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Relativistic spectral comparison theorem in two dimensions
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We demonstrate a spectral comparison theory for the two-dimensional Dirac equation which states that for
a given mass, if two time-independent attractive potentials are different suck that,, the corresponding
energy spectrum satisfies the conditiep< E,. As an illustrative example, the comparison relation is applied
to calculate the energy spectrum of the two-dimensional Dirac equation with a Coulomb plus linear potential.
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l. INTRODUCTION Y=03 Y=io, Y =ioy. (3

There have been consistent investigations since the Dira this paper, we only discuss the zero componenApf
equation was found. Some new results have been reported Which is nonvanishing and cylindrically symmetric; i.e., we
recent years: for example, Levision’s theorem for the Diracconsider the special case
equation of two[1], three[2], and N dimensions[3], the
spectral comparison theorefd], the supercriticality and A1=A;=0, eA=V(r). (4)
transmission resonances in disg and three dimensiori$],
and the solutions of the Dirac equation with shape-invariant

The wave function is written as

potential in two[7], three[8], andN dimensiong9]. _ [ f(r)di12e

The spectral comparison theorem in the nonrelativistic WL, = (2m) 2 expl - iEUr llz(g(r)eiuﬂ/z)qs G
quantum mechanics proved for the discrete part of the energy
spectrum can be formulated pkO] where | denotes the total angular momentunyj,

=+1/2,+3/2,.. . The radial componentt and g become
Vo<W O Ey;<E, (1)  the following set of first-order coupled differential equations

whereV is an attractive potential arfd is the discrete spec- d J e _
trum. The theorem of Ed1) is valid provided that the wave drg(r) " rg(r) = [E= V(D) ~mf(D), ©)

functions have no nodes—that is to say, for the wave func-

tions in the bottom of angular momentum subspace of the d i

three-dimensional Dirac equatidd]. In lower-dimensional - af(f) + Ff(f) =[E-V(r) + m]g(r). (7)

field theory and condensed matter physics, the two-

dimensional systems seem to some new features. HoweverRecently, the bound-state solutions and scattering amplitudes
study of the discrete spectral comparison theorem for théor the Coulomb potential were derivdd]. It is demon-
two-dimensional Dirac equation is still lacking to our knowl- strated that the boundary conditions for radial wave func-

edge, which is the purpose of this paper. tions are given by
This paper is organized as follows. Section Il is devoted
to the introduction of the two-dimensional Dirac equation. f(0)=g(0)=0, (8)
The derivation of the spectral comparison theorem is given
in Sec. Ill. We apply the new two-dimensional relativistic f(oe) =g() =0, 9

comparison theorem to calculate the spectrum of a Coulom

plus linear potential in Sec. IV, \R/hich are very useful in following calculations.

IIl. SPECTRAL COMPARISON THEOREM
II. DIRAC EQUATION OF 2+1 DIMENSIONS

) ) ) ) . Considering two different attractive potentials andV,,
The Dirac equation of two dimensions is given by which satisfy the condition/,<V,, and writing the corre-
2 sponding pairs of radial wave functions 4§,,9,} and
; ; _ Fu,Gp}, we can obtain following coupled radial equations
3 170, +ieA)y=my, @ P0G g coup a
=

d j
—ga(r) + =ga(r) =[E; = Va(r) = m]f(r), 10
wherem is the mass of the particle and drga( ) rga( ) =[Ba = Valr) ~mifa(r) (10

d i
——f.(r)+ =1, (r) =[E, = V,(r) + m]g,(r), 11
*Electronic address: chengang@zscas.edu.cn dr () r alr) =[Ea = Va(r) 19(1) (1)
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d j potentials by using the method of “potential envelopgd<].
aGb(r)"'FGb(r)=[Eb_vb(r)_m]|:b(r)* (12 The envelope method requires a soluble base potential
taken as the pure hydrogenic potentigl F=sh(r). The two-
d j dimensional Dirac equation with this potential has a discrete
- a|:b(r) + F|:b(r) =[E,— Vo(r) +m|Gy(r). (13)  spectrum given exactly by]

(13), we can obtain 2_ 2

In terms of the prescriptions ¢, in Eq. (10) andg, in Eq. D= m[l + s® }_1/2 (20)
(Vj?=s*+n)?

d
g7 LGa(NFo(N]= [~ M= Ve(r) + Eafo(r)Fy(r) wheren=1,2,.... _
r By using the transformatioV(r)=%(h(r)) of the pure

+[=m+V,(r) - E,Jgu(r)Fy(r). (14)  Coulomb potential, we can obtain
On the other hand, according to the prescriptiongsgfin \
Eq. (11) andf, in Eq. (12), we can also obtain n(h(r)) =Zh- h (21)

d
a[fa(f)Gb(r)] =[=m=Vy(r) + EpJfp(NFy(r) + [-m+V,(r) |t s straightforward to find out thag' (h) >0 and/(h) <O0;
namely, »(h) is monotonously increasing and concave. As a

— Ealga(r)Gy(r). (15 result, the tangent line af(h) is a shifted-Coulomb potential
Finally, we can find from Eqs(14) and (15) of the form (for detailed discussions see REL3])
[(Ea—Ep) = (Va= Vp)I[fa(r)Fp(r) + ga(r) Gy(r)] VO(r) = At) + B(t)h(r)
=- %[fa(r)Gb(r) — gu(NFu(N)]. (16) =[n(h(t) = h®) 7 (ht) ]+ 7' (ht)h(r),  (22)

wherer =t is the point of contact withV. The potential in-
equality given by Eq.18) is valid. The energy spectrum
corresponding to the shifted-Coulomb potential given by Eq.

Integrating Eq(16) and using the boundary conditions given
by Egs.(8) and(9), we can obtain

o (22) can be obtained exactly and is given with the help of
f (Ba— Ep)[fa(r)Fp(r) + ga(r)Gy(r)]dr known pure hydrogenic energy spectridvof Eq. (20) [12]:
0
” eV =A(t) + D(B(t)) = D. (23
= f (Va= Vu)[fa(r)Fp(r) + ga(r)Gp(r)1dr.  (17)
0

The energy spectrum inequality in E@3) follows the po-

If the wave functions have no nodes, the factors at each sidé&ntial inequality given by Eq(18). This indicates that our

of Eq. (17) have the same sign, and hence, the spectral confnergy comparison theorem in the two-dimensional Dirac
parison theorem given by Eq1l) for the two-dimensional €quation is correct. However, some remarks should be no-
Dirac equation is proved. It should be emphasized that théced. If the spin wave functions are node free, the above
potentials and eigenvalues are both real. If potential paranfonclusion is valid. For the Coulomb-like potential, the num-
eters stray into a region such that the corresponding enerdjer of nodes near=0 is the same fof andg only if j=
spectrum turns Comp|eX, then E(q_?) would no |0nger lead -1/2 [14] Therefore we must restrict our discussion to the

to the result given by Eq1), since the complex levels can- €nergy spectrum at the bottoms of the angular momentum
not be well ordered. subspaces—namely, to those wjth—1/2 andn=1.

IV. APPLICATION TO THE COULOMB PLUS LINEAR
POTENTIAL V. CONCLUSION

In order to investigate the application of the above com- The spectral comparison theorem for the two-dimensional
parison theorem, we need two ordered potentials satisfyin@irac equation has been established and is seen to be a very
the condition useful tool for predicting the spectral spectrum without actu-

VO(r) = V(1) (18) glly s_olving the eigenvalue probl_ems. However the theorem

' is valid for an energy spectrum limited at the bottom of the

V(r) is chosen as the Coulomb plus linear potential whichangular momentum subspaces. This limitation may be over-
has been discussed by Mehta and Hatl] and is given by — come by further study.

_Z
V(r)=- T (19 ACKNOWLEDGMENT
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