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We study the polarization properties of three-dimensional quantum light fields by using the Stokes operators.
We modify the standard definition of degree of polarization in order to encompass polarization properties in the
quantum domain. We show that the states with the largest degree of polarization and least polarization fluc-
tuations are the SUs3d coherent states. We show that the standard quadrature coherent states are Poissonian
superpositions of SUs3d coherent states. We examine the polarization properties of some other relevant field
states.
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I. INTRODUCTION

Polarization is a fundamental ingredient of light, both in
the quantum and in the classical domains. In the quantum
regime this variable has been crucial in order to demonstrate
experimentally fundamental properties and applications of
the quantum theory such as entanglement, complementarity,
quantum cryptography, teleportation, and Bell inequalities
f1g and also concerning the proper quantum description of
the phasef2g.

Although the electric field is by definition a three-
dimensionals3Dd magnitude, the polarization of strictly har-
monic classical waves is locally a two-dimensionals2Dd
phenomenon, since the electric field at each spatial point
describes an ellipse contained in a plane. Nevertheless, the
plane of the ellipse may vary from point to point so that a
three-dimensional analysis may be useful, especially for non-
paraxial beams without a well-defined propagation direction.

Moreover, quantum fluctuations affect the three field com-
ponents even when they are in the vacuum state, so that for
every field state the quantum electric field varies unavoid-
ably in a 3D regionf3g. Therefore, in the quantum domain
polarization is always a 3D phenomenon.

The 3D description of polarization has been already ad-
dressed in the classical domain by a suitable generalization
of the Stokes parameters derived from the 333 coherence
matrix f4–10g.

In this work we address a quantum description of 3D
polarization by using the 3D Stokes operatorsf11g. In Sec. II
we recall the basic definitions. In Secs. III and IV we show
that the states with the largest degree of 3D polarization and
the least polarization fluctuations are the SUs3d coherent
states. In Sec. V we show that standard quadrature coherent
states are Poissonian superpositions of SUs3d coherent states,
which in turn are superpositions of SUs2d coherent states. In
Sec. VI we examine the polarization properties of some other
relevant field states. In Sec. VII we study the superposition
of partially polarized light into completely polarized and
completely unpolarized components.

II. STOKES OPERATORS AND DEGREE
OF POLARIZATION

The standard two-mode Stokes parameters can be gener-
alized to a three-mode field in the formf4,6–10g

kSjl = trsl jFd, s2.1d

j =0,1,… ,8, whereF is the 333 coherence matrix

Fk,, = ka,
†akl, s2.2d

k, ,=1,2,3a, being the complex amplitudes andl j the nine
Gell-Mann matricesfthe generators of the SUs3d groupg

l0 = 11 0 0

0 1 0

0 0 1
2 ,

l1 = 10 1 0

1 0 0

0 0 0
2, l2 = 10 − i 0

i 0 0

0 0 0
2 ,

l3 = 11 0 0

0 − 1 0

0 0 0
2, l4 = 10 0 1

0 0 0

1 0 0
2 ,

l5 = 10 0 − i

0 0 0

i 0 0
2, l6 = 10 0 0

0 0 1

0 1 0
2 ,

l7 = 10 0 0

0 0 − i

0 i 0
2, l8 =

1
Î311 0 0

0 1 0

0 0 − 2
2 , s2.3d

which verify the trace-orthogonality relations

trsl jlkd = 2d j ,k + d j ,0dk,0. s2.4d

The above relations2.1d can be inverted in the form
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F =
1

21
2
3kS0l + kS3l + 1

Î3
kS8l kS1l − ikS2l kS4l − ikS5l

kS1l + ikS2l 2
3kS0l − kS3l + 1

Î3
kS8l kS6l − ikS7l

kS4l + ikS5l kS6l + ikS7l 2
3kS0l − 2

Î3
kS8l

2 . s2.5d

The coherence matrix and the Stokes parameters provide ex-
actly the same information. The motivation for using the
Stokes parameters comes from the fact that they are real
measurable quantities that can be determined via standard
experimental proceduresf6g. Furthermore, for two-
dimensional fields they provide a very illustrative and useful
picture of polarization via the Poincaré spheresalthough its
generalization to three-dimensional fields provides lesser
geometrical intuition due to the increase of the dimensiond.

In the quantum domain, the Stokes parameters are the
mean values of the Stokes operatorsf11g

Sj = a†l ja, s2.6d

for j =0,1,… ,8, wherea anda† are three-dimensional col-
umn and row vectors made of the complex amplitude opera-
tors and their Hermitian conjugates, respectively.

The generalized Stokes parameters allow us to introduce a
3D degree of polarization in the formf4,6–9g

P3D =
Î3

2

Îo
j=1

8

kSjl2

kS0l
. s2.7d

To some extent, this definition does not grasp the limits to
polarization established by quantum fluctuations. Since the
Stokes operators do not commute, no field state can have
definite values of all of them simultaneously, so every state
presents polarization fluctuations. In other words, no quan-
tum state has a definite polarization ellipse for the same rea-
sons that quantum particles do not follow definite classical
trajectories. The definitions2.7d does not reflect this idea,
since there are field states withP3D=1 sfor example, it is
shown below that this is the case of quadrature coherent
statesd. Moreover, this occurs even for field states as close as
desired to the three-dimensional vacuum state, which is a
fully unpolarized state according to every criterion.

There is a simple modification of the above definition that
avoids this difficulty as a generalization to three dimensions
of the two-dimensional proposal in Ref.f12g,

P3D =

Îo
j=1

8

kSjl2

Îo
j=1

8

kSj
2l

=
Î3

2

Îo
j=1

8

kSjl2

ÎkS0sS0 + 3dl
, s2.8d

where we have used the operator identity

o
k=1

8

Sk
2 = o

k=1

8

o
i,j ,,,m=1

3

lk,i jlk,,mai
†aja,

†am =
4

3
S0sS0 + 3d.

s2.9d

It is worth noting that this definition seemingly depends on
the fluctuations of the intensityDS0 since in the denominator

kS0
2l = sDS0d2 + kS0l2. s2.10d

At first sight this dependence might be regarded as a draw-
back, because such a dependence is absent in the classical
domain. Nevertheless, in the next section we show that this
dependence is necessary in the quantum domain provided
that we naturally link the maximum degree of polarization
with minimum fluctuations of the Stokes operators, a relation
that is not fulfilled when using Eq.s2.7d.

Leaving aside these remarks, in most applications both
expressionss2.7d and s2.8d are interchangeable since their
differences are minimal, especially when approaching the
classical limit where they coincide.

III. MAXIMALLY POLARIZED STATES

In this section we look for three-dimensional field states
with the largest degree of polarization. In order to maximize
Eqs. s2.7d and s2.8d, we begin by computing their common
numerator

o
k=1

8

kSkl2 = 4
3ska1

†a1l2 + ka2
†a2l2 + ka3

†a3l2 − ka1
†a1lka2

†a2l

− ka1
†a1lka3

†a3l − ka2
†a2lka3

†a3l + 3uka1
†a2lu2

+ 3uka1
†a3lu2 + 3uka2

†a3lu2d, s3.1d

where we have used that the only terms different from zero
in the k sum are

o
k=1

8

lk,iilk,ii = 4
3 ,

o
k=1

8

lk,iilk,j j = − 2
3, i Þ j ,

o
k=1

8

lk,i jlk,ji = 2. s3.2d

We proceed by using the Cauchy-Schwarz inequalities

ukai
†ajlu2 ø kai

†ailkaj
†ajl, s3.3d

leading to
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o
k=1

8

kSkl2 ø
4

3
kS0l2. s3.4d

The maximum is obtained when all the Cauchy-Schwarz re-
lations are equalities, which occurs provided that

a1ucl ~ a2ucl ~ a3ucl. s3.5d

In the next section we show that for a fixed total numberS0
this is satisfied only by the SUs3d coherent states as demon-
strated in Eq.s4.8d below.

Equation s3.4d implies that for definitions2.7d we get
P3Dø1, irrespectively of the value ofkS0l. The equality is
reached by all the states fulfilling Eq.s3.5d. This is the case
of SUs3d coherent states and quadrature coherent states for
example.

On the other hand, for the definitions2.8d we can use Eq.
s3.4d in the numerator and Eq.s2.10d in the denominator
swhich implieskS0

2lù kS0l2, the equality being reached when
DS0=0d, leading to

P3D ø
1

Î1 +
3

kS0l

. s3.6d

In this case the maximum degree of polarization attainable
depends on the intensity of the wave through the value of
kS0l. The equality is reached by the eigenstates ofS0 fulfill-
ing Eq.s3.5d. These are just the SUs3d coherent states exclu-
sively.

Finally, we note that it would be natural to expect that
maximum degree of polarization should be equivalent to
minimum fluctuations of the Stokes operators. This identifi-
cation can be validated if we adopt a suitable measure of the
global fluctuations of the eight Stokes operators. In this re-
gard, the most appropriate measure for our purposes isf13g

o
k=1

8

sDSkd2 = o
k=1

8

kSk
2l − o

k=1

8

kSkl2 =
4

3
kS0sS0 + 3dl − o

k=1

8

kSkl2.

s3.7d

From Eqs.s2.10d, s3.7d, ands3.4d we have

o
k=1

8

sDSkd2 ù 4kS0l, s3.8d

the equality being reached provided thatDS0=0 and that Eq.
s3.5d holds.

We can see that minimum polarization fluctuations are
equivalent to a maximum degree of polarization only when
using Eq.s2.8d. This is not the case when using definition
s2.7d, since the quadrature coherent states, for example,
present fluctuations of the Stokes operators well above the
minimum fsee Eq.s7.7dg.

IV. SU(3) COHERENT STATES

The SUs3d coherent stateuN,Gl can be defined by the
action of a SUs3d transformation on the number state
u0,0,Nl f14g,

uN,Gl = eia†Rau0,0,Nl, s4.1d

whereR is a Hermitian 333 matrix,G represents the param-
eters required to suitably specifyR, andu0,0,Nl is the prod-
uct of the vacuum state in modesa1, a2 and the number state
N in modea3. The above transformation acting onu0,0,Nl
can be expressed also as a product of two consecutive SUs2d
transformations:

uN,Gl = euse−ifa2
†a1−eifa1

†a2d/2eu8se−if8a3
†a2−eif8a2

†a3d/2u0,0,Nl.

s4.2d

This produces the following transformation of the complex
amplitude operators:

e−ia†Raaeia†Ra= Ua, s4.3d

whereU is the unitary transformationf15g,

U = 1 c − seif 0

se−if c 0

0 0 1
211 0 0

0 c8 − s8eif8

0 s8e−if8 c8
2 ,

s4.4d

beingc=cossu /2d, s=sinsu /2d, and similarly for the primed
variables.

These states are eigenstates of the total number operator

S0uN,Gl = NuN,Gl. s4.5d

Furthermore, we can demonstrate that

a1uN,Gl ~ a2uN,Gl ~ a3uN,Gl. s4.6d

This is because

aje
ia†Rau0,0,Nl = eia†Rao

k=1

3

U j ,kaku0,0,Nl = U j ,3e
ia†Raa3u0,0,Nl,

s4.7d

so that

1

U1,3
a1uN,Gl =

1

U2,3
a2uN,Gl =

1

U3,3
a3uN,Gl. s4.8d

According to the results of the preceding section, Eqs.
s4.5d and s4.6d demonstrate that the SUs3d coherent states
have minimum polarization fluctuations and maximum de-
gree of polarization.

Vice versa, all the states satisfying Eq.s4.8d within each
subspace of fixed total photon numberS0 are SUs3d coherent
states. This is because the consecutive application of two
suitable SUs2d transformations changes Eq.s4.8d into

a1ucl = a2ucl = 0, s4.9d

whose unique solution in each subspace of fixed total num-
ber N is the number stateu0,0,Nl.

From Eqs.s4.1d, s4.3d, ands4.4d the Stokes parameters for
uN,Gl are

kSkl = NsU†lkUd3,3= Nmk, s4.10d

for k=0,1,… ,8, where the functionsmk are

QUANTUM POLARIZATION FOR THREE-DIMENSIONAL… PHYSICAL REVIEW A 71, 023810s2005d

023810-3



m0 = 1,

m1 = 2 sin2u8

2
sin

u

2
cos

u

2
cosf,

m2 = 2 sin2u8

2
sin

u

2
cos

u

2
sinf,

m3 = sin2u8

2
Ssin2u

2
− cos2

u

2
D ,

m4 = 2 cos
u8

2
sin

u8

2
sin

u

2
cossf + f8d,

m5 = 2 cos
u8

2
sin

u8

2
sin

u

2
sinsf + f8d,

m6 = 2 cos
u8

2
sin

u8

2
cos

u

2
cosf8,

m7 = 2 cos
u8

2
sin

u8

2
cos

u

2
sinf8,

m8 =
1
Î3

Ssin2u8

2
− 2 cos2

u8

2
D . s4.11d

It can be checked thatok=1
8 kSkl2=s4/3dkS0l2.

V. NESTED COHERENT STATES

In this section we show that there is an interesting rela-
tionship between quadrature coherent states, SUs3d coherent
states, SUs2d coherent states, and number states.

We begin by considering a product of quadrature coherent
states in each modeual= ua1lua2lua3l with ajual=a jual. Ex-
pressing these vectors in the number basis we get

ual = e−r2/2o
N=0

`
sreiddN

ÎN!
uN,Gl, s5.1d

whereuN,Gl are SUs3d coherent statesf14g,

uN,Gl = o
n=0

N SN

n
D1/2Scos

u8

2
DN−nSsin

u8

2
Dn

3e−inf8un,Vl1,2uN − nl3, s5.2d

un,Vl1,2 are SUs2d coherent states in modesa1, a2 f16g,

un,Vl1,2= o
m=0

n Sn

m
D1/2Scos

u

2
Dn−mSsin

u

2
Dm

e−imfuml1un − ml2,

s5.3d

and uml1, un−ml2, and uN−nl3 are number states in the cor-
responding modes. The angular variables above are related to
the complex amplitudesa in the form

a1 = r sin
u8

2
sin

u

2
eide−if8e−if,

a2 = r sin
u8

2
cos

u

2
eide−if8,

a3 = r cos
u8

2
eid, s5.4d

where`ù r ù0, pùu, u8ù0, and 2pùf, f8ù0.
In Eqs.s5.1d–s5.3d we can recognize an interesting struc-

ture. The three-mode quadrature coherent stateual is for-
mally identical to a one-mode coherent state, but replacing
the number statesuNl by the SUs3d coherent statesuN,Gl
swhich are eigenstates of the total number operatora1

†a1
+a2

†a2+a3
†a3 with eigenvalueNd. In turn, uN,Gl has the same

structure of a two-mode SUs2d coherent state but replacing
the number statesunl in one of the modes by the two-mode
SUs2d coherent statesun,Vl1,2 swhich are eigenstates of the
number of photonsa1

†a1+a2
†a2 with eigenvaluend, as shown

in Ref. f14g.
It is clear that the role played by each one of the modes in

this chain of coherent states can be interchanged. Some other
examples of this grouping of coherent states can be found in
Ref. f17g.

VI. RELATION BETWEEN THE 3D AND 2D DEGREES
OF POLARIZATION

It is natural to ask whether there exists a definite relation
between two- and three-dimensional approaches to quantum
polarization. This is because we can imagine every two-
dimensional field as being three dimensional with a vanish-
ing component. Therefore, to every two-dimensional field we
can assign two different degrees of polarizationP3D andP2D,
which need not coincide necessarily.

In this regard, the field states as close as possible to have
a vanishing component—say,a3—are obtained by assuming
that the modea3 is in the vacuum state,

r3D = r2D ^ u0l33k0u, s6.1d

whereu0l3 is the vacuum state in modea3. In such a case we
have the following relation between the three-dimensional
and two-dimensional values of the Stokes parameters:

o
k=1

8

kSkl3D
2 = o

k=1

3

kSkl2D
2 +

1

3
kS0l2, s6.2d

where in the 2D case

kS1l2D = ksa1
†a2 + a2

†a1dl,

kS2l2D = kisa2
†a1 − a1

†a2dl,

kS3l2D = ksa1
†a1 − a2

†a2dl, s6.3d

being kS0l=kS0l3D=kS0l2D.
If we were using the standard definitions2.7d we would

get the general relation
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P3D
2 =

3

4
P2D

2 +
1

4
, s6.4d

whereP2D is the 2D analog of Eq.s2.7d.
We always haveP3Dù P2D, the equality being reached

only for P2D=1. A clear example of the caseP3D. P2D oc-
curs whenP2D=0, for whichP3D=1/2.This result is consis-
tent since fully unpolarized two-dimensional lightstwo ran-
dom uncorrelated components of the same intensityd is
certainly not completely unpolarized in three dimensions
sthree random uncorrelated components of the same inten-
sityd f8g.

On the other hand, from Eq.s2.8d and using as well its
two-dimensional counterpartf12g

P2D
2 =

o
k=1

3

kSkl2D
2

kS0
2l + 2kS0l

, s6.5d

we get

P3D
2 =

3skS0
2l + 2kS0ldP2D

2 + kS0l2

4skS0
2l + 3kS0ld

. s6.6d

In this case and contrary to Eq.s6.4d, we have the possi-
bility of P3D, P2D. This occurs provided that

P2D
2 .

kS0l2

kS0
2l + 6kS0l

. s6.7d

For the sake of illustration let us consider the maximumP2D
allowed by Eq.s6.5d for kS0

2l=kS0l2=1. In this case we have
P2D=0.58 whileP3D=0.50.

VII. SOME EXAMPLES

Next we apply the above definitions to some relevant field
states.

A. One-photon states

The Hilbert space for one photon split between three
modes is spanned by the photon-number statesu1l= u1,0,0l,
u2l= u0,1,0l, and u3l= u0,0,1l. Taking this as a basis, it can
be seen that the coherence matrixF and the density matrixr
coincide,

k, urukl = kak
†a,l = F,,k, s7.1d

andr admits the expressions2.5d.
Moreover, every one-photon pure state is a SUs3d coher-

ent state

u1,Gl = cos
u8

2
u0,0,1l + cos

u

2
sin

u8

2
e−if8u0,1,0l

+ sin
u

2
sin

u8

2
e−isf+f8du1,0,0l. s7.2d

Therefore, every pure state has maximum degree of polariza-
tion and minimum polarization fluctuations forkS0l=1.

B. Number states

For the number statesun1,n2,n3l the only nonvanishing
Stokes parameters are

kS0l = n1 + n2 + n3,

kS3l = n1 − n2,

kS8l = 1
Î3

sn1 + n2 − 2n3d, s7.3d

leading to

o
k=1

8

kSkl2 = 2sn1
2 + n2

2 + n3
2d −

2

3
sn1 + n2 + n3d2. s7.4d

For the equipartition staten1=n2=n3=kS0l /3 all the
Stokes parameters vanishsexcept kS0ld, so that this state
reaches the minimum degree of polarizationP3D=0 and the
maximum fluctuations of the Stokes parameters:

o
k=1

8

sDSkd2 =
4

3
kS0lskS0l + 3d. s7.5d

The other extreme situation occurs when all the photons
are concentrated in a single mode—for example,n1=n2=0,
n3Þ0. This state is actually a SUs3d coherent state withu
=u8=0, reaching a maximum degree of polarization and
minimum polarization fluctuations.

These conclusions are equally valid irrespective of
whether we use Eq.s2.7d or Eq. s2.8d.

C. Quadrature coherent states

As we have mentioned above the quadrature coherent
states are Poissonian superpositions of SUs3d coherent states.
This suggests that they should be close to have a maximum
degree of polarization and minimum polarization uncertainty.

They reach the maximum value allowed for the sum of
the squares of the Stokes parameters in Eq.s3.4d,

o
k=1

8

kSkl2 =
4

3
kS0l2, s7.6d

since they satisfy conditionss3.5d trivially.
However, they are not exactly extremal concerning polar-

ization fluctuations because of the fluctuations of the total
number of photonssDS0d2=kS0l so that

o
k=1

8

sDSkd2 =
16

3
kS0l, s7.7d

which exceeds by 33% the minimum 4kS0l.
As we have discussed above this is reflected or not by the

degree of polarization depending on the definition used.
When using Eq.s2.7d we have a maximum degreeP3D=1 for
all kS0l, while when using Eq.s2.8d
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P3D =
1

Î1 +
4

kS0l

, s7.8d

which is not the maximum in Eq.s3.6d, but is nevertheless
very close to it whenkS0l is large enough.

VIII. POLARIZED-UNPOLARIZED LIGHT
DECOMPOSITION

Using the Stokes parameters we analyze the decomposi-
tion of arbitrary fields into a superposition of completely
polarized and fully unpolarized components. This is the 3D
analog of the well-known 2D decomposition. Although the
following analysis is valid in classical as well as in quantum
optics, we think that the quantum perspective throws some
light on the problem. For example, it allows us to regardF
as a one-photon density matrix.

SinceF is Hermitian and non-negative, it can always be
diagonalized for any field state,

F = o
j=1

3

pjv jv j
†, s8.1d

where the column vectorsv j are the orthonormal eigenstates
of F with eigenvaluespj ù0. In quantum physics this is the
diagonalization of the density matrix of a mixed state as a
superposition of pure-state projectorsv jv j

†. On the other
hand, in classical optics this represents a decomposition of
the field in terms of mutually uncorrelated partsf18g, where
the weightspj represent field intensities.

The vectorsv j provide a suitable resolution of the identity

o
j=1

3

v jv j
† = I , s8.2d

whereI is the 333 identity. This allows us to express one of
the projectors—say,v3v3

†—in terms of the other two and the
identity. When this substitution is performed in Eq.s8.1d we
get

F = sp1 − p3dv1v1
† + sp2 − p3dv2v2

† + p3I . s8.3d

It is worth noting that we should remove from Eq.s8.1d the
vector with the leastpj, since otherwise the resulting weights
for the remaining components in Eq.s8.3d would be nega-
tive, contrary to the interpretation as a superposition of un-
correlated fields. With this restriction the decomposition
s8.3d becomes unique.

According to Eq.s2.5d the identity represents fully unpo-
larized light withkSkl=0, for k=1,… ,8. Next we show that
thev jv j

† components represent light with maximum degree of
polarization.

To show this we notice that the normalizationv j
†·v j =1

implies for F j =v jv j
† that F j

2=F j and trF j =1. Moreover,
from Eq. s2.5d we get

tr F j
2 =

1

3
kS0l2 +

1

2o
k=1

8

kSkl2, tr F j = kS0l. s8.4d

Therefore, the chain of equalities trF j
2=tr F j =1 implies that

the Stokes parameters corresponding toF j satisfy

o
k=1

8

kSkl2 =
4

3
kS0l2. s8.5d

This is the condition for maximum degree of polarization if
we use definitions2.7d. If we useP3D in Eq. s2.8d, we shall
assume also thatkS0

2l=kS0l2 sthe question of whether this
requirement is satisfied or not cannot be answered with the
information provided by the simple specification ofFd.

IX. CONCLUSIONS

We have carried out an analysis of 3D quantum polariza-
tion by using the Stokes operators. We have examined two
definitions of the degree of polarization, showing their main
properties and drawbacks.

We have found that the states with minimum polarization
fluctuations and maximum degree of polarization are the
SUs3d coherent states. We have shown that this is also ap-
proximately the case of the quadrature coherent states with
large enough photon numbers, since they are Poissonian su-
perpositions of SUs3d coherent states.

We have studied the relation between the 2D and 3D de-
grees of polarization by considering field states with a com-
ponent in the vacuum state. It is shown that the embedding
of two-dimensional fields into a three-dimensional frame-
work is accompanied in general terms by an increase of the
degree of polarization.

We have analyzed the decomposition of a three-
dimensional field into fully polarized and fully unpolarized
mutually uncorrelated components. It is shown that, in the
general case, the decomposition requires two polarized com-
ponents uniquely determined.

We have applied this formalism to some relevant field
states such as SUs3d coherent states, quadrature coherent
states, and number states.

It is worth noting that we are examining polarization
properties by using a small number of parameters, so that
within the approach provided by the Stokes parameters very
different states can possess the same polarization properties.
This reflects the fact that there are situations where the
Stokes parameters do not provide a complete picture of po-
larization. This is especially clear when all the Stokes param-
eters vanish since this can occur for field states that are not
fully unpolarized lightsfor example, this is the case of the
equipartitioned number states aboved. In other words, the
Stokes parameters depend just on field correlations of the
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second order in the field amplitudes. In some particular
cases, especially in the quantum domain, this is not enough
and correlations of higher orders are necessary. This issue
will be addressed elsewhere as a suitable generalization of
the approach in Refs.f19g.
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