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We demonstrate a spectral comparison theory for the two-dimensional Dirac equation which states that for
a given mass, if two time-independent attractive potentials are different such thatVa,Vb, the corresponding
energy spectrum satisfies the conditionEa,Eb. As an illustrative example, the comparison relation is applied
to calculate the energy spectrum of the two-dimensional Dirac equation with a Coulomb plus linear potential.
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I. INTRODUCTION

There have been consistent investigations since the Dirac
equation was found. Some new results have been reported in
recent years: for example, Levision’s theorem for the Dirac
equation of twof1g, three f2g, and N dimensionsf3g, the
spectral comparison theoremf4g, the supercriticality and
transmission resonances in onef5g and three dimensionsf6g,
and the solutions of the Dirac equation with shape-invariant
potential in twof7g, threef8g, andN dimensionsf9g.

The spectral comparison theorem in the nonrelativistic
quantum mechanics proved for the discrete part of the energy
spectrum can be formulated asf10g

Va , Vb ⇒ Ea , Eb, s1d

whereV is an attractive potential andE is the discrete spec-
trum. The theorem of Eq.s1d is valid provided that the wave
functions have no nodes—that is to say, for the wave func-
tions in the bottom of angular momentum subspace of the
three-dimensional Dirac equationf4g. In lower-dimensional
field theory and condensed matter physics, the two-
dimensional systems seem to some new features. However, a
study of the discrete spectral comparison theorem for the
two-dimensional Dirac equation is still lacking to our knowl-
edge, which is the purpose of this paper.

This paper is organized as follows. Section II is devoted
to the introduction of the two-dimensional Dirac equation.
The derivation of the spectral comparison theorem is given
in Sec. III. We apply the new two-dimensional relativistic
comparison theorem to calculate the spectrum of a Coulomb
plus linear potential in Sec. IV.

II. DIRAC EQUATION OF 2+1 DIMENSIONS

The Dirac equation of two dimensions is given by

o
m=0

2

igms]m + ieAmdc = mc, s2d

wherem is the mass of the particle and

g0 = s3, g1 = is2, g2 = is1. s3d

In this paper, we only discuss the zero component ofAm,
which is nonvanishing and cylindrically symmetric; i.e., we
consider the special case

A1 = A2 = 0, eA0 = Vsrd. s4d

The wave function is written as

cst,rYd = s2pd−1/2 expf− iEtgr−1/2S fsrdeis j−1/2df

gsrdeis j+1/2df D , s5d

where j denotes the total angular momentum,j
= ±1/2, ±3/2,… . The radial componentsf and g become
the following set of first-order coupled differential equations

d

dr
gsrd +

j

r
gsrd = fE − Vsrd − mgfsrd, s6d

−
d

dr
fsrd +

j

r
fsrd = fE − Vsrd + mggsrd. s7d

Recently, the bound-state solutions and scattering amplitudes
for the Coulomb potential were derivedf7g. It is demon-
strated that the boundary conditions for radial wave func-
tions are given by

fs0d = gs0d = 0, s8d

fs`d = gs`d = 0, s9d

which are very useful in following calculations.

III. SPECTRAL COMPARISON THEOREM

Considering two different attractive potentialsVa andVb,
which satisfy the conditionVa,Vb, and writing the corre-
sponding pairs of radial wave functions ashfa,gaj and
hFb,Gbj, we can obtain following coupled radial equations

d

dr
gasrd +

j

r
gasrd = fEa − Vasrd − mgfasrd, s10d

−
d

dr
fasrd +

j

r
fasrd = fEa − Vasrd + mggasrd, s11d
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d

dr
Gbsrd +

j

r
Gbsrd = fEb − Vbsrd − mgFbsrd, s12d

−
d

dr
Fbsrd +

j

r
Fbsrd = fEb − Vbsrd + mgGbsrd. s13d

In terms of the prescriptions ofFb in Eq. s10d andga in Eq.
s13d, we can obtain

d

dr
fgasrdFbsrdg = f− m− Vasrd + EagfasrdFbsrd

+ f− m+ Vbsrd − EbggbsrdFbsrd. s14d

On the other hand, according to the prescriptions ofGb in
Eq. s11d andfa in Eq. s12d, we can also obtain

d

dr
ffasrdGbsrdg = f− m− Vbsrd + EbgfbsrdFbsrd + f− m+ Vasrd

− EaggasrdGbsrd. s15d

Finally, we can find from Eqs.s14d and s15d

fsEa − Ebd − sVa − VbdgffasrdFbsrd + gasrdGbsrdg

= −
d

dr
ffasrdGbsrd − gasrdFbsrdg. s16d

Integrating Eq.s16d and using the boundary conditions given
by Eqs.s8d and s9d, we can obtain

E
0

`

sEa − EbdffasrdFbsrd + gasrdGbsrdgdr

=E
0

`

sVa − VbdffasrdFbsrd + gasrdGbsrdgdr. s17d

If the wave functions have no nodes, the factors at each side
of Eq. s17d have the same sign, and hence, the spectral com-
parison theorem given by Eq.s1d for the two-dimensional
Dirac equation is proved. It should be emphasized that the
potentials and eigenvalues are both real. If potential param-
eters stray into a region such that the corresponding energy
spectrum turns complex, then Eq.s17d would no longer lead
to the result given by Eq.s1d, since the complex levels can-
not be well ordered.

IV. APPLICATION TO THE COULOMB PLUS LINEAR
POTENTIAL

In order to investigate the application of the above com-
parison theorem, we need two ordered potentials satisfying
the condition

Vstdsrd ù Vsrd. s18d

Vsrd is chosen as the Coulomb plus linear potential which
has been discussed by Mehta and Patilf11g and is given by

Vsrd = −
Z

r
+ lr , s19d

wherel is a positive constant. For the comparison potential
Vstdsrd we can generate not only one but a set of “tangential”

potentials by using the method of “potential envelopes”f12g.
The envelope method requires a soluble base potential

taken as the pure hydrogenic potential −§ / r =§hsrd. The two-
dimensional Dirac equation with this potential has a discrete
spectrum given exactly byf7g

D = mF1 +
§2

sÎj2 − §2 + nd2G−1/2

, s20d

wheren=1,2,… .
By using the transformationVsrd=h(hsrd) of the pure

Coulomb potential, we can obtain

h„hsrd… = Zh−
l

h
. s21d

It is straightforward to find out thath8shd.0 andh9shd,0;
namely,hshd is monotonously increasing and concave. As a
result, the tangent line ofhshd is a shifted-Coulomb potential
of the form sfor detailed discussions see Ref.f13gd

Vstdsrd = Astd + Bstdhsrd

= fhshstd − hstdh8„hstd…g + h8„hstd…hsrd, s22d

where r = t is the point of contact withV. The potential in-
equality given by Eq.s18d is valid. The energy spectrum
corresponding to the shifted-Coulomb potential given by Eq.
s22d can be obtained exactly and is given with the help of
known pure hydrogenic energy spectrumD of Eq. s20d f12g:

«std = Astd + D„Bstd… ù D. s23d

The energy spectrum inequality in Eq.s23d follows the po-
tential inequality given by Eq.s18d. This indicates that our
energy comparison theorem in the two-dimensional Dirac
equation is correct. However, some remarks should be no-
ticed. If the spin wave functions are node free, the above
conclusion is valid. For the Coulomb-like potential, the num-
ber of nodes nearr =0 is the same forf and g only if j =
−1/2 f14g. Therefore we must restrict our discussion to the
energy spectrum at the bottoms of the angular momentum
subspaces—namely, to those withj =−1/2 andn=1.

V. CONCLUSION

The spectral comparison theorem for the two-dimensional
Dirac equation has been established and is seen to be a very
useful tool for predicting the spectral spectrum without actu-
ally solving the eigenvalue problems. However the theorem
is valid for an energy spectrum limited at the bottom of the
angular momentum subspaces. This limitation may be over-
come by further study.
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