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We show that a perfect quantum-state transmission can be realized through a spin chain possessing the
commensurate structure of an energy spectrum, which is matched with the corresponding parity. As an expo-
sition of the mirror inversion symmetry discovered by Albaneseet al. se-print quant-ph/0405029d, the parity
matched commensurability of the energy spectra helps us to present preengineered spin systems for quantum
information transmission. Based on these theoretical analyses, we propose a protocol of near-perfect quantum-
state transfer by using a ferromagnetic Heisenberg chain with uniform coupling constant, but an external
parabolic magnetic field. The numerical results show that the initial Gaussian wave packet in this system with
optimal field distribution can be reshaped near perfectly over a longer distance.
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Recently quantum information processingsQIPd protocols
have been considered with quantum spinf1–3g sor quasispin
f4gd systems. The simple spin chains have been explored as a
coherent data busf5–8g. It provides us with a quantum chan-
nel for perfect transmission of quantum states when the spin
chain is preengineeredf9g. An isotropic antiferromagnetic
spin ladder system was proposed as a novel robust kind of
quantum data busf10g. Due to a large spin gap existing in
such a perfect medium, the effective Hamiltonian of the two
connected spins can be archived as that of a Heisenberg type
by adiabatic elimination, which possesses an effective cou-
pling strength inversely proportional to the distance of the
two spins and thus the quantum information can be trans-
ferred between the two spins separated by a longer distance;
i.e., the characteristic time of quantum state transferring lin-
early depends on the distance. Such a gapped spin system
can be used as a perfect quantum channel for perfect quan-
tum state transmission if local measurements of the indi-
vidual spins can be implemented. In fact, it has been proved
by Verstraeteet al. f2,3g that the ground states of a spin
system with energy gap possess an infinite entanglement
length opposed to their finite correlation length.

The physical process of quantum-state transmission
through a quantum spin system can be understood as a dy-
namical permutationsor translationd preserving the initial
shape of a quantum state of the involved two qubits, which
can be realized as a specific evolution of the total quantum
spin system from an initial wave function localized on a
single site of the lattice to another at long distance. Most
recently it was discovered that, if there exists a mirror inver-
sion symmetrysMISd with respect to its center in the spin
chain, such quantum evolution can occur dynamically at cer-
tain instantsf11g. Such a scheme for quantum-state transmis-
sion is much appreciated since no dynamical control is re-
quired over individual qubits. In this article we will revisit

this elegant conception by explicitly considering the spec-
trum structure and the corresponding parities of such a MIS
system. We discover that the MIS can be implemented in a
universal quantum spin system with a commensurate spectral
structure matching the corresponding parities. With the help
of this discovery, we, in principle, can propose various sce-
narios for perfect and near-perfect quantum information
transmission through the preengineered quantum spin chains.
We give an example that seems to be more complicated than
those by others.

Furthermore, a scheme, based on our theoretical analysis
to realize near-perfect quantum-state transfer, is proposed
with the quantum channel by a ferromagnetic Heisenberg
chain with uniform coupling constant, but an external para-
bolic magnetic field. Numerical results show that, for the
optimal field distribution, this system can perform a near-
perfect transfer for a Gaussian wave packet over a longer
distance.

To sketch our central idea, let us first consider a single-
particle system with the usual spatial refection symmetry
sSRSd in the HamiltonianH. Let P be the spatial refection
operator. The SRS is implied byfH ,Pg=0. Now we prove
that, after timep /E0, any statecsrWd can evolve into the
reflected state ±cs−rWd if the eigenvalues«n match the parities
pn in the following way:

«n = NnE0, pn = ± s− 1dNn s1d

for arbitrary positive integerNn and

HfnsrWd = «nfnsrWd, PfnsrWd = pnfnsrWd. s2d

Here,fnsrWd is the common eigen wave function ofH andP,
rW the position of the particle. We call Eq.s1d the spectrum-
parity-matching conditionsSPMCd.

The proof of the above rigorous conclusion is a simple,
but heuristic exercise in basic quantum mechanics. In fact,
for the spatial refection operator,PcsrWd= ±cs−rWd. For an ar-
bitrarily given state att=0, cusrW ,tdut=0=csrWd, this state
evolves to
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csrW,td = e−iHtcsrWd = o
n

Cne
−iNnE0tfnsrWd s3d

at timet, whereCn=kfnucl. Then, at timet=p /E0, we have

csrW,p/E0d = o
n

Cns− 1dNnfnsrWd

= ± o
n

CnpnfnsrWd

= ± PcsrWd

= ± cs− rWd. s4d

This is just the central resultf11g discovered for a quantum
spin system that the evolution operator can become a parity
operators ±P at some instantt=s2n+1dp /E0—that is,

expf− iHp/E0g = ± P. s5d

From the above arguments we have a consequence that if
the eigenvalues«n=NnE0 of a one-dimensionals1Dd Hamil-
tonian H with spatial refection symmetry are odd-number
spaced—i.e.,Nn−Nn−1 are always odd—any initial statecsxd
can evolve into ±cs−xd at time t=p /E0. In fact, for such a
1D system, the discrete states alternate between even and
odd parity. Consider that the eigenvalues«n=NnE0 are odd-
number spaced. The next-nearest level must be even-number
spaced, and then the SPMC is satisfied. Obviously, the 1D
SPMC is more realizable for the construction of the model
Hamiltonian to perform perfect state transfer.

Now, we can directly generalize the above analysis to
many-particle systems. For the quantum spin chain, one can
identify the above SRS as the MIS with respect to the center
of the quantum spin chain. As in the discussion in Ref.f11g,
we write MIS operation

PCss1,s2, . . . ,sN−1,sNd = CssN,sN−1, . . . ,s2,s1d s6d

for the wave functionCss1,s2, . . . ,sN−1,sNd of spin chain.
Here,sn=0,1 denotes the spin values of thenth qubit. Ac-
cording to this representation of SRS and our discovered
SPMC, many spin systems can be preengineered for perfect
quantum-state transfer. For instance, two-site spin-1

2 Heisen-
berg system the simplest example which meets the SPMC.
Recently, Christandlet al. f9g proposed anN-site XY chain
with elaborately designed modulated coupling constants be-
tween two nearest-neighbor sites, which ensures a perfect
state transfer. It is easy to find that this model corresponds
the SPMC for the simplest caseNn=n.

In the following, we propose a class of different models
for perfect state transfer, whose spectrum structures obey our
SPMC exactly. Consider anN-site spin-12 XY chain with the
Hamiltonian

H = 2o
i=1

N−1

JifSi
xSi+1

x + Si
ySi+1

y g, s7d

whereSi
x, Si

y, andSi
z are Pauli matrices for theith site andJi

the coupling strength for near-neihbor interaction. For the
open boundary condition, this model is equivalent to the

spinless fermion model. The equivalent Hamiltonian can be
written as

H = o
i=1

N−1

Ji
fkgai

†ai+1 + H.c., s8d

where ai
†,ai are the fermion operators. This describes a

simple hopping process in the lattice.
According to our SPMC, we can present different models

flabeled by different positive integerksPh0,1,2, . . .jdg
through preengineering of the coupling strength as

Ji = Ji
fkg = ÎisN − id s9d

for eveni and

Ji = Ji
fkg = Îsi + 2kdsN − i + 2kd

for odd i. By a straightforward calculation, one can find the
k-dependent spectrum

«n = − N + 2sn − kd − 1 s10d

for n=1,2, . . . ,N/2 and

«n = − N + 2sn + kd − 1 s11d

for n=N/2+1, . . . ,N. The correspondingk-dependent eigen-
states are

ufnl = o
i=1

N

cniuil = o
i=1

N

cniai
†u0l, s12d

where the coefficients can be determined by

cn2 =
«ncn1

Îs1 + 2kdsN − 1 + 2kd
,

. . .

0 =Îsi + 2k + 1dsN − i + 2k − 1dcni+2 − «ncni+1

+ ÎisN − idcni si is evend,

0 =Îsi + 2kdsN − i + 2kdcni − «ncni+1

+ Îsi + 1dsN − i − 1dcni+2 si is oddd,

. . .

cnN =
Îs1 + 2kdsN − 1 + 2kdcnN−1

«n
. s13d

It is obvious that the model proposed in Ref.f9g is just the
special case of our general model ink=0. For arbitraryk, we
can easily check that it meets the our SPMC by a straight-
forward calculation. Thus we can conclude that these spin
systems with a setSfkg of preengineered couplingsJi

fkg can
serve the perfect quantum channels and allow us to transfer
the quantum information of spin qubits.

In the above arguments we show the possibibility to
implement the perfect state transfer of any quantum state
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over arbitrarily long distances in a quantum spin chain. The
crucial point to this end is that one need to locally engineer
couplings between the spins in the specific way. Now we
need consider the possibility to engineer couplings for the
practical quantum information processing. As usual, we ex-
pect to transfer quantum information over a much longer
distance. For this purpose the spin chain must be longer and
thus contain too many degrees of freedom. Since the dimen-
sion of the Hilbert space of the many-body system grows
exponentially with the size of the system, there must be enor-
mous parameters to be exactly engineered. In this sense it is
almost impossible to engineer a real spin system so that it
possesses energy levels to exactly satisfy the SPMC. To
overcome the difficulties, there is a naive way that one
chooses some special states to be transported, which is a
coherent superposition of a commensurate part of the whole
set of eigenstates. For example, we consider a truncated
Gaussian wave packet for an anharmonic oscillator with
lower eigenstates to be harmonic. It is obvious that such a
system allows some special states to transfer with high fidel-
ity. We can implement such an approximate harmonic system
in a natural spin chain without the preengineering of cou-
plings. Our strategy is to apply a modulated external field.

Let us consider the Hamiltonian of as2N+1d-site spin-12
ferromagnetic Heisenberg chain

H = − Jo
i=1

2N

SWi ·SWi+1 + o
i=1

2N+1

BsidSi
z, s14d

with uniform coupling strength −J,0, but in the parabolic
magnetic field

Bsid = 2B0si − N − 1d2, s15d

where B0 is a constant. In single-excitation invariant sub-
space with the fixedz component of total spinSz=s2N
−1d /2, this model is equivalent to the spinless fermion hop-
ping model with the Hamiltonian

H = −
J

2o
i=1

2N

sai
†ai+1 + H.c.d +

1

2 o
i=1

2N+1

Bsidai
†ai , s16d

where we have neglected a constant in the Hamiltonian for
simplicity. For the single-particle case with the site basis

hunl = u0,0, . . . ,1,0 . . .l
n8th

un = 1,2, . . .lj,

the matrix presentation of the Hamiltonians16d is

HJJ = o
n
H−

1

2
EJsun + 1lknu + unlkn + 1ud

+ 4Ecsn − ngd2unlknuJ , s17d

which is just the same as that of the Hamiltonian of Joseph-
son junction in the Cooper-pair number basis in Ref.f12g for
EJ=J,Ec=2B0. Analytical analysis and numerical results can
show that the lower-energy spectrum is indeed quasihar-
monic in the caseEJ@Ec f13g. Although the eigenstates of
the Hamiltonians14d do not satisfy the SPMC precisely, es-

pecially for the high-energy range, there must exist some
Gaussian wave packet states expanded by the lower eigen-
states, which can be transferred near perfectly.

We consider a Gaussian wave packet att=0, x=NA as the
initial state:

ucsNA,0dl = C o
i=1

2N+1

e−a2si − NA − 1d2/2uil, s18d

where uil denotes the state with 2N spins in the down state
and only theith spin in the up state andC is the renormal-
ization factor. The coefficienta2 is determined by the width
of the Gaussian wave packetD:

a2 =
4 ln 2

D2 . s19d

The stateucs0dl evolves to

ucstdl = e−iHtucsNA,0dl s20d

at time t and the fidelity of stateucs0dl transferring to the
positionNB is defined as

Fstd = ukcsNB,0due−iHtucsNA,0dlu. s21d

In Fig. 1 the evolution of the stateucs0dl is illustrated sche-
matically. From the investigation of Ref.f13g, we know that
for small NA=−NB=−x0, whereNB is the mirror counterpart
of NA, but in the large-D limit, if we take B0=8sln 2/D2d2,
Fstd has the form

Fstd = expF−
1

2
a2NA

2S1 + cos
2t

a2DG , s22d

which is a periodic function oft with maxima 1. This is in
agreement with our above analysis. However, in quantum
communication, what concerns us is the behavior ofFstd in
the case of the transfer distanceL@D, where L=2uNAu
=2uNBu. For this purpose the numerical method is performed
for the caseL=500, D=2,4,6, andB0=8sln 2/D2d2l. The
factor l determines the maximum fidelity, and then the opti-
mal field distribution can be obtained numerically. In Figs.
2sad–2scd the functionsFstd are plotted for different values of
l. It shows that for the given wave packets withD=2, 4, and
6, there exists a range ofl during which the fidelitiesFstd

FIG. 1. Schematic illustration of the time evolution of a Gauss-
ian wave packet.Pstd is the probability of the wave packet, where
the unit oft is a2p. It shows that the near-perfect state transfer over
a long distance is possible in the quasiharmonic system.
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are up to 0.748, 0.958, and 0.992, respectively. For finite
distance, the maximum fidelity decreases as the width of
Gaussian wave packet increases. On the other hand, the
strength of the external field also determines the value of the
optimal fidelity for a given wave packet. Numerical results
indicate that it is possible to realize near-perfect quantum-
state transfer over a longer distance in a practical ferromag-
netic spin chain system. It also shows whenl→0—i.e.,
when zerosor uniformd external field is applied—the fidelity
decreases rapidly. It is due the cosinusoidal single-excitation
dispersion relation of the spin chain.

In summary, we have shown that a perfect quantum trans-
mission can be realized through a universal quantum channel
provided by a quantum spin system with spectrum structure,
in which each eigenenergy is commensurate and matches
with the corresponding parity. According to this SPMC for
the mirror inversion symmetryf11g, we can implement the
perfect quantum information transmission with several
preengineered quantum spin chains. For more practical pur-
poses, we prove that an approximately commensurate spin

system can also realize near-perfect quantum-state transfer in
a ferromagnetic Heisenberg chain with uniform coupling
constant, but in an external field. A numerical method has
performed to study the fidelity for the system in a parabolic
magnetic field. The external field plays a crucial role in the
scheme. It induces a lower quasiharmonic spectrum, which
can drive a Gaussian wave packet from the initial position to
its mirror counterpart. The fidelity depends on the initial po-
sition sor distanceLd, the width of the wave packetD, and
the magnetic field distributionBsid via the factorl. Thus for
givenL andD, proper choice of the factorl can achieve the
optimal fidelity. Finally, we conclude that it is possible to
implement near-perfect Gaussian wave packet transmission
over a longer distance in many-body systems.
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