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The search for particle electric dipole momentssEDM’sd is one of the best places to look for physics beyond
the standard model of electroweak interaction because the size of time reversal violation predicted by the
standard model is incompatible with present ideas concerning the creation of the baryon-antibaryon asymme-
try. As the sensitivity of these EDM searches increases more subtle systematic effects become important. We
develop a general analytical approach to describe a systematic effect recently observed in an electric dipole
moment experiment using stored particlesfJ. M. Pendleburyet al., Phys. Rev. A70, 032102s2004dg. Our
approach is based on the relationship between the systematic frequency shift and the velocity autocorrelation
function of the resonating particles. Our results, when applied to well-known limiting forms of the correlation
function, are in good agreement with both the limiting cases studied in recent work that employed a numerical
and heuristic analysis. Our general approach explains some of the surprising results observed in that work and
displays the rich behavior of the shift for intermediate frequencies, which has not been studied previously.
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I. INTRODUCTION

The search for an electric dipole momentsEDMd of the
neutron is perhaps unique in modern physics in that experi-
mental work on this subject has been going on more or less
continuously for over 50 years. In that period the experimen-
tal sensitivity has increased by more than a factor of 106

without an EDM ever being observed. The reason for this
apparently obsessive behavior by a small group of dedicated
physicists is that the observation of a nonzero neutron EDM
would be evidence of time reversal violation and for physics
beyond the so-called standard model of electroweak interac-
tions. An essential point is that the standard model predic-
tions of the magnitude of time reversal violation are incon-
sistent with our ideas of the formation of the universe;
namely, the production of the presently observed matter-
antimatter asymmetry requires time reversal violation many
orders of magnitude greater than that predicted by the stan-
dard model.

In this type of experimentsnull experimentd the control of
systematic errors is of great significance. While the switch of
experimental technique from beam experiments to experi-
ments using stored ultracold neutronssUCN’sd has elimi-
nated many of the sources of systematic error associated with
the beam technique, the gain in sensitivity brought by the
new UCN technique means that the experiments are sensitive
to a new range of systematic errors. One of the most serious
of these is associated with the interaction of gradients of the
ever-present constant magnetic field with the well-known

motional magnetic fieldsEW 3vW /cd. As the particles move in
the apparatus, these fields, as seen by the particles, will be
time dependent. This effect was first pointed out by Com-
mins f1g and explained in terms of the geometrical phase

concept. A more general description is in terms of the Bloch-
SiegertsBSd shift of magnetic resonance frequencies due to
the time-dependent fields mentioned abovef2,3g.

The effect was apparently empirically identified in the
ILL Hg comagnetometer EDM experiment, and recently
Pendleburyet al. f2g have given a very detailed discussion of
it, including intuitive models and analytical calculations for
certain cases, the relation between and regions of applicabil-
ity of the geometric phase and Bloch-Siegert models, nu-
merical simulations, and experimental verification of the
most significant features. However, this pioneering work has
left certain questions unanswered. In particular the under-
standing of the effects of collisions on the systematic fre-
quency shifts remain incomplete.

In this work we attempt to clarify several points concern-
ing the influence of particle collisions. We explain the reason
that in contrast to gas collisions, collisions with the walls
were observed to have no effect on the magnitude of the
systematic frequency shifts and show that this only applies to
the limiting cases of high and low frequencies. We show that
the frequency shift is related to the velocity autocorrelation
function of the resonating particles. Our solution, when ap-
plied to well-known limiting forms of the correlation func-
tion, gives results in agreement with those obtained numeri-
cally in f2g. McGregor has taken a similar approach to the
problem of relaxation due to static field gradientsf4g,
whereas the approach taken by Cateset al. to the problem of
static field gradientsf5g and gradients combined with oscil-
lating perturbing fieldsf6g is somewhat different than ours.

Brief description of the effect

Consider a case where, in a storage experiment, there is a
radial magnetic field due to a magnetic field gradient in thez
direction sB0, the quantization axis, and the electric fieldE
are alongzd. Now consider roughly circular orbits, due to*Present address: Hahn Meitner Institut, Berlin, Germany.
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specular reflection around the bottle at a constant angle, in
the x-y plane with radius approximately the bottle radiusR.
The wall collisions occur at a frequency 1/tc while the or-
bital frequency isvr =2a /tc wherea is the incidence angle
relative to the surface. We can transform into a rotating
frame at vr snote that this is not the Schwinger rotating
frame that eliminatesB0d so that the problem is quasistatic
f3g.

The radial field, with the barrel gradient plusE3v field,
is

BR = Br ± BE = aR±
vrRE

c
,

where Brsrd=sr /2d]Bz/]z=ar is the radial field due to the
axial gradient, ±BE=rvrE/c is the radially directedE3v
field, and the6 refer to the rotation direction.

In the rotating frame,

B2 = sB0 − vr/gd2 + sBRd2,

where g is the gyromagnetic ratio. Expanding in the limit
where BR!B0 with transformation back to the laboratory
frame we find

B = B0 +
1

2

saR− vrRE/cd2

B0 − vr/g
= B0 −

saR2vrE/cd
B0 − vr/g

,

keeping only terms linear inBE. Averaging over the rotation
direction se.g., the sign ofvrd, the net effect of the gradient
field combined with anE3v yields a systematicsmagnetic
fieldd shift of

dv = gdB = −
g2av2E

csv0
2 − vr

2d
, s1d

equivalent to Eq.s18d of f2g. Taking the limitvr /g!B0 we
have

dB = −
aR2vr

2E

gcB0
2 , dv = −

aR2vr
2E

cB0
2 , s2d

which would seem to set the scale of the effect and is equiva-
lent to Eq.s19d of f2g. In this limit, the frequency shift does
not depend ong, implying that it is the result of a geometric
effect.

In the other limit, where the rotation frequency is much
faster than the Larmor frequency, we similarly find that

dB = gaR2E/c, dv = g2aR2E/c, s3d

which is independent of the motional frequencyvr, of oppo-
site sign from the previous limit, and equivalent to Eq.s21d
of f2g.

II. FREQUENCY SHIFT DUE TO FLUCTUATING FIELDS
IN THE x-y PLANE

A. Density matrix approach to the problem

The issues of the effects of a weak fluctuating potential on
the evolution of the density matrix have been well addressed
in the literature. However, these treatments generally assume

that the perturbing potential has a short correlation time, and
certain assumptions regarding averaging are not applicable to
our problem. The effect of a static electric fieldE by itself
was treated inf7g where theE2 effect was related to the
correlation time and requirements on the field reversal accu-
racy were discussed.

So we therefore start from the beginning, followingf8g sp.
276d.

The radial gradient andE3v fields can be treated as
weak fluctuating perturbing fieldsBx,ystd in the x-y plane,
with a constantB0 applied alongz. The perturbing fields
Bx,y8 std can be written as

Bx8std = Bxstd − kBxstdl, By8std = Bystd − kBystdl, s4d

wherek¯l represents a time average ofBx,ystd. The constant
components of the perturbing field are added toB0,

B08 = ÎsB0d2 + kBxstdl2 + kBystdl2, s5d

leaving the perturbing fields with averages of zero. We define

v0 = gB08, vx,ystd = gBx,y8 std. s6d

The Hamiltonian is thus

H = −
v0

2
sz −

vx

2
sx −

vy

2
sy = H0 + H1std. s7d

Defining

2b = vx + ivy, 2b* = vx − ivy, s8d

the perturbing Hamiltonian can be rewritten as

H1std = b*s+ + bs−, s9d

wheres± are defined in the Appendix, and it is understood
that b is intrinsically time dependent. Furthermore, the den-
sity matrix can be expanded in the spherical Pauli basis,

r = 1 +r1,0sz + r1,1s+ + r1,−1s−, s10d

wherer11=r1−1
* .

The time evolution of the density matrix is

dr

dt
= − ifH0 + H1std,rg. s11d

The explicit dependence on the constantH0 can be elimi-
nated by transforming to the rotating framesalso called the
interaction representationd, with

H1std → eiH0tH1stde−iH0t, r → eiH0tre−iH0t, s12d

where

eiH0t = Se−iv0t/2 0

0 eiv0t/2D . s13d

We henceforth will work in the rotating frame, with

H1std = e−iv0tb*s+ + eiv0ts−. s14d

The time evolution of the density matrix in the rotating
frame is
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dr

dt
= − ifH1std,rg, s15d

which can be integrated by successive approximations to

rstd = rs0d − iE
0

t

fH1st8d,rs0dgdt8

−E
0

t

dt8E
0

t8
dt9†H1st8d,fH1st9d,rs0dg‡. s16d

We are interested in the relaxation rates and frequency shifts
due to the perturbing fields, which can be found through the
time derivative ofr, which, by introducing a new variable
t= t− t9, is

dr

dt
= − ifH1std,rs0dg −E

0

t

dt†H1std,fH1st − td,rs0dg‡.

s17d

The first term on the right-hand sidesRHSd has an ensemble
average of zero; furthermore, there is no correlation between
r and the fluctuating Hamiltonianfe.g., phases of the neu-
trons have no explicit spatial dependence andH1std is differ-
ent for every neutron in the systemg. In addition, if we as-
sume that the perturbation is weak,rs0d can be replaced by
rstd which introduces errors below second order.

We then have

dr

dt
= −E

0

t

dt†H1std,fH1st − td,rstdg‡ ; Grstd, s18d

whereG is the “relaxation matrix,” the real parts of which
describe decays of coherence and the imaginary parts of the
off-diagonal elements describe frequency shifts.

Using the relations in the Appendix together with the ex-
pansion of the density matrix, Eq.s10d, the time derivative of
r, correct to second order and neglecting 2v0 terms, is

ṙ1,−1= − r1,−1E
0

t

2eiv0tb*b8dt, s19d

ṙ1,1= − r1,1E
0

t

2e−iv0tbb8*dt, s20d

ṙ1,0= − r1,0E
0

t

4 Refeiv0tb8*bgdt, s21d

where

2b = vxstd + ivystd, 2b8 = vxst − td + ivyst − td. s22d

These equations describe both a frequency shift and relax-
ation rates of the density matrix. We are at present most
interested in the frequency shift, which is given by the dif-
ference in the off-diagonal components ofG. Expandingb
andb8 we find

dvstd = −
1

2
E

0

t

hcosv0tfvxstdvyst − td − vxst − tdvystdg

+ sinv0tfvxstdvxst − td + vystdvyst − tdgjdt.

s23d

This is the general solution for the frequency shift given an
arbitrary perturbing field. An ensemble average must be
taken.

The identical result is obtained with appropriate
svx,y,dv!v0d approximations from the Bloch equation in
the form given in Eqs.s46d and s47d of f2g. This is quite
interesting given the different assumptions made in the two
approaches.

Now vx=ax+bvy, vy=ay−bvx where

a =
g

2

]Bz

]z
, s24d

b = g
E

c
, s25d

with g the gyromagnetic ratio, and it is clear that only the
cross termsvxvy will result in a nonzero linearEs~bd shift,

dv = −
1

2
E

0

t

dtscosv0tdhkvxstdvyst − tdl − kvxst − tdvystdlj

=
ab

2
E

0

t

dtscosv0tdRstd, s26d

where

Rstd = kystdvyst − td + xstdvxst − td − yst − tdvystd

− xst − tdvxstdl s27d

is the net correlation function, wherek¯l represents an en-
semble and time average.

B. General solution for a radial magnetic field plusEÃv field

According to Eq.s26d the frequency shift is proportional
to the cosine Fourier transform of the correlation function
Rstd, betweensy,vyd andsx,vxd evaluated at the Larmor fre-
quency v0. However, this can be written in terms of the
velocity autocorrelation function as follows:

ystd = y0 +E
0

t

vyst8ddt8,

yst − td = y0 +E
0

t−t

vyst8ddt8. s28d

Since there are no correlations betweeny0 andvy, they terms
in Eq. s27d are

A = ystdvyst − td =E
0

t

kvyst8dvyst − tdldt8, s29d
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B = yst − tdvystd =E
0

t−t

kvyst8dvystdldt8, s30d

Rystd = A − B = SE
0

t

kvyst8dvyst − tdldt8

−E
0

t−t

kvyst8dvystdldt8D s31d

=E
t−t

t

dxcsxd −E
t

t

dxcsxd, s32d

wherecsxd is the velocity autocorrelation function and we
used the fact that it is an even function ofx. Repeating the
same argument for thex axis we have

cstd = kvystdvyst − td + vxstdvxst − tdl = kvWxystd ·vWxyst − tdl,

Rstd =E
t−t

t

dxcsxd −E
t

t

dxcsxd s33d

=2hstd − hst − td − hstd s34d

=2hstd, s35d

hstd =E
0

t

dxcsxd, s36d

and we consider only cases wherecsxd→0 asx→` so that
we can take the limitt→` in Eq. s34d and we note that a
constant term inR will not have any effect on Eq.s26d,
contributing only a term~dsv0d=0.

According to Eq.s26d we need the cosine Fourier trans-
form sFTd of Rstd. This will involve 1/v times the FT of
csxd which in turn is proportional tov2 times the FT of the
position correlation function as we shall see. Substituting Eq.
s35d into Eq. s26d we have

dv = abE
0

t

dtscosv0tdhstd. s37d

Writing the velocity correlation function as

cstd =E
−`

`

cosvtcsvddv, s38d

we have

hstd =E
0

t

cstddt =E
−`

`

csvdSsinvt − 1

v
Ddv, s39d

so that according to Eq.s37d the frequency shift is given by
sdropping the time-independent termd

dv = abFE
0

t

dt cosv0tE
−`

`

csvd
sinvt

v
dvG ,

dv = − abE
−`

` csvd
sv0

2 − v2d
dv. s40d

Equations40d represents the general solution to our problem
which is simply the single-frequency BS resultfEq. s1d, Eq.
s18d of f2gg summed over the frequency spectrum of the ve-
locity autocorrelation function plus oscillating termssomit-
tedd that do not contribute as long ascsxd→0 asx→`.

Example: Particle in circular orbit

For a particle in an hypothetical circular orbit with orbital
frequencyvr Þv0 we have

cstd = vxy
2 cosvrt,

csvd = vxy
2 dsv − vrd, s41d

and substituting in Eq.s40d,

dv = − abE
−`

`

vxy
2 dsv − vrd

1

v0
2 − v2dv + soscillating termsd

= −
abvxy

2

v0
2 − vr

2 , s42d

in agreement withfEq. s1d, Eq. s18d of f2gg and valid for the
case whensv0−vrd.vx,y.

III. NUMERICAL CALCULATIONS OF THE
FREQUENCY SHIFT

A. Numerical estimations of the correlation function

The problem of the neutron EDM experiment with a
199Hg comagnetometer subject to a time-varyingE3v field
in combination with a spatially varying magnetic field is de-
scribed inf2g and in the Introduction. We assume a cylindri-

cal volume with radial fieldBWsrd=a8rr̂ . The electric field is
constant everywhere and along theẑ direction. Assuming a
constant velocityv, in the x-y plane, theE3v field is then
fluctuating in direction but of spatially uniform magnitude.

A numerical calculation of the correlation function was
performed for the two-dimensional casesUCN or Hg at a
fixed z, moving only in x-y planed. This problem can be
parametrized in terms of the time between collisions,tc
=l /v, where the mean free path between collisions isl and
the average velocity isv. For the numerical calculations,v is
assumed constant. Time can be parametrized in dimension-
less units,t /tc. The correlation function was calculated by
statistically choosing a propagation distance for a fixed ve-
locity direction and taking time steps of 0.025, after which a
new random velocity direction was chosen. Various degrees
of specularity, parametrized byDu for the statistical degree
of angular change for reflection from the bottle surface, were
considered.

Results of a two-dimensional Monte Carlo calculation are
shown in Fig. 1. Takingl=1 and fixed, we see the effect of
wall collisions as the bottle radius approachesl. We see in
Fig. 1 that in all casesRstd initially increases linearly. The
effect of the wall collisions whenR.l is to limit the dis-
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tance that the random walk can take, and this appears as an
exponential decay inRstd at long times. This effect does not
depend on the specularity of the wall collisions and is best
seen as an effect on the whole ensemble of particles which
can be described by classical diffusion theory. In this limit,
the correlation function is well described by

Rstd = s1 − e−t/tcde−t/T, s43d

where, from analysis of the plots,

T <
0.6R2

lv
. s44d

In the other limitR,l, Rstd oscillates with frequency

v <
2pv
5.2R

s45d

and

Rstd = e−t/T sinvt, s46d

whereT depends onDu, but is typically of order 2p /v.
The frequency shift is determined by Eq.s26d and in the

case of largeR we find stc!Td, using Eq.s44d,

dv =
abR2

T2v0
2 + 1

=
abR2

1 + s0.6R2v0/vld2 . s47d

These results are in good agreement withf2g, Fig. 10, for
which 4/2p<0.634 replaces the factor 0.6 above and with
Eq. s72d below.

Additional insight can be gained by considering the ef-
fects of varyingl keepingR fixed, as shown in Fig. 2 for

very smalll. In this limit, the horizontal axis is multiplied by
l /R to define time proportional toR/v. The correlation am-
plitude function is proportional tolv and the decaying ex-
ponential time constant is

T ~
R2

lv
. s48d

The time to reach the peak value is

t0 ~ l2/Rv, s49d

which approaches zero asR→`.
This limit is further discussed in Sec. V A, and the fre-

quency shift in this case is in general agreement with Fig. 10
of f2g.

The curves for largesrelative to Rd l in Fig. 1 show
damped oscillations whose damping depends on the angular
spread of the wall collisions. This is a manifestation of the
resonance behavior discussed in Ref.f2g for the case of per-
fectly specular wall collisions. Here we see the damping due
to nonspecular reflections.

B. Numerical estimations of the frequency shift
for all values of v0/vr

Using Eq.s37d and the results of the previous section, the
cosine transform of the numerically determined correlation
function can be calculated numerically. In order to reduce
oscillations due to the finite time window, a Hamming win-
dow function was applied to the correlation function and a
slight correction due to the frequency dependent gain as im-
posed by the window function was applied. The results, as a
function of mean free pathl at fixed radiusR, for specular
and purely diffuse wall reflection, are shown in Fig. 3.

There are a few points worth noting. First, the curves for
large l in the specular case are very similar to the Bloch-
Siegert result. Second, at small and large frequencies, the
results agree with the numerical semianalytically determined
results presented above and inf2g and the theoretical analysis

FIG. 1. The position-velocity correlation functionRstd=2hstd
as a function of cell radiusR parametrized in terms of the mean free
path l for different degrees of specularity as parametrized by the
angular spread of the final angle compared to the incident angle.
The plots for a givenR are for angular spreads on reflection of 0°,
45°, 90°, and 180°, with the latter representing diffuse reflection.
Increased angular spread causes the correlation function to decay
more rapidly in all cases. ForR*2.5l, there was practically no
effect due to the degree of specularity, as expected.

FIG. 2. The position-velocity correlation function whenl is
very small. This represents the limit for slow diffusion.
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below. Third, the behavior at intermediate frequencies is seen
to be very interesting: The shift goes to zero forv0/vr ,1 as
it must because the effect changes sign between large and
small frequencies.

Furthermore, it can be seen immediately that the effects of
wall collision specularity are important whenv0<vr, in
contradiction to the statement inf2g that the degree of specu-
larity does not affect the frequency shift. We discuss this
point later in more detailsSec. IVd.

IV. ANALYTIC RESULTS FOR THE LIMITING CASES
OF LARGE AND SMALL FREQUENCIES

„v0/vrš1,v0/vr™1…

Equations40d represents the formal solution of the prob-
lem in all cases of interest here. Thus the frequency shift is
determined entirely by the velocity autocorrelation function
of the particles undergoing magnetic resonance. This func-
tion has been the subject of intense experimental and theo-
retical studyf9–12g. In our case, involving macroscopic dis-
tances and times, it suffices to treat the motion classically.
For relatively short times, if the particles undergo collisions
which are distributed according to a Poisson distribution
with average time between collisions given bytc, the veloc-
ity correlation function is well known to be given by

cstd = kv2le−t/tc. s50d

This form is known to be valid for relatively short times.
According to Eq.s37d the frequency shift depends on the
Fourier transform of the integral of the velocity correlation
function evaluated atv0. So the short-time behavior ofcstd
determines the high-frequency behavior ofcsvd, and the re-
sult using this form is expected be valid in the case of large
v0—i.e., v0@vr.

For longer times the velocity correlation function is well
described by classical diffusion theory. Thus the long-time
behavior will determine the low-frequency region of the ve-
locity spectrum and the result will apply to the casev0

!vr. In this region the result will depend on the size of the
containing vessel as the dynamics of the diffusion process
are influenced by the boundary conditions.

A. Short correlation times „vr™v0…

Using Eq.s50d we have

csvd =
1

p
kv2lE

0

`

cosvte−t/tdt =
1

p
kv2l

1

tsv2 + 1/t2d
,

s51d

so that, according to Eq.s40d,

dv = − abE
−`

` csvd
sv0

2 − v2d
dv s52d

=ab
1

p

kv2l
t
E

−`

` 1

sv2 + 1/t2dsv2 − v0
2d

dv s53d

=− ab
kv2l
v0

2

1

s1 + 1/v0
2t2d

. s54d

This is in substantial agreement with the expression given in
the caption of Fig. 12 off2g when it is taken with Eq.s19d or
s3d of f2g applicable to the case whenvr !v0. It is quite
likely that the small discrepancys,10%d in the 50% sup-
pression point is due to the process of averaging over the
velocity distribution shown in Fig. 12 off2g.

B. Diffusion theory calculation of the long-time behavior
of the velocity correlation function: Frequency shifts

for „vršv0…

Whereas the previous case applies to UCN this case
would apply to atoms used as a comagnetometer and is more
relevant experimentally as it results in larger shiftsf2g and in
some casesf13g the collision rate can be simply adjusted by
changing the experimental conditions.

In the following we review the solution of the diffusion
equation in cylindrical geometry, obtain the velocity autocor-
relation function from the solution, and calculate the fre-
quency shift. In the limit of a small collision rate the result
agrees with the known results forsvr @v0d and the effect of
the collisions agrees with that found from numerical simula-
tions sFig. 10 of f2gd.

1. Green’s function for the diffusion equation
in cylindrical geometry

In this section we attempt to understand the effects of the
vessel boundary on the velocity autocorrelation function, ob-
served in the numerical simulationssSec. III Ad, by applying
classical diffusion theory to the problem. Diffusion theory is
expected to be valid for long times so that we expect the
results to be valid for smallv0—i.e., v0!vr:

D¹2r −
]r

]t
= 0,

FIG. 3. Results of numerically applying Eq.s37d to numerical
calculations of the correlation function, for varyingl with R fixed.
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r = uksrde−Dk2t,

¹2u + k2u = 0. s55d

We consider a two-dimensional problem; that is, we ne-
glect anyz dependenceskz=0d. For the cases considered in
f2g where the height of the bottle is much smaller than the
radius higher-z modes will decay relatively quickly.

The boundary condition isjsRd=−D ]r /]r =0, so the
eigenfunctions satisfying the boundary conditions are

um,n = Nm,nJmskm,nrdeimu,

km,nR= xm,nfnth zero ofdJmszd/dzg,

where the normalization constantswhich depends on the
boundary conditionsd is sf14g, p 322d

Nm,n =
1

Î2pJmskm,nRd
Î 2km,n

2

skm,nRd2 − m2 . s56d

The Greens’ function satisfying the boundary conditions
is f15g

Gsr,r8,td = o
m,n

sNm,nd2Jmskm,nrdJmskm,nr8deimsu−u8de−Dkm,n
2 t.

s57d

This is the probability of finding a particle atrW at time t,
given that the particle was atrW8 at timet=0. The spectrum of
the velocity correlation function is related toSsqW ,vd which
in turn is the average over the system of the Fourier trans-
form of this probability with respect tor=sr −r8d. We use the
cosine transform because we want the cosine transform of
the velocity correlation functions38d csvd:

Ssq,vd =
1

pKE d2reiqW·rWE
0

`

dt cosvtGsr,r8,tdL s58d

=
1

p
E E d2r8

pR2d2reiqW·rWE
0

`

dt cosvtGsr,r8,td s59d

=
1

p2R2o
m,n

sNm,nd2E d2reiqW·rWJmskm,nrdeimu s60d

E d2r8e−iqW·rW8Jmskm,nr8de−imu8 Dkm,n
2

v2 + sDkm,n
2 d2 . s61d

Now we can evaluate the integrals using

Jmsxd =
s− idm

2p
E

0

2p

eisx cosu+muddu s62d

and Bessel function identities

E d2reiqW·rWJmskm,nrdeimu =
2psid±m

sq2 − km,n
2 d

qR

2
Jmskm,nRdfJm−1sqRd

− Jm+1sqRdg. s63d

Thus,

Ssq,vd =
2

p3R2o
m,n

km,n
2

skm,nRd2 − m2S 2p

sq2 − km,n
2 d

qR

2
fJm−1sqRd

− Jm+1sqRdgD2 Dkm,n
2

v2 + sDkm,n
2 d2 . s64d

2. Velocity autocorrelation function

The velocity autocorrelation function

cstd = kvWs0d ·vWstdl s65d

has a Fourier transform given byf16g

csvd = lim
q→0

2Sv

q
D2

Ssq,vd, s66d

so that the only terms in Eq.s64d which contribute are those
containingJ0sqRd, since limx→0 Jnsxd,sxdn, J0s0d=1. Thus
we only need to keep terms withm= ±1 in Eq. s64d and we
find

lim
q→0

Ssq,vd =
2q2

pfsk1,nRd2 − 1g
D

v2 + sDk1,n
2 d2 . s67d

Then

csvd =
1

p
o
n

4

x1,n
2 − 1

Dv2

v2 + sDk1,n
2 d2 . s68d

3. Frequency shift in the diffusion approximation
(cylindrical geometry)

According to Eq.s40d,

dv = − abE
−`

`

csvd
1

v0
2 − v2dv s69d

=abR2o
n

4

x1,n
2 − 1

1

x1,n
2 fsv0R

2/Dx1,n
2 d2 + 1g

. s70d

The results70d is dominated by the first modex1,1=1.84.
Figure 4 shows the first term in comparison to the sum of the
first five terms. For convenience we list the zeros ofJ18sxd:
x1,2=5.33,x1,3=8.54,x1,4=11.7. Since we are dealing with a
two-dimensional problem, we put

D = v2t/2 s71d

sinstead oftv2/3 for three dimensionsd in order to facilitate
the comparison with the numerical simulationsf2g and ob-
tain for the condition that the frequency shift be reduced to
50% of its value in the absence of collisions,

h =
v0R

2

Dx1,n
2 =

2v0R
2

v2tx1,n
2 = 0.59

v0R
2

v2t
= 1, s72d

the numerical factor of which is to be compared with 2/p
=0.634 obtained inf2g, Fig. 10, by fitting simulated results,
and our numerical result of 0.6 presented in Sec. III A. The
magnitudeabR2/2 of Eq. s70d in the absence of collisions is
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just that expected from the Bloch-Siegert treatment in the
casevr @v0 fEq. s3d, Eq. s21d of f2gg, averaged over the
different trajectories as discussed inf2g after Eq.s22d.

4. Frequency shift in the diffusion approximation
(rectangular geometry)

For the rectangular case the normalized eigenfunctions
are

um,nsx,yd =Î 2

Lx
cos

mp

Lx
xÎ 2

Ly
cos

mp

Ly
y, s73d

which satisfy the reflection boundary conditions atx=0, Lx
andy=0, Ly. Forn or m=0 the corresponding eigenfunctions
are

u0 =
1

ÎLx,y

, s74d

so that the Green’s function is

Gsx,x8,y,y8,td = o
m,n=0

` F 1

Lx
+

2

Lx
coskmx coskmx8e−Dkm

2 tG
3F 1

Ly
+

2

Ly
cosknx cosknx8e−Dkn

2tG , s75d

with km,n=sm,ndp /Lx,y. To calculate limq→0 Ssq,vd we need
integrals of the form

lim
q→0

E
0

L

eiqxx coskmxdx=
qx

qx
2 − km

2 HqxLx, m= 2,4,6, . . .

− 2/i , m= 1,3,5, . . .
J
s76d

=hLx, m= 0j. s77d

Since each of these will appear squared because of the con-
tribution from thex, x8 integrals, we can only take the odd
values ofm. The even numbers will yield a higher power of

q which will vanish in the limit. Given this, if we takem
=1,3,5, wemust taken=0 and vice versa. We calculate,
using Eq.s76d,

lim
q→0

FSsq,vd =E dxE dx8

Lx
E dyE dy8

Ly
eiqW·sxW−xW8d 1

p

3E
0

`

dt cosvtGsxW,xW8,tdG s78d

=q2 8

2p
S o

m=1,3,5,. . .

1

km
2 smpd2

Dkm
2

v2 + sDkm
2 d2

+ o
n=1,3,5,. . .

1

kn
2snpd2

Dkn
2

v2 + sDkn
2d2D , s79d

where we usedkqx
2l=kqy

2l=q2/2. Then,

csvd =
8v2

p
S o

m=1,3,5,. . .

1

km
2 smpd2

Dkm
2

v2 + sDkm
2 d2

+ o
n=1,3,5,. . .

1

kn
2snpd2

Dkn
2

v2 + sDkn
2d2D s80d

and fusing Eq.s40dg

dv = − abE
−`

`

csvd
1

v0
2 − v2dv s81d

=8abS o
m=1,3,5,. . .

Lx
2

smpd4

1

sv0Lx
2/Dsmpd2d2 + 1

+ o
n=1,3,5,. . .

Ly
2

snpd4

1

sv0Ly
2/Dsnpd2d2 + 1D . s82d

We thus see that in a rectangular boxLxÞLy it is the longer
side which dominates the behavior.

C. Application: 3He comagnetometer

In Ref. f13g the use of3He as a comagnetometer for a
UCN neutron EDM experiment is discussed. This system is
rather unique in that an effective background gassphononsd
can be introduced which affects the3He significantly while
having no substantial interaction with the UCN for tempera-
tures below 0.5 K. Because the3He and neutron magnetic
moments are equal to within 10%, it is possible to control
this systematic by varying the size of the effect for3He by
changing the diffusion rate of the3He atoms.

The UCN upscattering lifetime varies as 100T−7 s for T
,0.7 K, while the coefficient of diffusion for3He in a su-
perfluid helium bath varies asD<1.6T−7 cm2/s f19g.

In connection with Eq.s72d this yields h=1 when the
superfluid helium temperature isT<0.25 K sR=25 cmd,
which determines the temperature scale where the effect can
be varied, and is within the design range of operating tem-
perature for the planned experiment, compatible with a UCN
upscattering lifetime in excess of 1000 s.

FIG. 4. Plot of Eq.s68d. Solid line: first term. Dashed line: sum
of first five terms.
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V. DISCUSSION

One of the surprising, but unexplained, results off2g was
that according to their numerical simulations, wall collisions
had no influence on the magnitude of the frequency shifts
while gas collisions could eliminate the frequency shifts
completely if their rate is high enough. This was apparently
only studied in the limits of large and smallv0/vr. We now
know that this does not apply to intermediate frequencies—
e.g, whenv0,vr. In Fig. 3 we see that wall collisions have
a serious influence at intermediate frequencies whenlùR.
Also, from Fig. 3, we see that the curves for diffuse wall
reflections are very similar to the specular curves forl
,R/2. This implies that there is no essential difference be-
tween wall and gas collisions. We now show that the reason
the wall collisions have no effect at the limiting frequencies,
contrary to the case at intermediate frequencies, is that the
wall collisions are never fast enough to influence the system-

atic sproportional toEW d frequency shifts in the limits of large
and smallv0.

For a particles in a cylindrical vessel following a trajec-
tory along a chord subtending an angle 2a, the time between
collisions is

tc =
2R

v
sina s83d

and the effective field rotation frequency is given by

vr = 2a/tc =
av

Rsina
. s84d

Considering first the case whenvr @v0 fEq. s70d, Fig. 10 of
f2gg, the systematic frequency shift was found to be sup-
pressed by the factorh:

h =
1

1 + b2 ,

b =
2R2v0

pv2tc
.

For significant suppression we needb*1,

2R2v0

pv2tc
=

Rv0

pv sina
* 1,

sina &
Rv0

pv
=

253 2 3 7

104 ,
1

30
, s85d

for representative conditions inf2g, Fig. 10 sR=25,B0

=1 mT,v=104 cm/sd.
The probability of a given value ofa is given in Eq.sB1d

of f2g as

Psadda =
4

p
sin2 ada,

Psa ø «d , «3, s86d

so that the wall collisions would only be expected to be
effective for a vanishingly small fraction of the trajectories.

Turning now to the casevr !v0 fEq. s54d, Fig. 12 off2gg
we have, as the condition that the suppression be effective,

b =
1

v0tc
ù 1,

1

v0
*

2R

v
sina,

sina ø
v

2Rv0
=

200

2 3 253 200
=

1

50
,

for conditions typical of f2g, Fig. 12 sv=200 cm/s,B0

=1 mTd.
Thus the wall collisions rate is never high enough to sig-

nificantly affect the magnitude of the frequency shift at the
limits. The wall collisions do, however, broaden and shift the
resonances discussed inf2g

VI. CONCLUSION

We have developed a general technique of analyzing the
systematic effects due to a combination of an electric field
and magnetic gradients as encountered in EDM experiments
that employ gasses of stored particles. Use of the correlation
technique, either by numerical calculations for complicated
geometries or by the velocity correlation function for simpler
geometries, provides a simplified approach to the problem
compared to numerical integration of the Bloch equations.
Our analysis has added insight to this new systematic effect
and provides a means of rapidly assessing the effects of vari-
ous geometries and angular distributions for wall and gas
collisions.
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APPENDIX: MATRIX ALGEBRA OF SPHERICAL
PAULI MATRICES

The following relationships among the Pauli matrices
have been employed in the calculation in Sec. II A:

2s± = sx ± isy, sA1d

s±sz = 7 s±, szs± = s±, sA2d

s±s7 =
1

2
±

1

2
sz, sA3d

szsz = 1, s±s± = 0. sA4d
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