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Quantum polarization for three-dimensional fields via Stokes operators
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We study the polarization properties of three-dimensional quantum light fields by using the Stokes operators.
We modify the standard definition of degree of polarization in order to encompass polarization properties in the
guantum domain. We show that the states with the largest degree of polarization and least polarization fluc-
tuations are the S(@3) coherent states. We show that the standard quadrature coherent states are Poissonian
superpositions of S(3) coherent states. We examine the polarization properties of some other relevant field
states.
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I. INTRODUCTION Il. STOKES OPERATORS AND DEGREE

T . . ) . OF POLARIZATION
Polarization is a fundamental ingredient of light, both in

the quantum and in the classical domains. In the quantum The standard two-mode Stokes parameters can be gener-

regime this variable has been crucial in order to demonstratélized to a three-mode field in the forj4,6-10

experimentally fundamental properties and applications of

the quantum theory such as entanglement, complementarity, (§) =tr(\®), (2.9

quantum cryptograph_y, teleportation, and Bell mequglltles*zollw_ 8, whered is the 3x 3 coherence matrix

[1] and also concerning the proper gquantum description o

the phasg?2]. ., =(al 29
Although the electric field is by definition a three- e = (@, 22

dimensional3D) magnitude, the polarization of strictly har- k ¢=1 2 3a, being the complex amplitudes anglthe nine

monic classical waves is locally a two-dimension@D)  Gell-Mann matricegthe generators of the $8) group]
phenomenon, since the electric field at each spatial point

describes an ellipse contained in a plane. Nevertheless, the 100
plane of the ellipse may vary from point to point so that a No=|0 1 0
three-dimensional analysis may be useful, especially for non- '
paraxial beams without a well-defined propagation direction. 001
Moreover, quantum fluctuations affect the three field com-
ponents even when they are in the vacuum state, so that for 010 0 -i 0
every field state the quantum electric field varies unavoid- v=l10 0l »=li 0 0O
ably in a 3D region 3]. Therefore, in the quantum domain . P2 '
polarization is always a 3D phenomenon. 000 0 00
The 3D description of polarization has been already ad-
dressed in the classical domain by a suitable generalization 1 0 O 001
of th_e Stokes parameters derived from thg 3 coherence x=[0 -1 0], x=|0 0 0],
matrix [4—10].
In this work we address a quantum description of 3D 0 00 100
polarization by using the 3D Stokes operatidrg]. In Sec. I
we recall the basic definitions. In Secs. Il and IV we show 00 —-ij 000
that the states with the largest degree of 3D polarization and =00 ol rx=loo0 1
the least polarization fluctuations are the (SUcoherent 5T 16 ’
states. In Sec. V we show that standard quadrature coherent i 00 010

states are Poissonian superpositions of3doherent states,

which in turn are superpositions of §) coherent states. In 00 O 10 O

Sec. VI we examine the polarization properties of some other vw=lo o =il x _1 01 0 2.3

relevant field states. In Sec. VII we study the superposition [ » 8T V3 ' :
0i O 00 -2

of partially polarized light into completely polarized and

completely unpolarized components.
pielely unp P which verify the trace-orthogonality relations

tl’()\J)\k) = 25“( + 5],05k,0' (24)

*Electronic address: alluis@fis.ucm.es; URL: http://www.ucm.es/
info/gioq The above relation(2.1) can be inverted in the form
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NS +H(S)+ (S (S) -i(Sy) (S -i(Sy)

o=2|  (SH+i(S) A+ HS (S-S |. (2.5
(S +i(S) (S+iS) - EHS
[
The coherence matrix and the Stokes parameters provide ex- 8 8

3
actly the same information. The motivation for using the > §=>, >, )\k,ij)\k,(mqffaja}am:ﬂa,(so+ 3).
Stokes parameters comes from the fact that they are real k=1 k=11ij.¢,m=1 3
measurable quantities that can be determined via standard (2.9
experimental procedures[6]. Furthermore, for two- ) i ) o i
dimensional fields they provide a very illustrative and usefullt IS worth noting that this definition seemingly depends on
picture of polarization via the Poincaré sphéatthough its the fluctuations of the intensityS, since in the denominator
generali;atio_n to three-dimensipnal fields prov?des Igsser (D = (AS)? + (2. (2.10
geometrical intuition due to the increase of the dimenjsion

In the quantum domain, the Stokes parameters are th@t first sight this dependence might be regarded as a draw-

mean values of the Stokes operatf] back, because such a dependence is absent in the classical
domain. Nevertheless, in the next section we show that this
S —af\a (2.6) dependence is necessary in the quantum domain provided
i :

that we naturally link the maximum degree of polarization

for i=0 1 8 wherea anda' are three-dimensional col- with minimum fluctuations of the Stokes operators, a relation
1=9:L,...,5, that is not fulfilled when using Eq2.7).

umn and row vectors made of the complex amplitude opera- Leaving aside these remarks, in most applications both

tors and their Hermitian conjugates, respectively. expressiong2.7) and (2.8) are interchangeable since their

The generalized _Sto_kes_parameters allow us to introduceéllﬁerenceS are minimal, especially when approaching the
3D degree of polarization in the for{d,6-9 classical limit where they coincide.

8 ll. MAXIMALLY POLARIZED STATES
2
V3 §l<si> In this section we look for three-dimensional field states
Psp= o sy (2.7)  with the largest degree of polarization. In order to maximize
(S Egs.(2.7) and (2.8), we begin by computing their common

To some extent, this definition does not grasp the limits towumerator

polarization established by quantum fluctuations. Since the g
i 4

Stokes operators do not commute, no field state can have > (S0?= 2((alay? + (ala,)? + (alag)? - (ala,alay)
definite values of all of them simultaneously, so every state =;
presents polarization fluctuations. In other words, no quan- N + t T a2
tum state has a definite polarization ellipse for the same rea- ~(a121)(a533) ~ (;82)(2g3s) + 3(2y2y)|
sons that quantum particles do not follow definite classical +3(alag)|? + 3[(ajag)?), (3.0
trajectories. The definitiori2.7) does not reflect this idea, )
since there are field states wiy=1 (for example, it is where we have used that the only terms different from zero
shown below that this is the case of quadrature cohererlf thek sum are
state$. Moreover, this occurs even for field states as close as 8
desired to the three-dimensional vacuum state, which is a > Mk = ‘é‘,
fully unpolarized state according to every criterion. k=1

There is a simple modification of the above definition that

avoids this difficulty as a generalization to three dimensions 8
of the two-dimensional proposal in R¢f.2], > Nk jj =~ % i #j,
k=1
8 8 .
\/ 2(S? - (S)?
jgl % \“”3 ng % E )\k,ij)\k,ji =2. (32)
P3D = 3 = 7 , (28) k=1
2 (S(S+23)) _ : o
> (sf) We proceed by using the Cauchy-Schwarz inequalities
=1
Kafa)|? < (aa)(afa), (3.3
where we have used the operator identity leading to
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IN,T') = 62'R80,0.N), (4.1

whereR is a Hermitian 3< 3 matrix,I" represents the param-
The maximum is obtained when all the Cauchy-Schwarz re_etersfriquwed to sunably Speﬂw and|0,dO ’hN> IS thg prod-
: - ) ; uct of the vacuum state in modag a, and the number state
lations are equalities, which occurs provided that N in modeas, The above transformation acting ¢, 0 N)
aq| ) = ay| i) = agly). (3.5 can be expressed also as a product of two consecutivg) SU

transformations:

8 4
> (S)%=< §<So>2- (3.4)
k=1

In the next section we show that for a fixed total num§gr . . o o
this is satisfied only by the S8) coherent states as demon-  |N,I) = e¥e ' Pajar-elalay)/2gd (671 ajay-el? aZas)/2|oyo,N>_
strated in Eq(4.8) below. 4.2
Equation (3.4) implies that for definition(2.7) we get '
Psp=1, irrespectively of the value ofS;). The equality is  This produces the following transformation of the complex
reached by all the states fulfilling E¢B.5). This is the case amplitude operators:
21)‘( asrgé?;.coherent states and quadrature coherent states for iaRay éaTRa:Z,{a, 4.3
On_ the other hand, for the definitic(.8) we can use Ed.  wherel/ is the unitary transformatiofi5],
(3.4) in the numerator and Eq2.10 in the denominator

(which implies(S}) =(S,)?, the equality being reached when c -sé? 0\(1 O 0
AS=0), leading to U=lse® ¢ o0l]l0 ¢ -g€&¢ ,
1 0 0 1 0 ramip) C/
Ppps ————. (3.6) se
e (4.4)
(S beingc=cog6/2), s=sin(#/2), and similarly for the primed

In this case the maximum degree of polarization attainabl&/ariables. )
depends on the intensity of the wave through the value of These states are eigenstates of the total number operator

_<So>. The equality is rea_ched by the eigenstate§gpfulfill- SIN,TY =N|N,T). (4.5)
ing Eq.(3.5). These are just the §B) coherent states exclu-
sively. Furthermore, we can demonstrate that

Finally, we note that it would be natural to expect that ay|N,T) o a,|N,T) « ag|N, T). (4.6)

maximum degree of polarization should be equivalent to

minimum fluctuations of the Stokes operators. This identifi-This is because

cation can be validated if we adopt a suitable measure of the 3

global fluctuations of the eight Stokes operators. In this re'ajeiaTRf"|0,O,N> - eiaTRaE U;,&]0,0N) :ujyseiaTRaa3|0’0,N>’
gard, the most appropriate measure for our purposgk3is k=1

8 4.7
kE (A8)?=2
=1

8 8 4 8
2_ " _ 2
k:1<SE> k§l<s<> 3 S(S+3) k21 (8% <o that
1 1 1

37 AN = S aND = aND. (4.9

From Egs.(2.10, (3.7, and(3.4) we have L3 2.3 33
8 According to the results of the preceding section, Egs.
2 (AS)? = &Sy, (3.9) (4.5 an_d _(4.6) demor_wstrgte that thg $8) coherenF states
el have minimum polarization fluctuations and maximum de-

) ) . gree of polarization.
the equality being reached provided ti§,=0 and that Eq. Vice versa, all the states satisfying 4.8 within each
(3.9 holds. o o ) subspace of fixed total photon numtirare SU3) coherent
We can see that minimum polarization fluctuations aresiates. This is because the consecutive application of two

equivalent to a maximum degree of polarization only whengyitaple S\2) transformations changes E@.8) into
using Eq.(2.8). This is not the case when using definition

(2.7, since the quadrature coherent states, for example, aly) =aly) =0, (4.9
present fluctuations of the Stokes operators well above thg,ose ynique solution in each subspace of fixed total num-
minimum([see Eq/(7.7)]. berN is the number stat®, 0 ,N).
IV, SU(3) COHERENT STATES N I;r;)fr:rqum.l), (4.3), and(4.4) the Stokes parameters for
The SU3) coherent statéN,I') can be defined by the = NN =N 4.10
action of a SU3) transformation on the number state (S0 = N@UIND3 3= Ny (4.19
|0,0,N) [14], for k=0,1,...,8, where the functiong, are
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=1, 0 0
Ho a =1 smzsmée' STt grd,

=2 sinzzsingcosgco&;s
Ha= 27 2

!

0 0 .. _ .
a»=r sin—cos-€% '
2 2772

L0 6 6.
=2 smzzsmzcosésm o, y
ag=r COSEei‘S, (5.4)
L0 .0 0
3= 5|n2—(3|n2— - cosz—), wherex=r=0, 7=, # =0, and 2r= ¢, ¢' =0.

2 2 2 In Egs.(5.1)—(5.3) we can recognize an interesting struc-
ture. The three-mode quadrature coherent staeis for-
mally identical to a one-mode coherent state, but replacing
the number statefN) by the SU3) coherent statefN,I")
(which are eigenstates of the total number operzatbrl

, / +a£a2+a§a3 with eigenvalueN). In turn,|N,T’) has the same
M5 =2 cosEsinEsinE sin(¢p+ ¢'), structure of a two-mode SB) coherent state but replacing
the number state) in one of the modes by the two-mode
SU(2) coherent statem, (), , (which are eigenstates of the
number of photona{aﬁa;az with eigenvaluen), as shown

! /

=2 cosisinisingcos(qﬁ +¢')
M4 = 2 2 2 [}

/ /

=2 c0S—Sin—Cc0sS-cos¢’,
e 5 Sin- cos; ¢

in Ref.[14].
Itis clear that the role played by each one of the modes in
0 0 6. this chain of coherent states can be interchanged. Some other
M7 =2 COS_sin——cos_sin¢', examples of this grouping of coherent states can be found in
2 2 2
Ref. [17].
1( .6 0’
g = 7(sz_ _9 co§—>. (4.11) VI. RELATION BETWEEN THE 3D AND 2D DEGREES
\3 2 OF POLARIZATION
It can be checked th& (S)?=(4/3)(S)% It is natural to ask whether there exists a definite relation

between two- and three-dimensional approaches to quantum
polarization. This is because we can imagine every two-
dimensional field as being three dimensional with a vanish-

In this section we show that there is an interesting relaing component. Therefore, to every two-dimensional field we
tionship between quadrature coherent stateg3Btbherent ~can assign two different degrees of polarizatiyg andP,p,
states, S(R) coherent states, and number states. which need not coincide necessarily.

We begin by considering a product of quadrature coherent In this regard, the field states as close as possible to have
states in each moder)=|a;)|ay)|as) with aj|a>:a]-|a>. Ex- a vanishing component—sag;—are obtained by assuming

V. NESTED COHERENT STATES

pressing these vectors in the number basis we get that the modeg; is in the vacuum state,
Z (relN pap = P2 @ |0)3(0], (6.2)
lay=e772Y QW,F), (5.2 . .
=0 VNI where|0); is the vacuum state in modg. In such a case we
have the following relation between the three-dimensional
where|N,T") are SU3) coherent statefl4], and two-dimensional values of the Stokes parameters:
N
N 1/2 0 N-n ' g \n 8 3 1
NI =2, ( ) (COS— sin 2. (S03p= 2 (S + (S0, (6.2
n=0 \N 2 2 k=1 k=1 3
X&' |n, Q) JN = n)s, (5.2 where in the 2D case
In,Q); , are SU2) coherent states in modes, a, [16], (S)2p={(ala, + alay)),
n n\12 g\nm p\m 4 +
In, Q) ,= >, ( ) (cos—) (sin—) e ™ m)y/n - m,, (Spap = (i(az31 — @),
“ o \M 2 2
(5.3 (S92p= (2121 ~ alay)), 6.3

and|m)y, [n-m),, and|N—-n); are number states in the cor- being(Sy)=(S)3p=(S2p-
responding modes. The angular variables above are related to If we were using the standard definiti¢d.7) we would
the complex amplitude& in the form get the general relation
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1 B. Number states
-, 6.4 _—
4 €4 For the number statels;,n,,n;) the only nonvanishing

Stokes parameters are

3
P30 = ZPED +

whereP, is the 2D analog of E¢(2.7).

We always haveP;p=P,p, the equality being reached
only for P,p=1. A clear example of the ca$®p> P, oc-
curs whenP,5=0, for whichPzp=1/2.This result is consis-
tent since fully unpolarized two-dimensional ligfttvo ran- (S3)=n;—ny,
dom uncorrelated components of the same intensiy
certainly not completely unpolarized in three dimensions
(three random uncorrelated components of the same inten-
sity) [8].

On the other hand, from Eq2.8) and using as well its
two-dimensional counterpafi2]

(S =N +ny+ng,

(S = E(ny+ny—2ny), (7.3

leading to

8
2
3 2 (S9?=2+ g+ ng) — (n+mpng. (7.4
> (Sd% -
2= kzl—’ (6.5) For the equipartition staten;=n,=n3=(;)/3 all the
(Stz)>+2<~°o> Stokes parameters vanigbxcept(S,)), so that this state
reaches the minimum degree of polarizat®g=0 and the
we get

maximum fluctuations of the Stokes parameters:
2 _3(S) + A PEp +(Sy?
* A(H+AS)

In this case and contrary to E(6.4), we have the possi-
bility of P;p<<P,p. This occurs provided that

(6.6 8 4
kE (AS)?= §<So>((so> +3). (7.9
-1

The other extreme situation occurs when all the photons

(S)? are concentrated in a single mode—for examplgsn,=0,
o W (6.7 ng#0. This state is actually a SB) coherent state withp
S =6'=0, reaching a maximum degree of polarization and

For the sake of illustration let us consider the maximRgy ~ Minimum polarization fluctuations.
allowed by Eq.(6.5) for (§)=(S)?=1. In this case we have These conclusions are equally valid irrespective of
P,5=0.58 while P35=0.50. whether we use Eq2.7) or Eq.(2.9).

C. Quadrature coherent states
VIl. SOME EXAMPLES )
As we have mentioned above the quadrature coherent

Next we apply the above definitions to some relevant fieldstates are Poissonian superpositions of3\doherent states.
states. This suggests that they should be close to have a maximum
degree of polarization and minimum polarization uncertainty.

They reach the maximum value allowed for the sum of

the squares of the Stokes parameters in(Bg),
The Hilbert space for one photon split between three

A. One-photon states

modes is spanned by the photon-number stdbes|1,0,0, 8 4
[2)=]0,1,0, and|3)=]0,0, 1. Taking this as a basis, it can > (S)?= §<SD>2, (7.6)
be seen that the coherence matband the density matrig k=1
coincide, . . . L
since they satisfy condition@.5) trivially.

(€lplk) = (alar) = Dy, (7.1 However, they are not exactly extremal concerning polar-

and p admits the expressiof2.5) ization fluctuations because of the fluctuations of the total
9. 2_
Moreover, every one-photon pure state is a@toher- number of photon$AS)"=(Sy so that

ent state 8 16

o o 0 2 (A89%= (S, (7.7

|1,F>:cosz|0,0,]>+cosésmze"‘/’ |0,1,0 k=1

00 which exceeds by 33% the minimun{Sj).
+ S'nES'HEe_'(¢+¢ /11,0,0. (7.2 As we have discussed above this is reflected or not by the
degree of polarization depending on the definition used.
Therefore, every pure state has maximum degree of polariza/hen using Eq(2.7) we have a maximum degré®p=1 for
tion and minimum polarization fluctuations f¢&,)=1. all (S, while when using Eq(2.8)
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1 1 13
Pap = —F——=. (7.8 rdf= (S + o2 (S rd=(S). (84
1 + — k=1
(S
which is not the maximum in Eq3.6), but is nevertheless  Therefore, the chain of equalities®?=tr &;=1 implies that
very close to it wheSy) is large enough. the Stokes parameters corresponding{csatisfy
VIll. POLARIZED-UNPOLARIZED LIGHT 8
DECOMPOSITION 4
2 (S0°= (% (8.5
k=1 3

Using the Stokes parameters we analyze the decomposi-
tion of arbitrary fields into a superposition of completely
polarized and fully unpolarized components. This is the 3D
analog of the well-known 2D decomposition. Although the This is the condition for maximum degree of polarization if
following analysis is valid in classical as well as in quantumwe use definition(2.7). If we useP3p in Eq. (2.8), we shall
optics, we think that the quantum perspective throws somassume also thaS)=(S)? (the question of whether this
light on the problem. For example, it allows us to regdrd requirement is satisfied or not cannot be answered with the

as a one-photon density matrix. information provided by the simple specification ®j.
Since® is Hermitian and non-negative, it can always be

diagonalized for any field state,

3 IX. CONCLUSIONS
d=> poju!, 8.1 . : .
J;l Pviv; 8. We have carried out an analysis of 3D quantum polariza-
tion by using the Stokes operators. We have examined two

where the column vectors are the orthonormal eigenstates definitions of the degree of polarization, showing their main
of ® with eigenvalueg;=0. In quantum physics this is the properties and drawbacks.
diagonalization of the density matrix of a mixed state as a We have found that the states with minimum polarization
superposition of pure-state projectowg)j*. On the other fluctuations and maximum degree of polarization are the
hand, in classical optics this represents a decomposition @&U(3) coherent states. We have shown that this is also ap-
the field in terms of mutually uncorrelated pafis8], where  proximately the case of the quadrature coherent states with
the weightsp; represent field intensities. large enough photon numbers, since they are Poissonian su-
The vectors); provide a suitable resolution of the identity perpositions of S(B) coherent states.
We have studied the relation between the 2D and 3D de-
3 . grees of polarization by considering field states with a com-
o) =1, (8.2 ponent in the vacuum state. It is shown that the embedding
)= of two-dimensional fields into a three-dimensional frame-

: . . . work is accompanied in general terms by an increase of the
wherel is the 3X 3 identity. This allows us to express one of degree of polarization.

the projectors—sa)agvg—in terms of the other two and the
identity. When this substitution is performed in E§.1) we
get

We have analyzed the decomposition of a three-
dimensional field into fully polarized and fully unpolarized
mutually uncorrelated components. It is shown that, in the
general case, the decomposition requires two polarized com-

@ = (py ~ PJv1v] + (P2 = Pa)vav} + Pyl (8.3 ponents uniquely determined.

We have applied this formalism to some relevant field
It is worth noting that we should remove from E®.1) the  states such as $B) coherent states, quadrature coherent
vector with the leasp;, since otherwise the resulting weights states, and number states.
for the remaining components in E(.3) would be nega- It is worth noting that we are examining polarization
tive, contrary to the interpretation as a superposition of unproperties by using a small number of parameters, so that
correlated fields. With this restriction the decompositionwithin the approach provided by the Stokes parameters very
(8.3) becomes unique. different states can possess the same polarization properties.

According to Eq.(2.5) the identity represents fully unpo- This reflects the fact that there are situations where the
larized light with(S)=0, fork=1,...,8. Next we show that Stokes parameters do not provide a complete picture of po-
theuju]T components represent light with maximum degree oflarization. This is especially clear when all the Stokes param-
polarization. eters vanish since this can occur for field states that are not

To show this we notice that the normalizatioﬁvjzl fully unpolarized light(for example, this is the case of the
implies for (I)J-:vjva that <I)12:<DJ- and td;=1. Moreover, equipartitioned number states abpvén other words, the
from Eq. (2.5 we get Stokes parameters depend just on field correlations of the
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