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We show how to achieve perfect quantum state transfer and construct effective two-qubit gates between
distant sites in engineered bosonic and fermionic networks. The Hamiltonian for the system can be determined
by choosing an eigenvalue spectrum satisfying a certain condition, which is shown to be both sufficient and
necessary in mirror-symmetrical networks. The natures of the effective two-qubit gates depend on the exchange
symmetry for fermions and bosons. For fermionic networks, the gates are entanglingsand thus universal for
quantum computationd. For bosonic networks, though the gates are not entangling, they allow two-way simul-
taneous communications. Protocols of entanglement generation in both bosonic and fermionic engineered
networks are discussed.
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I. INTRODUCTION

Quantum state transfer, two-qubit gates, and entanglement
are essential in quantum information theory and quantum
computationf1g. Recently, there have been many proposals
f2–12g exploiting thefree evolution of spin networks for ac-
complishing these tasks. The main idea is to minimize the
spatial and dynamical control, which is experimentally chal-
lenging, on the interactions between qubits. Imperfect state
transfer over homogeneous spin chains has been studied
f2,6g for Heisenberg andXY Hamiltonians. A measurement-
based state transfer schemef8g has been suggested for dual-
spin channels. Perfect state transferf3g, state inversionf4g,
and graph state generationf5g have been proposed for engi-
neered spin chains in which the couplings between qubits are
tunable. Quantum computation using permanently coupled
spin chains has been proposedf6,10g. Furthermore, other dy-
namical propertiesf11g of spin chains and state transfer
schemesf12g have also been studied.

In this paper, we generalize the results inf3,4,6g for en-
gineered networks. In Refs.f3,4g two types of engineered
networks which accomplish perfect quantum state transfer
have been presented. These networks depend on the known
properties of special functions, and hence the choice of the
eigenvalue spectrum and the network couplings is limited.
One of the aims of this paper is to show how one could
“design” such engineered networks without reference to any
special functions. One simply has to choose an eigenvalue
spectrum from an infinite set of possibilities satisfying a cer-
tain condition fcf. Eq. s12dg, which is both sufficient and
necessary. The network couplings can then be found by solv-
ing a structured inverse eigenvalue problem. As a conse-
quence of this approach we note that even a single infinitely
deep square well or a single harmonic well enables perfect

state transfer from across a distance. Inspired by the recent
rapid experimental development in optical latticesssee, e.g.,
f13g and references thereind, our discussion will be presented
in terms of fermionic and bosonic networks with the pres-
ence or absence of a boson or fermion at a site representing
the 0 and 1 states of a qubit. Certain spin networks are clas-
sified to be fermionic, as we shall discuss.

Another aim of this paper is to show that effective two-
qubit gates over remote qubit pairs can be constructed in
those engineered networks. For fermionic ones, including
spin chains, the effective gates are entangling and hence uni-
versal for quantum computation. For bosonic networks, the
gates are not entangling, but they allow two-way communi-
cation for different pairs of sites simultaneously without mu-
tual interference. Finally, protocols for entanglement genera-
tion and transfer will also be discussed. In contrast to the
scheme proposed inf14g, these protocols require minimal
spatial and temporal control on individual qubits.

II. ENGINEERED NETWORKS

We start with a system consisting of spinless fermionssor
bosonsd hopping freely in a network ofN lattice sites. In fact,
the particles need not literally be spinless, but they all need
to be polarized in the same spin state, and there should not be
any interactions involving spin. The Hamiltonian is therefore
of the following form:

H = o
ki,jl

vi jsai
†aj + aj

†aid + o
j=1

N

l jnj , s1d

where ki , jl denotes nearest-neighbor coupling,vi j is the
time-independent coupling constant between the sitei and
site j , and l j represents the strength of the external static
potential at sitej . The annihilation operatorsaj obey the
standardsantidcommutation relations for bosonssfermionsd
andnj =aj

†aj is the number operator. This model may be con-
sidered as the strong tunneling limit of the Hubbard model
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f15g for fermions and Bose-Hubbard modelf16g for bosons.
In particular, for one-dimensional fermionic chains, this
model can be mapped to spin chains in which spins are
coupled through theXY Hamiltonian

H =
1

2o
j=1

N−1

v jss j
xs j+1

x + s j
ys j+1

y d +
1

2o
j=1

N

l jss j
z + 1d s2d

by the Jordan-Wigner transformationf17g. Therefore, such
spin chains will be classified as fermionic, even though the
individual spins are distinguishable.

Since the HamiltonianH commutes with the total number
operatorntot=o j=1

N nj or the totalz-spin operatorStot
z =o j=1

N s j
z,

the Hilbert space can be decomposed into subspaces consist-
ing of the eigenstates ofntot or Stot

z . Furthermore, as the par-
ticles are noninteracting, the eigenstates in then-particle sub-
space are the antisymmetrizedssymmetrizedd products of the
single-particle eigenstates for fermionssbosonsd.

A. Quantum state transfer

Quantum state transfer over a network is similar to the
quantum random walk problem, where a variety of networks
are equivalent to one-dimensional chainsf3,18g. Therefore,
we will now focus on a chain ofN sites. Forj =1,2, . . . ,N,
let u jl be the state where a single fermionsor bosond is at the
site j but is in the empty stateu0l for all other sites andu0l be
the vacuum state where all sites are empty. For spin chains,
u0l corresponds to the state where all the spins are in the
spin-down stateu↓l and u jl corresponds to a spin-up stateu↑l
for the j th spin and spin-down for all other spins. The Hamil-
tonian in this single-particle subspace can be written in a
tridiagonal form, which is real and symmetric:

HN =1
l1 v1 0 ¯ 0

v1 l2 v2 ¯ 0

0 v2 l3 ¯ 0

] ] ] � vN−1

0 0 0 vN−1 lN

2 . s3d

The quantum state transfer protocol involves two steps:
initialization and evolution. First, a quantum stateau0l
+bu1l to be sent is encoded at sitex. The initial state of the
network is described byuwxl=au0l+buxl. Then, the network
couplingsv j andl j are switched on and the whole system is
allowed to evolve underUstd=exps−iHtd for a fixed time
interval t=t. The final state becomes

Ustduwxl = au0l + bo
j=1

N

f j ,x
N stdu jl, s4d

where f j ,x
N std=k j ue−iHtuxl. Any site y is in a mixed state if

ufy,x
N stdu,1, which also implies that the state transfer from

site x to y is imperfect. Our goal here is to find a set ofv j
andl j to realize perfect state transfer.

In f4g, it is shown that when the couplings are chosen
such thatHN=Sx, whereSx is the x component of the spin
operator of a spinS=sN−1d /2, or alternativelyHN=L ·S,
subject to the constraint that thez component of the total

angular momentumJ=L +S being zero, then a mirror inver-
sion of eigenstates with respect to the center of a linear chain
can be implemented. This implies that a quantum state at site
x can be transferred perfectly to itsmirror-conjugatesite x̄
=N−x+1,

Ustduwxl = au0l + e−ifNbux̄l, s5d

where in generalfNÞ0 and a single-qubit operation on the
site x̄ is required to remove it, in order to reconstruct the
original state there.

In the next section, we will introduce a systematic way to
find the sets ofv j andl j for state inversion and hence perfect
state transfer even if we did not use any of the above ex-
amples. Instead of solving the eigenvalue problem, we will
first choosea desired eigenvalue spectrumfcf. Eq. s12dg for
HN and the solutions forv j and l j can be found from the
spectrum and the symmetrical properties ofHN. It is there-
fore an inverse eigenvalue problem.

B. Symmetrical properties of HN

State inversion by free evolution crucially depends onsad
the reflection symmetry andsbd the eigenvalue spectrum. By
reflection symmetry, we mean forj =1,2, . . . ,bN/2c,

l j = l j̄ and v j = vN−j Þ 0. s6d

Thus,HN has double symmetriessalso known as persymmet-
ricd, along both the main diagonal and the second diagonal.
We shall now show that if the above symmetries are present
in HN, then one only needs the eigenvalue spectrum to satisfy
a certain conditionfcf. Eq. s12dg in order to achieve state
inversion. This condition will later be shown not only suffi-
cient but also necessary for state transfer in mirror-
symmetric networks. As a consequence of the above symme-
tries, the eigenvectorsuekl=o j=1

N aj
ku jl have definite parities—

i.e., being either even or odd with respect to the mirror-
conjugate operationj → j̄ . In fact, the eigenvectors can be
determinedfcf. Eq. s10dg explicitly. However, we need to
know which one would change sign when inverted. This can
be determined by the interlacing property described below.

Let PNsEd=Pk=0
N−1sE−Ekd be the characteristic polynomi-

als ofHN and denote thej th leading principal minorsi.e., the
characteristic polynomial obtained by the firstj rows and
columns of a matrixd of the matrixEI−HN by PjsEd, whereI
is the N3N identity matrix andE is a real number. With
P0;1 and P1;E−l1, the sequence ofPjsEd is a Sturm
sequencef19g and for j =1,2, . . . ,N, it satisfies a recurrence
relation

PjsEd = sE − l jdPj−1sEd − v j−1
2 Pj−2sEd. s7d

The Sturm sequence has an important property: the rootsEk
j

of Pj interlace those ofPj−1—i.e.,

Ej−1
j , Ej−2

j−1 , Ej−2
j , ¯ , E1

j , E0
j−1 , E0

j . s8d

This implies that
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sgnfPN−1sEkdg = s− 1dsgnfPN−1sEk−1dg, s9d

where Ek;Ek
N and PNsEkd=0. We shall show immediately

that this interlacing property of the Sturm sequence deter-
mines the parity of the eigenvectors.

1. Parity

It is known that the coefficientsaj
k, j =2,3, . . . ,N, of the

eigenvectors are givenf19g by

aj
k =

Pj−1sEkd
v1v2 ¯ v j−1

a1
k, s10d

with a1
k determined by the normalization conditiono j=1

N uaj
ku2

=1. We note that the parity of the eigenvectors can be
determined by checking the relative sign ofany pair
of mirror-conjugate coefficients. For convenience,
we consider sgnfaN

k /a1
kg=sgnfPN−1sEkd /v1v2¯vN−1g

=s−1dn sgnfPN−1sEkdg, where s−1dn;sgnfv1v2¯vN−1g.
From Eqs.s9d and s10d, if the eigenvectors are ordered in
decreasing eigenvalues—i.e.,E0.E1. ¯ .EN−1—the pari-
ties of them changealternatively. Since PN−1sE0d.0, the
parity of the highest-energy eigenstateue0l is only deter-
mined by s−1dn. It is evensi.e., n=0d, if all v j .0. As the
parity changes alternatively, once the parity ofue0l is known,
the parities of all other eigenvectors can be inferred imme-
diately. These can be summarized as

uēkl = s− 1dk+nuekl, s11d

for k=0,1, . . . ,N−1, whereuēkl;o j=1
N aj

ku j̄l.

C. Mirror inversion

Next, we require, for some time intervalt, the eigenvalue
spectrum ofHN to satisfy the relation

e−iEkt = s− 1d±ke−ifN, s12d

wherefN is independent ofk and the6 sign has to be taken
consistently for allk. For simplicity, we assume allv j .0.
ConsiderUstduxl=ok=0

N−1e−iEktueklkekuxl. Whenuekl is replaced
with s−1d−kuēkl, together with the relation in Eq.s12d, the
completeness relationI =ok=0

N−1uēklkēku, and the double-

inversion relationkeku jl=kēku j̄l, one can show that

Ustduxl = e−ifNux̄l. s13d

From Eq. s5d, consequently, quantum states can be trans-
ported from any sitex to its mirror-conjugate sitex̄ after a
fixed periodt. Once a spectrum is determined, the search for
the solutions ofv j and l j becomes an inverse eigenvalue
problem. There are some efficient algorithms available in the
literature for accomplishing the task—for examplef20g and
references therein.

Here we also note that the condition in Eq.s12d is not
only sufficient but alsonecessaryfor perfect state transfer in
mirror-symmetric networks. To prove that it is necessary, we
set for some time t, 1=ukx̄uUstduxlu= uokukekuxlu2eiwku
øokukekuxlu2=1, whereeiwk;e−iEkts−1dk and we have used
the normalization condition in the last step. As the above

equality must hold,eiwk should be a constant phasesindepen-
dent ofkd, and hence the condition in Eq.s12d follows.

1. Example

Two types of spectrums,Ek=−k andEk=ksk+qd for some
rational numberq andk=0,1,2, . . . ,N, suggested inf4g can
easily be shown to satisfy Eq.s12d. However, these spectra
are related to some known examples of special functions. To
illustrate the generality of the method, we consider a 434
tridiagonal matrix with the spectrumE0=1, E1=2, E2=3,
andE3=2s1+md, for any integermù1. The conditions12d is
satisfied witht=p and fN=0. One of the solutions for the
Hamiltonianfof the form of Eq.s3dg is found to be

1
a c 0 0

c b d 0

0 d b c

0 0 c a
2 , s14d

with a=2+1/s2md, b=m+2−1/s2md, c=Î1−1/s4m2d, and
d=m. The generality of generating engineered chains for per-
fect state transfer is thus clear. On the other hand, it is inter-
esting to note that in the limitm@1, one may want to put
a<2, b<m c<1, andd=m. However, sincea,Os1d, al-
though m@2, changingb from m+2 to m would cause a
large error. This is also confirmed numerically. Therefore, in
such a limit, the requirement of precision is very high. In this
sense, energy spectra that yield more uniform coupling are
more desirable from the engineering point of view.

2. Continuous systems

An interesting consequence of Eq.s12d can also be found
in infinite-dimensional systems. The eigenvalue spectra al-
lowed by Eq. s12d correspond to some canonical systems
such as harmonic well or infinite square well. In those cases,
the necessary criterion for state inversion—namely, the par-
ity of the eigenstates—is automatically satisfied. For ex-
ample, the energy spectrum of an infinite square well is qua-
dratic Ek~k2, for k=1,2,3, . . . and theeigenfunctionscksxd
have a definite paritycksxd=s−1dk−1cksxd. One can show that
salso mentioned inf21gd any single-particle wave function
Csx,td at x will be transportedsup to a 2 signd to −x,
Csx,td=−Cs−x,t+td, for a period oft=2p" /E1, whereE1

is the ground state energy. This property has been discussed
recently in the literature on fractional wave- function revivals
f22g, but its relevance to quantum communication and its
connection to the above general theory linking eigenvalue
spectrum to perfect state transfer has not been appreciated.
For example, one can think of the following strategy for
communicating perfectly through those continuous systems.
We can encode the information of a quditsnot necessarily
qubitd to the spin degree of freedom of a boson or fermion in
a stateCsx,t=0d which is initially localized aroundx. At t
=t, the particle will arrivex̄ and the information can be
extracted.

D. Effective two-qubit gates

Two identical fermionssbosonsd at sitesx and y is de-
scribed by the antisymmetrizedssymmetrizedd product state
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uxyl=s1/Î2dsuxluyl± uyluxld, with 2 s1d sign for fermions
sbosonsd. Similarly, the two-particle eigenstatesuekll
=s1/Î2dsuekluell± uelluekld are also antisymmetrized or sym-
metrized accordingly. For many fermion excitations, the
states are more convenient to be represented by a Slater de-
terminant. Besides, in the mapping of spin states to fermionic
states, we adopt the conventionf4,5g that the site indices are
arranged in ascending order. Thus, in a spin chain having
spin-up states atx and y but spin-down for all other spins,
the spin state corresponds to the fermionic stateuxyl if x
,y and uyxl if y,x.

By effective gate, we mean the configuration of all the
sites after the network evolution is the same as before, except
that the state of the pair of qubits atx and x̄ is changed
according to a logic gateUx. The simplest way is to choose
all other sites to be emptysor all other spins being the spin-
down state for spin chainsd. Using similar tricks as before,
one can show that

Ustduxyl = e−2ifNux̄ȳl. s15d

If y= x̄, then there is an extra factors−1d for fermionic states
but not bosonic states, after exchanging the site indices. We
define a new basis withu00l;u0l, u10l;uxl, u01l;ux̄l, and
u11l;uxx̄l. In this basis, an effective two-qubit gateUx can
be constructed readily for any conjugate pair of sitesx andx̄
ssee Fig. 1d:

Ux =1
1 0 0 0

0 0 e−ifN 0

0 e−ifN 0 0

0 0 0 s− 1dhe−2ifN
2 , s16d

whereh=1s0d for fermionssbosonsd. The effective gate for a
three-spin chain inf6g is a special case ofUx here. It is
known f24g that any two-qubit gate that can create entangle-
ment between two qubits is universal for quantum computa-
tion, when assisted by one-qubit operations. Here we assume
such one-qubit gates are available and we will show thatUx
can create entanglement for fermionic chainssand spin
chainsd and hence is universal for quantum computation. For
bosonic chains, however,Ux is not entangling but it allows
two-way communication—i.e., transfer states from both ends
simultaneously.

E. Entanglement generation and communication

The entanglement generation protocols inf6g can now be
generalized. These protocols require minimal spatial and
temporal control of the individual qubits and are also advan-
tageous in that, after extracting the entangled states at sitesx
andx̄, the whole procedures can be repeated by replacing the
extracted state with the corresponding initial states. The con-
figuration of the intermediate sites or spins will not be
changed after each cyclesexcept the middle site in protocol
1, which can act as a trigger of the evolutiond. Moreover,
these protocols can be deployed for studying the dynamics of
entanglement flowf23g.

1. Entanglement generation protocol 1

For a linear bosonic or fermionic chain with odd number
of sites, the entanglement generation problem can be mapped
to the state transfer problem. Inf6g, only one specific type of
mapping is discussed—namely, the one proportional toSx.
Here, with the enlarged set of choices for the coupling con-
stants, we can generalize the mapping by including the pos-
sibility of nonzero diagonal coupling terms. For the sake of
comparison with protocol 2, we outline briefly the mapping
below.

Suppose the coupling constants still satisfy the symmetry
relations in Eq.s6d, we consider a basis consisting of maxi-
mally entangled states u j̃l;s1/Î2dsujl+ u j̄ld for j
=1,2, . . . ,n−1, and a stateuñl;unl, wheren= 1

2sN+1d is the
position of the middle site. The Hamiltonian in Eq.s1d acts
in this basis as

1
l1 v1 0 ¯ 0

v1 l2 v2 ¯ 0

0 v2 l3 ¯ 0

A A A �
Î2vn−1

0 0 0 Î2vn−1 ln

2 , s17d

which is also a real and symmetric tridiagonal matrix asHN
sbut the size is about half of itd. Suppose the initial state is
uñl—i.e., a single boson or fermion at the middle site but
empty for all other sites. The task of entanglement generation

for the remote pair of sites located at 1 and 1¯is the same as
to rotate from the unentangled stateuñl to the entangled state

u1̃l. This is equivalent to the state transfer problem we have
discussed and can be solved in exactly the same way.

On the other hand, for linear chains with an even number
of sites, a similar protocolf6g can be used for transferring
entanglement fromsnow redefinedd uñl;s1/Î2dsunl+ un̄ld,
wheren=N/2, to the remote pair of sitesu1̃l. However, this
requires the local pair of sites in the middle to be maximally
entangled initially and is therefore an entanglement transfer
protocol.

The two protocols above require the initialization to be
made in the middle of the chains. After the free evolution,
the entangled states are then extracted at the ends of the
chains. In situations where we are allowed to have access
only to the pair of sites we want to entangle, protocol 2, as
we shall see next, will be more useful. However, protocol 1

FIG. 1. In engineered fermionic and bosonic chains, when the
spectrum of the single-particle Hamiltonian in Eq.s3d satisfies the
relations12d, effective gates on mirror-conjugate pairs of sites, such
as sx, x̄d and sy, ȳd, can be constructed by free network evolution.
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works for both fermionic and bosonic chains but protocol 2
is applicable for fermionic chains only.

2. Entanglement generation protocol 2

We now show that any pair of mirror-conjugate sitesx
andx̄ can be maximally entangled with the application ofUx
and the state initialization atx and x̄ only. For simplicity, all
other sites are set to be emptysor spin-down in applying to
spins chainsd. First of all, for any normalized pure state of
two qubits,au00l+bu01l+cu01l+du11l, whereuau2+ ubu2+ ucu2
+ udu2=1, the concurrenceC=2uad−bcu is a measure of en-
tanglementf25g. The two sites are unentangled whenC=0
and maximally entangled whenC=1. Suppose the two sites
are initially in a product state—i.e.,ad=bc—and all other
sites being empty. With the application ofUx, the concur-
rence becomes 2uad−s−1dhbcu=2s1−s−1dhduadu. Conse-
quently, for fermionic chainsswith h=1d, the sitesx and x̄
can be maximally entangled from any initial product state
with ad=bc and uadu= 1

4. For example, if the initial state is
u1l u1l where u+l=s1/Î2dsu0l+ u1ld, then the entanglement
of the final state can be made explicit by expressing it in the
Schmidt form s1/Î2dsu0luf+l+e−ifNu1luf−ld, where uf±l
=s1/Î2dsu0l±e−ifNu1ld and kf+ uf−l=0.

Last, we note that the protocol for generating a class of
multipartite entangled states, called graph states, suggested
in f5g, can also be extended for the more general Hamil-
tonian in Eq.s1d with various spectra.

3. Two-way communication

For bosonic chains, one can show that the entanglement
of any pure state between sitesx and x̄ is invariant after the
application ofUx. In fact, the net effect of the free evolution
of the network, with any initial configurations, for a period
of t is an inversion of quantum states about the center of the
chain, apart from an extra induced phasee−ifN. Nonetheless,

this implies the possibility of simultaneous transfer of quan-
tum state from sitex to site x̄ and vice versa. Let us define
the protocol more clearly. Suppose Alice and Bob are send-
ing their states atx and x̄, respectively. We consider the ini-
tial state is in a product state, which can be written in general
as sa0u0lx+a1u1lxdsb0u0lx̄+b1u1lx̄d, with all other sites being
empty. Applying Ux yields sb0u0lx+e−ifNb1u1lxdsa0u0lx̄

+e−ifNa1u1lx̄d. Therefore, both states can be sent simulta-
neously. Interestingly, different parities can use the same
channel, but on different conjugate pair of sites, at the same
time without mutual interference.

III. CONCLUSION

We have demonstrated how to perform quantum state
transfer and construct effective two-qubit gates in engineered
networks in which the coupling constants are determined by
the eigenvalue spectrum satisfying a certain condition. This
condition is shown to be both sufficient and necessary in
mirror-symmetrical networks. The possibility of perfect com-
munication between distant sites of a single harmonic trap or
an infinitely deep square well has been discussed. The effec-
tive gates for fermionic networks, including spin chains, are
entangling and hence can be used for universal quantum
computation. Two entanglement generation schemes are pro-
posed. The first one works for both fermionic and bosonic
chains but the second one is for the fermionic chains only.
Nonetheless, the bosonic chain allows two-way communica-
tion for different pair of sites simultaneously without mutual
interference.
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