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We show that, if one combines the Jaynes-Cummings and anti-Jaynes-Cummings dynamics in a trapped-ion
system driven by a laser, additional series of collapses and revivals of the vibrational state of the ion can be
generated.
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I. INTRODUCTION

The Jaynes-Cummings modelsJCMd f1g has been a sub-
ject of continuous theoretical studies already for the last 40
yearsf2g and it has more recently been realized in the labo-
ratory f3g. Still, probably the most famous feature of this
system, namely, the revival of oscillations of the atomic
population inversionf2g, is difficult to observe in Cavity
QED experimentsf4g because of the presence of dissipation
that produces a rapid decay of atomic oscillations. Revivals
can also occur in quite different physical systems such as
trapped ions interacting with laser fields, and, because dissi-
pation does not play an important role in this system, they
may be experimentally observed. Recently Morigiet al. f5g
have shown a method to accelerate the revivals, undoing the
dynamics by a suitable manipulation of the two-level system,
more specifically by a quasi-instantaneous change of its
phase.

In this paper we propose a method to accelerate the re-
vival of Rabi oscillations of the atomic inversion by switch-
ing from the JCM-type interaction to an anti-JCM one. This
sudden change can be implemented in trapped ions by
switching the frequencies of the lasers and in cavities by
interacting the two-level atom with an external classical field
ssee for instancef7gd.

II. REVERSING DYNAMICS IN TRAPPED IONS

The Hamiltonian governing the dynamics of a single ion
trapped in a harmonic potential in interaction with laser light
in the sopticald rotating-wave approximation has the form

Ĥ = 1
2fp̂2 + n2x̂2g + "v01Â11 + "mfEs−dsx̂,tdÂ01 + H.c.g,

s1d

whereÂ11,Â00 are the electronic level population operators,

Â01,Â10=Â01
† describe transitions with frequencyv01 be-

tween electronic levelsu0l sÂ00u0l= u0ld and u1l sÂ11u1l= u1ld
and satisfy the commutation relationsfÂ11,Â00g=0,

fÂ00,Â01g=−Â01, fÂ11,Â01g=Â01, n is the trap frequency,m is
the electronic coupling matrix element, and

Es−dsx̂,td = E0e
−iskWx̂−vtd s2d

is the negative part of the classical electric field of the driv-
ing laser beam. The operatorsx̂ and p̂ are the position and
momentum of the center of mass of the ion. In the rotating
frame the Hamiltonians1d takes the form

Ĥ = "nSn̂ +
1

2
D + "

mn

2
Â11 + "Vfe−isâ+â†dhÂ01 + H.c.g,

s3d

where V=E0m, â=În /2"x̂+ ip̂ /Î2"n, n̂= â†â, h= ukWuÎ" /2n
is the Lamb-Dicke parameter, and the field frequency satis-
fies the resonant conditionv01−v=mn, wherem is an inte-
ger. In the caseV!n we may neglect rapidly rotating terms
in the Hamiltonians3d leading to a JCM-type interaction
whenm=1:

ĤJC = "nn̂ + "
n

2
Â11 + "hVfâ†Â01 + âÂ10g, s4d

and by choosingm=−1 it takes the anti-JCM form

ĤAJC= "nn̂ − "
n

2
Â11 + "hVfâÂ01 + â†Â10g. s5d

Let us suppose that the applied laser field is redshifted,m
=1, during the timet1 sJCM regimed and then is switched to
the blue regime,m=−1, emulating the anti-JCM-type inter-
action for the timet2. The evolution of an arbitrary initial
electronic and vibrational state of the ion can be found ex-
actly; however, we will study the effect of changing the JCM
to anti-JCM dynamics for highly excited coherent vibrational
statesual, n= uau2@1, in approximate formsnevertheless the
numerical results we will show are exactd.

It is well known that in the usual JCMsdescribing inter-
action of a two-level atom with a single mode of a quantized
fieldd there is a single series of revivals, which appears at
time instantstr =2pÎnk/ shVd ,k=1,2,…. The appearance of
the revival structure of the atomic population can be nicely
explained in terms of the evolution of the so-called semiclas-

sical f8g statesupIl, p=0,1, eigenstates ofÂx=sÂ01+Â10d /2
operators,
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ÂxupIl = lpupIl, lp = p − 1/2. s6d

In particular, the evolution of the initial semiclassical state
upIlual leads to an approximately factorized form of the wave
function f9g:

uCstdl . uApstdl ^ uFpstdl, s7d

with

uApstdl = expF− i
vpt

2
sÂ11 − Â00 + 1dGupIl,

uFpstdl = expf− ihVtlp
În̂gual,

where

vp =
hVlp

2În
=

lpp

tr
.

We will show below that in the fieldsor in our case, vibra-
tional moded phase space each factorized state can be de-
scribed by itsQ function, which has the shape of a single
hump revolving around a circle of radiusÎn with an angular
velocity vp. The distribution of excitations for these states is
always Poissonian, but they spread in phase, due to an
intensity-dependent phase shiftf9g. Any initial atomic selec-
tronicd state can be expanded in the basis of the semiclassical
states as

uinl = o
p

cpupIl, s8d

and, correspondingly, the state of the total system can be
rewritten as a superposition of the factorized states:

FIG. 1. Surface and contour plots of theQ function at different timest= t1+ t2, for a switch time equal to one-fourth of the revival time,
i.e., t1= tr /4. t2= sad 0, sbd tr /8, scd tr /4.
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uCstdl = o
p

cpuApstdl ^ uFpstdl. s9d

Hence, a generic initial state causes the appearance of two
humps revolving around a circle of radiusÎn in the field
svibration moded phase space with angular velocitiesvp. The
motion of the humps in the phase space of the fieldsvibration
moded determines the behavior of the atomicselectronicd in-
version. When the humps are well separated, there are no
Rabi oscillationssi.e., we have the collapse regiond, while
the collision of two humps attr leads to the revival of Rabi
oscillations.

The effect of switching from the JCM to the anti-JCM
regime can also be studied using the idea of wave function
factorization. Taking into account that Hamiltonianss4d and
s5d can be represented as

ĤJC = Q̂s"nn̂ + 2"hVÎn̂ÂxdQ̂†, s10d

ĤAJC= Q̂†s"nn̂ + 2"hVÎn̂ÂxdQ̂, s11d

whereQ̂ is defined asf10g

Q̂ = expfif̂Â11g = u0lk0u + u1leif̂k1u, s12d

and expf±if̂g are the Susskind-Glogower phase operators
f11g, the evolution operator describing the JCM dynamics
during a timet1 and consecutive anti-JCM dynamics during a
time t2 has the form

Ûst1 + t2d = Q̂† expf− it2snn̂ + 2hVÎn̂ÂxdgQ̂2

3expf− it1snn̂ + 2hVÎn̂ÂxdgQ̂†. s13d

The initial stateupIlual ,p=0,1 sfor simplicity we consider an
initial vibrational state with zero phase,a=Înd, under the
action of s13d evolves according to

ucpstdl = Ûst1 + t2dupIlual

= Q̂†e−ist1+t2dnn̂e−2ihVÎn̂sÂxt2+lpt1de−2it1svp+ndÂ11upIlual,

s14d

where we have taken into accounts6d and the following
propertyf10g of the operators12d:

Q̂ua = Îneiwlu1Il = eiwualu1Il + Os1/Înd.

In particular, we obtain from Eq.s14d

uc0stdl = Ûst1 + t2du0lual

= Q̂†fcosvt1e
ihVÎn̂st1+t2du0l

− i sinvt1e
ihVÎn̂st1−t2du0lgual s15d

and

uc1stdl = Ûst1 + t2du1lual

= Q̂†fcosvt1e
−ihVÎn̂st1+t2du1l

+ i sinvt1e
−ihVÎn̂st1−t2du0lgual, s16d

where v=hV / s2Înd and we consider stroboscopic times,
nt1,2=2pk. The corresponding density matrices of the vibra-
tional state have the form

r0,1
vmstd = 1

2eif̂Û11ualkauÛ11
† e−if̂ + 1

2Û22ualkauÛ22
† , s17d

with Û11=cosvt1e
±ihVÎn̂st1+t2d7 i sinvt1e

±ihVÎn̂st1−t2d and

Û22=cosvt1e
±ihVÎn̂st1+t2d± i sinvt1e

±ihVÎn̂st1−t2d. Thus, the
Husimi Q functions corresponding to the initial electronic
states u0Il and u1Il take the following approximate forms
fQsbd=kburublg:

Q0,1sbd < cos2 vt1zkbue±ihVÎn̂st1+t2dualz2

+ sin2 vt1zkbue±ihVÎn̂st1−t2dualz2. s18d

This means that depending on the timet1, the initial dis-
tribution of vibrational quanta corresponding to a single ini-
tial semiclassical electronic state is split after changing the

FIG. 2. sad Atomic population inversionW=2Pe−1, with Pe

=Trsuelkeud, and sbd purity function,j=1−Trhrv
2j, as a function of

the scaled timehVt, with a switch time equal to one-fourth of the
revival time,t1= tr /4.
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frequency of the laser field fromm=1 to 21, in general, into
two distributions, except for two particular instants:sad if
vt1=pk the initial state continues moving as a single distri-
bution in the same direction;sbd if vt1=psk+1/2d the dis-
tribution only changes the direction of its rotation to the
opposite one.

Then, taking into accounts8d the evolution of the initial
excited electronic state and coherent vibrational state can be
represented as

uCstdl = Ust1 + t2du1lual =
1
Î2

Q̂†fu1IluF1stdl + u0IluF0stdlg,

s19d

where

uF0,1stdl = fcosvt1e
±ifhVÎn̂st1+t2d+vt1g

± i sinvt1e
7ifhVÎn̂st1−t2d+vt1ggual. s20d

The evolution of the inversion of electronic levels can be
written as

kCstdusÂ22 − Â11duCstdl = RekF0stduF1stdl. s21d

To estimate the revival times we neglect the effect of defor-
mation of vibrational quanta distributionfa consequence of
nonlinear evolution of the vibrational modes18d; see the
discussion inf9gg and approximate the above overlap integral
as follows:

kF0stduF1stdl < cos2 vt1kaeivst1+t2duae−ivst1+t2dl

+ sin2 vt1kae−ivst1−t2duaeivst1−t2dl. s22d

It is thus clear that there exists a revival series associated

FIG. 3. Surface and contour plots of theQ function at different timest= t1+ t2, for a switch time equal to one-half of the revival time,
t1= tr /2. t2= sad 0, sbd tr /4, scd tr /2.
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with the rotation of the distribution corresponding to the in-
terference of the semiclassical statesu1Il and u0Il at time in-
stantsvst1+ t2d=pk,k=1,2,…, which are the usual revival
times. Nevertheless, the second revival series appears due to
the splitting of the semiclassical states at the moment of
switching from JCM to anti-JCM dynamics. This happens at
instantsvst2− t1d=pl , l =0,1,2,…. The amplitudes of these
revivals depend on the switching timet1 and are equal to
cos2 vt1 and sin2 vt1 respectively ifvt1Þpk/2 ,k=1,2,….
If the switching moment is such thatvt1=pk/2, then reviv-
als with unitary amplitudesi.e., complete revivalsd happen at
vt2=psl −k/2d ,k, l =1,2,…. This has the following phase
space interpretation. In the course of the JCM dynamics the
initial vibrational quanta distribution is split into two parts,
each of which is associated with a corresponding semiclas-
sical electronic state. If the switching moment is such that
vt1Þpk/2, then both distributions are split again into two
components, one pair that rotates in the same direction as

before the switching took place and another that changes its
direction to the opposite one; the revivals are associated with
overlapping of only one of those pairsswhich happens at
different timesd. If instead the switching moment coincides
with half the revival time, thenvt1=psk+1/2d, and both
parts of the distribution change direction to the opposite one
and the revival occurs due to its overlappingsand interfer-
enced at the starting point of the phase space. If the switching
moment coincides with the revival timevt1=pk, basically
nothing happens and we have the standard JCM evolution.

In Figs. 1–4 we show the evolution of theQ function, the
electronic inversion, and the purity evolutionfjstd=1
−Trhrv

2j with rv the vibrationalsfieldd density matrixg for
different switching instants. The initial state is taken excited
for the electronic degree of freedom and coherent for the
vibrational one. One can observe two possible scenarios of
evolution.

s1d Switching at an arbitrary moment, but such thatt1
ÞpÎn/hV, leads to a splitting of each distribution of vibra-
tional quanta, corresponding to semiclassical electronic
statesu0Il and u1Il, into two parts. One of them continues to
move in the same direction as the initial distribution,
whereas the other changes its direction to the opposite.
Switching at a particular momentt1=pÎn/2hV leads to a
splitting of that distribution into equal parts. Two series of
revivals are present in this case.

s2d Switching at the momentt1=pÎn/hV shalf revival
momentd leads to a complete reversing of the dynamics, i.e.,
both parts of the distribution change direction of rotation into
the opposite one. Obviously, only a single series of revivals
survives with the revival time being the same as in the stan-
dard JCM case.

It is worth noting that switching at the momentt1
=2pÎn/hV srevival timed does not change the dynamics of
the system at all.

III. CQED CASE

The same effect can be produced in the case of a quan-
tized field interacting with a two-level atom in a high-Q cav-
ity. It has been shown that thescompleted interaction of an
ion with a laser field is completely equivalent to the atom-
field interaction in CQED with an extra atomic driving term
f6,7g. Solanoet al. f7g have demonstrated that it is indeed
possible to engineer anti-JC interactions in CQED. Below we
use counter-rotating terms to produce such interaction. We
start with the Hamiltonian

Ĥ = "vn̂ + "
v0

2
ŝz + "lsâ + â†dsŝ+ + ŝ−d, s23d

wherev andv0 are the field and atomic transition frequen-
cies, respectively,l is the interaction constant, andâ sâ†d
and ŝ− sŝ+d are the lowering operators for the cavity field
and the atom, respectively. Under the rotating-wave approxi-
mationsRWAd the above Hamiltonians23d takes the standard
JCM form:

FIG. 4. sad Atomic population inversionW and sbd purity func-
tion j as a function of the scaled timehVt, with a switch time equal
to one-half of the collapse time,t1= tr /2.

COMBINING JAYNES-CUMMINGS AND… PHYSICAL REVIEW A 71, 023811s2005d

023811-5



ĤJC = "vn̂ + "
v0

2
ŝz + "lsâŝ+ + â†ŝ−d. s24d

Now, suppose we apply a Ramsey pulsesinjecting a strong
classical field for a short time inside the cavityd to the atom.
The system stateucstdl abruptly changes to

uc8stdl = ŝyucstdl. s25d

This is equivalent to transforming the Hamiltonians23d to
the following form:

HR = ŝyHŝy = "vn̂ − "
v0

2
ŝz − "lsâ + â†dsŝ+ + ŝ−d,

s26d

which after application of the RWA takes the anti-JCM form

HAJC= "vn̂ − "
v0

2
ŝz − "lsâŝ− + â†ŝ+d. s27d

IV. CONCLUSIONS

In conclusion, we have shown that the possibility of com-
bining JCM and anti-JCM dynamics in trapped ions and/or

CQED leads to the appearance of a second series of collapses
and revivals in the process of interaction of two-level sys-
tems with a quantized field. On the other hand, it is notable
that there are two particular switching instants atsad the half
revival time, leading to the complete reversing of the dynam-
ics; andsbd the revival moment, when the dynamics of the
system does not change. In particular, this means that in the
first case, the fieldsvibrational excitationsd distributions run
over only half of the phase space, whereas in the second
case, these distributions make a wholesor completed revolu-
tion in the phase space. Finally, we should stress that our
approach is different from that of Morigiet al. f5g as they
manipulate the JC dynamics via an external pulse that pro-
duces a quasi-instantaneous phase change; this manipulation
produces a JC evolution operator multiplied by the atomic
inversion operatorsŝzd. Here instead we exploit the possibil-
ity of turning our system from JC to anti-JC dynamics, which
results in a JC evolution operator multiplied by the operator
ŝy fsee Eq.s25dg that allows the presence of revivals imme-
diately after the switching takes place. In the case of the
switching taking place at half the revival time, it is shown
that the dynamics can be completely reversed.
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