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Generation of entanglement in regular systems
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We study dynamical generation of entanglement in bipartite quantum systems, characterized bfppurity
linear entropy, and caused by the coupling between the two subsystems. The explicit semiclassical theory of
purity decay is derived for integrable classical dynamics of the uncoupled system and for lo¢géinedal
Gaussian wave pacKenitial states. Purity decays as an algebraic functioftiofe) X (strength of perturba-
tion), independently of the Planck’s constant.
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Detailed understanding @ntanglementbeing one of the H=Hg+ 6V, Hy=Ha® lg+1,® Hg, (1)
most distinct features of the quantum world, is an issue of

high importance, particularly in view of recent efforts to WhereHo_is the uncoupled part of the Hamiltonian _ab{ds
build quantum devices that will manipulatpure states of the coupling between the two subsystems responsible for the

individual quantum systems. The loss of control over en_generation of entanglement. The strength of this coupling is

tanglement, i.e., decoherence, in such a device is one of t ven by a dimensionless parameéeVe will use subscripts
> andB to denote the two subsystems. The state of the whole
major obstacles that we have to overcome.

_ ___system at time is simply |¢(t))=U(t)|4(0)), with a unitary
In tr;? prefsentt pap:er wet greb_gomgtlltto stutdy dy?é?'ﬁairopagator U(t)=exp(—iHt/h). Let us define the time-
generation of entanglement in bi-partite systems. Initial yaveraged coupling

separable pure states will get entangled due to the coupling

between two subsystems. Here we consider systems where

the uncoupled part of the Hamiltonian in both subsystems

generates reguldimtegrablg dynamics in the classical limit.

The motivation to study entanglement generation in system#hereV(t) is the coupling operator in the interaction picture,

with regular uncoupled dynamics comes from the fact that\/(t):Ug(t)VUO(t),Uo(t):exr(—iHOt/h), i.e., propagated

such systems are quite common both in experiments and agth the uncoupled part of the Hamiltonian. We shall assume

theoretical models. For instance, if the uncoupled systeng situation, typica| for a regu|a-|10, whereV is a nontrivial

consists of a number of uncoupled one degree of freedorgperator, different from zero or a multiple of the identity

(DOF) systems then it is integrable. Such is the case in varif11]. We wish to stress that the coupling will typically

ous proposals for quantum computation, e.g., ion traps. Fuibreak the integrability of,.

ther, the experimentally realizable Jaynes-Cummings model, The entanglement between the two subsystems, for a pure

where decoherence for cat stafd$ has actually been ex- state|¢(t)), is characterized by a purity

perimentally measured, is also an integrable system. Still fur- 5

ther, a standard model of decoherefizkconsists of an in- 1) =tralpa®],  palt) = trg[p(t)] 3)

finite number of harmonic oscillators. If the bath consists ofyherep(t) := |i(t))(y(t)|. If and only if the purityl(t) is less

a f|n|te number Of harmoniC OSCillatOI‘S thIS fa||S Under thethan 1, the two Subsystems are entangled; Otherwise they are

domain of our theory. Recent}8] it has been pointed out in a separabléproduci state. Our initial state will always be

that the decoherence for truly macroscopic superposition ig product one|(0))=|y(0)) ® |(0)); hencel(0)=1. The

so fast that the usual master equation approach is not valigitial states| ¢ g(0)) will be Gaussian wave packets. The

anymore. On this very short “instantaneous” time scale anyjme dependence of the purityt) will then tell us how fast

system will effectively behave as a regular dne., correla-  the two subsystems get entangled due to the couping

tions do not decay ygtThere have been several related stud- Let us proceed with the calculation of the purity decay

ies of purity decay: Ref[4] numerically compared purity 1(t). We should observe that propagating the state backward

decay in classically regular and chaotic regimes, and furtheifh time with a separable uncoupled dynamitgt) does not

Refs.[5-7] used time-dependent perturbation theory in orderchange the value of the purity, set) in Eq. (3) can be

to explain the semiclassical behavior of purity decay. For aeplaced by

random-matrix approach to purity, see RE8]. Most re- " . .

cently, Jacquod[9] suggested some universal forms of p () =M(B)p(O)M'(1), M(t) =Ug(hu(b), (4)

asymptotic purity decay based on the semiclassical expagherem(t) is the echo operator used in the theory of fidelity

sion in terms o_f classical orbits alon_g the lines[d0)]. decay[12,13. The matrixpM(t) represents the evolution of
Time evolution of the system will be governed by the 5y pyre state in the interaction picture. As just explained

Hamiltonian above, the purity3) is equal to

— 1 T
V=Ilim $f dt V(t), (2

T—o 0
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(1) = tral{pR (03], pR' (D) = trg[pM(D)]. (5) ®=0(aje) ~0(aie) *v(ale) ~vlinle)  (®

An advantage of the representatifB) over (3) is the fact  Note thatl(t) is written simply as a double average over the
that the echo operatdvi(t) is, unlike the forward evolution ¢lassical action space of the phase factor, weighted with ini-
U(t), close to an identity for smalf so one may use pertur- tjal densities. For a comparison between the purity and the
bative or asymptotic expansions i We follow the ap- corresponding classical analog see Ré&6|. Next we ex-
proach of Ref[12] and use the Baker-Campbell-Hausdorff pand the phasé around the positiofi =(j »,j ) of the initial
formulae™e™=exp{ 8(V+W)+38V,W]+---} for continu-  packet. The constant and the linear terms cancel exactly and
ous productgsee, e.g.[14]) to simplify the expression for the lowest-order nonvanishing term is quadratic,

the echo operatok(t). The lowest-order term in the expo- _ _

nential is(8/h) [ dt V(t). For times larger than some classical D= (a=ja) Vagl()Ge—jp) + -, 9

averaging time,,, in which V [Eq. (2)] converges, this term - wherev}, is ad, x dg matrix of mixed second derivatives of
can be rewritten aéd/#)Vt. The second-order term ifican v evaluated at the position of the initial packet,

be shown to grow with time agtV/ f, whereV [12] has an o
fi-independent classical limit. By induction higher orders can == (10
be estimated to grow as &'t 1/4. Therefore, provided only Ijak 3 (e)

0< 6, Whereéczveﬁ/\lﬁ is 7 independent, higher orders in Using this expansion in the integral for purity we see that the
& can be neglected and we end up with a very simple expregesulting 2l-dimensional integral is Gaussian and can there-

sion for the echo operator, fore be expressed in terms of a determinant ofdax2d
- matrix. Using special properties of the resulting matrix the
M(t) = e Vi, (6) determinant can be reducéd7] to a determinant of al,

. X d, matrix, with the final result
So the echo operator can be interpreted as the propagator A

with an effective HamiltoniarsV. We proceed with a semi- I(t) = 1 = AT AT (11)
classical evaluation of the purity, a procedure completely Jdefl + (8]’ A TABTB TBA

analogous to a similar calculation for the fidel{ty5]. We ) o R )

use the notation in which small latin letters denote classicalhereu is ads > d, matrix involving vg and its transpose
limiting observablege.g., Weyl symbolsof the correspond- vga- NOte that the matrixu is a classical quantityindepen-

ing operators denoted by capital latin letters. For example, ledent ofi) that depends only on the observablend on the
i=(ja.jg) denote ad=d,+dg)-dimensional vector of classi- posmon of the |n_|t|al packet. This explicit formula for purity
cal canonical actions of the completely integrable uncoupledecay is the main result of the present pdper. _
classical Hamiltoniam,=h,+hg. dy anddg are the numbers Before discussing its consequences let us recall its range
of DOF’s of the subsystema andB, respectively. In quan- of validity. The restrictions are rather weak:must be non-
tum mechanics, one has a vector of mutually commuting/anishing (typical for regular systemsand smooth on the
action operators, with a common set of eigenvectors, de- Scale of the initial packet proportional i, time must be
noted by a multi-indexn e Z¢ of quantum numbersj|n)  larger than the averaging tinte-t,, and the coupling must
=#(n+a)|n)=7%n|n) wherea are the Maslov indices. Here be small5<&.. Note thats; does not depend oh. In addi-

and below =" means equal in the leading order #n The  tion, the phaseb should increment by a small amount for
purity (5) can now be written as a sum ovedalimensional nfa_lghborlng quantum numbers, which translates into the con-
lattice of quantum numbers, using the fact that sivasom- dltl‘lqﬂe&r‘rl?égﬂ <r10/r?1inent feature of the formulal) for the
mutes withH, it is diagonal in the basisn), and in the . P o .

leading semiclassical ordéin #) we can replace the sum- purity decay for the initial product wave packets is s

. ; . : independence. In the linear response calculation/thigle-
mation by an integral over the classical action space. Furthegendence has already been theoretically predicteds well

we replace the operatdf by its classical limit(j), whichis a5 numerically confirmes]. Here we have a full expression
a conserved quantity so it is a functionatlassical actions g || orders. We also see that the scaling of the decay tjime
j only. Let us denote bp(j) =pa(ja)Pe(ie) the classical limit  on whichl(t) decays isty~1/8. This means that the purity
of the initial density(n|p(0)|n). For our initial product state || decay on a very long time scale and so the wave packets
of two wave packets each of the two densities is a Gaussiagye universal pointer stat¢$8], i.e., the most robust states.
S L L For small &t we can expand the determinant and we get

Palia) = Cexpl=(ja~a)Aalia=Ja)/hl, @ initial quadratic decayl(t)=1-3(at)ru]+---. For large
where the subscri takes values\ or B, depending on the times we use the fact that d@t+zu) is a polynomial inz of
subsystemj is the position of the initial packetA, is a  orderr=ranku), so we have asymptotic power law decay
positive squeezing matrix, ar@=(%/m)%2\detA, is a nor-  |(t)=constx (&)~". Note that the rank ofi is bounded by
malization constant. The purity can now be written as an

integral, T . o
9 The very same expression holds also for a generalization of pu-

o o &t o~ rity to echo dynamics, the so-called echo pufity purity fidelity),
() =% Jdl dj exp - 'gq) pG)pG), first used in[13].
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the minimal of the subspace dimensions, i.e.=rl
<min{d,,dg}, since the definition3) is symmetric with re-

spect to interchanging the roles of the subsp#@casdB. Let

us give two simple example§) Ford,=1 and forany d; we

will always have asymptotic power law decay with 1. If a

single DOF of the subsystefis coupled with all DOF's of -
the subsystenB, e.9.,0=jo® (jg1+jgo+ ), then[v”|?=dg

and we have (t)=1/(t\dg). (i) Let us consider a multidi-
mensional system where the matuxs of rank 1 so it can be

oy

written as a direct product of two vectotszx®y. The de- RN
terminant occurring irl(t) is then simply defl+(dt)2u]=1 0.03 ‘ ‘ *y
+(8t)2x-y. Such is the case for instance if we have a cou- T3 10 100 1000
pling of the same strength between all pairs of DOF’s. The t
dot Pfo‘?'U_Ct 'S_ in this case-y>=dadg and V‘_’e havel (_t) . FIG. 1. Purity decay fof1+1)-DOF system(12) and (13) for
=1/(ét\dadg), i.e., the power of the algebraic decay is in- 5-0 .04 and different 1#/=10, 25, 50, 100, 500, from top to bottom.
dependent of botl, anddg. Dashed line with pluses is the theoretical form(l#).

In Ref.[9] the author predicted a universal decayl @j
ast 9 for short times, and™2% for long times(assuming 1
da=dg). The crossover time between two regimes is pre- I(t) = ———=. (16)
dicted to be independent éfand depends only on the size of V1+(8j"a)?

the initial packet. We note that the short-time prediction of

Ref.[9] is consistent with our result. On the other hand, there ) ) ] )
is a discrepancy of the results for asymptotically long times.The results of numerical simulation together with the theory

Perhaps this inconsistency is due to inapplicability of the®r® shown in Figs. 1 and 2. In Fig. 1 we see that the decay is
semiclassical orbit expansiof®] for asymptotically long indeedh lndepend_ent, apart f_rom a f|r_1|te-5|ze fIL_Jctuatlng pla-
times. teau after a long-time. The S|ze*of this plateau is of the order
We continue with a numerical demonstration of the theo- (t—) ~1/Neir, whereNes~ v8j /7: is the effective Hilbert
retical prediction for purity decagll). For the first example SPace dimension, i.e., the number of action eigenstates over-

we take a1+1)-DOF systemg,=dg=1, of two anharmonic !apping with the initial coherent statel5). Strong revivals
oscillators with the uncoupled Hamiltonian for large# are a consequence of the small number of avail-

able stated\.; and the low dimensionality. Revivals are ex-
(12) pected to be less pronounced for larger dimensionalities
da,dg, similarly as for the fidelity{15]. For large times one
can clearly observe asymptotic decay of the purity. In Fig.
2 we fix & and change the coupling strengilinstead. Apart
from oscillations we see a good agreement with the theory
also for largeé. Oscillations for times<10 are a conse-

Ho= YA(haLaA A2+ ?’B(ﬁaéas - A)?,

wherea' anda are standard boson raising and lowering op-
erators. For the coupling we take

—32(aT 2( At 2
V=han+a,)"(ag +ag)”. (13) quence of the fact that the time averaging \6fEq. (2)]
. . o converges only after some averaging titge which is of
The corresponding classical Hamiltonibneads order~10 in our case.

h=yaia— A)%+ ya(jg — A)? + 165] oj gSINPOaSINP O
(14

whered, are the canonical angles. The initial wave packet on
both subsystems is a boson coherent state

|UA(0) = 1(0)) = |a) = @~ 4|0), (15)

where|0) is the ground state. The parameteis chosen as

az\s“m with j"=0.1. The squeezing parameter for the co-
herent state$15) is Ayg=1/(2j"). Other parameters of the
Hamiltonian arey,=1,y3=0.6456. The offsen=1.2 was
chosen in order to have nonzero classical frequeihcyj at
the position of the initial packet. This is needed in order for
v to be weII_defined. The time-averaged coupling is calcu- FIG. 2. Purity decay fof1+1)-DOF system(12) and (13) for
lated easily,v=4j,jg. The matrixu is now just a number, 7%=1/100 and differen=0.64, 0.32, 0.16, 0.08, 0.04, from left to
u=(8j")?. Theoretical prediction for the purity decay is thus right. Dashed lines give the theoretical predictds).
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As for the second numerical example we take a LR aEas =
(2+2)-DOF system(dag=2) which is the simplest case
where we can find different powers of the asymptotic decay,
depending on the topology of the coupling. The uncoupled
Hamiltonian now reads

Ho = yi(hala, — A)(fiala, - A) + yo(halas — A)(haja, - A). — 01¢
(17)

The subscripts 1 and 2 describe two DOF’s of the subsystem
A, while 3 and 4 compose the subsystBmThe parameters
arey;=1,%,=0.64, andA=1.2. The initial state is a product

state of four boson coherent sta-tegzlgvz(o»:!a), all with 0.014 10 100 500
the samex=\j /h. For the coupling we consider two cases t

which will give different powers of the asymptotic decay. _
Case | V=V,4+V,, where the two coupling terms are of _F'G- 3. Purity decay for 82+2)-DOF system(17) and two
the same form as for thel+1)-DOF system(13) and the dlffer_ent_coupllngs sljowmg different asymptot_lc power law decay.
indices denote between which two degrees of freedom thFuII Ilng is the numerics while the_two dashed lines with crosses are
. . . eoretical predictions, the one with a smaller slope(1® and the
coupling acts. The matriy as well as the relevant determi- other for(18).
nant is easily calculated resulting in a simple expression for
the purity (11),
1 In conclusion, we have derived purity decay for initially
m (18 localized wave packets in bipartite systems with a nonvan-
J ishing (nontrivial) time-averaged coupling operator. This
We see that we have a quadratic asymptotic det@y, Situation naturally occurs in systems where an uncoupled
~1/(8)2. part of the Hamiltonian represents regular dynamics. Purity
Case Il All-to-all coupling, V=Via+Vi4+V,3+V,, re- decays in time inversely proportionally to the coupling
sults in a rank-1r =1) matrix u giving the purity decay11), ~ Strength and is independent of Planck’s constant. The decay
is algebraic with the asymptotic power law exponent ranging

I(t)=

t) = 1 (19) between 1 and the minimal dimension of the subsystems
V1+(16) 8t)% depending on the topology of the coupling.

Results of the numerical simulation for both cases are shown We thank Thomas H. Seligman for fruitful discussions.
in Fig. 3. The coupling strength and the location of the initial Financial support by Grant No. P1-044 of the Ministry of
packets are9=0.04 " =0.1 for case |, and=0.02,"=0.2  Education, Science and Sports of Slovenia, and in part by the
for case Il. From Fig. 3 we see that one indeed hasARO (U.S.A) Grant No. DAAD 19-02-1-0086, and the hos-
asymptotict™* or t™2 decay, depending on the topology of the pitality of CiC (Cuernavaca, Mexigp where parts of this

coupling. work were completed, are gratefully acknowledged.
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