinedl [AY= (1/2)(|n)+[n)),

| | wheren=N/2, to the remote pair of sitd&). However, this
o ' _ _Q _ _O_ _ O_ _ . o requires the local pair of sites in the middle to be maximally
x y I entangled initially and is therefore an entanglement transfer
| protocol.
U, The two protocols above require the initialization to be
made in the middle of the chains. After the free evolution,
FIG. 1. In engineered fermionic and bosonic chains, when théhe entangled states are then extracted at the ends of the
spectrum of the single-particle Hamiltonian in Hg) satisfies the chains. In situations where we are allowed to have access

relation(12), effective gates on mirror-conjugate pairs of sites, suchonly to the pair of sites we want to entangle, protocol 2, as
as(x,x) and(y,y), can be constructed by free network evolution. we shall see next, will be more useful. However, protocol 1

032310-4



PERFECT STATE TRANSFER, EFFECTIVE GATES, PHYSICAL REVIEW A 71, 032310(2005

works for both fermionic and bosonic chains but protocol 2this implies the possibility of simultaneous transfer of quan-

is applicable for fermionic chains only. tum state from sitex to sitex and vice versa. Let us define
the protocol more clearly. Suppose Alice and Bob are send-
2. Entanglement generation protocol 2 ing their states at andx, respectively. We consider the ini-

We now show that any pair of mirror-conjugate sites tial state is in a product state, whiqh can be writt_en in ggneral
andx can be maximally entangled with the applicatiorthf S (80/0)+a|1),)(bolO)x+bs[1)5), with all other sites being
and the state initialization atandx only. For simplicity, all €mpty. Applying U, yields (bo|0),+e&™Nby|1),)(ag|0)x
other sites are set to be emgtyr spin-down in applying to +€“Nay|1)y). Therefore, both states can be sent simulta-
spins chaing First of all, for any normalized pure state of neously. Interestingly, different parities can use the same
two qubits,a|00)+b|01)+c|01)+d|11), where|al>+|b[>+|c[>  channel, but on different conjugate pair of sites, at the same
+|d?=1, the concurrenc€=2/ad-bd is a measure of en- time without mutual interference.
tanglement25]. The two sites are unentangled whér0

and maximally entangled whef=1. Suppose the two sites . CONCLUSION
are initially in a product state—i.eqd=bc—and all other
sites being empty. With the application bf,, the concur- We have demonstrated how to perform quantum state

rence becomes |&d-(-1)7bc=2(1-(-1)7)|ad]. Conse- transfer and construct effective two-qubit gates in engineered
quently, for fermionic chaingwith »=1), the sitesx andx  Nnetworks in which the coupling constants are determined by
can be maximally entangled from any initial product statethe eigenvalue spectrum satisfying a certain condition. This
with ad=bc and|ad|=2. For example, if the initial state is condition is shown to be both sufficient and necessary in
l+) |+) where|+>:(1/\f§)(|0>+|1>), then the entanglement mirror-symmetrical networks. The possibility of perfect com-

of the final state can be made explicit by expressing it in thénu_nic_ayion between distant sites of a single harmonic trap or

Schmidt form (1/v"§)(|0>|¢> y+e D)), where |db,) an infinitely deep square well has been discussed. The effec-

—(1/\2)(10y+ e i1 q N -0 - * tive gates for fermionic networks, including spin chains, are

=(1\2)(|0)xe™1)) and(e.|¢-)=0. i ntangling and hence can be used for universal quantum
Last, we note that the protocol for generating a class o

ook omputation. Two entanglement generation schemes are pro-
multipartite entangled states, called graph states, suggestgflseq The first one works for both fermionic and bosonic
in [5], can also be extended for the more general Hamil

b s ; ‘chains but the second one is for the fermionic chains only.
tonian in Eq.(1) with various spectra. Nonetheless, the bosonic chain allows two-way communica-
tion for different pair of sites simultaneously without mutual
interference.

For bosonic chains, one can show that the entanglement
of any pure state between sitegndX is invariant after the ACKNOWLEDGMENTS
application ofU,. In fact, the net effect of the free evolution
of the network, with any initial configurations, for a period  M.H.Y. acknowledges the support of the Croucher Foun-
of 7is an inversion of quantum states about the center of thdation. We thank S. Benjamin for valuable discussions and
chain, apart from an extra induced phas¥~. Nonetheless, D. Burgarth for pointing out a relevant reference.

3. Two-way communication

[1] M. A. Nielsen and I. L. ChuangQuantum Computation and [10] S. C. Benjamin and S. Bose, Phys. Rev. L0, 247901

Quantum Information(Cambridge University Press, Cam- (2003; Phys. Rev. A70, 032314(2004).
bridge, England, 2000 [11] L. Amico, A. Osterloh, F. Plastina, R. Fazio, and G. M. Palma,
[2] S. Bose, Phys. Rev. Let91, 207901(2003; V. Subrahman- Phys. Rev. A69, 022304(2004); G. De Chiara, R. Fazio, C.
yam, Phys. Rev. A69, 034304(2004). Macchiavello, S. Montangero, and G. M. Palmhbid. 70,
[3] M. Christandl, N. Datta, A. Ekert, and A. J. Landahl, Phys. 062308(2004); V. Giovannetti and R. Fazio, e-print quant-ph/
Rev. Lett. 92, 187902(2004. 0405110.
[4] C. Albanese, M. Christandl, N. Datta, and A. Ekert, Phys. Rev[12] A. Biswas and G. S. Agarwal, Phys. Rev. A0, 022323
Lett. 93, 230502(2004. (20049); K. Fujii, K. Higashida, R. Kato, and Y. Wada, e-print
[5] S. R. Clark, C. Moura Alves, and D. Jaksch, e-print quant-ph/ quant-ph/0312060; Y. Li, T. Shi, B. Chen, Z. Song, and C. P.
0406150. Sun, e-print quant-ph/0406159; M. Paternostro, G. M. Palma,
[6] M.-H. Yung, D. W. Leung, and S. Bose, Quantum Inf. Com- M. S. Kim, and G. Falci, e-print quant-ph/0407058.
mun. 4, 174(2003. [13] L.-M. Duan, E. Demler, and M. D. Lukin, Phys. Rev. Letl,
[7] T. J. Osborne and N. Linden, Phys. Rev68, 052315(2004); 090402 (2003; J. K. Pachos and P. L. Knightpid. 91,
H. L. Haselgrove, e-print quant-ph/0404152. 107902(2003.
[8] D. Burgarth and S. Bose, e-print quant-ph/0406112. [14] N. Khaneja and S. J. Glaser, Phys. Rev.68, 060301R)
[9] M. B. Plenio, J. Hartley, and J. Eisert, New J. Phys.36 (2002.
(2004; M. B. Plenio and F. L. Semiao, e-print quant-ph/ [15] P. Zanardi, Phys. Rev. 45, 042101(2002.
0407034. [16] S. SachdevQuantum Phase Transition&€ambridge Univer-

032310-5



M.-H. YUNG AND S. BOSE PHYSICAL REVIEW A71, 032310(2005

sity Press, Cambridge, England, 1992. Nazario and D. . Mechanics(Longman, Harlow, 1989

Santiago, e-print cond-mat/0312417. [22] D. L. Aronstein and C. R. Stroud, Jr., Phys. Rev55, 4526
[17] P. Jordan and E. Wigner, Z. Phy47, 631(1928. (1997).
[18] E. Farhi and S. Gutmann, Phys. Rev.58, 915(1998. [23] T. S. Cubitt, F. Verstraete, and J. I. Cirac, e-print quant-ph/
[19] J. H. Wilkinson, The Algebraic Eigenvalue ProblefClaren- 0404179.

don Press, Oxford, 1965B. N. Parlett,The Symmetric Eigen-
value Problem(SIAM, Philadelphia, 1998

[20] G. M. L. Gladwell, Inverse Problems in VibratiotMartinus
Nijhoff, Boston, 1986.

[21] B. H. Bransden and C. J. Joachaintroduction to Quantum

[24] M. J. Bremner, C. M. Dawson, J. L. Dodd, A. Gilchrist, A. W.
Harrow, D. Mortimer, M. A. Nielsen, and T. J. Osborne, Phys.
Rev. Lett. 89, 247902(2002.

[25] S. Hill and W. K. Wootters, Phys. Rev. Letf8, 5022(1997).

032310-6



