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Detailed discussion of a linear electric field frequency shift induced in confined gases by a
magnetic field gradient: Implications for neutron electric-dipole-moment experiments
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The search for particle electric dipole mome(E®M's) is one of the best places to look for physics beyond
the standard model of electroweak interaction because the size of time reversal violation predicted by the
standard model is incompatible with present ideas concerning the creation of the baryon-antibaryon asymme-
try. As the sensitivity of these EDM searches increases more subtle systematic effects become important. We
develop a general analytical approach to describe a systematic effect recently observed in an electric dipole
moment experiment using stored particlds M. Pendlebunet al, Phys. Rev. A70, 032102(2004)]. Our
approach is based on the relationship between the systematic frequency shift and the velocity autocorrelation
function of the resonating particles. Our results, when applied to well-known limiting forms of the correlation
function, are in good agreement with both the limiting cases studied in recent work that employed a numerical
and heuristic analysis. Our general approach explains some of the surprising results observed in that work and
displays the rich behavior of the shift for intermediate frequencies, which has not been studied previously.
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I. INTRODUCTION concept. A more general description is in terms of the Bloch-

The search for an electric dipole momeBEDM) of the Sieg_ert(BS) shift of magnetic resonance frequencies due to
neutron is perhaps unique in modern physics in that experi’® time-dependent fields mentioned abf2g].
mental work on this subject has been going on more or less 1he €effect was apparently empirically identified in the
continuously for over 50 years. In that period the experimen!LL H9 comagnetometer EDM experiment, and recently
tal sensitivity has increased by more than a factor df 10 Pendlebunetal.[2] have given a very detailed discussion of
without an EDM ever being observed. The reason for thidt, including intuitive models and analytical calculations for
apparently obsessive behavior by a small group of dedicategfrtain cases, the r_elatlon between and regions of applicabil-
physicists is that the observation of a nonzero neutron EDMY ©f the geometric phase and Bloch-Siegert models, nu-
would be evidence of time reversal violation and for physicgT€rical simulations, and experimental verification of the
beyond the so-called standard model of electroweak interadloSt significant features. However, this pioneering work has
tions. An essential point is that the standard model predic'€ft certain questions unanswered. In particular the under-
tions of the magnitude of time reversal violation are incon-Standing of the effects of collisions on the systematic fre-
sistent with our ideas of the formation of the universe;dUency shifts remain incomplete. .
namely, the production of the presently observed matter- !N this work we attempt to clarify several points concern-
antimatter asymmetry requires time reversal violation many"9 the influence of particle collisions. We explain the reason

orders of magnitude greater than that predicted by the star‘ihat in contrast to gas collisions, collisions with the walls
dard model. were observed to have no effect on the magnitude of the

In this type of experimertnull experiment the control of systgma_ttic frequency _shifts and show that t_his only applies to
systematic errors is of great significance. While the switch ofn€ limiting cases of high and low frequencies. We show that
experimental technique from beam experiments to experit-he fr_equency shift is rglated to the velocity a_utocorrelauon
ments using stored ultracold neutroidCN's) has elimi- fu_nctlon of the reson'atl'n.g particles. Our solutlonz when ap-
nated many of the sources of systematic error associated wifffiéd t©© well-known limiting forms of the correlation func- -
the beam technique, the gain in sensitivity brought by thdion, gives results in agreement with f[h(_)se obtained numeri-
new UCN technique means that the experiments are sensitif@!!Y in [2]. McGregor has taken a similar approach to the
to a new range of systematic errors. One of the most serioU¥oblém of relaxation due to static field gradieri],
of these is associated with the interaction of gradients of th&/nereas the approach taken by Cateal. to the problem of

ever-present constant magnetic field with the well-knownstatic field gradient$5] and gradients combined with oscil-

. N . . ati turbing field$6] i hat diff t th .
motional magnetic fieldE X v/c). As the particles move in ating perturbing field$6] is somewhat different than ours

the apparatus, these fields, as seen by the particles, will be
time dependent. This effect was first pointed out by Com- Brief description of the effect
mins [1] and explained in terms of the geometrical phase consider a case where, in a storage experiment, there is a
radial magnetic field due to a magnetic field gradient inzhe
direction (B, the quantization axis, and the electric fiétd
*Present address: Hahn Meitner Institut, Berlin, Germany. are alongz). Now consider roughly circular orbits, due to
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specular reflection around the bottle at a constant angle, ithat the perturbing potential has a short correlation time, and
the x-y plane with radius approximately the bottle radRis  certain assumptions regarding averaging are not applicable to
The wall collisions occur at a frequency 4./while the or-  our problem. The effect of a static electric ficidby itself

bital frequency isw,=2a/ 7, Wwhere« is the incidence angle was treated in7] where theE? effect was related to the
relative to the surface. We can transform into a rotatingcorrelation time and requirements on the field reversal accu-
frame atw, (note that this is not the Schwinger rotating racy were discussed.

frame that eliminate®;) so that the problem is quasistatic =~ So we therefore start from the beginning, follow{&j (p.

[3]. 276).
The radial field, with the barrel gradient pl&sx v field, The radial gradient andeXv fields can be treated as
is weak fluctuating perturbing fieldB, ,(t) in the x-y plane,
with a constantB, applied alongz. The perturbing fields
Bg=B, + Bz = aR+ @E By,(t) can be written as

B, (1) = By(t) — (B,(1)), B/(t) =B,(t) —(B,(t)), 4
where B,(r)=(r/2)dB,/ dz=ar is the radial field due to the (U =B0 - (B(D), BO=B,0- BV, (4
axial gradient, Be=rw,E/c is the radially directedExv  where(---) represents a time average®y,(t). The constant
field, and thex refer to the rotation direction. components of the perturbing field are addedgp

In the rotating frame, , 5 2 2
Bo = V(Bo)” + (By(1))" + (B,(1))", 5

B?=(Bo— w/7)*+ (BR)?, _ . _ .
) ) _ o ~ leaving the perturbing fields with averages of zero. We define
where vy is the gyromagnetic ratio. Expanding in the limit

where Bg<B,, with transformation back to the laboratory wo=YBy, (1) = ¥By (D). (6)
frame we find

The Hamiltonian is thus

B-g +1(aR—w,RE/C)2_ _ (aRwElc) " " 5
T2 By — w/y -0 By—wly’ H:_?OO-Z_EXO-X__ZYUy:HO-'-Hl(t)' (7)

keeping only terms linear iBg. Averaging over the rotation
direction (e.g., the sign ofv,), the net effect of the gradient
field combined with arE X v yields a systematiémagnetic b= tio, 20 =w-ioy, (8)
field) shift of

Defining

the perturbing Hamiltonian can be rewritten as
S 6B Ya'E (1)
« = == —l = *
Y C(wg ~ wrz) H.(t)=b o, +bo_, (9
where g, are defined in the Appendix, and it is understood
thatb is intrinsically time dependent. Furthermore, the den-

sity matrix can be expanded in the spherical Pauli basis,

equivalent to Eq(18) of [2]. Taking the limitw,/ y<B, we
have

aRw’E aRw’E
= - , w=—
ycB3 cB? .
wherepy;=p;_,.

which would seem to set the _scale of the effect and_is equiva- The time evolution of the density matrix is
lent to Eq.(19) of [2]. In this limit, the frequency shift does
not depend ory, implying that it is the result of a geometric dp .
oftect PYing g 4 = ~iHo+ Hy(0),p). (11)
In the other limit, where the rotation frequency is much o o
faster than the Larmor frequency, we similarly find that ~ The explicit dependence on the constahf can be elimi-
nated by transforming to the rotating frarfedso called the

, (2 p=1+p100,+p1,104++ p1-10-, (10

B =yaRElc, dw=yaRElc, () interaction representatidmwith
which_ is independent o_f the _mc_>tiona| freql_Jerm,y of oppo- H,(t) — gMotH, (e Mot p — dHotperiHot, (12)
site sign from the previous limit, and equivalent to E2j)
of [2]. where
e—iwot/Z 0
gt = : (13)
Il. FREQUENCY SHIFT DUE TO FLUCTUATING FIELDS 0 dogt2 |

IN THE x-y PLANE . . . .
We henceforth will work in the rotating frame, with

A. Density matrix approach to the problem

— alopth* + i gt i
The issues of the effects of a weak fluctuating potential on Hy() =e™b o, +e*00. (14)

the evolution of the density matrix have been well addressed The time evolution of the density matrix in the rotating
in the literature. However, these treatments generally assunieame is
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d
= = —ilHy(1),p),

a (15

t
Sw(t)=- %fo {coswgr (D wy(t = 7) — ot - Do(1)]

which can be integrated by successive approximations to + sinwyr wy(Dwy(t - 7) + o (Hoy(t - 7)]Hd7.

t (23
p(t) =p(0) —i f . [Ha(t'), p(0)]dt’

This is the general solution for the frequency shift given an
arbitrary perturbing field. An ensemble average must be
taken.

The identical result is obtained with appropriate
(w4, dw<wg) approximations from the Bloch equation in
We are interested in the relaxation rates and frequency shifthe form given in Eqs(46) and (47) of [2]. This is quite
due to the perturbing fields, which can be found through thenteresting given the different assumptions made in the two
time derivative ofp, which, by introducing a new variable approaches.

t !
_ f av f U QUTHL ), [Hy), 001, (16)
0 0

=t-t", is Now w,=ax+bvy, o,=ay—-bv, where
d _ ! _vdB
d_?:"[Hl(t),P(o)]‘J d[H,(t),[Hy(t = 7),p(0)]]. a_Ea_ZZ' (24)
0
17
” - 25
The first term on the right-hand sidBHS) has an ensemble B yc, (25)

average of zero; furthermore, there is no correlation between
p and the fluctuating Hamiltoniafe.g., phases of the neu- With y the gyromagnetic ratio, and it is clear that only the
trons have no exp"cit Spatiaj dependence Hid) is differ- Cross termszuxwy will result in a nonzero ||neaE(O<b) shift,
ent for every neutron in the systénin addition, if we as- 1t
sume that the perturbation is weak0) can be replaced by 5o = - = J dr(coswon){(wx(t)wy(t = 7)) = (w,(t = Dy (1))}
p(t) which introduces errors below second order. 2J)o

We then have

ab (!
q . = ?f dr(coswyn)R(7), (26)
d_li == f drHy(t),[Hy(t = 7),pM]1=Tp(t), (18) °
0 where
whereT is the “relaxation matrix,” the real parts of which R(7) = (y(Duy(t = 1) + XD, (t = 7) = y(t = Doy(b)
describe decays of coherence and the imaginary parts of the Y X Y
off-diagonal elements describe frequency shifts. = X(t= 1v,(1)) (27)

Using the relations in the Appendix together with the ®Xis the net correlation function whefe -) represents an en-
pansion of the density matrix, EQLO), the time derivative of k P

p, correct to second order and neglecting,2erms, is

t
p1-1=~ Pl,—lf 2€“0b’b'd, (19
0
t .
p11=— Pl,lJ 270" dr, (20)
0
t .
P10=" Pl,Of 4 Rde“o'b’"b]dr, (21
0

where

2b=w,t) +io/(l), 2b'=w(t-7)+io(t-7). (22

These equations describe both a frequency shift and rela

semble and time average.

B. General solution for a radial magnetic field plusE X v field

According to Eq.(26) the frequency shift is proportional
to the cosine Fourier transform of the correlation function
R(7), between(y,v,) and(x,v,) evaluated at the Larmor fre-
quency wg. However, this can be written in terms of the
velocity autocorrelation function as follows:

t
yt) =yo+ J vy(t")dt’,

0

t-7

yt—-7)=yp+ f vy(t)dt’. (28)

0

since there are no correlations betwggndv,, they terms

ation rates of the density matrix. We are at present mogf Ed. (27) are

interested in the frequency shift, which is given by the dif-

ference in the off-diagonal components Iof Expandingb
andb’ we find

t
A=yvy(t-7) = f (vy(t)vy(t - 7))dt’, (29
0
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t-7
B=y(t-nuy(t) = f (oy(t)uy(t))dt’, (30
0
t
R(n=A-B= (f (vy(t" v, (t - 7))dt’
0
t-7
- f <vy<t')vy<t)>dt') (31)
0
T t
:f dxy(x) — f dxy(x), (32
™t T

where /(x) is the velocity autocorrelation function and we
used the fact that it is an even functionfRepeating the
same argument for the axis we have

W)= <Uy(t)vy(t —7) +u(Dog(t— 1) = <6xy(t) : ny(t -7,

T t
R(7) = dxip(x) — j dxi(x) (339
™t T
=2h(7) —h(t=7) = h(t) (34)
=2h(7), (35)
h(7) :deng(x), (36)
0

and we consider only cases whet&x) —0 asx— o0 so that
we can take the limit— in Eq. (34) and we note that a
constant term inR will not have any effect on Eq(26),
contributing only a terme< §(wg) =0.

According to Eq.(26) we need the cosine Fourier trans-
form (FT) of R(7). This will involve 1/w times the FT of
(x) which in turn is proportional ta? times the FT of the

position correlation function as we shall see. Substituting Eq

(35) into Eq.(26) we have

t
ow= abf dr(coswyr)h(7). (37)
0
Writing the velocity correlation function as
(t) :f cosoty(w)dw, (38)

we have
h(T):fTw(t)dt:f lp(w)(—sm"”_ 1>dw, (39)
0 - w

so that according to Eq37) the frequency shift is given by
(dropping the time-independent term

J

SinwTt
dow |,
w

5w=abl dTCOSwOTf Yw)

PHYSICAL REVIEW A 71, 032104(2005

()

ow=-ab
@ o (wg—wz)

do. (40)

Equation(40) represents the general solution to our problem
which is simply the single-frequency BS resfHq. (1), Eq.
(18) of [2]] summed over the frequency spectrum of the ve-
locity autocorrelation function plus oscillating ternesmit-
ted) that do not contribute as long @gx) —0 asx— .

Example: Particle in circular orbit

For a particle in an hypothetical circular orbit with orbital
frequencyw, # wy we have

(1) = viy COSw, T,

Hw) = v 80 = w), (41)

and substituting in Eq40),

ow=-— abf v)z(y&(w —w)— sdo + (oscillating termg
—0 wo ()
abv}
=- 2 * 2 (42)
(1)0 - wr

in agreement withEq. (1), Eq. (18) of [2]] and valid for the
case wher{wy— o) > wy.

IIl. NUMERICAL CALCULATIONS OF THE
FREQUENCY SHIFT

A. Numerical estimations of the correlation function

The problem of the neutron EDM experiment with a
19%g comagnetometer subject to a time-varyly v field
in combination with a spatially varying magnetic field is de-
scribed in[2] and in the Introduction. We assume a cylindri-

cal volume with radial fieldB(r)=a’ri. The electric field is
constant everywhere and along thelirection. Assuming a
constant velocity, in the x-y plane, theE X v field is then

fluctuating in direction but of spatially uniform magnitude.

A numerical calculation of the correlation function was
performed for the two-dimensional cagdCN or Hg at a
fixed z, moving only inx-y plane. This problem can be
parametrized in terms of the time between collisions,
=N\/v, where the mean free path between collisions a&nd
the average velocity is. For the numerical calculations,is
assumed constant. Time can be parametrized in dimension-
less units,7/ 7.. The correlation function was calculated by
statistically choosing a propagation distance for a fixed ve-
locity direction and taking time steps of 0.025, after which a
new random velocity direction was chosen. Various degrees
of specularity, parametrized hy# for the statistical degree
of angular change for reflection from the bottle surface, were
considered.

Results of a two-dimensional Monte Carlo calculation are
shown in Fig. 1. Taking.=1 and fixed, we see the effect of
wall collisions as the bottle radius approachesNe see in
Fig. 1 that in all casef(7) initially increases linearly. The
effect of the wall collisions whefiR>\ is to limit the dis-
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R(c/z,) /Ay

L L
0 2 4 6 8 10 12 14 16 18 20
T/[R/V]

FIG. 1. The position-velocity correlation functidR(7)=2h(7) FIG. 2. The position-velocity correlation function whenis
as a function of cell radiuR parametrized in terms of the mean free very small. This represents the limit for slow diffusion.
path \ for different degrees of specularity as parametrized by the

angular spread c_Jf the final angle compared to the incit_jent anglq,ery smallX. In this limit, the horizontal axis is multiplied by
The plots for a giverR are for angular spreads on reflection of 0°, MR to define time proportional t&/v. The correlation am-

45°, 90°, and 180°, with the latter representing diffuse reflection. litude function is proportional taw and the decaying ex-
Increased angular spread causes the correlation function to decg%nential time constant is

more rapidly in all cases. FdR= 2.5\, there was practically no
effect due to the degree of specularity, as expected.

tance that the random walk can take, and this appears as an .
exponential decay iR(7) at long times. This effect does not The time to reach the peak value is

depend on the specularity of the wall collisions and is best

To i (48)
N
70 % N/Rv, (49)

seen as an effect on the whole ensemble of particles which
can be described by classical diffusion theory. In this limit,which approaches zero &-— .

the correlation function is well described by

R(1)=(1-e"%)e ™, (43)
where, from analysis of the plots,
0.6R?
T= . (44)
\v

In the other limitR<\, R(7) oscillates with frequency

27v
w=—— (45)
5.2R
and
R(1) =e "Tsinwr, (46)

whereT depends o\ g, but is typically of order zr/ w.
The frequency shift is determined by E@6) and in the

case of largeR we find (7.<T), using Eq.(44),

_ abR abR

T T202+1 1+(0.6Rwy/uN)?

ow (47)

These results are in good agreement Wih Fig. 10, for

This limit is further discussed in Sec. V A, and the fre-
quency shift in this case is in general agreement with Fig. 10
of [2].

The curves for largdrelative to R) N in Fig. 1 show
damped oscillations whose damping depends on the angular
spread of the wall collisions. This is a manifestation of the
resonance behavior discussed in R&f.for the case of per-
fectly specular wall collisions. Here we see the damping due
to nonspecular reflections.

B. Numerical estimations of the frequency shift
for all values of wq/ @,

Using Eq.(37) and the results of the previous section, the
cosine transform of the numerically determined correlation
function can be calculated numerically. In order to reduce
oscillations due to the finite time window, a Hamming win-
dow function was applied to the correlation function and a
slight correction due to the frequency dependent gain as im-
posed by the window function was applied. The results, as a
function of mean free path at fixed radiusR, for specular
and purely diffuse wall reflection, are shown in Fig. 3.

There are a few points worth noting. First, the curves for

which 4/27=0.634 replaces the factor 0.6 above and withlarge \ in the specular case are very similar to the Bloch-

Eq. (72) below.

Siegert result. Second, at small and large frequencies, the

Additional insight can be gained by considering the ef-results agree with the numerical semianalytically determined

fects of varying\ keepingR fixed, as shown in Fig. 2 for

results presented above and 2j and the theoretical analysis
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. . - < w,. In this region the result will depend on the size of the
i o i Solid: Diffuse wall collisions .. . . .
Py Dashed: Specular wall collisions containing vessel as the dynamics of the diffusion process

0Bk ; hosh are influenced by the boundary conditions.

06 . .
A. Short correlation times (o, < wg)

0.4

&« Using Eq.(50) we have
S o2y 1, (" 1 1
3 — 2 —t/ T — 2
B =— coswte " dt=— — 50,
. W)= >J0 @ w<v >T(w2 +1/7%)
-0.2 (51)
so that, according to Eq40),
-0.4
-06 : : : : : ‘ : ] dw=-— abj f(—w)zdw (52
0 0.5 1 15 2 2.5 3 3.5 4 " (""0 - w°)
@y /[v/R]
FIG. 3. Results of numerically applying E¢B7) to numerical 1 w2 [~ 1
calculations of the correlation function, for varyingwith R fixed. ‘ab;T (02 + 1P (- wg)dw (53
below. Third, the behavior at intermediate frequencies is seen ) 1
to be very interesting: The shift goes to zero égy o, ~ 1 as =—ab— —— 5. (54)
it must because the effect changes sign between large and wp (1+ Lwgr)

small frequencies. , _ This is in substantial agreement with the expression given in
Furthermore, it can be seen immediately that the eff_ects ofhe caption of Fig. 12 of2] when it is taken with Eq(19) or

wall col_lisjon specularity are important wheay= w,, in (3) of [2] applicable to the case when, <wy. It is quite
comradlctlon to the statement|i@] that thg degree pf SPECU- Jikely that the small discrepancy~10%) in the 50% sup-
larity does not affect the frequency shift. We discuss thisy ession point is due to the process of averaging over the
point later in more detailSec. IV). velocity distribution shown in Fig. 12 d].

IV. ANALYTIC RESULTS FOR THE LIMITING CASES B. Diffusion theory calculation of the long-time behavior
OF LARGE AND SMALL FREQUENCIES of the velocity correlation function: Frequency shifts
(0o 0,1, 000/ 0, <1) for (> )

Equation(40) represents the formal solution of the prob- ~Whereas the previous case applies to UCN this case
lem in all cases of interest here. Thus the frequency shift igvould apply to atoms used as a comagnetometer and is more
determined entirely by the velocity autocorrelation functionrelevant experimentally as it results in larger shitgand in
of the particles undergoing magnetic resonance. This funcsome casegL3] the collision rate can be simply adjusted by
tion has been the subject of intense experimental and theghanging the experimental conditions.
retical study{9-17). In our case, involving macroscopic dis-  In the following we review the solution of the diffusion
tances and times, it suffices to treat the motion classicallygquation in cylindrical geometry, obtain the velocity autocor-
For relatively short times, if the particles undergo collisionsrelation function from the solution, and calculate the fre-
which are distributed according to a Poisson distributionquency shift. In the limit of a small collision rate the result
with average time between collisions given hy the veloc- ~ agrees with the known results fow, > wg) and the effect of
ity correlation function is well known to be given by the collisions agrees with that found from numerical simula-

t) = (e, (50 tions (Fig. 10 of[2]).

This form is known to be valid for relatively short times. 1. Green's function for the diffusion equation
According to Eq.(37) the frequency shift depends on the in cylindrical geometry

Fourier transform of the integral of the velocity correlation | this section we attempt to understand the effects of the
function evaluated ab,. So the short-time behavior @ft)  yessel boundary on the velocity autocorrelation function, ob-
determines the high-frequency behaviorygt), and the re-  served in the numerical simulatiofSec. 11l A), by applying
sult using this form is expected be valid in the case of largelassical diffusion theory to the problem. Diffusion theory is

wg—i.€., wp> ;. expected to be valid for long times so that we expect the
For longer times the velocity correlation function is well results to be valid for smathy—i.e., wy< w;:

described by classical diffusion theory. Thus the long-time

behavior will determine the low-frequency region of the ve- DVZp - ap _ 0,

locity spectrum and the result will apply to the casg at
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2
p=u(re Dkt S _ 2 K < 277
) = Im-1(aR)
q 7T3R2m2,n (knnR)? =P\ (7 — Kp,) 2 [ i
V2u+ku=0. (55) , )
We consider a two-dimensional problem; that is, we ne- _Jm+1(qR)]> kanz)z (64)
mn

glect anyz dependencék,=0). For the cases considered in
[2] where the height of the bottle is much smaller than the
radius hlghelz modes will decay relatively QUICk|y 2. Velocity autocorrelation function
The boundary condition ig§(R)=-D dp/dr=0, so the
eigenfunctions satisfying the boundary conditions are

U = N din(Kinaf) €M, (1) = (0) -v(7)) (65
has a Fourier transform given j§6]

The velocity autocorrelation function

KmnR = Xmnlnth zero ofdJ(2)/dz],

where the normalization constafitvhich depends on the o) = I|m 2( ) S(q,0), (66)
boundary conditionsis ([14], p 322
so that the only terms in Eq§64) which contribute are those

2
Ny = —— 1 2Kmn _ (56) containingJy(qR), since lim_ ¢ J,(X) ~(X)", Jpo(0)=1. Thus
V213K mnh)” =M we only need to keep terms with=+1 in Eq. and we
" 2w 3n(knR) Y (K nR)? = 1 ly need to k ith=+1 in Eq.(64) and
The Greens’ function satisfying the boundary conditionsflnd
is [15] 207 D
lim S(q,w) = (67)
G(I’,I”,t) — E (Nm n)sz(km nr)Jm(km nrr)eim(e—ﬁ’)e—Dk%nt_ q—0 W[(kl’nR)z - 1] a)2 + (Dkin)z
mn Then
57
7 1 4 Dw?
This is the probability of finding a particle at at time't, o) = ;E 2 — 102+ (DI )2 (68)
given that the particle was at at timet=0. The spectrum of n “in Ln
the velocity correlation function is related ®&q,») which
in turn is the average over the system of the Fourier trans- 3. Frequency shift in the diffusion approximation
form of this probability with respect tp=(r-r’). We use the (cylindrical geometry)
cosine transform because we want the cosine transform of According to Eq.(40)
the velocity correlation functioii38) (w): 9 a2,
% - 1
1 - _
S(q,w) = —<f dzpe'q'PJ dICOSth(r,r’,t)> (58) S = abf Hw) w2 - (€9)
ar 0 -
d2 ! ) . _ 1
9T 2,edi =abR>, - (70)
J J 5dp f dtcoswtG(r,r’,t) (59 - 1n 1X1 n[(wORZ/Dxl n) +1]°

The result(70) is dominated by the first modeg ;=1.84.
Figure 4 shows the first term in comparison to the sum of the
first five terms. For convenience we list the zerosJfk):
X12,=5.33,%; 3=8.54,%; 4,=11.7. Since we are dealing with a

=S (N? [ re k™ (60

DK two-dimensional problem, we put
d?r’ —id-F/J k 1\ amimé’ ) ) 61
f e In(kmr)e o+ (DIZ,,)? (61) D = v27/2 (71)
Now we can evaluate the integrals using (instead ofr?/3 for three dimensionsin order to facilitate
Sm 2w the comparison with the numerical simulatioi®y and ob-
Jn(X¥) = (__')J gi(x cos 6+mé) 4 (62) tain for the condition that the frequency shift be reduced to
27 50% of its value in the absence of collisions,
and Bessel function identities w0R2 2woR2 wOR2
7= D - =0.59 =1, (72
G ; 27T(i) m qR X1,n v 7-Xln
d?re'47J (K, or)em? = KmnR)[Im-1(aR
f mlkmal) (q (=12 ) K 2 In(kmnRLIm-1(GR) the numerical factor of which is to be compared withn2/
B (GR)] 63) =0.634 obtained ih2], Fig. 10, by fitting simulated results,
Ime1(AR)]. and our numerical result of 0.6 presented in Sec. Il A. The
Thus, magnitudeabRe/2 of Eq.(70) in the absence of collisions is

032104-7



S. K. LAMOREAUX AND R. GOLUB

-
-

dw/[abR?/2]
o o ¥ = o o o o
N ® &~ O o N ® o
\\

=

.
15 2
D/moFlz

25 3

FIG. 4. Plot of Eq.(68). Solid line: first term. Dashed line: sum
of first five terms.

just that expected from the Bloch-Siegert treatment in the

casew,> wy [Eq. (3), Eq. (21) of [2]], averaged over the
different trajectories as discussed[R] after Eq.(22).

4. Frequency shift in the diffusion approximation
(rectangular geometry)

For the rectangular case the normalized eigenfunctions

are

2 mar 2 mar
Upn(X,Y) = A/ — COS—X\/ — COS—Y, 73
mn(X,Y) \/LX L \/ L, I_yy (73)

which satisfy the reflection boundary conditionsxatO, L,
andy=0, L,. Forn or m=0 the corresponding eigenfunctions
are

1

uO = [ 1
Viyy

(74)

so that the Green'’s function is

[ 1.2 , —Dk2t:|
— + — coskx cosk,x'e = m
Lo Lx

oo

GX.Xyy b= >

m,n=0
1 2

X [— + — cosk.x cosknx’e‘Dkﬁ‘} , (75)
Ly y

with Ky, n=(m,n) /L. To calculate ling_, S(q, w) we need

integrals of the form

o L, M=2,4,6,...
Iimf e'qxxcoskmxdx:% Gt
q—0Jo g —k,|—2i, m=1,3,5,...
(76)
={Ly, m=0}. (77)
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g which will vanish in the limit. Given this, if we taken
=1,3,5, wemust taken=0 and vice versa. We calculate,
using Eq.(76),

IimlS(q,w):fdxfd—X/fdyf
q—0 Ly

4y gawan L
Ly ™

Xf dtCOSth(i,i’,t)] (78)
0
2
:qzﬁ s 1 Dk
27\ et a5, Ka(mm)? w? + (DK3)?
1 DK? )
+ (719
=135, . Ki(nm)? o? + (DK3)?
where we useday)=(q;)=g?/2. Then,
8w” 1 DK,
) = ™ (m=§5,_,,k§(mw 2 w? + (DK2)?
1 DK? )
+ (80)
=135, . K(Nm)? w? + (DK3)?
and[using Eq.(40)]
“ 1
5a)=—abJ Hw)———dw (81)
—0 0)0_ w
L2 1
=8abl £
(WESW(mw)“ (woL2/D(mm)?)2 + 1
L2 1
+ Y . 82
nzgs,.._(nw)4(woL§/D(nw)2)2+ 1) 82

We thus see that in a rectangular box* L, it is the longer
side which dominates the behavior.

C. Application: He comagnetometer

In Ref. [13] the use of'He as a comagnetometer for a
UCN neutron EDM experiment is discussed. This system is
rather unique in that an effective background ¢atsonon$
can be introduced which affects tfidle significantly while
having no substantial interaction with the UCN for tempera-
tures below 0.5 K. Because tHele and neutron magnetic
moments are equal to within 10%, it is possible to control
this systematic by varying the size of the effect fete by
changing the diffusion rate of th#{e atoms.

The UCN upscattering lifetime varies as T00s for T
<0.7 K, while the coefficient of diffusion fofHe in a su-
perfluid helium bath varies @8~ 1.6T"7 cn?/s [19].

In connection with Eq(72) this yields =1 when the
superfluid helium temperature i$~0.25 K (R=25 cm),
which determines the temperature scale where the effect can

Since each of these will appear squared because of the cobe varied, and is within the design range of operating tem-

tribution from thex, X" integrals, we can only take the odd
values ofm. The even numbers will yield a higher power of

perature for the planned experiment, compatible with a UCN
upscattering lifetime in excess of 1000 s.
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V. DISCUSSION Turning now to the case, < wg [Eg. (54), Fig. 12 of[2]]

One of the surprising, but unexplained, result§2jfwas we have, as the condition that the suppression be effective,

that according to their numerical simulations, wall collisions

had no influence on the magnitude of the frequency shifts B= =1,
while gas collisions could eliminate the frequency shifts
completely if their rate is high enough. This was apparently
only studied in the limits of large and smadl/ w,. We now
know that this does not apply to intermediate frequencies— wyg U

e.g, whenwy~ w,. In Fig. 3 we see that wall collisions have

a serious influence at intermediate frequencies wherR. ) v 200 1

Also, from Fig. 3, we see that the curves for diffuse wall Sina < 2Rwg T ox 25 % 200= 50’

reflections are very similar to the specular curves for

<R/2. This implies that there is no essential difference befor conditions typical of[2], Fig. 12 (v=200 cm/sBy
tween wall and gas collisions. We now show that the reasor1 uT).

the wall collisions have no effect at the limiting frequencies, Thus the wall collisions rate is never high enough to sig-
contrary to the case at intermediate frequencies, is that theificantly affect the magnitude of the frequency shift at the
wall collisions are never fast enough to influence the systemlimits. The wall collisions do, however, broaden and shift the

atic (proportional toE) frequency shifts in the limits of large resonances discussed|[2]

and smallw.
For a particles in a cylindrical vessel following a trajec-
tory along a chord subtending an angle, 2he time between VI. CONCLUSION
collisions is We have developed a general technique of analyzing the
_2R systematic effects due to a combination of an electric field
Te= . Sina (83) and magnetic gradients as encountered in EDM experiments
that employ gasses of stored particles. Use of the correlation
and the effective field rotation frequency is given by technique, either by numerical calculations for complicated
av geometries or by the velocity correlation function for simpler
w; = 2al 7. = (84) geometries, provides a simplified approach to the problem

Rsina compared to numerical integration of the Bloch equations.

Considering first the case when> w, [Eq. (70), Fig. 10 of ~ Our analysis has added insight to this new systematic effect
[2]], the Systematic frequency shift was found to be Sup.and prOVIdeS a means of rapldly assessing the effects of vari-

pressed by the facton: ous geometries and angular distributions for wall and gas
collisions.
1
n= 1 +IB21
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m?7,  mvsSina

Ro, 25X2X7 _ 1 APPENDIX: MATRIX ALGEBRA OF SPHERICAL

She= T 1o 30’ (85 PAULI MATRICES
for representative conditions if2], Fig. 10 (R=25,B, The following relationships among the Pauli matrices
=1 uT,v=10"cm/s. have been employed in the calculation in Sec. Il A:
The probability of a given value af is given in Eq.(B1) _ .

of [2] as 20, = oytioy, (A1)

P(a)da = ﬂSin2 ada 0:02= + Oy 0205= Oy, (A2)

a
1.1
Pla<e)~&®, (86) 005 =52 207, (A3)

so that the wall collisions would only be expected to be
effective for a vanishingly small fraction of the trajectories. o,0,=1, 0,0.=0. (A4)
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