
Scalar and vector modulation instabilities induced by vacuum fluctuations in fibers:
Numerical study

E. Brainis* and D. Amans†

Optique et Acoustique, Université Libre de Bruxelles, Avenue F.D. Roosvelt 50, CP 194/5, 1050 Bruxelles, Belgium

S. Massar‡

Service de Physique Théorique, Université Libre de Bruxelles, Boulevard du Triomphe, CP 225, 1050 Bruxelles, Belgium
sReceived 1 October 2004; published 14 February 2005d

We study scalar and vector modulation instabilities induced by the vacuum fluctuations in birefringent
optical fibers. To this end, stochastic coupled nonlinear Schrödinger equations are derived. The stochastic
model is equivalent to the quantum field operators equations and allows for dispersion, nonlinearity, and
arbitrary level of birefringence. Numerical integration of the stochastic equations is compared to analytical
formulas in the case of scalar modulation instability and nondepleted pump approximation. The effect of
classical noise and its competition with vacuum fluctuations for inducing modulation instability is also
addressed.
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I. INTRODUCTION

In the early 1980s single-mode silica optical fibers were
recognized as a privileged medium for experiments in quan-
tum optics because they exhibit a well defined transverse
mode and very low losses. The Kerr nonlinearity of silica has
been used to produce nonclassical states of light. Squeezed
state production in fibers was pioneered by Levensonet al.
f1,2g in 1985. Since then a large number of squeezing experi-
ments have been performed with cw light or short optical
pulsessfor a review seef3gd.

More recently, Fiorentinoet al. demonstrated that optical
fibers may also be used to producetwin-photonspairs f4g.
This new kind of twin-photon source is well suited for fiber-
optic quantum communication and quantum cryptography
networks. In contrast with the traditional twin-photon
sources, based on thexs2d down-conversion process, it avoids
large coupling losses occurring when the pairs are launched
into long distance communication fibers. The physical pro-
cess used inf4g to generate twin-photon pairs is a four-wave
mixing sFWMd phase-matched by the interplay of the optical
Kerr effect and the chromatic dispersion, calledsscalard
modulation instabilitysMI d. This process can be basically
understood as the destruction of two pump photons at fre-
quencyv0 and the creation of Stokessredshiftedd and anti-
Stokessblueshiftedd photons at frequenciesvs andva satis-
fying the energy conservation relation 2v0=vs+va. In the
time domain, the beating of the pump, signal and idler waves
produces a fast modulation of the pump envelope.

MI is a spontaneous phenomena which can be described
in the framework of classical nonlinear opticsf5g. In this
classical framework, one usually considers that MI is in-
duced by some incoherent noise initially present on the pump
wave. Twin-photon pair production requires however a very

low input noise power to be efficientsotherwise the twin
photons are buried in the background photon noised. Such a
regime is dominated by vacuum fluctuations and requires a
quantized field theory to be described properly. A small-
perturbation approach of this problemf6g snondepleted pump
approximationd shows that vacuum fluctuations can induce
the MI even in the absence of any classical input noise. This
is an ideal situation for twin-photon pairs production, but it
never occurs in a real life experiment. In practice, classical
input noise and vacuum fluctuations compete for inducing
MI.

Understanding the dynamical development of MI from a
quantum point of view is an important issue for the design of
fiber-optics twin-photon pairs sources. We present a unified
approach to this problem based on thestochastic nonlinear
Schrödinger equationssSNLSEd f7–12g. This formalism is
equivalent to quantum-field Heisenberg equations but has
two main advantages. First, it is very suitable for numerical
simulations of complex situations where classical noise and
vacuum fluctuations act together. Second thecorrespondence
principle of quantum physics, i.e., the transition from quan-
tum to classical world, looks very natural in the SNLSE for-
malism.

The MI observed in standard nonbirefringent single-mode
silica fibers is often referred to asscalar modulation insta-
bility sSMId because polarization of light plays no role in this
process. In birefringent fibers different kinds of MI may ap-
pear because of the interplay of nonlinearity, chromatic dis-
persion and birefringence. This case will be referred asvec-
tor modulation instabilitysVMI d. Twin-photon pairs sources
based on VMI have not been demonstrated yet, in contrast
with SMI based sourcesf4g. In this article, we will however
address both issues because we recognize that VMI twin-
photon pairs sources could be more practicable than SMI
based ones. The theoretical and computational tools that we
developed apply to all kinds of MI, including the low-
birefringence, high-birefringence and scalar limits.

This article is divided into four sections, beginning with
the present introduction. The second section consists of a
review of the approach based on a perturbation analysis
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around the steady state solution. This is the simplest method
of approaching the problem of MI. It allows us to set the
stage for the more sophisticated approach we then develop
and to make contact with earlier work in the field. Then in
Sec. III we exhibit the SNLSE for scalar and vector MI.
Contrary to the approach of Sec. II these equations are not
based on a perturbation analysis and are valid in the strongly
nonlinear regime. They describe both MI originating from
classical noise and from vacuum fluctuationssquantum
noised. The SNLSE we obtain generalize the earlier results of
f7–11g. In particular the SNLSE we obtain does not require
the birefringence to be either small or large as in earlier work
f10,11g, but are valid for all values of the birefringence. For
the interested reader we present a self-contained derivation
of these equations in the Appendix. In Sec. IV we use the
split-step Fouriermethod to integrate the SNLSE derived in
Sec. III, and illustrate our algorithm on the cases of scalar MI
and of vector MI both for weak, intermediate, and strong
birefringence. In order to interpret the results of the numeri-
cal integration it is essential to introduce the notion ofmode.
This allows us to compare the numerical results and the ana-
lytical solutions derived from perturbation theory. We also
compare in detail the characteristics of MI induced by clas-
sical noise and by quantum noise. In a companion article
f13g we shall show that our numerical results are in very
good quantitative agreement with experimental results.

II. SCALAR MODULATION INSTABILITY:
PERTURBATION ANALYSIS

As pointed out in the Introduction several kinds of MI can
occur in optical fibers. From a general point of view, MI
occurs when the continuous wavessteady-stated propagation
is unstable. The most straightforward way to get some in-
sight on how the MI develops is to perform a small-
perturbation analysis of the steady state. However, this
method has limitations: it cannot address the strongly non-
linear regime and simple analytical formulas cannot be al-
ways obtained by this method.

In this section we illustrate the perturbation method in the
case of SMI, which is the simplest. SMI occurs in isotropic
fibers in the anomalous dispersion regime. In what follows
we will review the most important aspects of this approach,
focusing on the comparison between the classical and quan-
tum descriptions, and on the limitations of this approach. In
Sec. IV, we will compare the analytical formulas for SMI
derived from the perturbation analysis to numerical results
from the SNLSE derived in Sec. III. The discussion of MI in
birefringent fibers is also postponed to Sec. III and Sec. IV.

A. Classical description

In an isotropic single-mode fiber, the electric field may be
written

Esr ,td = Fsx,ydAsz,tdexpfib0z− v0tgx̂ + c.c., s1d

wherex̂ is a unit vector orthogonal to the fiber axiss z axisd,
v0 the carrier angular frequency andb0=bsv0d the associ-
ated propagation wave numbersmodal propagation con-
stantd. Fsx,yd stands for the mode profile function andAsz,td

for the field envelope. The field is supposed to be polarized
linearly. This is not restrictive because of the isotropy as-
sumption. The complex envelopeA evolves according to the
nonlinear Schrödinger equationsNLSEd that can be estab-
lished from Maxwell’s electromagnetic theoryf5g. If the en-
velope is normalized in such a way thatuAsz,tdu2 is equal to
the instantaneous power flowing through the planez=const
at time t, the NLSE is obtained in the following form:

]A

]z
+

1

vg

]A

]t
= − i

b2

2

]2A

]t2
+ iguAu2A. s2d

Here vg=sdb /dvd−1 is the group velocity of the wave,b2

=d2b /dv2 the group-velocity dispersionsGVDd parameter,
andg is fiber nonlinearity parameter defined as

g =
3v0xxxxx

4e0n0
2c2Aeff

, s3d

wheren0 is the fiber mean linear index of refraction,Aeff the
mode effective area, andxxxxx is the diagonal element of the
fiber xs3d nonlinearity tensor.

SMI is observed when a continuous wavescwd or a
quasi-cw optical pulse is launched into the fiber. In the cw-
case, when an optical powerP0 at frequencyv0 is injected, a
first-order perturbation analysis of Eq.s2d shows that the cw
steady-state solutionAstszd=ÎP0expsigP0zd becomes instable
in the anomalous dispersion regimesb2,0d. The instability
manifests itself by a parametric gain at frequenciesv0±V
with 0,V,2ÎgP0/ ub2u. The maximal gaing=2gP0L oc-
curs for V=Î2gP0/ ub2u;Vmax f5g. Noise at these frequen-
cies is strongly amplified. As a result, the optical spectrum at
the fiber output exhibits two sidebands at frequencies
v0±Vmax. This analysis supposes that the pump power re-
mains constantsundepleted pump approximationd and a cw
regime. However, numerical simulations of Eq.s2d show that
the above formula also hold for quasi-cwsfor instance nano-
secondd optical pulsesssee Sec. IVd.

Sideband generation can be interpreted as a FWM process
phase-matched by the interplay of dispersion and Kerr non-
linearity. From this point of view, the MI process can be seen
as the destruction of two pump photons at frequencyv0 fol-
lowed by the creation of Stokes and anti-Stokes photons at
frequenciesvs=v0−Vmax andva=v0+Vmax, respectively. In
the cw-case and nondepleted pump approximation, the out-
put power spectral density at frequenciesvs and va can be
computed using analytical formulasf14g for given initial
conditions. These formulas also hold for quasi-cw pulses
provided one replace Stokes and anti-Stokes power spectral
densities by the numberns andna of Stokes and anti-Stokes
photons located in the same temporal mode as the pump
wavessee Sec. IV B for a detailed analysis of this issued. For
example, assuming an incoherent initial noise, one finds

nssLd = nss0dcosh2sgP0Ld + nas0dsinh2sgP0Ld, s4ad

nasLd = nas0dcosh2sgP0Ld + nss0dsinh2sgP0Ld, s4bd

whereL is the propagation distance. These equations show
that classical incoherent noise is amplified exponentially
with gain g=2gP0L.
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Noise induced SMI was first demonstrated experimentally
by Tai et al. in 1986 f15g. This experiment confirmed two
main predictions of the classical theory: the amplification of
Stokes and anti-Stokes photons and the power-dependence of
their frequency shift. However the classical theory of SMI
only holds when the initial number of noise photons is high
or in a stimulated regime when a coherent probe pulse at
Stokes or anti-Stokes frequency is injected together with the
pump pulsef16g. Equationss4ad and s4bd are unable to ex-
plain ab nihilo generation of Stokes and anti-Stokes twin
photons reported inf4g. Neither are they valid when the
mean photon numbersnss0d andnas0d are of the order of one
or lower. In this regime vacuum fluctuations play a central
role and field quantization is required.

B. Quantum description

To take into account vacuum fluctuations, fields must be
quantized. The quantum counterpart of the NLSEs2d is
known as the quantum nonlinear Schrödinger equation
sQNLSEd f9,17–20g:

]Â

]z
+

1

vg

]Â

]t
= − i

b2

2

]2Â

]t2
+ igÂ†ÂÂ, s5d

whereÂ is the quantum operator corresponding to the field

envelope andÂ† its Hermitic conjugated.Â andÂ† satisfy the
bosonicequal-spacecommutation rule:

fÂsz,td,Â†sz,t8dg = "v0dst − t8d. s6d

The normalization constant"v0 stems from the normaliza-
tion chosen for the field envelope. In the quantum propaga-
tion theory, the expectation value of the optical power flow-
ing through the planez=const at time t is given by

kÂ†sz,tdÂsz,tdl. In a one-dimensional system, space and time
play a symmetrical role. The dynamics can be described ei-
ther in terms of spatial wave-packetevolutionsevolution pic-
tured or in terms of temporal wave-packetpropagation
spropagation pictured. The first picture is the must common
in quantum field theory and leads to equal-time commutation

rules between the envelope fieldsÂ and Â†. In this section,
however, we chose to work in the propagation pictureswhich
is usual in nonlinear opticsd in order to get a closer corre-
spondence between quantums5d and classicals2d equations.
In this case equal-space commutation ruless6d must be im-

posed toÂ andÂ† f21g. sIn contrast, the evolution picture is
used in the Appendix to derive the stochastic equations of
Sec. III.d

In the cw regime, the basics of the quantum theory of SMI
can be understood by performing a first-order perturbation
analysis of the steady-state solution of Eq.s5d. Because the
pump field contains a large number of photons one can treat
it as a classical coherent wave. Using this approximation the
steady-state solution is just the classical one:Astszd
=ÎP0expsigP0zd. The disturbed field can be written as

Âsz,td = Astszd + âsz,td. s7d

The disturbance operatorâsz,td is defined by Eq.s7d.
It satisfies the same commutation rule as

Âsz,td : fâsz,td ,â†sz,t8dg="v0dst− t8d. Injecting the ansatz
s7d into Eq. s5d one obtains a propagation equation for the
disturbanceâsz,td. Supposing that the disturbance is small
snondepleted pump approximationd this equation can be lin-
earized and solved analytically in the Fourier domainf6g.

Using this method one finds that the quantum and classi-
cal theory predict the same frequency dependence of the
parametric gain. In contrast the quantum and classical theory
differ in that they do not predict the same growth law for
Stokes and anti-Stokes photon numbers. One easily finds that
the quantum counterparts of Eqs.s4ad and s4bd are

nssLd = nss0dcosh2sgP0Ld + fnas0d + 1gsinh2sgP0Ld,

s8ad

nasLd = nas0dcosh2sgP0Ld + fnss0d + 1gsinh2sgP0Ld,

s8bd

wherens andna stand now for theexpectation valuesof the
photon number operators:ni =kn̂il, i =s,a. These equations
show that SMI can be observed even in the absence of any
classical input noise. Settingnss0d=nas0d=0 in Eqs.s8ad and
s8bd gives the number of Stokes and anti-Stokes photons
produced by the sole action of vacuum fluctuations:

nssLd = nasLd = sinh2sgP0Ld. s9d

Equations s8ad and s8bd hold only for perfectly phase-
matched photons at frequenciesvs andva and uncorrelated
initial noise but can be easily generalized to get around these
restrictions.

Although Eqs.s8ad, s8bd, ands9d give a good insight into
the physics of vacuum-fluctuations induced SMI and photon
pairs generation, they are not suitable for quantitative predic-
tions in the pulsed regime. This is because the effective value
of the pump powerP0 depends on pump pulse shape, dura-
tion, and spectral width. Furthermore the energy spectral
density of Stokes and anti-Stokes waves deduced from Eq.
s9d is highly dependent on the precise definition of modes.
This will be discussed in Sec. IV B. In the following sections
we will show how to get around these difficulties by intro-
ducing the SNLSE and solving it numerically.

III. SCALAR AND VECTOR MODULATION
INSTABILITIES: STOCHASTIC EQUATIONS

One can go beyond the perturbation analysis of SMI by
solving the QNLSEs5d numerically. Such a plan could seem
cumbersome because Eq.s5d is a field-operator equation. The
problem can be bypassed by converting the operator equa-
tion s5d into c-number equations. This can be performed by
choosing a representation for the electromagnetic field. In
this article, we will use the positiveP-representationsPs+dd
introduced by Drummond and Gardinerf22g. The c-number
equations obtained in this way are not standard deterministic
partial derivative equations but stochasticsLangevin-typed
ones.

Using thePs+d representation, it can be shownf7–9g that
the QNLSEs5d is equivalent to the following set of stochas-
tic equations:
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+
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2

]2A

]t2
+ igfA†sz,tdAsz,tdgAsz,td

+ Îig"v0z1sz,tdAsz,td, s10ad

]A†

]z
+

1

vg

]A†

]t
= + i

b2

2

]2A†

]t2
− igfA†sz,tdAsz,tdgA†sz,td

+ Î− ig"v0z2sz,tdA†sz,td. s10bd

Equationss10ad and s10bd look like the classical NLSEs2d
and its complex conjugated, except for the last terms which
accounts for vacuum fluctuations. These last terms contain
two independent zero-mean Gaussian white noise random
fields z1sz,td and z2sz,td characterized by the following
second-order moments:

kzksz,tdzlsz8,t8dl = dkldsz− z8ddst − t8d, s11d

with sk, ldP h1,2j2. Because the random fieldsz1 andz2 are
not complex conjugated of each other, the envelope fieldsA
andA† are only complex conjugated “in mean” and have to
be treated as different mathematical objects.

Equationss10ad and s10bd can be solved on a computer.
The numerical methods used for this task will be briefly
explained in Sec. IV A. Note that solving Eqs.s10ad and
s10bd gives a single realization of the stochastic process. In
order to calculate the expectation value of a quantum observ-
able, a statistical average on many realizations is required.
Thus one generates a large number of realizations
sAfngsz,td ,Afng

† sz,tdd, n=1, . . . ,N. In order to calculate the ex-
pectation value of a quantum observable one then carries out
a statistical average over the many realizations. For example,
the expectation value of the energy spectral density of a
pulse is given by

SEsz,Vd =
1

N
o
n=1

N

Ãfng
† sz,VdÃfngsz,Vd, s12d

where X̃sz,Vd=e−`
` Xsz,tdeiVt dt designates the Fourier

transform of the fieldXsz,td andV is the detuning from the
pump angular frequencyv0.

In practice, a few realizations are enough when the num-
ber of photons per mode is high. However in a regime domi-
nated by vacuum fluctuations hundreds of realizations are
typically required to get precise values. A comparison be-
tween Stokes and anti-Stokes photon production predicted by
the SNLSEs10ad ands10bd and the analytical formulass8ad
and s8bd will be presented in Secs. IV B and IV C.

The VMI occurs in birefringent fibers. These fibers are
characterized by different propagation constantsb0x andb0y
and different group velocitiesvgx and vgy for the x- and
y-axis polarized modes. The numerical study of vacuum fluc-
tuations induced VMI requires an extension of Eqs.s10ad
ands10bd that takes into account the phase mismatch param-
eter Db0=b0x−b0y as well as the group-velocity mismatch
Db1=1/vgx−1/vgy. Such extensions have been established
in earlier works for the low-birefringencef10g and the high-
birefringencef11g limits. We generalized these results for an
arbitrary level of birefringence and obtained the following

stochastic coupled nonlinear Schrödinger equations:

]Ax

]z
+

1

vgx

]Ax

]t
= − i

b2

2

]2Ax

]t2
+ igfAx

†Ax + s1 − BdAy
†AygAx

+ igBsAyd2Ax
†e−2iDb0z + Îig"v0fz1Ax

+ ÎBz3Aye
−iDb0zg, s13ad

]Ax
†

]z
+

1

vgx

]Ax
†

]t
= + i

b2

2

]2Ax
†

]t2
− igfAx

†Ax + s1 − BdAy
†AygAx

†

− igBsAy
†d2Axe

+2iDb0z + Î− ig"v0fz2Ax
†

+ ÎBz4Ay
†e+iDb0zg, s13bd

]Ay
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+

1

vgy

]Ay

]t
= − i
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2

]2Ay

]t2
+ igfAy

†Ay + s1 − BdAx
†AxgAy

+ igBsAxd2Ay
†e+2iDb0z + Îig"v0fz1Ay

− ÎBz3Axe
+iDb0zg, s13cd

]Ay
†

]z
+

1

vgy

]Ay
†

]t
= + i

b2

2

]2Ay
†

]t2
− igfAy

†Ay + s1 − BdAx
†AxgAy

†

− igBsAx
†d2Aye

−2iDb0z + Î− ig"v0fz2Ay
†

− ÎBz4Ax
†e−iDb0zg, s13dd

wheresAx,Ax
†d andsAy,Ay

†d are stochastic envelope fields as-
sociated to thex- and y-axis modes, respectively, andB
=xxyyx/xxxxx is a parameter that measures the strength of the
nonlinear coupling between thex and y components. Its
value lies between 0 and 1 and depends on the nonlinearity
mechanism. For silica fiber, we can setB=1/3 because the
Kerr nonlinearity has principally an electronic origin. Four
independent Gaussian random fieldszksz,td are needed to
reproduce the effect of vacuum fluctuations. They are char-
acterized by the second-order momentss11d, as in the scalar
case, withsk, ldP h1,2,3,4j2. The demonstration of this set
of equations is outlined in the Appendix.

Note that, in contrast to the scalar case, a perturbation
analysis does not lead to simple analytical formulas for
vacuum-fluctuations induced VMI. For this reason, Eqs.
s13ad–s13dd constitute a valuable theoretical tool.

IV. NUMERICAL INTEGRATION OF THE SNLSE

A. Sample spectra

We have developed a method for integrating numerically
the SNLSE in the case where the pump is represented by a
pulse of finite duration. Our method is based on the split-step
Fourier sSSFd method f5g. We have had to generalize the
method in two ways. First of all the stochastic noise is mod-
eled by including a noise term at each propagation step. Sec-
ond in the case of the VMI we must alternate not only be-
tween the time and Fourier domain, but also between the
linear and circular polarization basis. Switching from time to
Fourier domain is the basics of the SSF method: it permits us
to handle the time derivatives in a simple way. Similarly, it
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turns out that, whereas the terms with time derivatives are
easier to handle in the linear polarization basis, the
g-dependent terms are better managed in the circular polar-
ization basis.

The quantum noise in the SNLSEs13ad–s13dd contains
four independent real zero-mean Gaussian white noise func-
tions zksz,td characterized by Eq.s11d. In the numerical
method, time and space are discretized with respective dis-
cretization stepst andh. So each family of noise functions
zksz,td becomes a finite number of random variableszkfiz, i tg
chosen according to a zero-mean Gaussian law of variance
1/ht. The variance value is imposed by the normalization
conditions11d. The matrixeszkfiz, i tg sk=1, . . . ,4d define the
stochastic path of each realization. In contrast, when we will
study the effect of classical noise we will add it once, at the
beginning of the pulse propagation, to the spectral distribu-

tion of the signalÃs0,Vd.
As we have previously indicated only the expectation val-

ues of observables have a physical meaning in the stochastic
equations. From a numerical point of view this means that
one must average the calculated quantities over several real-
izations of the stochastic path, and/or the classical input
noise. Usually, averaging over a hundred of realizations
gives an uncertainty on the numerical results less than 1 dB
in the nonzero gain frequency range. Finally we note that
including the stochastic terms do not increase significantly
the numerical complexity of a single realization.

Some sample spectra obtained using our algorithm are
presented in Fig. 1 in the cases of SMIfFig. 1sadg, low bire-
fringence VMI fFig. 1sbdg, and high birefringence VMIfFig.
1scdg. The energy spectral density is plotted versus the fre-
quency detuning from the pump. The physical parameters
used in these simulations are listed in Table I. In every simu-
lation, the pump wave has been supposed to be an unchirped
linearly polarized Gaussian pulse with peak powerP0 and
full width at half maximum durationTFWHM. No classical
noise has been added, and an average over 50 realizations of
the stochastic process has been performed.

The frequency detuning of the sidebands agrees with lin-
ear perturbation theory.fIn order to make the comparison
easier we have indicated in Figs. 1sad–1scd the angular fre-
quency shiftsVmax at which maximum gain is expected on
the basis of the linear perturbation theory.g

Moreover, the SNLSE predict quantitatively the effect of
vacuum fluctuations on the evolution of the energy spectral
density of the electromagnetic field. In Sec. IV B we will
show that this evolution is also in very good agreement with
linear perturbation theory when the number of Stokes and
anti-Stokes photons generated is small enough. When the
side bands are well-developed, the perturbation theory fails
to predict correct values ofSE. In contrast, the SNLSE algo-
rithm still gives accurate results. In this limit numerical re-
sults can be easily confronted to experimental data. Inf13g,
we report an experiment on high birefringence spontaneous
VMI in the anomalous dispersion regime that shows that the
theoretical spectra from the SNLSE model tally with the ex-
perimental ones.

It is interesting to note that the curves of Fig. 1sad look
more noisy than those of Fig. 1sbd although we have per-

formed the same number of stochastic realizations in both
cases. This is because the number of realizations needed to
achieve a given precision on the expectation value of a quan-

FIG. 1. MI spectra for various birefringence regime. Simulation
parameters are listed in Table I.sad Spontaneous SMI in perfectly
isotropic fiber in the anomalous dispersion regime. Black, dark
gray, and light gray curves correspond to a propagation lengthL
=500, 1000, and 1500 m, respectively. The inset exhibits the pump
spectral broadening due to the self-phase-modulationsSPMd effect.
sbd Spontaneous VMI in a slightly birefringent fiber in the normal
dispersion regime. The pump is polarized along the slow axis;
Stokes and anti-Stokes photons appear on the orthogonal axis.
Black, dark gray, and light gray curves correspond to a propagation
lengthL=16, 24, and 32 m, respectively.scd Spontaneous VMI in a
strongly birefringent fiber in the normal dispersion regime. The
pump polarization axis makes an angle of 45° with the slow axis.
Stokessanti-Stokesd photons appear on the slowsfastd axis. Black,
dark gray, and light gray curves correspond to a propagation length
L=10, 20, and 30 m, respectively.

SCALAR AND VECTOR MODULATION INSTABILITIES… PHYSICAL REVIEW A 71, 023808s2005d

023808-5



tum operator is a function of the relative value of the spatial
steph and the typical distance over which the nonlinear ef-
fects act; both are different in the simulations of Fig. 1sad and
Fig. 1sbd. In practice, the smaller the spatial step, the fewer
the number of realizations needed to achieve a given preci-
sion on expectation values. In Fig. 1, 50 realizations are
enough to estimateSE with an accuracy of about 1.5 dB. We
also point out that the noise level visible at non-phase-
matched frequencies has no physical meaning. It can be low-
ered by averaging over a higher number of realizations.
However, the number of realizations needed to achieve an
accurate estimation ofSE in the non-phase-matched part of
the spectrum is usually very high. When tractable, a linear
perturbation analysis will be less time-consuming.

Because our algorithm permits us to investigate interme-
diate birefringence, we have also studied the effect of group
velocity mismatch on the transition from low to high bire-
fringence limits. To our knowledge, this transition has never
been fully investigated before. Figure 2 shows the results of
simulations with the same parameters as in Fig. 1sbd except

that the propagation length has been set toL=40 m and that
the fiber beat lengthLB was varied from 10 m to 5 cm. The
value of the maximal energy spectral densitySE in the side-
bands is plotted versus the phase mismatch parameter. By
lowering LB, we increase the value of the phase mismatch
Db0 and the group-velocity mismatchDb1 according to the
relations

Db0 =
2p

LB
, Db1 =

l0

cLB
, s14d

wherec is the vacuum speed of light. When the birefringence
increases, the sidebands move away from the pump spectrum
and their amplitude decreases. Subsequently the sidebands
acquire a double peak structuressee Fig. 2d. This behavior is
due to the walkoff of the produced Stokes and anti-Stokes
photons. One easily shows that 1/vga−1/vgs=Î8b2Db0,
where vgs and vga are the Stokes and anti-Stokes photons
group velocities, respectively. Applying this formula to our
simulation and takingDb0=10 m−1, one sees that the Stokes
and anti-Stokes photons have walked 87.6 ps away while
their FWHM duration is 100 ps. Stokes and anti-Stokes
walkoff limits the coherent exponential amplification of
quantum noise. The typical length scale over which the side
bands growth takes place is given byTFWHM/Î8b2Db0. We
point out that this analysis also hold for a cw-pump: The
coherent amplification of the sidebands stops when the
walkoff of Stokes and anti-Stokes photons exceeds the co-
herence length of the pump. However, in the cw case, Stokes
and anti-Stokes photons generated in the first coherence
length act as an input noise that will be amplified in the
following coherence length. The process is reproduced as
many times as the number of coherence lengths in the propa-
gation distance. One usually arguesf5,23g that the weak bi-
refringence phenomenology disappears because the
coherent-coupling terms in Eqs.s13ad–s13dd (those contain-
ing the factor expf±s2diDb0zg) average to zero whenDb0 is
high. This statement is equivalent to saying thatVmax tends
to infinity. Our analysis shows however that walkoff has an
even stronger effect.

Until now we have not yet demonstrated that modeling
vacuum-fluctuations induced MI using SNLSE predicts the
correct values ofSE. In Sec. IV B we compare the absolute
values of the energy spectral density at the maximum gain
obtained using our program and the linear perturbation
analysis. Having clarified in this way the interpretation of the
results of our numerical simulations we turn to a detailed
comparison of the effect of classical and quantum noises.
That is we compare the effects of classical noise in the initial
conditions and the quantum noise added at each step of the
integration.

B. Comparing numerical integration
and linear perturbation theory

In our numerical simulations we have taken the pump
laser to be a Gaussian pulse without chirp. Its instantaneous
power and energy spectral density can be written

TABLE I. Simulation parameters for Figs. 1sad–1scd.

Quantity Unit Fig. 1sad Fig. 1sbd Fig. 1scd

l0 nm 1550 1550 1064

b2 ps2 km−1 −17 +60 +30

g W−1 km−1 2 2 2

TFWHM ns 1 0.1 0.2

P0 W 2 400 300

Db0 m−1 0 2.09 628.31

Db1 fs m−1 0 1.72 354.91

ua deg 0 0 45

aAngle between the slow axis and the pump polarization axis.

FIG. 2. The figure illustrates the effect of an increasing birefrin-
gence on the weak-birefringence VMI phenomenology. The param-
eters of the simulations arel0=1550 nm, b2=60 ps2 km−1, g
=2 W−1 km−1, TFWHM=100 ps, P0=400 W, and L=40 m. The
pump wave is polarized along the slow axis. The fiber beat length
was varied from 10 m to 5 cm. The values ofDb0 andDb1 where
deduced from Eq.s14d. The plot shows the maximum value ofSE in
the sidebands as a function ofDb0. Black squaressgray squaresd
correspond to a singlesdoubled peak structuressee the textd.
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Pstd = P0expS−
t2

2st
2D , s15ad

SEsVd =
P0

2sv
2 expS−

V2

2sv
2 D , s15bd

with stsv= 1
2. The numerical integration of the SNLSE pro-

vides us with the spectral density of energySEsL ,Vd at the
end of the fiber; see Eq.s12d. On the other hand, the linear
perturbation theory is based on small perturbation analysis
around a continuous monochromatic pump. We would like to
compare quantitatively the predictions of these two ap-
proaches.

For definiteness we carry out this comparison in the case
of scalar MI. We shall focus our investigation on the inten-
sity of the sidebands at the peak of the MI gainsV=Vmaxd in
the two approaches when we modify the propagation length
and as we modify the durationst of the pulse.

The linear perturbation theory is based on a continuous
monochromatic pump. For this reason the theory predicts a
rate of photon production per unit time. This suggests that if
one takes the pump to be a pulse localized in time, the num-
ber of photons produced should be proportional to the pulse
duration, all other parameters being kept constant. Simula-
tions based on SNLSE confirm this phenomenology. This is
illustrated in Fig. 3sad, where the energy spectral density at
Vmax is plotted as a function ofgP0L for three different pulse
durations. Note however that the above argument is valid for
square pulses but is not very satisfactory for Gaussian ones.
A better understanding of the origin of this scaling can be
obtained by making appeal to the notion of mode and of
Heisenberg box.

In order to introduce the notion of mode, recall that a
temporal signal can be represented by a distribution in the
time-frequency plane. But because of the time-frequency un-
certainty relations, a point in this plane has no physical
meaning. This problem is well known in signal processing
where one usually thinks in terms of local time-frequency
decompositions, using windowed Fourier transformssWFTd
or wavelet transformsf24g. Such a local time-frequency de-
composition allows one to decompose a signal into orthogo-
nal local functions, calledmodes. These can be depicted as
surface elements in the time-frequency plane. Fourier-
transform limited pulses, such as our pump pulses15ad and
s15bd, are represented by Gaussian distributions on the time-
frequency plane, called the Wigner-Ville distributions. This
distribution is very similar to the Wigner distribution used in
quantum optics to represent a quantum state of light. In par-
ticular two different Fourier-limited Gaussian pulses suffi-
ciently different in time or central frequency can be consid-
ered as quasiorthogonal modes. A set of quasi-non-
overlapping Gaussian Wigner-Ville distributions can be
taken as a base for the time-frequency decomposition of the
field. One can visualize this modal base by imagining that
the time-frequency plane is paved with adjacent elementary
surface elements, called Heisenberg boxes, roughly repre-
senting the area of Gaussian quasi-non-overlapping Wigner-
Ville distributions. The precise area of the Heisenberg boxes

is a matter of taste depending on how strong orthogonality is
required. A usual convention is to take this area equal to
st3sv=1/2.

This set of squasidmode is convenient for our problem
because, during the pulse propagation in the fiber, the uncer-
tainty on the creation time of a photon is defined by the
variancest

2 of the pump pulse, and implies an uncertainty on
its frequency defined by the variancesv

2. More precisely, in
the case of SMI, the pump pulses15ad and s15bd produces
photons that occupy single Heisenberg boxes located at the
same time as the pump but at angular frequenciesv0±V
s0,V,Î2Vmaxd. Formulass8ad, s8bd, and s9d of Sec. II B

FIG. 3. Values of the number of photons created at the maxi-
mum gain frequency obtained by integrating numerically the
SNLSE as a function of propagation lengthL. In order to keep the
maximum gain frequency constant we have kept the peak powerP0

constant in each figure. The horizontal axis is given in dimension-
less units ofgP0L whereP0 is either the power of the continuous
pump wave in the linear approximation, or the peak power of the
Gaussian pump pulse. The top panel is plotted in the density of
energy representation whereas the bottom panel is plotted in the
number of photons-per-mode representation using the rescaling of
Eq. s16d. In both panels, the up-triangles, the circles, and the down-
triangles correspond to FWHM durations respectively equal to 4 ns,
1 ns, and 0.25 ns. Note that these three curves coincide perfectly in
panel sbd, thereby showing the relevance of the rescalings16d. In
the bottom panel, the dash-dotted line results from the analytic so-
lution Eq. s9d. The dashed line corresponds to Eq.s9d convoluted
with the pump shape then rescaled according to Eq.s16d; see the
text. All other parameters are identical to those used in Fig. 1sad.
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thus give the number of photons created in these Stokes and
anti-Stokes modes.

Our numerical simulations provide us with the spectral
distribution of energySE. Hence we need to reexpress this as
the numbern of photons produced per mode of durationst
and spectral widthsv:

nsVd =
SEsVd
"v0

sv =
SEsVd
"v0

Î2 ln 2

TFWMH
. s16d

Figure 3sbd shows the effect of scaling the spectra according
to Eq. s16d. When expressed in terms of the number of pho-
tons per modes the three curves of Fig. 3sad scorresponding
to three different pump durationsd come down to a single one
in Fig. 3sbd scontinuous lined. This shows that the notion of
mode helps in interpreting the results of the numerical inte-
gration. The number of produced photons does not depend
on the pump duration: The pump duration just alters their
time-frequency characteristics. The dash-dotted curve in Fig.
3sbd corresponds to a direct application of Eq.s9d. A discrep-
ancy with the simulations based on the SNLSE can be noted.
It is simply due to the fact that our choice of size of Heisen-
berg boxes, hence the normalization factor in Eq.s16d, is
somewhat arbitrary. By taking the Heisenberg boxes a bit
bigger, one can put the continuous and dash-dotted curves of
Fig. 3sbd in superposition. In the rest of the text, however, we
maintain the normalization relation Eq.s16d for clarity.

There is another way to compare the results of SNLSE
simulations to the linear perturbation theory that avoids the
concept of modes. One first computes the power spectral
density given by the quantum perturbation analysis on a
monochromatic pump wave. Then one convolutes this with
the Gaussian spectral distribution of the real pump pulse.
This procedure gives a good approximation of the energy
spectral density generated by the Gaussian pump. The
dashed curve of Fig. 3sbd corresponds to the peak energy
spectral density computed by this method and rescaled ac-
cording to Eq.s16d in order to be independent of the pulse
duration. The agreement with the continuous curve is now
much better. The origin of the small difference in slope in the
exponential amplification regime still remains unclear. It
may be due to the self-phase-modulation broadening of the
pump spectrum, which is not taken into account by the linear
perturbation analysis.

As a conclusion we obtain a good quantitative agreement
between the simulation based on SNLSE and the linear per-
turbation analysis. We have also shown that the only physical
quantity that can be rigorously predicted by the quantum
nonlinear propagation theory is the energy spectral density
and that the concept of mode, although very useful, must be
handled with care. Especially formulas likes8ad and s8bd
and/ors9d may only be used as a rough approximation tool
because there is no objective way to define a time-frequency
mode.

C. Classical versus quantum noise

From Figs. 3sad and 3sbd it is clear that the spontaneous
MI growth can be divided into two different stages. So long
as the number of particles created by mode is less than one

sn,1d, one is in a quantum regime dominated by vacuum
fluctuations. In contrast, forn above 1 the modulation insta-
bility is amplified exponentially and quantum effects become
negligible.

We now investigate the transition between the quantum
and classical regimes in the presence of someclassicalnoise.
We have chosen to model this noise by modifying the initial
conditions and adding a white noise to the amplitude of the
pump pulse in the Fourier domain. For definiteness and sim-
plicity, we continue to focus on scalar modulation instability.

The classical initial noiseÑsVd was chosen according to
two criteria:sid the noise must correspond to a random fluc-
tuation of the pump amplitude in the time domain andsii d the

statistic ofÑsVd sfor each frequencyd must lead to a spectral

density of energykÑsVdÑ*sVdl constant as a function of the
frequency. Several noise definitions can meet these criteria.
We have chosen to study two particular cases: the pure spec-
tral phase noise

ÑfsVd = ÃexpfipzsVdg, s17d

and the Gaussian noise

ÑGsVd =
Ã
Î2

fz1sVd + iz2sVdg, s18d

where Ã is a real constant andz jsVd are independent real
zero-mean Gaussian white noise random fields. In our simu-
lations z jsVd where discretized and replaced with random
quantitiesz jfivg sone for each discretized frequencyd drawn
according a zero-mean Gaussian law of variance 1. We have
compared SMI spectra averaged over 50 realizations, ob-
tained from both classical noisesswith quantum noise set to
zerod. Both noises lead to equivalent results. The difference
between the spectra is lower than 0.3 dB on the full spectral
span, which is less than the residual averaging noisefsee Fig.
1sadg, and therefore negligible. Hereafter, the classical noise
is set according to Eq.s17d. It corresponds to a white flux of
photons without any phase correlations between each fre-
quency component.

In Fig. 4 we compare the peak intensity of side bands in
the case of vacuum-fluctuations induced MI and thesun-
physicald case of MI induced by the classical noise alone. In
the quantum regime where the number of particles per mode
is small the two approaches differ strongly whereas in the
exponential amplification regime they give similar results,
although different classical noise levels give rise to different
final number of photons.

The simulations of Fig. 5 take into account both classical
and quantum noises. They illustrate the realistic situation
when both noises compete for producing modulation insta-
bility. If the order of magnitude of the classical noise is such
that there is less than one photon per mode, the quantum
noise dominates and the curve issexcept for very small val-
ues of the gaind indistinguishable from the case where there
is no classical noise. On the other hand, if the number of
noise photons per mode is much larger than one, the classical
noise dominates and the intensity of the sidebands is indis-
tinguishable from purely classical situations depicted in Fig.
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4. These numerical results are consistent with Eqs.s8ad and
s8bd, in which the term 1 represents the contribution of the
vacuum fluctuation. Ifns or na are higher than 1, Eqs.s8ad
and s8bd tend to Eqs.s4ad and s4bd corresponding to the
classical description.

In summary, we have shown that if one considers only the
peak intensity of the sidebands, the quantum origin of the
instability can only be seen in the regime where the number
of photons per modesproduced or initially presentd is small
whereas when the number of photons per mode is large the

effect of vacuum fluctuations is indistinguishable from that
of classical noise. Good quantitative agreement between the
two approaches in the exponential amplification regime is
obtained when the number of noise photons is 1/2 per mode.
Note that other quantum effects, such as two mode squeez-
ing, may be present in the regime where many photons are
produced per mode, but exhibiting them requires looking at
correlations between the two sidebands.

D. Using classical noise to compute the instabilities
induced by vacuum fluctuations

We can now discuss the well-known trick which consists
in introducing a half photon per mode into a classical simu-
lation sthen removing itd to simulate the spontaneous effects.
To see how this works we compare Eqs.s4ad ands4bd which
describe the MI induced by classical noise and Eq.s9d which
is derived from the quantum theory and gives the number of
photons produced per mode by the action of vacuum fluctua-
tions alone. Now, if we introduce the same amount of Stokes
and anti-Stokes noise photonsn0 in Eqs. s4ad and s4bd we
find

na
Cl

2n0
−

1

2
=

ns
Cl

2n0
−

1

2
= sinh2sgP0Ld = na

Qu = ns
Qu, s19d

whereCl andQu denote respectively the classical approach
and the quantum approach. Takingn0= 1

2, Eq. s19d shows the
agreement between the quantum predictionssright-hand
sided and the classical predictionssleft-hand sided. Note that
n0 can be any real valuesexcept for 0d, hence the spontane-
ous growth of the number of photons per mode can be simu-
lated with any number of initial classical photons if the pump
depletion is neglected.

We have compared, using numerical integration, the direct
quantum approach based on the SNLSEswithout classical
noised and the classical approach in which one first integrates
the NLSE with some initial classical noise then rescales the
spectra according to the left side of Eq.s19d. The discrep-
ancy between both approaches is measured by the following
ratio in dB scale:

h = 10 log101 nQu

nCl

2n0
−

1

2
2 . s20d

Applying Eq. s20d to the data reported in Fig. 4, one founds
that for gP0L higher than 0.2,h is constant for any classical
noise amplitude:h=1.9 dB±0.3 dB. Note that both noise
definitions Eq.s17d and Eq.s18d lead to the sameh. More-
over, these results may be extended togP0L lower than 0.2
by increasing the number of realizations. The origin of non-
zero value ofh may come from the mode definition used in
Eq. s16d. Indeed the numerical integration of SNLSE gives
the physical spectral density of energySE whereas the calcu-
lus trick—left-hand side of Eq.s19d—leads to values inter-
preted as a number of photons per mode which must be
rescaled to giveSE.

In summary, in the case of pump pulses of finite duration,
a full quantum treatment based on the SNLSE leads to a
direct quantitative prediction whereas the calculus trick only

FIG. 4. Comparison between a MI growing from quantum noise
ssolid lined and from purely classical noise. The number of photons
in the Stokes and anti-Stokes modes is plotted as a function of the
propagation lengthsexpressed in dimensionless unitsgP0Ld. The
input noises in the classical situation correspond to the following
amount of photons per mode:sid 1/40 sdash-dotted lined, sii d 1/2
sdotted lined, andsiii d 10 sdashed lined. The simulation parameters
are those of Fig. 1sad.

FIG. 5. Simulated values of the number of photons in the Stokes
and anti-Stokes modes in the realistic case when MI grows from
both quantum and classical noise. The classical noise intensities are
defined in order to correspond to an amount of photons per GHz:sid
0.1 scirclesd, sii d 1 sup-trianglesd, siii d 10 sdown-trianglesd, andsivd
100 sstarsd. The squares correspond to a purely quantum noise. The
simulation parameters are those of Fig. 1sad. The inset is a zoom
corresponding to the the lowestgP0L parameters. It is drawn in a
logarithmic scale.
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gives a good approximation whose accuracy is dependent on
the modes definition.

V. CONCLUSION

We generalized to an arbitrary level of birefringence the
stochastic nonlinear Schrödinger equations describing the
propagation of pulses through a nonlinearxs3d medium with
linear birefringence and group-velocity dispersion, and de-
veloped numerical routines to compute them. Because these
stochastic equations are equivalent to quantum field operator
equations, we used them to compute spontaneoussor
vacuum-fluctuations inducedd modulation instability spectra
in various birefringence regimes, including weak, high but
also intermediate birefringence which has not been studied
so far. In particular we showed that the decline of the number
of photons generated by the weak-birefringence VMI when
the birefringence increases, is attributable to the increase of
the walkoff between Stokes and anti-Stokes photons, al-
though the weak-birefringence VMI gain remains constant.
We then investigated the absolute values of the energy spec-
tral density at the maximum gain in the case of scalar modu-
lation instabilities induced by vacuum fluctuations. We ob-
tained good quantitative agreement between the simulation
based on SNLSE and the linear perturbation analysis. Then
we have carried out a detailed comparison of the effect of
classical and quantum noise and shown that the quantum
origin of the instability can only be seen in the regime where
the number of photons per mode produced or initially present
is small. Finally we note that the quantum nonlinear propa-
gation theory predicts the energy spectral density and that the
concept of mode, although very useful, must be handled with
care. The present work forms the basis for numerical and
experimental investigation of vacuum-fluctuations induced
VMI in regimes which have been little investigated so far,
and we hope to report on this in the near futuref13g.

Although we have not developed this aspect in this article
the stochastic equations can also be used to computed inten-
sity correlations between sidebands and predict special quan-
tum effects like squeezing. For this reason the stochastic
equationss13ad–s13dd are a valuable tool for computing
quantum effects in birefringent nonlinearxs3d media, espe-
cially optical fibers. The stochastic model may also be
adapted to include Raman and Brillouin effectssseef12g for
the scalar cased. Higher-order dispersion effects can also be
included in a straightforward way.
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APPENDIX: STOCHASTIC COUPLED NONLINEAR
SCHRÖDINGER EQUATIONS

In order to derive the SNLSEs13ad–s13dd, we will pro-
ceed in three stages. First, we will establish the interaction
Hamiltonian that governs field evolution in a lossless, disper-
sive, and birefringent fiber. We will only present an heuristic

derivation of this Hamiltonian and put the emphasis on ap-
propriate approximations. A rigorous derivation requires a
discussion of electromagnetic field quantization in material
media f12,21,25,26g, which is outside the scope of this ar-
ticle. Second, we will use this Hamiltonian to find the Liou-
ville equation describing the evolution of the density opera-
tor of the field and convert it into a Fokker-Planck equation
using thePs+d representation. Finally, we will establish the
connection between the Fokker-Planck equation and the sto-
chastic equationss13ad–s13dd.

1. Linear and nonlinear Hamiltonians

In a dispersive birefringent medium the positive-
frequency part of thes-polarized electric field component
ss=x,yd can be decomposed on monochromatic modes in the
following way f21g:

Ês
s+dsr d = iE dbS"vssbdvgssbd

4pe0nssbdcA
D1/2

âssbdFsx,ydeibz.

sA1d

EquationsA1d can be seen as definingâssbd. The operators
âssbd and its Hermitic conjugatedâs

†sbd are, respectively, the
annihilation and creation operators for as-polarized photon
propagating in the fiber with a propagation constantb and
having an angular frequencyvssbd. According to the canoni-
cal quantization, they satisfy the commutation rule

fâsbd,â†sb8dg = dsb − b8d. sA2d

In Eq. sA1d, nssbd andvgssbd are respectively the linear in-
dex of refraction and group velocity corresponding to the
s-polarized monochromatic mode with frequencyvssbd, and

A =E E uFsx,ydu2dxdy. sA3d

The operator representing thes-polarized electric field com-
ponent is given by

Êssr d = Ês
s+dsr d + Ês

s−dsr d, sA4d

where Ês
s−dsr d=fÊs

s+dsr dg† is the negative-frequency part of

Êssr d.
The total HamiltonianĤT representing the sum of the

vacuum electromagnetic energy and the dielectric energy

stored in the fiber can be decomposed in a linear partĤL and

a nonlinear oneĤNL.
The linear part,

ĤL =E dbo
s=x,y

"vssbdâs
†sbdâssbd, sA5d

takes into account the free-field energy and the energy stored
into the dielectric through linear interactions, including the
effects oflinear dispersion andlinear birefringence through
the dispersion relationsvs=vssbd.

If the field bandwidth is narrow compared to the central
angular frequencyv0, dispersion can be neglected in thexs3d
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interactions and the nonlinear part of the Hamiltonian can be
written

ĤNL = −
1

4
e0dE d3ro

i jkl

xi jklEi
s−dEl

s−dEj
s+dEk

s+d, sA6d

wherexi jkl stands forxi jklsv0;v0,v0,−v0d. This simplified
Hamiltonian only takes into account the Kerr effect, which is
the dominant one for quasi-monochromatic fields. Since the
medium is supposed lossless, thexs3d tensor has the full per-
mutation symmetryf27g. The degeneracy factord=6 takes
this symmetry into account, by counting the number of ways
to permute the frequency arguments and the indexes of the
xs3d tensor. A further useful approximation is to consider that
the xs3d process is isotropicf27,28g:

xi jkl = xxxyydi jdkl + xxyxydikd jl + xxyyxdild jk.

Since the field bandwidth is supposed narrow, the permuta-
tion symmetry also requires thatxxxyy=xxyxy:

xi jkl = xxyxysdi jdkl + dikd jld + xxyyxdild jk. sA7d

Using Eq.sA7d, the nonlinear Hamiltonian becomes

ĤNL = −
3

2
e0xxxxxE d3rSo

s

Ês
s−dÊs

s−dÊs
s+dÊs

s+d + s1 − Bd

3o
sÞs8

Ês
s−dÊs8

s−dÊs
s+dÊs8

s+d + Bo
sÞs8

Ês
s−dÊs

s−dÊs8
s+dÊs8

s+dD ,

sA8d

where we definedB=xxyyx/xxxxx, and factored outxxxxx
=2xxyxy+xxyyx.

Another consequence of the narrow-bandwidth assump-
tion is that the square-rooted bracket in Eq.sA1d can be
taken out of the integral and one can write

Ês
s+dsr d < iS "v0vgs0

2e0 ns0 c A
D1/2

Fsx,ydĉssz,tdeisbs0z−v0td,

sA9d

where

ĉssz,td =
eisv0t−bs0zd

Î2p
E dbsâssbsdeibsz. sA10d

In Eqs.sA9d andsA10d, ns0, vgs0, andbs0 stand respectively
for the index of refraction, the group-velocity, and the propa-

gation constant at frequencyv0 on thes-axis. The operatorĉ
is an envelope operator because fast oscillations in space and

time have factored out. This implies thatĉ is explicitly time-

dependent in the Schrödinger picture. The operatorĉs
†ĉsdz

represents the number ofs-polarized photons infz,z+dzg.
One can easily check that

fĉssz,td,ĉs8
† sz8,tdg = dss8dsz− z8d. sA11d

Using Eq.sA9d, ĤNL takes the following simple form:

ĤNL = −
"

2
QE hsĉx

†ĉx
†ĉxĉx + ĉy

†ĉy
†ĉyĉyd + 2s1 − Bdĉx

†ĉy
†ĉxĉy

+ Bfsĉx
†d2ĉy

2e2iDb0z + sĉy
†d2ĉx

2e−2iDb0zgjdz, sA12d

where

Q =
3"v0

2vg0
2 xxxxx

4e0n0
2c2Aeff

, Aeff =
A2

E E uFsx,ydu4dx dy

.

sA13d

Let us note that we have setn0;nx0<ny0 and vg0;vgx0

<vgy0. The linear HamiltonianĤL can also be expressed in

function of the operatorssĉs,ĉs
†d, s=x,y, by developing

vssbd in a Taylor expansion aroundbs0 up to the second
order,

vssbd = v0 + vs8sb − bs0d +
vs9

2
sb − bs0d2 + ¯ ,

sA14d

wherevs8=dvs/dbub0
=vgs0 and vs9=d2vs/db2ub0

. Using Eq.

sA14d and inverting Eq.sA10d, one finds thatĤL=Û+ĤL8,
where

Û = "v0o
s=x,y

E ĉs
†szdĉsszddz sA15d

and

ĤL8 =
"

2 o
s=x,y

E Fivs8Sdĉs
†

dz
ĉs − ĉs

†dĉs

dz
D + vs9

dĉs
†

dz

dĉs

dz
Gdz.

sA16d

In the Heisenberg picture, the HamiltonianÛ is responsible

for a free oscillation exps−iv0td of the fields ĉs ss=x,yd.
This oscillation will cancel out the explicit oscillation
expsiv0td already present in the definitionsA10d. For this
reason, we prefer to continue the discussion in the interaction
picture:

sĉsdI = ĉsexps− iv0td, sA17d

ĤI = ĤT − Û = ĤL8 + ĤNL. sA18d

To simplify the notations we will drop theI index in later
equations.

2. From Liouville to stochastic equations

In the quantized theory, the state of the electromagnetic
field is represented by the density operatorr̂std. Its evolution,
in the interaction picture, is given by the Liouville equation

i"
d

dt
r̂ = fĤ,r̂g, sA19d

where Ĥ is the Hamiltonian defined by Eq.sA18d. Using
Eqs.sA16d and sA12d, the calculation of the right-hand side
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of Eq. sA19d is straightforward, so we do not write it here
explicitly.

In order to obtain stochastic equations from the Liouville
equationsA19d, we generalized the argument of Drummond
and Gardinerf22g for monomode fields and their extension
to multimode scalar fields given inf9g. We introduce the
multimode coherent statesuhajl defined as the eigenstates of
the annihilation operatorsâssbd

âssbduhajl = assbduhajl.

As a consequence,uhajl are also eigenstates of the envelope
operatorsA17d

ĉsszduhajl = csszduhajl,

with

csszd =
1

Î2p
E dbsassbsdeisbs−bs0dz.

This suggests the alternative notationucszdl;uhajl, with
cszd=fcxszd ,cyszdg, for the multimode coherent state. The
basic idea ofPs+d representation is to expand the density
operator on nondiagonal coherent state projection operators
defined as

L̂sCszdd =
ucszdlksc†d*szdu
ksc†d*szducszdl

, sA20d

where c†szd=fcx
†szd ,cy

†szdg is a new set of fields different
from cszd. Denoting Cszd=fcxszd ,cx

†szd ,cyszd ,cy
†szdg, this

expansion can be written in the following way:

r̂std =E PsC;tdL̂sCddmsCd, sA21d

where the integration measuredmsCd means that the inte-
gration is carried over all the possible fieldscs and cs

†, s
=x,y. Taking into account the definitionsA20d one can show
that

ĉsszdL̂ = csszdL̂, sA22ad

ĉs
†szdL̂ = Scs

†szd +
d

dcsszd
DL̂, sA22bd

L̂ĉs
†szd = cs

†szdL̂, sA22cd

L̂ĉsszd = S d

dcs
†szd

+ csszdDL̂, sA22dd

where d /dcsszd and d /dcs
†szd are functional derivatives.

Equations sA22ad–sA22dd generalize the corresponding
monomode identities off22g.

The P-function always exist and is positive for any den-
sity operator. TheP-function is useful for calculating normal
ordered moments:

ksĉs
†dmsĉs8d

nl =E scs
†dmscs8d

nPsC;tddmsCd. sA23d

In particular, Eq.sA23d shows thatP is normalized to unity:
1=ePsC ; tddmsCd. It can be interpreted as a genuine prob-
ability density on thesinfinite dimensionald space sustained
by the fieldcsszd andcs

†szd.
To obtain the time evolution ofP, we insert the expansion

sA21d into the Liouville equationsA19d and find

E ]P

]t
L̂sCddmsCd =E dmsCdE dzPsC;tdSCksCd

d

dCkszd

+
1

2
DklsCd

d2

dCkszddClszd
DL̂sCd,

sA24d

where summation overk and l is implied. TheCk’s are the
components of a four-dimension drift vectorC, with

C1sCd = − vx8
]cx

]z
+ i

vx9

2

]2cx

]z2 + iQ„cx
†cxcx + s1 − Bdcy

†cycx…

+ iQBcx
†cy

2e−2iDb0z. sA25d

The C2, C3, andC4 components have a similar form.C2 is
obtained from Eq.sA25d by making the substitutionsid i →
−i, cx↔cx

†, andcy↔cy
†. C3 is obtained bysii d exchangingx

and y indexes in Eq.sA25d, and making the subtitution
Db0→−Db0. To obtain C4, both substitutionssid and sii d
must be performed. TheDkl are the elements of a symmetric
diffusion matrixD that can be written in the formD=BBT,
where

B = ÎiQ1
cx 0 ÎBcye

−iDb0z 0

0 icx
† 0 iÎBcy

†eiDb0z

cy 0 − ÎBcxe
iDb0z 0

0 icy
† 0 − iÎBcx

†e−iDb0z
2 .

sA26d

Using Eqs.sA22ad–sA22dd, one can deduce from Eq.sA24d
that thePsC ; td verifies a functional Fokker-Planck equation
with a semipositive-definite diffusion matrix. We refer tof9g
for a demonstration since Eq.sA24d has the same structure as
Eq. s4.19d in f9g. Because of the semipositivity of the diffu-
sion matrix, the positivity ofP is maintained during evolu-
tion.

The stochastic equations equivalent to the Fokker-Planck
equation forP can be written in the following compact form:

]

]t
Cksz,td = CksCd + BklsCdzlsz,td, sA27d

where sk, ldP h1,2,3,4j2, and zlsz,td are the independent
zero-mean Gaussian white noise random fields introduced in
Sec. III and characterized by the second-order momentss11d.
The C vector gives the deterministic evolution of the fields
as predicted by the classical theory of light. The way vacuum
fluctuations modify the classical evolution is determined by
the structure of theB matrix. If one discards the stochastic
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terms, the fieldscs
† andcs appear to be just complex conju-

gated of each other. However, when vacuum fluctuations are
taken into account,cs

† andcs must be treated as independent
fields that are only complex conjugate in mean.

As they stand, Eq.sA27d seems to differ from Eqs.
s13ad–s13dd. Actually, both writings are equivalent. To high-
light the equivalence we first notice that, according to the
instantaneous-power normalization of thesAs,As

†d fields, one
has the following relations:

Assz,td = Î"v0vgs0cssz,td, sA28ad

As
†sz,td = Î"v0vgs0cs

†sz,td. sA28bd

Inserting Eq. sA28d into Eq. sA27d, and noting thatvs8
=vgs0 andQ="v0vg0

2 g, we find

]Ax

]z
+

1

vgx0

]Ax

]t
= + i

vx9

2vgx0

]2Ax

]z2 + igfAx
†Ax + s1 − BdAy

†AygAx

+ igBsAyd2Ax
†e−2iDb0z + Îig"v0fz1Ax

+ ÎBz3Aye
−iDb0zg, sA29ad

]Ax
†

]z
+

1

vgx0

]Ax
†

]t
= − i

vx9

2vgx0

]2Ax
†

]z2 − igfAx
†Ax + s1 − BdAy

†AygAx
†

− igBsAy
†d2Axe

+2iDb0z + Î− ig"v0fz2Ax
†

+ ÎBz4Ay
†e+iDb0zg, sA29bd

]Ay

]z
+

1

vgy0

]Ay

]t
= + i

vy9

2vgy0

]2Ay

]z2
+ igfAy

†Ay + s1 − BdAx
†AxgAy

+ igBsAxd2Ay
†e+2iDb0z + Îig"v0fz1Ay

− ÎBz3Axe
+iDb0zg, sA29cd

]Ay
†

]z
+

1

vgy0

]Ay
†

]t
= − i

vy9

2vgy0

]2Ay
†

]z2
− igfAy

†Ay + s1 − BdAx
†AxgAy

†

− igBsAx
†d2Aye

−2iDb0z + Î− ig"v0fz2Ay
†

− ÎBz4Ax
†e−iDb0zg. sA29dd

EquationssA29ad–sA29dd differ from Eqs.s13ad–s13dd only
in the first term of the right member. For each axis, the
group-velocity dispersion parameter isb2s=−vs9 /vgs0

3 . When
the typical pulse durationT is such thatT/b2s is much bigger
than the group-velocityvgs0, which is the common situation
in fiber optics, the following operator approximation holds

]2

]z2 <
1

vgs0
2

]2

]t2
. sA30d

Inserting Eq.sA30d into Eqs.sA29ad–sA29dd, and noting that
usually b2x<b2y;b2, one obtains the stochastic equations
s13ad–s13dd.
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