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The maximally entangled mixed states of Munroet al. fPhys. Rev. A64, 030302s2001dg are shown to
exhibit interesting features vis á vis conditional entropic measures. The same happens with the Ishizaka and
Hiroshima statesfPhys. Rev. A62, 022310s2000dg, whose entanglement degree cannot be increased by acting
on them with logic gates. Special types of entangled states that do not violate classical entropic inequalities are
seen to exist in the space of two qubits. Special meaning can be assigned to the Munroet al. special partici-
pation ratio of 1.8.
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I. INTRODUCTION

Entanglement is one of the most fundamental issues of
quantum theoryf1g. It is a physical resource, like energy,
associated with the peculiar nonclassical correlations that are
possible between separated quantum systems. Recourse to
entanglement is required so as to implement quantum infor-
mation processesf2,3g such as quantum cryptographic key
distribution f4g, quantum teleportationf5g, superdense cod-
ing f6g, and quantum computationf7g. Indeed, production of
entanglement is a kind of elementary prerequisite for any
quantum computation. A state of a composite quantum sys-
tem is called “entangled” if it cannot be represented as a
mixture of factorizable pure states. Otherwise, the state is
called separable. The above definition is physically meaning-
ful because entangled statessunlike separable statesd cannot
be prepared locally by acting on each subsystem individually
f8,9g. A physically motivated measure of entanglement is
provided by the entanglement of formationEfrg f10g, that
quantifies the resources needed to create a given entangled
stater. The entanglement of formation for two-qubits sys-
tems is given by Wootters’ expressionf11g, Efrg=hs1
+Î1−C2/2d, wherehsxd=−x log2 x−s1−xdlog2s1−xd, andC
stands for theconcurrenceof the two-qubits stater. The
concurrence is given byC=maxs0,l1−l2−l3−l4d,li,
si =1,…4d being the square roots, in decreasing order, of the
eigenvalues of the matrixrr̃, with r̃=ssy ^ sydr*ssy ^ syd.
The above expression has to be evaluated by recourse to the
matrix elements ofr computed with respect to the product
basis. Another meaningful quantity is the fully entangled
fraction FEF f12g, that determines the range of possible con-
currence values for a mixed state:FEFøCø sFEF+1d /2. For
an illustration of this last statement, the reader is referred to
Fig. 2 of Ref.f12g, whose authors investigate the fraction of
two-qubits mixed states that can be used in all quantum in-
formation processing applications usingFEF. Still another
important quantity is the participation ratio,

Rsrd = fTrsr2dg−1, s1d

is particularly convenient for calculations and can be re-
garded as a measure of the degree of mixture of a given

density matrixf13–15g. It varies from unity for pure states to
N for totally mixed statessif r̂ is represented by anN3N
matrixd. It may be interpreted as the effective number of pure
states that enter the mixture. If the participation ratio ofr is
high enough, then its partially transposed density matrix is
positive, which forN=4 amounts to separability forRù3
f9,14g. Notice also thatR is invariant under the action of
unitary operators.

There are several entropicsor informationd measures that
can be useful in order to investigate the violation of classical
entropic inequalities by quantum entangled states. Among
them, the von Neumann measure is important because of its
relationship with the thermodynamic entropy, and the partici-
pation ratio is particularly convenient both for numerical and
analytical calculationsf13–15g. The q entropies, which are
functions of the quantityvq=Trsrqd, provide one with a
whole family of entropic measures. In the limitq→1 these
measures incorporate von Neumann’s as a particular in-
stance. On the other hand, whenq=2 they are simply related
to the participation ratios1d. Most of the applications ofq
entropies to physics involve either the Rényi or the Tsallis’
entropiesf16,17g, respectively,

Sq
R = lnsvqd/s1 − qd, Sq

T = s1 − vqd/sq − 1d. s2d

In the q=2-case,Sq=2
T is often called the linear entropy

SL f15g. Tsallis’ and Rényi’s measures are related
through Sq

T=FsSq
Rd, where the functionF is given by Fsxd

=hes1−qdx−1j / s1−qd. As an immediate consequence, for all
nonvanishing values ofq, Tsallis’ measureSq

T is a monotonic
increasing function of Rényi’s measureSq

R. Considerable at-
tention has been recently paid to a conditional entropic mea-
sure based upon Tsallis’ functional, and defined as

Sq
TsAuBd = hSq

TsABd − Sq
TsBdj/h1 + s1 − qdSq

TsBdj. s3d

HererAB designs an arbitrary quantum state of the composite
systemA% B, not necessarily factorizable nor separable, and
rB=TrAsrABd. The conditionalq-entropySq

TsBuAd is defined
in a similar way ass3d, replacingrB by rA=TrBsrABd. The
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conditionalq entropy s3d has been recently studied in con-
nection with the separability of density matrices describing
composite quantum systemsf18,19g. For separable states
ssee for instancef20gd,

Sq
TsAuBd ù 0, Sq

TsBuAd ù 0. s4d

On the contrary, there are entangled states that have negative
conditional q entropies. That is, for some entangled states
one sor bothd of the inequalitiess4d are not verified. Now,
since Tsallis’ entropy is a monotonous increasing function of
Rényi’s, it is plain thats3d has always the same sign as
Sq

RsAuBd=Sq
RsrABd−Sq

RsrBd. The positivity of either the Tsal-
lis’ conditional entropy or the Rényi conditional entropy are
known as the classicalq-entropic inequalitiesf20g.

In practice, one will more often have to deal with mixed
states than with pure ones. From the point of view of en-
tanglement exploitation, one should then be interested in
maximally entangled mixed statessMEMSd rMEMS, which
are the basic constituents of all quantum communication pro-
tocols. The MEMS states have been studied, for example, in
Refs. f15,21,22g for the two-qubits instance of twosone
qubit-dsubsystemsA and B. For MEMS, the relations be-
tween sid von Neumann’s and linear entropies, on the one
hand, andsii d concurrence and von Neumann entropy, on the
other, have been exhaustively investigated inf22g. MEMS
states have been recently experimentally encountered
f23,24g. We will focus attention on these kind of states here.
MEMS for a givenR value have the following appearance in
the computational basissu00l , u01l , u10l , u11ld f15g.

rMEMS=1
gsxd 0 0 x/2

0 1 − 2gsxd 0 0

0 0 0 0

x/2 0 0 gsxd
2 , s5d

with gsxd=1/3 for 0øxø2/3, andgsxd=x/2 for 2/3øx
ø1. The change of thegsxd regime ensues forR=1.8. We
will reveal below some physical consequences of this regime
change. Of great importance also are the mixed states whose
entanglement degree cannot be increased by the action of
logic gatesf21g that, again in the same basis, are given by

rIH =1
p2 0 0 0

0
p3 + p1

2

p3 − p1

2
0

0
p3 − p1

2

p3 + p1

2
0

0 0 0 p4

2 , s6d

whose eigenvalues are thepi; si =1,… ,4d and p1ùp2ùp3

ùp4. We call these states the Ishizaka and HiroshimasIHd
ones and their concurrence readsCIH =p1−p3−2Îp2p4, a re-
lation valid for ranksø3 that has numerical support also if
the rank is fourf21g. Of course, all MEMS belong to the IH
class. Our goal is to uncover interesting correlations between
entanglement and mixedness that emerge when we study
these states from the viewpoint of conditional entropies.

II. ENTROPIC INEQUALITIES AND MEMS

We begin here with the presentation of our results. A few
of them are of an analytical nature. For instance, in the case
of all states of the formss6d and/ors5d, the partial tracesrA/B
over one of the subsystemsA or B are equal, i.e., for the
reduced density matrices we haverA=rB, which entails
SqsAuBd=SqsBuAd for both the Rényi and the Tsallis entro-
pies. Notice that this is a particular feature of these states.

As for the form s6d, we establish a lower bound to its
states’ concurrence for a considerableR rangessee Fig. 3d,
namely,

CIH;Min = fÎ3Rs4 − Rd − Rg/s2Rd. s7d

In the case of MEMS, and in the vicinity ofR=1, we can
analytically relate entropic changes with concurrence
changes, in the fashionsremember that for MEMSC
;CMaxd

DSq
RsAuBd = − f2q/hlns2dsq − 1djgDC. s8d

The caseq→` is the strongestq-entropic criterionf20g.
Equations8d expresses the fact that, for MEMS, small devia-
tions from pure statessfor which theq-entropic criteria are
necessary and sufficient separability conditionsd do not
change the criteria’s validity, that becomes thenextendedto a
class of mixed states.

A. Numerical results

We will randomly generate states in the spaceSsNd of
mixed statesr sN=4 in our cased. This can be regarded as a
product space,SsNd=P3D, whereP stands for the set of

orthonormal projectorssoi=1
N P̂i = Id andD is the set of all real

N-uplesshlij , 0øli ø1, oi=1
N li =1d. All statesr are gener-

ated according to the Zyczkowski, Horodecki, Sanpera, and
LewensteinsZHSLd f14g measuren3LN−1. Here, n is the
measure induced onP by the Haar measure on the group of
unitary matricesUsNd andLN−1 is the Leguesbe measure on
the simplex of eigenvaluesD f25,26g.

As stated above, we deal in this paper with two kinds of
maximally entangled statessMEMS, and Ishizaka and Hi-
roshima onesd. We call the class that comprises both kinds
the ME one. Figure 1 depicts the overall situation. In the
upper part we plot the ME-states’ concurrenceCIH versus.
the participation ratio.R ranges in the interval 1,R,1.8
sthe latter figure corresponds to the above-mentioned transi-
tion point for MEMSd. sad The upper line gives MEMS states
and the inferior one the lower bounds7d. sbd The lower part
of the figure gives the conditional entropy of the ME states
Sq

RsAuBd for q→` sthe solid curve corresponds to the
MEMS cased. It is always negative, so that here the entropic
inequalities provide the correct answer in order to detect en-
tanglement.

Figure 2 is a plot of the concurrenceCIH vs lmax, the
maximum eigenvalue of our ME bipartite statesr. The
dashed line corresponds to MEMS. The graph confirms the
statement made inf15g that the latter are not maximally en-
tangled states if mixedness is measured according to a crite-
rion that is not theR one. Three separate regionssI, II, III d
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can be seen to emerge. The maximum and minimumscon-
tinuousd contour lines are of an analytical character as seen
in the following:

I. First zone:
sad CIH

max=lmax for lmax[ f1/2,1g,
sbd CIH

min=2lmax−1 for Bell diagonal states.
II. Second zone:
sad CIH

max=3lmax−1 for lmax[ f1/3,1/2g,
sbd CIH

min=0.
III. Third zone: all states are separableCIH =0.

Our three zonessI, II, III d can be characterized according
to strict geometrical criteria, as extensively discussed inf27g.
In point of fact, the paper by Weiet al. f22g exhaustively
studies MEMS for different measures of entanglement and

mixedness. The extension made here tolmax as a proper
degree of mixture confirms in Fig. 2 the discussion given in
f22g that asserts that MEMS are sensitive to the form of
mixture employed.

Figure 3 is aCIH vs R plot similar to that of Fig. 1, but for
an extendedR ranges1,R,3d. The pertinent IH bipartite
states fill a “band” with dotssa sample of 104 statesd. In Fig.
3 we focus attention on a special type of bipartite states:
those that, being entangled, do fulfill the inequalitiess4d. For
these states, let us call them entangled states with “classical”
conditional entropic behaviorsESCREd, the quasitriangular
solid line depicts, for eachR, the maximum degree of en-
tanglement attainable. For each value ofR scrossesd, we gen-
erate 108 states according to the aforementioned ZHSL mea-
sure, keeping only the ESCRE ones with maximalC.
Interestingly enough, the maximum degree of entanglement
for ESCRE obtains atR=1.8, which signals the change of
regime for MEMS fcf. s5d and commentaries immediately
below that equationg. This fact gives an entropic meaning to
that particularR value. We can state then thatsid whenever
the entropic criterium turns out to constitute a necessary and
sufficient condition for separabilitysat R=1 andR=3d, the
ESCRE degree of entanglement is null, andsii d the ESCRE
degree of entanglement is maximal at the Munroet al.
change-of-regimeR value of 1.8.

III. CONCLUSIONS

For entangled states with classical conditional entropic
behavior sESCREd, the maximum degree of entanglement
attainable obtains atR=1.8. Even though the entropic criteria
are not universally valid for all two-qubits statessyielding
only a necessary condition for separabilityd, they have been

FIG. 1. Plot of the concurrenceCIH for two kinds of maximally
entangled states: Ishizaka and Hiroshima statessdotsd and MEMS
vs R supper solid curved for a sample set. Their corresponding
S̀RsAuBd values are also shown. Contour lines can be found analyti-
cally. See text for details.

FIG. 2. Plot of the concurrenceCIH for the class of maximally
entangled states vs their maximum eigenvaluelmax for a sample set
of states. The dashed line corresponds torMEMS states. Notice the
fact that these states are not maximally entangled if the mixedness
is not given byR. Maximum and minimum contour lines forCIH are
found in analytical fashion. See text for details.

FIG. 3. Same as in Fig. 1, but for an extendedR range. The
lower curveswith crosses on itd represents, for eachR value, the
maximum concurrence for those states that obey classical entropic
inequalities. The curve exhibits a maximum atR=1.8 and it van-
ishes atR=1 andR=3, where the entropic criterion is necessary and
sufficient. That this curve does not exactly match the MEMS qua-
sidiagonal curve above it, for the rangef1.8,3d, is due to the relative
scarcity of the pertinent statessgenerated randomly according to the
ZHSL measured. See text for details.
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shown here to preserve their full applicability for an impor-
tant family of states, namely, those states for which their
entanglement cannot increase under the action of logic gates
for participation rations in the intervalsR[ f1,1.8gd. This, in
turn, gives an entropic meaning to this specialR value en-
countered by Munroet al. f15g. We find explicit boundaries
to CIH when we express the degree of mixture using the
maximum eigenvaluelmax of rIH. It would seem that the
characterization of the entanglement for these states, using
thelmax criterion, provides the best insight into the entangle-
ment features of these states. Beyond a certain value of the
concurrence,all states, not necessarily the ones considered

before, can be correctly described by the entropic inequali-
ties as far as this criterion is concerned. One may argue that
if the quantum correlations are strong enoughsgreater than
CR=1.8

max or Clmax=2/3
max d, there is still room for entropic-based

separability criteria to hold.
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