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Quantum-state transfer via the ferromagnetic chain in a spatially modulated field
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We show that a perfect quantum-state transmission can be realized through a spin chain possessing the
commensurate structure of an energy spectrum, which is matched with the corresponding parity. As an expo-
sition of the mirror inversion symmetry discovered by Albanesal. (e-print quant-ph/0405029the parity
matched commensurability of the energy spectra helps us to present preengineered spin systems for quantum
information transmission. Based on these theoretical analyses, we propose a protocol of near-perfect quantum-
state transfer by using a ferromagnetic Heisenberg chain with uniform coupling constant, but an external
parabolic magnetic field. The numerical results show that the initial Gaussian wave packet in this system with
optimal field distribution can be reshaped near perfectly over a longer distance.
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Recently quantum information processift@lP) protocols this elegant conception by explicitly considering the spec-
have been considered with quantum gdir3] (or quasispin  trum structure and the corresponding parities of such a MIS
[4]) systems. The simple spin chains have been explored assystem. We discover that the MIS can be implemented in a
coherent data b$-8§]. It provides us with a quantum chan- universal quantum spin system with a commensurate spectral
nel for perfect transmission of quantum states when the spistructure matching the corresponding parities. With the help
chain is preengineerefB]. An isotropic antiferromagnetic of this discovery, we, in principle, can propose various sce-
spin ladder system was proposed as a novel robust kind ¢farios for perfect and near-perfect quantum information
quantum data bufl0]. Due to a large spin gap existing in transmission through the preengineered quantum spin chains.
such a perfect medium, the effective Hamiltonian of the twowe give an example that seems to be more complicated than
connected spins can be archived as that of a Heisenberg tyfigose by others.
by adiabatic elimination, which possesses an effective cou- Furthermore, a scheme, based on our theoretical analysis
pling strength inversely proportional to the distance of theto realize near-perfect quantum-state transfer, is proposed
two spins and thus the quantum information can be transwith the quantum channel by a ferromagnetic Heisenberg
ferred between the two spins separated by a longer distancehain with uniform coupling constant, but an external para-
i.e., the characteristic time of quantum state transferring linpolic magnetic field. Numerical results show that, for the
early depends on the distance. Such a gapped spin systesptimal field distribution, this system can perform a near-
can be used as a perfect quantum channel for perfect quaperfect transfer for a Gaussian wave packet over a longer
tum state transmission if local measurements of the indidistance.
vidual spins can be implemented. In fact, it has been proved To sketch our central idea, let us first consider a single-
by Verstraeteet al. [2,3] that the ground states of a spin particle system with the usual spatial refection symmetry
system with energy gap possess an infinite entanglemeq§RS in the HamiltonianH. Let P be the spatial refection
length opposed to their finite correlation length. operator. The SRS is implied yd,P]=0. Now we prove

The physical process of quantum-state transmissiofhat, after times/E,, any statey(r) can evolve into the

through a quantum spin system can be understood as a disflected state #(~¥) if the eigenvalues,, match the parities
namical permutation(or translation preserving the initial p, in the following way:

shape of a quantum state of the involved two qubits, which
can be realized as a S'p(?('ZIfIC evolution Qf the tot_al quantum en=NyEg  Pn= * (=DM (1)
spin system from an initial wave function localized on a
single site of the lattice to another at long distance. Mosfor arbitrary positive integeN, and
recently it was discovered that, if there exists a mirror inver-
sion symmetry(MIS) with respect to its center in the spin Hon(N) = endn(1),  Pbn() = prédn(r). (2)
chain, such quantum evolution can occur dynamically at cer-
tain instant§11]. Such a scheme for quantum-state transmisHere, ¢,(f) is the common eigen wave function EfandP,
sion is much appreciated since no dynamical control is ref the position of the particle. We call E¢L) the spectrum-
quired over individual qubits. In this article we will revisit parity-matching conditiofSPMO.
The proof of the above rigorous conclusion is a simple,
but heuristic exercise in basic quantum mechanics. In fact,

*Electronic address: songtc@nankai.edu.cn for the spatial refection operatdPy(r)=+y(-r). For an ar-
"Electronic address: suncp@itp.ac.Gnternet www site: http://  bitrarily given state att=0, ¢ (F',t)|-o=(F), this state
www.itp.ac.crisuncp. evolves to
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(7 1) = eHy(F) = S C e NeEot g () 3) sp!nless fermion model. The equivalent Hamiltonian can be
n written as
at timet, whereC,= . Then, at tima=m/Eg, we have i
il i H=2 Jafa..+He., ®)
YT, mE) = 2 Co(= 1)Mghy(F) -
n where a,a are the fermion operators. This describes a
_ simple hopping process in the lattice.
* % CaPn¢hn(F) According to our SPMC, we can present different models
[labeled by different positive integek(e{0,1,2,..})]
= £ Py(r) through preengineering of the coupling strength as
=+ (-T). (4) 3= Ji[k] _ \«"'—i(N =D )

This is just the central resuliL1] discovered for a quantum ¢4 aveni and
spin system that the evolution operator can become a parity
operators P at some instant=(2n+1) 7/ E;—that is, J=IM =\ + 2k (N =i+ 2k

exd - iH@/Ey] = + P. (5)  for oddi. By a straightforward calculation, one can find the

k-dependent spectrum
From the above arguments we have a consequence that if

the eigenvalues,=N,E, of a one-dimensionallD) Hamil- en=—-N+2(n-k -1 (10)
tonian H with spatial refection symmetry are odd-number _
spaced—i.e N,—N,_; are always odd—any initial stai#Xx) forn=1,2,... N/2 and
can evolve into #(—x) at timet=7/E,. In fact, for such a en=—N+2(n+k)-1 (11
1D system, the discrete states alternate between even a
odd parity. Consider that the eigenvalugsN,E, are odd-
number spaced. The next-nearest level must be even-numb%tfateS are
spaced, and then the SPMC is satisfied. Obviously, the 1D N N
SPMC is more realizable for the construction of the model |y = >, Cuiliy = > Cma.T|0>, (12
Hamiltonian to perform perfect state transfer. i=1 i=1

Now, we can directly generalize the above analysis tq,
many-particle systems. For the quantum spin chain, one can
identify the above SRS as the MIS with respect to the center £1Cr1
of the quantum spin chain. As in the discussion in R&f], Cn2 = JA+2ON-1+ 2
we write MIS operation ‘

Podr n=N/2+1,... N. The correspondin-dependent eigen-

here the coefficients can be determined by

P\P(SLSZI T sz—l!SN) = \I,(SNisN—l! Tt 152151) (6)

for the wave function¥(s;,s,, ...,Sy-1,Sy) Of spin chain.
Here,s,=0,1 denotes the spin values of timh qubit. Ac-

0= (i +2k+ D(N=i+ 2k 1)Coiso = £nCrisa

—_—

cording to this representation of SRS and our discovered +\i(N=i)c, (i is even,

SPMC, many spin systems can be preengineered for perfect

quantum-state transfer. For instance, two-site %piﬂeisen- 0=(i + 2K)(N =i + 2K)Cpyi — £1Cryis1
berg system the simplest example which meets the SPMC. .

Recently, Christandét al. [9] proposed arN-site XY chain +\(i+1)(N=i-1cy., (iisodd,

with elaborately designed modulated coupling constants be-
tween two nearest-neighbor sites, which ensures a perfect
state transfer. It is easy to find that this model corresponds

the SPMC for the simplest cadé,=n. 1+ 20(N=1+ X
In the following, we propose a class of different models CiN= L N ) i1 (13
for perfect state transfer, whose spectrum structures obey our €n
SPMC exactly. Consider aN-site sping XY chain with the |t is obvious that the model proposed in REd] is just the
Hamiltonian special case of our general modekinO. For arbitrank, we
N-1 can easily check that it meets the our SPMC by a straight-
forward calculation. Thus we can conclude that these spin
H=22J + , 7 ) ! .
z IEEEREEE ™ systems with a se8* of preengineered couplmgl#k] can

serve the perfect quantum channels and allow us to transfer
whereS, §, and§ are Pauli matrices for thigh site and);  the quantum information of spin qubits.
the coupling strength for near-neihbor interaction. For the In the above arguments we show the possibibility to
open boundary condition, this model is equivalent to theimplement the perfect state transfer of any quantum state
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over arbitrarily long distances in a quantum spin chain. The
crucial point to this end is that one need to locally engineer
couplings between the spins in the specific way. Now we
need consider the possibility to engineer couplings for the
practical quantum information processing. As usual, we ex-
pect to transfer quantum information over a much longer
distance. For this purpose the spin chain must be longer and
thus contain too many degrees of freedom. Since the dimen-
sion of the Hilbert space of the many-body system grows
exponentially with the size of the system, there must be enor-
mous parameters to be exactly engineered. In this sense it is
almost impossible to engineer a real spin system so that it FIG. 1. Schematic illustration of the time evolution of a Gauss-
possesses energy levels to exactly satisfy the SPMC. Tgn wave packetP(t) is the probability of the wave packet, where
overcome the difficulties, there is a naive way that ongthe unit oft i is . It shows that the near-perfect state transfer over
chooses some special states to be transported, which is@dong distance is possible in the quasiharmonic system.

coherent superposition of a commensurate part of the whole

set of eigenstates. For example, we consider a truncatgaecially for the high-energy range, there must exist some
Gaussian wave packet for an anharmonic oscillator witHGaussian wave packet states expanded by the lower eigen-
lower eigenstates to be harmonic. It is obvious that such atates, which can be transferred near perfectly.

system allows some special states to transfer with high fidel- We consider a Gaussian wave packet=2@, x=N, as the

ity. We can implement such an approximate harmonic systernitial state:

in a natural spin chain without the preengineering of cou- ON+1
plings. Our strategy is to apply a modulated external field. N, O)=C ~a?(i = Np - %23
. o7 . . ,0) = e A i, 18
Let us consider the Hamiltonian of (@N+ 1)-site spm% [N, ) ,21 iy (18)

ferromagnetic Heisenberg chain

oL whereli) denotes the state withN2spins in the down state
N

and only theith spin in the up state an@ is the renormal-

= —JE S-Su+ 2 B()S, (14)  jzation factor. The coefficiend? is determined by the width
of the Gaussian wave packat
with uniform coupling strength 3<<0, but in the parabolic 41n2
magnetic field o= O (19
B(i) = 2By(i - N - 1), 15
® ol ) (19 The statd#(0)) evolves to
where By is a constant. In single-excitation invariant sub- it
space with the fixedz component of total spir§’=(2N |4(1)) =€ [if(Na, 0)) (20
—1)/2, this model is equivalent to the spinless fermion hop-t time t and the fidelity of staté(0)) transferring to the
2N 2N+1 _i
F(t) = [((Ng, 0)|€"™|¢A(Na, 0))]. (21)

1
-——E(aa+1+Hc)+ E B()a'a, (16) _ : o
In Fig. 1 the evolution of the stat@/(0)) is illustrated sche-
where we have neglected a constant in the Hamiltonian fo¥nat|cally From the investigation of Ref13], we know that

simplicity. For the single-particle case with the site basis 1" SMallNA=-Ng=-X,, whereNg is the mirror counterpart
plcty ge-p of Ny, but in the larged limit, if we take By=8(In 2/A2)2,

n’th F(t) has the form
{iny=10,0, ...,1,0..)n=1,2, ...},
1 2t
the matrix presentation of the Hamiltoni&t6) is F(t) = exp[— EazNi(l + cos—z)], (22)
(44
1
Hyy= >, {— =Ey(In+ 1)(n| +|n)(n+ 1) which is a periodic function of with maxima 1. This is in
n 2 agreement with our above analysis. However, in quantum

communication, what concerns us is the behavioF@j in
+4E.(n = ng)?n)(n| (17)  the case of the transfer distande>A, where L=2|N,|

=2|Ng|. For this purpose the numerical method is performed
which is just the same as that of the Hamiltonian of Josephfor the caselL=500, A=2,4,6, andBy=8(In 2/A?%)?\. The
son junction in the Cooper-pair number basis in Re2] for ~ factor\ determines the maximum fidelity, and then the opti-
E,=J,E.=2B,. Analytical analysis and numerical results canmal field distribution can be obtained numerically. In Figs.
show that the lower-energy spectrum is indeed quasihai2(a)—2(c) the functions~(t) are plotted for different values of
monic in the casdée;> E. [13]. Although the eigenstates of \. It shows that for the given wave packets wik 2, 4, and
the Hamiltonian(14) do not satisfy the SPMC precisely, es- 6, there exists a range af during which the fidelitied=(t)
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are up to 0.748, 0.958, and 0.992, respectively. For finitesystem can also realize near-perfect quantum-state transfer in
distance, the maximum fidelity decreases as the width of ferromagnetic Heisenberg chain with uniform coupling
Gaussian wave packet increases. On the other hand, tigenstant, but in an external field. A numerical method has
strength of the external field also determines the value of theerformed to study the fidelity for the system in a parabolic
optimal fidelity for a given wave packet. Numerical results magnetic field. The external field plays a crucial role in the
indicate that it is possible to realize near-perfect quantumscheme. It induces a lower quasiharmonic spectrum, which

state transfer over a longer distance in a practical ferromagtan drive a Gaussian wave packet from the initial position to
netic spin chain system. It also shows wher0—i.e. its mirror counterpart. The fidelity depends on the initial po-

when zerdor uniform) external field is applied—the fidelity Sition (or distancel), the width of the wave packet, and

decreases rapidly. It is due the cosinusoidal single-excitatiof'é magnetic field distributioB(i) via the factor. Thus for

dispersion relation of the spin chain. givenL andA, proper choice of the factor can achieve the

I Sammany s v shown et  perict uarum ranPUTAL 0l il e concude 0t possive o
mission can be realized through a unlv_ersal guantum chann%]\jer a longer distance in many-body systems.
provided by a quantum spin system with spectrum structure,
in which each eigenenergy is commensurate and matches This work of S.Z. is supported by the Innovation Founda-
with the corresponding parity. According to this SPMC for tion of Nankai University. C.P.S. also acknowledges the sup-
the mirror inversion symmetrj11], we can implement the port of the CNSF(Grant Nos. 90203018, 10474104he
perfect quantum information transmission with severalKnowledge Innovation PrograitiKIP) of the Chinese Acad-
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