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We study dynamical generation of entanglement in bipartite quantum systems, characterized by puritysor
linear entropyd, and caused by the coupling between the two subsystems. The explicit semiclassical theory of
purity decay is derived for integrable classical dynamics of the uncoupled system and for localizedsgeneral
Gaussian wave packetd initial states. Purity decays as an algebraic function ofstimed 3 sstrength of perturba-
tiond, independently of the Planck’s constant.
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Detailed understanding ofentanglement, being one of the
most distinct features of the quantum world, is an issue of
high importance, particularly in view of recent efforts to
build quantum devices that will manipulatespure states ofd
individual quantum systems. The loss of control over en-
tanglement, i.e., decoherence, in such a device is one of the
major obstacles that we have to overcome.

In the present paper we are going to study dynamical
generation of entanglement in bi-partite systems. Initially
separable pure states will get entangled due to the coupling
between two subsystems. Here we consider systems where
the uncoupled part of the Hamiltonian in both subsystems
generates regularsintegrabled dynamics in the classical limit.
The motivation to study entanglement generation in systems
with regular uncoupled dynamics comes from the fact that
such systems are quite common both in experiments and as
theoretical models. For instance, if the uncoupled system
consists of a number of uncoupled one degree of freedom
sDOFd systems then it is integrable. Such is the case in vari-
ous proposals for quantum computation, e.g., ion traps. Fur-
ther, the experimentally realizable Jaynes-Cummings model,
where decoherence for cat statesf1g has actually been ex-
perimentally measured, is also an integrable system. Still fur-
ther, a standard model of decoherencef2g consists of an in-
finite number of harmonic oscillators. If the bath consists of
a finite number of harmonic oscillators this falls under the
domain of our theory. Recentlyf3g it has been pointed out
that the decoherence for truly macroscopic superposition is
so fast that the usual master equation approach is not valid
anymore. On this very short “instantaneous” time scale any
system will effectively behave as a regular onesi.e., correla-
tions do not decay yetd. There have been several related stud-
ies of purity decay: Ref.f4g numerically compared purity
decay in classically regular and chaotic regimes, and further
Refs.f5–7g used time-dependent perturbation theory in order
to explain the semiclassical behavior of purity decay. For a
random-matrix approach to purity, see Ref.f8g. Most re-
cently, Jacquodf9g suggested some universal forms of
asymptotic purity decay based on the semiclassical expan-
sion in terms of classical orbits along the lines off10g.

Time evolution of the system will be governed by the
Hamiltonian

H = H0 + dV, H0 = HA ^ 1B + 1A ^ HB, s1d

whereH0 is the uncoupled part of the Hamiltonian andV is
the coupling between the two subsystems responsible for the
generation of entanglement. The strength of this coupling is
given by a dimensionless parameterd. We will use subscripts
A andB to denote the two subsystems. The state of the whole
system at timet is simply ucstdl=Ustducs0dl, with a unitary
propagator Ustd=exps−iHt /qd. Let us define the time-
averaged coupling

V̄ = lim
T→`

1

T
E

0

T

dt Vstd, s2d

whereVstd is the coupling operator in the interaction picture,
Vstd=U0

†stdVU0std ,U0std=exps−iH0t /qd, i.e., propagated
with the uncoupled part of the Hamiltonian. We shall assume

a situation, typical for a regularH0, whereV̄ is a nontrivial
operator, different from zero or a multiple of the identity
f11g. We wish to stress that the couplingV will typically
break the integrability ofH0.

The entanglement between the two subsystems, for a pure
stateucstdl, is characterized by a purity

Istd = trAfrA
2stdg, rAstd = trBfrstdg s3d

whererstdª ucstdlkcstdu. If and only if the purityIstd is less
than 1, the two subsystems are entangled; otherwise they are
in a separablesproductd state. Our initial state will always be
a product one,ucs0dl= ucAs0dl ^ ucBs0dl; henceIs0d=1. The
initial statesucA,Bs0dl will be Gaussian wave packets. The
time dependence of the purityIstd will then tell us how fast
the two subsystems get entangled due to the couplingV.

Let us proceed with the calculation of the purity decay
Istd. We should observe that propagating the state backward
in time with a separable uncoupled dynamicsU0std does not
change the value of the purity, sorstd in Eq. s3d can be
replaced by

rMstd = Mstdrs0dM†std, Mstd = U0
†stdUstd, s4d

whereMstd is the echo operator used in the theory of fidelity
decayf12,13g. The matrixrMstd represents the evolution of
our pure state in the interaction picture. As just explained
above, the puritys3d is equal to
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Istd = trAfhrA
Mstdj2g, rA

Mstd = trBfrMstdg. s5d

An advantage of the representations5d over s3d is the fact
that the echo operatorMstd is, unlike the forward evolution
Ustd, close to an identity for smalld so one may use pertur-
bative or asymptotic expansions ind. We follow the ap-
proach of Ref.f12g and use the Baker-Campbell-Hausdorff
formula edVedW=exphdsV+Wd+ 1

2d2fV,Wg+¯j for continu-
ous productsssee, e.g.,f14gd to simplify the expression for
the echo operatorMstd. The lowest-order term in the expo-
nential issd /qdedt Vstd. For times larger than some classical

averaging timetav, in which V̄ fEq. s2dg converges, this term

can be rewritten assd /"dV̄t. The second-order term ind can

be shown to grow with time asd2tV% /", whereV% f12g has an
"-independent classical limit. By induction higher orders can
be estimated to grow as,drtr−1/". Therefore, provided only

d!dc, wheredc< V̄eff /V% eff is " independent, higher orders in
d can be neglected and we end up with a very simple expres-
sion for the echo operator,

Mstd = e−idtV̄/". s6d

So the echo operator can be interpreted as the propagator

with an effective HamiltoniandV̄. We proceed with a semi-
classical evaluation of the purity, a procedure completely
analogous to a similar calculation for the fidelityf15g. We
use the notation in which small latin letters denote classical
limiting observablesse.g., Weyl symbolsd of the correspond-
ing operators denoted by capital latin letters. For example, let
j =sj A, j Bd denote asd=dA+dBd-dimensional vector of classi-
cal canonical actions of the completely integrable uncoupled
classical Hamiltonianh0=hA+hB. dA anddB are the numbers
of DOF’s of the subsystemsA andB, respectively. In quan-
tum mechanics, one has a vector of mutually commuting
action operatorsJ, with a common set of eigenvectors, de-
noted by a multi-indexnPZd of quantum numbers,Junl
="sn+adunl<"nunl wherea are the Maslov indices. Here
and below “<” means equal in the leading order in". The
purity s5d can now be written as a sum over ad-dimensional

lattice of quantum numbers, using the fact that sinceV̄ com-
mutes with H0 it is diagonal in the basisunl, and in the
leading semiclassical ordersin "d we can replace the sum-
mation by an integral over the classical action space. Further,

we replace the operatorV̄ by its classical limitv̄sj d, which is
a conserved quantity so it is a function ofd classical actions
j only. Let us denote bypsj d=pAsj AdpBsj Bd the classical limit
of the initial densityknurs0dunl. For our initial product state
of two wave packets each of the two densities is a Gaussian,

pasj ad = C exph− sj a − j a
*dLasj a − j a

*d/"j, s7d

where the subscripta takes valuesA or B, depending on the
subsystem,j a

* is the position of the initial packet,La is a
positive squeezing matrix, andC=s" /pdda/2ÎdetLa is a nor-
malization constant. The purity can now be written as an
integral,

Istd < "−2dE dj dj̃ expS− i
dt

q
FDpsj dpsj̃ d,

F = v̄sj A,j Bd − v̄sj̃ A,j Bd + v̄sj̃ A, j̃ Bd − v̄sj A, j̃ Bd. s8d

Note thatIstd is written simply as a double average over the
classical action space of the phase factor, weighted with ini-
tial densities. For a comparison between the purity and the
corresponding classical analog see Ref.f16g. Next we ex-
pand the phaseF around the positionj * =sj A

* , j B
* d of the initial

packet. The constant and the linear terms cancel exactly and
the lowest-order nonvanishing term is quadratic,

F < sj A − j̃ Ad · v̄AB9 sj *dsj B − j̃ Bd + ¯ , s9d

wherev̄AB9 is adA3dB matrix of mixed second derivatives of
v̄ evaluated at the position of the initial packet,

sv̄AB9 dkl =
]2v̄

]sj Adk ] sj Bdl
. s10d

Using this expansion in the integral for purity we see that the
resulting 2d-dimensional integral is Gaussian and can there-
fore be expressed in terms of a determinant of a 2d32d
matrix. Using special properties of the resulting matrix the
determinant can be reducedf17g to a determinant of adA
3dA matrix, with the final result

Istd =
1

Îdetf1 + sdtd2ug
, u = LA

−1v̄AB9 LB
−1v̄BA9 , s11d

whereu is a dA3dA matrix involving v̄AB9 and its transpose
v̄BA9 . Note that the matrixu is a classical quantitysindepen-
dent of"d that depends only on the observablev̄ and on the
position of the initial packet. This explicit formula for purity
decay is the main result of the present paper.1

Before discussing its consequences let us recall its range
of validity. The restrictions are rather weak:v̄ must be non-
vanishing stypical for regular systemsd and smooth on the
scale of the initial packet proportional toÎ", time must be
larger than the averaging timet. tav and the coupling must
be smalld,dc. Note thatdc does not depend on". In addi-
tion, the phaseF should increment by a small amount for
neighboring quantum numbers, which translates into the con-
dition dtiv̄AB9 i,1/".

The most prominent feature of the formulas11d for the
purity decay for the initial product wave packets is its"
independence. In the linear response calculation this" inde-
pendence has already been theoretically predictedf7g as well
as numerically confirmedf6g. Here we have a full expression
to all orders. We also see that the scaling of the decay timetd
on which Istd decays istd,1/d. This means that the purity
will decay on a very long time scale and so the wave packets
are universal pointer statesf18g, i.e., the most robust states.
For small dt we can expand the determinant and we get
initial quadratic decayIstd=1−1

2sdtd2trfug+¯. For large
times we use the fact that dets1+zud is a polynomial inz of
order r =ranksud, so we have asymptotic power law decay
Istd.const3 sdtd−r. Note that the rank ofu is bounded by

1The very same expression holds also for a generalization of pu-
rity to echo dynamics, the so-called echo puritysor purity fidelityd,
first used inf13g.
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the minimal of the subspace dimensions, i.e., 1ø r
øminhdA,dBj, since the definitions3d is symmetric with re-
spect to interchanging the roles of the subspacesA andB. Let
us give two simple examples.sid For dA=1 and forany dB we
will always have asymptotic power law decay withr =1. If a
single DOF of the subsystemA is coupled with all DOF’s of
the subsystemB, e.g., v̄= jA ^ s jB1+ jB2+¯ d, then uv̄9u2~dB

and we haveIstd.1/sdtÎdBd. sii d Let us consider a multidi-
mensional system where the matrixu is of rank 1 so it can be
written as a direct product of two vectors,u=x ^ y. The de-
terminant occurring inIstd is then simply detf1+sdtd2ug=1
+sdtd2x ·y. Such is the case for instance if we have a cou-
pling of the same strength between all pairs of DOF’s. The
dot product is in this casex ·y~dAdB and we haveIstd
.1/sdtÎdAdBd, i.e., the power of the algebraic decay is in-
dependent of bothdA anddB.

In Ref. f9g the author predicted a universal decay ofIstd
as t−dA for short times, andt−2dA for long timessassuming
dA=dBd. The crossover time between two regimes is pre-
dicted to be independent ofd and depends only on the size of
the initial packet. We note that the short-time prediction of
Ref. f9g is consistent with our result. On the other hand, there
is a discrepancy of the results for asymptotically long times.
Perhaps this inconsistency is due to inapplicability of the
semiclassical orbit expansionf9g for asymptotically long
times.

We continue with a numerical demonstration of the theo-
retical prediction for purity decays11d. For the first example
we take as1+1d-DOF system,dA=dB=1, of two anharmonic
oscillators with the uncoupled Hamiltonian

H0 = gAs"aA
†aA − Dd2 + gBs"aB

†aB − Dd2, s12d

wherea† anda are standard boson raising and lowering op-
erators. For the coupling we take

V = "2saA
† + aAd2saB

† + aBd2. s13d

The corresponding classical Hamiltonianh reads

h = gAs jA − Dd2 + gBs jB − Dd2 + 16d jAjBsin2uAsin2uB

s14d

whereua are the canonical angles. The initial wave packet on
both subsystems is a boson coherent state

ucAs0dl = ucBs0dl = ual = eaa†−a*au0l, s15d

whereu0l is the ground state. The parametera is chosen as
a=Îj * /q with j * =0.1. The squeezing parameter for the co-
herent statess15d is LA,B=1/s2j *d. Other parameters of the
Hamiltonian aregA=1,gB=0.6456. The offsetD=1.2 was
chosen in order to have nonzero classical frequency]h/] j at
the position of the initial packet. This is needed in order for
v̄ to be well defined. The time-averaged coupling is calcu-
lated easily,v̄=4jAjB. The matrixu is now just a number,
u=s8j *d2. Theoretical prediction for the purity decay is thus

Istd =
1

Î1 + s8j *dtd2
. s16d

The results of numerical simulation together with the theory
are shown in Figs. 1 and 2. In Fig. 1 we see that the decay is
indeedq independent, apart from a finite-size fluctuating pla-
teau after a long-time. The size of this plateau is of the order
Ist→`d,1/Neff, whereNeff,Î8j * /" is the effective Hilbert
space dimension, i.e., the number of action eigenstates over-
lapping with the initial coherent states15d. Strong revivals
for large" are a consequence of the small number of avail-
able statesNeff and the low dimensionality. Revivals are ex-
pected to be less pronounced for larger dimensionalities
dA,dB, similarly as for the fidelityf15g. For large times one
can clearly observe asymptotict−1 decay of the purity. In Fig.
2 we fix " and change the coupling strengthd instead. Apart
from oscillations we see a good agreement with the theory
also for larged. Oscillations for timest,10 are a conse-
quence of the fact that the time averaging ofV fEq. s2dg
converges only after some averaging timetav which is of
order,10 in our case.

FIG. 1. Purity decay fors1+1d-DOF systems12d and s13d for
d=0.04 and different 1/"=10, 25, 50, 100, 500, from top to bottom.
Dashed line with pluses is the theoretical formulas16d.

FIG. 2. Purity decay fors1+1d-DOF systems12d and s13d for
"=1/100 and differentd=0.64, 0.32, 0.16, 0.08, 0.04, from left to
right. Dashed lines give the theoretical predictions16d.
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As for the second numerical example we take a
s2+2d-DOF systemsdA,B=2d which is the simplest case
where we can find different powers of the asymptotic decay,
depending on the topology of the coupling. The uncoupled
Hamiltonian now reads

H0 = g1s"a1
†a1 − Dds"a2

†a2 − Dd + g2s"a3
†a3 − Dds"a4

†a4 − Dd.

s17d

The subscripts 1 and 2 describe two DOF’s of the subsystem
A, while 3 and 4 compose the subsystemB. The parameters
areg1=1,g2=0.64, andD=1.2. The initial state is a product
state of four boson coherent statesuc1,2,3,4s0dl= ual, all with
the samea=Îj * /". For the coupling we consider two cases
which will give different powers of the asymptotic decay.

Case I. V=V13+V24, where the two coupling terms are of
the same form as for thes1+1d-DOF systems13d and the
indices denote between which two degrees of freedom the
coupling acts. The matrixu as well as the relevant determi-
nant is easily calculated resulting in a simple expression for
the purity s11d,

Istd =
1

1 + s8j *dtd2 . s18d

We see that we have a quadratic asymptotic decay,Istd
.1/sdtd2.

Case II. All-to-all coupling, V=V13+V14+V23+V24, re-
sults in a rank-1sr =1d matrix u giving the purity decays11d,

Istd =
1

Î1 + s16j *dtd2
. s19d

Results of the numerical simulation for both cases are shown
in Fig. 3. The coupling strength and the location of the initial
packets ared=0.04,j * =0.1 for case I, andd=0.02,j * =0.2
for case II. From Fig. 3 we see that one indeed has
asymptotict−1 or t−2 decay, depending on the topology of the
coupling.

In conclusion, we have derived purity decay for initially
localized wave packets in bipartite systems with a nonvan-
ishing snontriviald time-averaged coupling operator. This
situation naturally occurs in systems where an uncoupled
part of the Hamiltonian represents regular dynamics. Purity
decays in time inversely proportionally to the coupling
strength and is independent of Planck’s constant. The decay
is algebraic with the asymptotic power law exponent ranging
between 1 and the minimal dimension of the subsystems
depending on the topology of the coupling.
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