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We explicitly show a protocol in which an arbitrary two qubit stais=al00)+b|01)+c|10)+d|11) is
faithfully and deterministically teleported from Alice to Bob. We construct the 16 orthogonal generalized Bell
states that can be used to teleport the two qubits. The local operations Bob must perform on his qubits in order
to recover the teleported state are also constructed. They are restricted only to single-qubit gates. This means
that a controlledNoT gate is not necessary to complete the protocol. A generalization vhepebits are
teleported is also shown. We define a generalized magic basis, which possesses interesting properties. These
properties help us to suggest a generalized concurrence from which we construct a measure of entanglement
that has a clear physical interpretation: A multipartite state has maximum entanglement if it is a genuine
quantum teleportation channel.
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In 1993 Bennettet al. [1] discovered one of the most qubit |¢)=a|0)+b|1) is executed as follows. Alice and Bob
astonishing features of quantum mechanics: quantum telgnitially share a maximally two-qubit entangled state:
portation. Using what they called an Einstein-Podolsky-|¥~)=(1/,2)(|01)-|10)). The joint system(qubit to be tele-
Rosen(EPR channel[|¢*)=1/y2(|00)+[11)), for exampld  ported plus EPR statefore Alice’s measurement can be
they showed that it is possible to transmit a one-qubit statgyritten as
al0)+b|1) from one location(Alice) to another(Bob) by
sending two bits of classical information. Four years later, ) = |p)ye|¥),
this protocol was experimentally demonstrafagl

The next natural question was whether it was possible to a b
teleport not just a single qubit, but rathemubits. Leeet al. @)= —=(|001) - |010) + =([10D - [110), (D)

[3], in a very interesting work, showed that it was possible to V2 V2

teleport a two-qubit statgd)=al00)+b|01)+c|10)+d|1)  where we use the convention that the first two qubits belong
from Alice to Bob using a four-entangled state and sendingo Alice and the third one belongs to BobBAAB), A

to him four bits of classical information. However, they did —, Alice and B— Bob). Rewriting Eq. (1) in terms of
not explicitly construct the protocol and did not provide athe four Bell states|®*)=(1/y2)(|00)+[11)) and |¥*)
generalization tdN qubits. :(1/&)(|01>i|10>) we get

Here we explicitly construct this protocol and present a
generalization tdN qubits. We create a set of 16 generalized
Bell states to implement the teleportation. These states
slightly differ from the generalized Bell states used in a _ .
probabilistic two-qubit teleportation protocol by Gao al. +|®7)(al1) + b|0)) + |D*)(a]1) - b|0))}. (2
[4]. We also show that the unitary operations Bob must applyjice now makes a Bell measurement and classically com-
on his qubits to faithfully obtain the teleported two qubits areynjcates the result to Bob. With this two-bit information at
restricted to single-qubit gates, i.e., gates_such as controlleqi]—and, Bob applies the appropriate unitary operation to obtain
NOT (CNOT) are not necessary to accomplish the protocol. ihe state ). See Table I.

The motivation for defining this set of 16 generalized Bell | ot s now explicitly present the protocol to teleport two

states lies in the fact that by using them, we can easily conappitrary qubits. The state Alice wants to teleport is written
struct a “magic basis.” We show that this magic basis poszg

sesses the same interesting properties as the original one de-
fined in Ref.[5]. With the aid of the magic basis we |¢p) = al00) + b|01) + ¢[10) +d[11), ©)
generalize Wootters concurrend and define the entangle-
ment of teleportatioE;), which has a simple physical in-
terpretation in terms of the efficiency an entanglétt@qubit
state has to teleport an unknowhqubit state.

In the original proposall] the teleportation of a single

D) = %{|\p->(— a0y = b|1)) +|¥*)(- al0) + b|1))

wherea, b, ¢, andd are complex coefficients and we assume
|¢) to be normalized. We now define the 16 generalized Bell
stated 7], or G states for simplicity. We divide them into four
groups.

Group 1:

1
=—(|0000 +|010D) + 1010 +|111D), 4
*Electronic address: rigolin@ifi.unicamp.br |91> 2(| 0 | Y | 0 | 2 @
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TABLE I. The unitary transformations Bob must perform on his
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1
qubit, conditioned to Alice’s measurement result, to complete the 91 = 5(|001]> -|0110 +[100D - [1100), (18

teleportation protocoll is the identity operator ana are the usual

Pauli matrices.

Alice’s result Bob’s operation Bob’s qubit
|¥™) [ 1 (-a|0)y-b|1)) =| )
[P of o %(-al0)+b|1)) =)
) o o*(al1)+b|0)) | )
|D%) oo o ?0%(a1)-b0)) < |¢)

1

|92) = §(|0000 +/0103) - 1010 - |1111),
1

l9s) = E(IOOOO -(0103) +(1010 - |1111),

1
l9s) = E(IOOOQ -10102) - 1010 +[1111)).
Group 2:

169 =5(0009 +[0100 +/2013 + [1110),
1

169=3(0009 +[0100 - 1013 - [1110),
1

19 =5(0009 0100 +[2013 - [1110),

1
|98) = (/0003 ~[0100 - 1012 + [1110).
Group 3:

199/ = 50010 + (0111 + 1000 + 1101),
1

0:0 = 5(0010 +[0119 - 1000 - [1101),
1

919 = 5(10010 - 011+ 1000 - [110D),

1
|12 = 5(/0010 - 0113 - [1000 +[110D).
Group 4:

|19 = %(|0011> +|0110 +|100D) +(1100),

0.0 = (10011 + 0110 - [1009 - [1100),

©)

(6)

)

8

9

(10

(11

(12)

(13

(14)

(15

(16)

(17)

1
910 = §(|0011> -|0110 - 100D +|1100).  (19)

These states form an orthonormal ba§f§l|gj><gj|:l and
(9j|9 = 8, which we call the generalized Bell ba$ig], or
G basis for brevity.

Alice and Bob must share one of the Bstates, where
we assume that the first two qubits are with Alice and the last
two with Bob. These last two qubits with Bob will be used to
“receive” the teleported state. For definiteness we assume
Alice and Bob share thég,) state. Hence, the initial joint
state is

|P) =|p)®]gy)

a
= 21000000 + 000103 + 001010 + 001113}
b
+2{/010000 + 010103 + (011010 + (011113}
C
+2{/000000 +|100103 +|101010 +|101113}

d
+ E{|11000() +]110103 +]111010 +|111113}.

(20)

Here the first four qubits belong to Alice and the last two
belong to Bob(|AAAABB, A— Alice andB— Bob ). Using
Egs.(4)—(19) we can write Eq(20) as

16

1
@) =72 [g)Al 4))e, (21)
=1

where A and B are written to emphasize which qubits are
with Alice and with Bob and the statgg;) are defined in
Table Il.

Alice now makes a generalized Bell measureméat
measurementobtaining with equal probabilities one of the
16 G states. ByG measurement we mean that Alice makes a
joint measurement in the two qubits she wants to teleport
plus the two qubits from th& state shared with Bob. Then
she sends to Bob a classical message of four bits to inform
him which G state she has measured. With this information
Bob knows what unitary operatiaffable 1l) he must apply
on his two qubits to faithfully recover the teleported state.
After applying the unitary operation the protocol is finished
and Alice has succeeded in teleporting her arbitrary two-
qubit state.

Paying attention to the 16 unitary operations which Bob
should apply on his two qubits, we see that they all can be
written asU=Uz®Ug. Here 5 and 6 refer to the fifth and
sixth qubit respectively, i.e., Bob’s two qubits. This means
that we need only single-qubit gates to implement all the 16
unitary operations. More elaborate two-qubit gates, such as
the CNOT gate, are not necessary. This fact possibly simpli-
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TABLE Il. The first column shows thég;) states. The third TABLE Ill. The first column shows the magic states. The sec-
column depicts the local unitary operations Bob must perform orond column represents the correspondiBgstates, and the third
his qubits, conditioned on Alice’s measurement given in the secondolumn theF states. The elements of each row should be read as

column, to finish the teleportation protocol. a=b=c.
|¢>j> Alice’s result Bob’s operation Magic states G states F states

| =|eb) lay) | ley lay) If0)
|p2) =01 ) lgo) o1 lex) ilg2) i[f2)
|p3) =05 b) ga) o3 |es) 94) |f3)
|pa)=705| ) 94) 0301 |es) ilgs) i[f4)
|ps) =075/ ) |9s) oy |es) 9e) If5)
|pe) = %075 | ) 96) 010% |es) i|gs) i[fe)
|p7)=%05| ) lg7) 05305 ler) lgn |f2)
|pg) = 030507 ) ge) 010505 |eg) i|gs) i[fg)
|po) =0 #) 9e) o |eg) |10 |fo)
|pr0 =007 B) |10 oio] le1o) i|ge) i[f10
|10 =0h05| @) |910) 0507 lerp) 910 If10)
|12 =010703| ) |912) 030107 e ilg12) i[f10)
|19 =010%| ) 019 0501 ey |919) If19)
| 1) = 00507 ) |914) 010307 lery ilg14) i[f10)
|19 =010505| ) 019 030507 e |91¢) If19)
| b1 = 00507 05| ) 010 03010507 lee) ilg15) i[f19)

fies future experimental realizations of this protocol. It istation protocol,x,=00, X;=01, x,=10, andxs=11. Zeros
worth mentioning that we can construct other sets of 16 oryust be added to make all with the same number of bits
thogonal states which faithfully teleport any two qubits, but(y pits). This G state is our quantum channel and it is com-
now depending on Alice’s outcome, Bob will need to imple- hosed of A qubits.(2) Using the see@ state it is possible
ment acNOT gate to complete the protocol. _ to obtain all theG states locally operating on its firdt

If we wuse quantum channels with generallzedqubit5,|sj>:®El_l(01k)izk71(o)§)izk|so>_ Now j, represents thkth
Greeneberger-Horne-Zeilinge(GHz) - states [7], IGHZ) it (from right to left of the number & j<22N—1, which is
=1/12(|0000 +|1111), the protocol does not work. Itis im- yyitten in binary notation and again zeros should be added to
possible to teleport an arbitrary two qubit state using a GHZeave allj's with the same number of bit2N bits). The
state. Only special classes of two-qubit states suchl@  subindexk indicates on which qubit the Pauli matrices
+c|10) can be teleportefB]. and o % should operate. For the two-qubit protocol shown

The technical difficulties that we need to circumvent togpove, Iso =90, Is0=192), Is)=I9e), IS3)=|010), and so
experimentally test this protocol are not trivial. Three bench+grth. (3) Alice makes a jointG measurement with thél
marks must be reached to realize this protocol. First, Aliceupits to be teleported and with hirqubits of the share@
and Bob should have a source of four maximally entangleditate. She then sends to Bob N-Bit classical message in-
states(G state$. Second, Bob should be able to implementforming Bob of the measurement outcongé). With this in-

the 16 local unitary operations, and Alice should somehovormation Bob applies the corresponding unitary operation
realize aG measurement. The first two benchmarks are venpn his N qubits. These operations are given thy; =
close[9,10], but we still need an efficient way to discrimi- gN (g 2)i2-1(03)iz and for the two-qubit teleportation pro-
nate the 165 states. _ tocol they are shown in Table II.

The_ previous protpcol can be g_enerahzed to teleport an \yie now define the generalized magic bagis)) and an
N-qubit state. For Fh's purpose Alice nee_ds to sh_areNa 2 auxiliary basis(|f;)), which help us in the calculations that
entangledG state with Bob. Then she realizes B pint G follow. See Table IIl
n;sasggament Witz the (?jubg\ltz%be lteleporlted and half Othhﬁ In térms of theF sfates a general pure two-qubit state can
sharedG state and sends it classical message to Bo : _a16 : .
informing him of the measurement outcome. Bob finishes the%)f,e ergsen* as|w>‘2j=lf(i|fi>' From this state we define
protocol performing at mostR single-qubit gates to obtain q’>:§_‘“ﬁ1aj f}), wherea; means the complex conjugate of
the teleported state. The number of unitary operations Bolyi: With the previous definitions, we can present the gener-
needs to apply on hi® qubits is conditioned on Alice’s alized concurrencgll] as
outcome. TheN-qubit teleportation protocol can be rigor- _
ously constructed as follow$1) Generate the see@ state C(¥) = [(W]oy W), (22)
|soy=(27V2) = [x)Alx)B, whereM=2"~1 andx; is the bi- .
nary representation of the numkjeiin the two-qubit telepor- ~ wherea}*=o}o¥o%o. Sincea§?4|\1’):Ejlfl(—l)“laj|fj>,
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16

CW) = |2 (- ). (23)
j=1

But in the magic basis¥) =32 g|e)) and using the relations

between thd- states and the magic states in Table Ill we can

show thata;=i1"Y928,, wherea® 2=0 if a is even and 1 if
a is odd. This implies that

16

e
=1

Using Eq.(24) we can show that Eq22) satisfies the same
properties as the original Wootters concurrefgle (1) If all
B; are real therC=1; (2) 0<C=1,; (3) in the magic basis,
C=|W¥|W)|; (4) every two-qubit state witle=1 can be writ-

C(¥) = . (24)

PHYSICAL REVIEW A 71, 032303(2005

|GHZi> = TlE(|OOOQ + |111]}), (28)
o) = \,—1§<|01oo +[101D), (29
He) = \,—1§(|1ooo +(0111), (30
7%= %(llloo +0011), (31

which implies thatE;=1/2. Repeating the same procedure

ten, up to a global phase, as a combination of the magiGith the generalizedw state |W)=(1/2)(|0002)+|0010

states with real coefficients; artf)) all the magic states have
C=1. Noting thatoff"1 is the spin flip operator, we can show
that if |¥) is separable the@=0.

In order to quantify the usefulness of a four-qubit state t

tation (Eq):
(25

where|\Ifj> are all theL=<16 orthogonal states that can be
obtained from|¥) using the 16 unitary operations; listed

in the third column of Table II. It should be noted that Egs.
(22) and (25) can easily be extended to &ljubit state:

) = |@os™w), (26)
1 L

Er(W) = o 2 C(¥)), (27)
j=1

where now|¥;) are theL <2 orthogonal states obtained
from |¥) using the 2V unitary operations U;=
RN (0 Hlz-1(gf), Er satisfies some interesting properties.
(1) It can discriminate the generaliz®d GHZ, andG states,
i.e., Ef(W) <E(GHZ) <Eq(g)); (2) it can be seen as a mea-
sure of the efficiency with which® qubits can teleporN
qubits; (3) all G states haveer=1; (4) all separable states
haveE;=0.

In order to illustrate the above properties, let us return tg

the four-qubit case. Consider ti@ state|g,). Applying the
U; operations we obtain 16 orthogonal stafte G basig
with C=1. Therefore Er=1. Now let us study the general-
ized GHZ state|GHZ")=(1/12)(|0000+|1111). The 16
unitary operationdJ; produce only eight orthogonal states
with C=1,

+|0100 +|1000) we obtain eight orthogonal states wit
=0, i.e.,,E;=0. We can get a physical picture of the meaning
of these values foE; by noting that usings states(E;=1)

e can deterministically teleport any two qubits, using GHZ
teleport two qubits we introduce the entanglement of telepor e can dete stically teleport any two qubits, using G

states(E;=1/2) only special classes of two qubits can be

teleported[8], and for W states even these special classes
cannot be deterministically teleported. And more, we can
show that the GHZ states can deterministically teleport one
qubit but theW states accomplish the same task only proba-
bilistically.

We have explicitly shown a teleportation protocol that
allows Alice to faithfully teleport an arbitrary two-qubit state
to Bob by sending to him a four-bit classical message. We
generalized this protocol for the-qubit case, where Alice
can teleportN qubits to Bob by sending to him aN2bit
classical message. They must also sharl artangled state,
which is lost at the end of the protocol. We also presented a
way to quantify the efficiency with which aN2 entangled
state can faithfully teleporN qubits, defining the entangle-
ment of teleportatioEy). Et is able to quantify the gener-
alized Bell states, the GHZ states, aWlstates in terms of
their teleportation capacities. We think that this characteriza-
tion of entanglement will be useful in the study of multipar-
tite states, since it was shown that it has a simple physical
interpretation, is operational, and is easily generalized to
states with an even number of qubits.

Note added in proofRecently we became aware of an
interesting publication of Ikranet al. [12] showing how to
experimentally teleporN qubits usingN high-Q cavities.

The author would like to express his gratitude to the fund-
ing of Fundacdo de Amparo a Pesquisa do Estado de S&o
Paulo(FAPESB and to Dr. Fernando da Rocha Vaz Bandeira
de Melo for initiating a discussion which culminated in this
work.
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