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Scalar and vector modulation instabilities induced by vacuum fluctuations in fibers:
Numerical study
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We study scalar and vector modulation instabilities induced by the vacuum fluctuations in birefringent
optical fibers. To this end, stochastic coupled nonlinear Schrodinger equations are derived. The stochastic
model is equivalent to the quantum field operators equations and allows for dispersion, nonlinearity, and
arbitrary level of birefringence. Numerical integration of the stochastic equations is compared to analytical
formulas in the case of scalar modulation instability and nondepleted pump approximation. The effect of
classical noise and its competition with vacuum fluctuations for inducing modulation instability is also

addressed.
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I. INTRODUCTION low input noise power to be efficieribtherwise the twin

) N ) . photons are buried in the background photon noiSech a

In the early 1980s single-mode silica optical fibers wereregime is dominated by vacuum fluctuations and requires a
recognized as a privileged medium for experiments in quanquantized field theory to be described properly. A small-
tum optics because they exhibit a well defined transversgerturbation approach of this problds] (nondepleted pump
mode and very low losses. The Kerr nonlinearity of silica hasapproximation shows that vacuum fluctuations can induce
been used to produce nonclassical states of light. Squeezése MI even in the absence of any classical input noise. This
state production in fibers was pioneered by Levensbal. is an ideal situation for twin-photon pairs production, but it
[1,2] in 1985. Since then a large number of squeezing experinever occurs in a real life experiment. In practice, classical
ments have been performed with cw light or short opticalinput noise and vacuum fluctuations compete for inducing
pulses(for a review seg3]). MI.

More recently, Fiorentine@t al. demonstrated that optical ~ Understanding the dynamical development of Ml from a
fibers may also be used to produtvein-photonspairs [4]. quantum point of view is an important issue for the de5|gr_1_of
This new kind of twin-photon source is well suited for fiber- fiber-optics twin-photon pairs sources. We present a unified
optic quantum communication and quantum cryptography2PProach to this problem based on 8techastic nonlinear
networks. In contrast with the traditional twin-photon Schrodinger equation$SNLSB [7-12. This formalism is
sources, based on th& down-conversion process, it avoids equivalent to quantum-field Heisenberg equations but has

large coupling losses occurring when the pairs are launchel’© Main advantages. First, it is very suitable for numerical
Simulations of complex situations where classical noise and

into long d!stance communication fibers. Th(_a physical PO acuum fluctuations act together. Seconddberespondence
cess used if4] to generate twin-photon pairs is a four-wave

- . . rinciple of quantum physics, i.e., the transition from quan-
mixing (FWM) phase-matched by the interplay of the optical {Dum tg class(?cal worldp, I())/oks very natural in the SNLS(I]E for-
Kerr effect and the chromatic dispersion, calléstalaj malism

modulation instability(MI). This process can be basically The MI observed in standard nonbirefringent single-mode
understood as the dest(uctlon of two pump photons at fre§i|ica fibers is often referred to aalar modulation insta-
quencywo and' the creation of Stokt{sed_shﬁted and anti- bility (SMI) because polarization of light plays no role in this
Stokes(blueshifted photons at frequenciess andw, satis-  orocess . In birefringent fibers different kinds of MI may ap-
f_ylng the energy conservation relatlonu@:ws+ “’a‘_ln the ear because of the interplay of nonlinearity, chromatic dis-
time domain, the beating of the pump, signal and idler Wa"egersion and birefringence. This case will be referredess
produc;es a fast modulation of the pump envelope. . tor modulation instability(VMI ). Twin-photon pairs sources
. MI is a spontaneous ph.enomeng which can be de;cnb sed on VMI have not been demonstrated yet, in contrast
in the framework of classical nonlinear optifS]. In this iy S\I based sources]. In this article, we will however
classical framework, one usually considers that Ml is iN-2ddress both issues because we recognize that VMI twin-
duced by some incohe_rent noisg initially.present on the pum hoton pairs sources could be more practicable than SMI
wave. Twin-photon pair production requires however a verjaqeq gnes. The theoretical and computational tools that we
developed apply to all kinds of MI, including the low-
birefringence, high-birefringence and scalar limits.

*Electronic address: Edouard.Brainis@ulb.ac.be This article is divided into four sections, beginning with
"Electronic address: David.Amans@ulb.ac.be the present introduction. The second section consists of a
*Electronic address: smassar@ulb.ac.be review of the approach based on a perturbation analysis
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around the steady state solution. This is the simplest methadir the field envelope. The field is supposed to be polarized
of approaching the problem of MI. It allows us to set thelinearly. This is not restrictive because of the isotropy as-
stage for the more sophisticated approach we then develggumption. The complex envelogeevolves according to the
and to make contact with earlier work in the field. Then innonlinear Schrédinger equatiofNLSE) that can be estab-
Sec. Il we exhibit the SNLSE for scalar and vector MI. lished from Maxwell's electromagnetic thedfy]. If the en-
Contrary to the approach of Sec. Il these equations are natelope is normalized in such a way tHai(z,t)|? is equal to
based on a perturbation analysis and are valid in the stronglhe instantaneous power flowing through the plareonst
nonlinear regime. They describe both MI originating from at timet, the NLSE is obtained in the following form:
classical noise and from vacuum fluctuatiofguantum

noisg. The SNLSE we obtain generalize the earlier results of 9A + 1oA__ |@ﬁ‘ +iyARA. 2)
[7-11]. In particular the SNLSE we obtain does not require Jdz g dt 2 gt

the birefringence to be either small or large as in earlierwormerev =(dB/dw)L is the group velocity of the waves,
o=

[10,11], but are valid for all values of the birefringence. For _ » 2 ] A .
the interested reader we present a self-contained derivatio_noI pldw” the group-velocity dispersiofGVD) parameter,

of these equations in the Appendix. In Sec. IV we use thearld v is fiber nonlinearity parameter defined as

split-step Fouriermethod to integrate the SNLSE derived in 3WoXxxxx

Sec. lll, and illustrate our algorithm on the cases of scalar Ml Y= m 3)

and of vector MI both for weak, intermediate, and strong 070™ Teff

birefringence. In order to interpret the results of the numeriwhereny is the fiber mean linear index of refractiofy the

cal integration it is essential to introduce the notiomaide = mode effective area, ang.y is the diagonal element of the

This allows us to compare the numerical results and the andiber x® nonlinearity tensor.

lytical solutions derived from perturbation theory. We also SMI is observed when a continuous wavew) or a

compare in detail the characteristics of Ml induced by clas-quasi-cw optical pulse is launched into the fiber. In the cw-

sical noise and by quantum noise. In a companion articl€ase, when an optical powBg at frequencywy is injected, a

[13] we shall show that our numerical results are in veryfirst-order perturbation analysis of E@) shows that the cw

good quantitative agreement with experimental results. steady-state solutiofg(z) = VPgexp(i yPyz) becomes instable
in the anomalous dispersion regir®,<0). The instability

Il. SCALAR MODULATION INSTABILITY: manifests itself by a parametric gain at frequenaigs )
PERTURBATION ANALYSIS with 0<Q <2yyPy/|B,|. The maximal gaing=2yP,L oc-

curs for Q=v2yPy/|Bs| = Qmax [5]. Noise at these frequen-
cies is strongly amplified. As a result, the optical spectrum at

occur in optical fibers. From a general point of view, MI the fiber output exhibits two sidebands at frequencies
occurs when the continuous waisteady-statepropagation 0ot Q. This analysis supposes that the pump power re-

is unstable. The most straightforward way to get some in—mains constanfundepleted pump approximatipand a cw
sight on how the MI develops is to perform a small- egime. However nu?nericarsimzlaggns of Ef) show that
perturbation analysis of the steady state. However, thi gime. ’

method has limitations: it cannot address the strongly non- & above f_ormula also hold for quasi-¢fer instance nano-
second optical pulsegsee Sec. V.

linear regime and S|_mple analytical formulas cannot be al- Sideband generation can be interpreted as a FWM process
ways obtained by this method. hase-matched by the interplay of dispersion and Kerr non-
In this section we illustrate the perturbation method in theIFi)nearit From thisy oint of vipewy the Mlp rocess can be seen
case of SMI, which is the simplest. SMI occurs in isotropic Y. nis p ’ P
as the destruction of two pump photons at frequengyol-

fibers in the anomalous dispersion regime. In what follow . i
we will review the most important aspects of this approachsk)we(j by. the_crea'uon of Stoke_s and anu-Stokes. photons at
‘equenciesvs= wy— Qmax aNdw, = wo+ Qmay, respectively. In

focusing on the comparison between the classical and qua{{je cw-case and nondenleted pbumb approximation. the out-
tum descriptions, and on the limitations of this approach. In P pump app ’
ut power spectral density at frequenciesand w, can be

Sec. IV, we will compare the analytical formulas for SMI gom uted using analytical formuldd4] for given initial
derived from the perturbation analysis to numerical results b g y 9

from the SNLSE derived in Sec. lll. The discussion of Ml in cond_ltlons. These formulas also ho'd for quasi-cw pulses
birefringent fibers is also postponed to Sec. Il and Sec. IV_prowded one replace Stokes and anti-Stokes power spectral

densities by the number, andn, of Stokes and anti-Stokes
photons located in the same temporal mode as the pump
wave(see Sec. IV B for a detailed analysis of this igsi@r

In an isotropic single-mode fiber, the electric field may beexample, assuming an incoherent initial noise, one finds

written )
ns(L) = ng(0)cos(yPeL) + ny(0)sintP(yPol),  (4a)

As pointed out in the Introduction several kinds of MI can

A. Classical description

E(r,t) = F(x,y)A(z,t)exdiByz— wgt]X + c.C., (1)

whereX is a unit vector orthogonal to the fiber axig axis), Na(L) = ng(0)cost(yPol) + ny(O)sinkf(yPol),  (4b)

w the carrier angular frequency amy=B(w,) the associ- wherelL is the propagation distance. These equations show
ated propagation wave numbémodal propagation con- that classical incoherent noise is amplified exponentially
stan). F(x,y) stands for the mode profile function aA¢z,t)  with gaing=2yP,L.
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Noise induced SMI was first demonstrated ex_perimentaIIyA(Z't):[a(z,t)’a‘r(z,tr)]:ﬁwog(t_t')_ Injecting the ansatz
by Tai et al. in 1986 [15]. This experiment confirmed two (7) into Eq. (5) one obtains a propagation equation for the
main predictions of the classical theory: the amplification Ofdisturbanceé(z,t). Supposing that the disturbance is small
Stokes and anti-Stokes photons and the power—dependence(%ndemeted pump approximatjothis equation can be lin-
their frequency shift. However the classical theory of SMlg4rized and solved analytically in the Fourier donfdih
onl_y holds when the in_itial number of noise photons is high Using this method one finds that the quantum and classi-
or in a stimulated regime when a coherent probe pulse ty| theory predict the same frequency dependence of the
Stokes or anti-Stokes frequency is injected together with they5-ametric gain. In contrast the quantum and classical theory
pump puls€16]. Equations(4a) and (4b) are unable to ex- itter in that they do not predict the same growth law for

plain ab nihilo generation of Stokes and anti-Stokes Win gigkes and anti-Stokes photon numbers. One easily finds that
photons reported if4]. Neither are they valid when the the quantum counterparts of Eqda) and (4b) are
mean photon numberg(0) andn,(0) are of the order of one

or lower. In this regime vacuum fluctuations play a central ng(L) = ng(0)cosi(yPoL) + [n,(0) + 1]sink?(yPyL),
role and field quantization is required. (8a)

B. Quantum description
To take into account vacuum fluctuations, fields must be  Na(L) = ny(0)cos(yPoL) + [ng(0) + 1]sint?(yPyL),

quantized. The quantum counterpart of the NLEE is (8b)
known as the quantum nonlinear Schrédinger equation
(QNLSE) [9,17-24: whereng andn, stand now for theexpectation valuesf the

N N N photon number operators;=(fy;), i=s,a. These equations
oA 1A__ i&é’z_A +ivATAR ) show that SMI can be observed even in the absence of any
Jz vy dt T2 a2 Y ' classical input noise. Setting(0)=n,(0)=0 in Egs.(8a) and
. (8b) gives the number of Stokes and anti-Stokes photons
whereA is the quantum operator corresponding to the fieldproduced by the sole action of vacuum fluctuations:

envelope and' its Hermitic conjugatedA andA' satisfy the

bosonicequal-spaceeommutation rule: (L) = ng(L) = sintF(yPol). ©)
- e , Equations (88 and (8b) hold only for perfectly phase-
[AZ1),Al(Zt')] = hwpdt - t'). (6)  matched photons at frequencies and w, and uncorrelated

The normalization constartw, stems from the normaliza- initial noise but can be easily generalized to get around these

tion chosen for the field envelope. In the quantum propagatestrictions.

tion theory, the expectation value of the optical power flow- Although Eqs.(8a), (8b), and(9) give a good insight into
ing through the planez=const at timet is given by the physics of vacuum-fluctuations induced SMI and photon

airs generation, they are not suitable for quantitative predic-
ons in the pulsed regime. This is because the effective value
¢ the pump powelP, depends on pump pulse shape, dura-

tion, and spectral width. Furthermore the energy spectral

i icture The first picture is th " density of Stokes and anti-Stokes waves deduced from Eg.
(propagation pictune The first picture is the must common (9) is highly dependent on the precise definition of modes.

in quantum field theory and leads to equal-time commutatioqhis will be discussed in Sec. IV B. In the following sections

rules between the envelope fieldsand A'. In this section, we will show how to get around these difficulties by intro-

however, we chose to work in the propagation pictwhich  ducing the SNLSE and solving it numerically.
is usual in nonlinear optigsn order to get a closer corre-

spondence between quantyf) and classica(2) equations. Ill. SCALAR AND VECTOR MODULATION
In this case equal-space commutation ru@smust be im- INSTABILITIES: STOCHASTIC EQUATIONS
posed toA andA' [21]. (In contrast, the evolution picture is
used in the Appendix to derive the stochastic equations o§0|
Sec. Ill)

In the cw regime, the basics of the quantum theory of SMI

(AT(z,t)A(z,1)). In a one-dimensional system, space and timeﬁ
play a symmetrical role. The dynamics can be described ei
ther in terms of spatial wave-packetolution(evolution pic-
ture) or in terms of temporal wave-packgiropagation

One can go beyond the perturbation analysis of SMI by

ving the QNLSHES5) numerically. Such a plan could seem

cumbersome because E§) is a field-operator equation. The
roblem can be bypassed by converting the operator equa-

canlbg unfdehrstood é)y performling a ﬁert'()r%er perturk;]atio ion (5) into c-number equations. This can be performed by
analysis of the steady-state solution of E§). Because the  ,qosing a representation for the electromagnetic field. In

pump field contains a large number of photons one can tregfis article, we will use the positive-representatioriP™)

it as a classical coherent wave. Using this approximation thﬁnroduced by Drummond and Garding?2]. The c-number
steady-state  solution is just the classical onf(z) equations obtained in this way are not standard deterministic

=VPoexpli yPo2). The disturbed field can be written as partial derivative equations but stochastlcangevin-type
A A ones.
= + . . L
AZD = A2 +a@Y ™ Using theP™ representation, it can be shoWn-9] that
The disturbance operatoa(z,t) is defined by Eg.(7). the QNLSE(5) is equivalent to the following set of stochas-
It satisfies the same commutation rule astic equations:
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A 1oA B, PA stochastic coupled nonlinear Schrddinger equations:
—_— + —_—— -

— +iyAT(z,)A(z, 1) JA(z, 1)

= |—
9z vg dt 2 gt? A 1 IA PA
’ —— —X+——X:—i&—;+iy[A§Ax+(1—B)A;Ay]AX
+Viyhowol1(Z,H)A(Z 1), (109 9z gy dt 2 ot
+iyB(A,)2Ale 2887 4 \j A
(9_AT+£&_AT— +,&_¢?2AT_. AT A AT ’/y—( y) .X ' ’thO[gl .
0z gt 2 o A ZDAZDIA Y +VBlaAe 07, (133
+ \J’_i'y}iwogz(z,t)AT(Z,t). (10b) aAT 1 aAT B aZA)T('
I = P _ P27 Tx t _ t t
. : . + = +i > TIAAA+(L-BAAA
Equations(10g and (10b) look like the classical NLSE2) 9z vgy ot 2 ot

and its complex conjugated, except for the last terms which

X : s NN2p 20z 4 T
accounts for vacuum fluctuations. These last terms contain FYBIAY)AE™% + =i yhwo LA

two independent zero-mean Gaussian white noise random + \;EQA;eﬂAﬁoz]’ (13b)
fields Z;(z,t) and {,(z,t) characterized by the following
second-order moments: oA, 1 A, B, asz

T A e L P
with (k,1) e {1,2}% Because the random fields and ¢, are i A+ 20BoZ 4
. . B(A 0%+ +/ A
not complex conjugated of each other, the envelope fialds Il( ) Aye vivhod &y
andA' are only complex conjugated “in mean” and have to — VB A AP (130
be treated as different mathematical objects.

Equations(10a and (10b) can be solved on a computer. aA; 1 aA; B, &2A§
The numerical methods used for this task will be briefy —+——F"= +j———=
explained in Sec. IV A. Note that solving Eq&l0g and Jdz  vgy ot 2 at?
(10b) gives a single realization of the stochastic process. In . N2A a2i0BoZ 4 [T F +
order to calculate the expectation value of a quantum observ- I)'_B(Ax) Ay H8h07 4 Wﬁwo[ész
able, a statistical average on many realizations is required. — VBZ,Ale 457, (13d)

Thus one generates a large number of realizations T + ) )
(Any(Z,1) ,A[Tn](z,t)), n=1,... N. In order to calculate the ex- where(A,,A)) and(Ay,Ay) are stochastic envelope fields as-

pectation value of a quantum observable one then carries 0_9 C|at(/ad to i;hg(' a?g%g{:ﬂi;&izzu:::Fiﬁgt';ﬁgr" ?ﬂ f the
a statistical average over the many realizations. For example XX Xxx!S @ p 9
onlinear coupling between the and y components. Its

the expectation value of the energy spectral density of e\ . . .
pulse is given by value lies between 0 and 1 and depends on the nonlinearity

mechanism. For silica fiber, we can €t 1/3 because the
1N _ Kerr nonlinearity has principally an electronic origin. Four
S(z0) = =2 ALz QAL ZQ), (12)  independent Gaussian random fielgl$z,t) are needed to
Nn:l i -
reproduce the effect of vacuum fluctuations. They are char
acterized by the second-order mome(it$), as in the scalar
case, with(k,1) e{1,2,3,42 The demonstration of this set

v =i >+ INAA, + (1 -B)AAA

—ifAA + (1 -B)AIAJA!

where X(z,Q)=[*, X(z,t)¢® dt designates the Fourier
transform of the fieldX(z,t) and(} is the detuning from the . . ! ) .

of equations is outlined in the Appendix.
pump angular frequency,.

In practice, a few realizations are enough when the num- NOt? that, in contrast to the scalar case, a perturbation
ber of photon’s per mode is high. However in a regime domi_analyss does not Ie_ad to simple analytlt_:al formulas for
nated by vacuum fluctuations Hundreds of realizations arvacuum-fluctuatpns induced VMI. For this reason, Egs.

. . . . ?133)—(130) constitute a valuable theoretical tool.
typically required to get precise values. A comparison be-
tween Stokes and anti-Stokes photon production predicted by  1IV. NUMERICAL INTEGRATION OF THE SNLSE
the SNLSE(108 and(10b) and the analytical formula@a)
and (8b) will be presented in Secs. IV B and IV C.

The VMI occurs in birefringent fibers. These fibers are  We have developed a method for integrating numerically
characterized by different propagation constg8gsand 3, ~ the SNLSE in the case where the pump is represented by a
and different group velocitiesy, and vy, for the x- and  pulse of finite duration. Our method is based on the split-step
y-axis polarized modes. The numerical study of vacuum flucFourier (SSH method[5]. We have had to generalize the
tuations induced VMI requires an extension of E¢0d  method in two ways. First of all the stochastic noise is mod-
and(10b) that takes into account the phase mismatch paranmeled by including a noise term at each propagation step. Sec-
eter ABy=Box— Boy @s well as the group-velocity mismatch ond in the case of the VMI we must alternate not only be-
AB1=1lvg—1lvg,. Such extensions have been establishedween the time and Fourier domain, but also between the
in earlier works for the low-birefringendel0] and the high- linear and circular polarization basis. Switching from time to
birefringencd 11] limits. We generalized these results for an Fourier domain is the basics of the SSF method: it permits us
arbitrary level of birefringence and obtained the following to handle the time derivatives in a simple way. Similarly, it

A. Sample spectra
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turns out that, whereas the terms with time derivatives are -16
easier to handle in the linear polarization basis, the
y-dependent terms are better managed in the circular polar-
ization basis. -20

The quantum noise in the SNLSE33—(13d) contains

. ’ _ ; 22
four independent real zero-mean Gaussian white noise func-
tions {(z,t) characterized by Eq(1l). In the numerical -24
method, time and space are discretized with respective dis- 26
cretization steps andh. So each family of noise functions
£(z,1) becomes a finite number of random variabigs,,i,] -28

chosen according to a zero-mean Gaussian law of variance

1/hr. The variance value is imposed by the normalization 002 -0.1 0 01 0.2

condition (11). The matrixe<,[i,,i;] (k=1,...,4 define the Frequency shift ./ 2r [THz]

stochastic path of each realization. In contrast, when we will -16 r r T T T

study the effect of classical noise we will add it once, at the 18 (b) _ Slow axis i

beginning of the pulse propagation, to the spectral distribu- Q2 288y, 2ByPy

tion of the signaITA(O,Q). -20 B P, ]
As we have previously indicated only the expectation val- 22 Fasﬂa"is Fas&axis

ues of observables have a physical meaning in the stochastic
equations. From a numerical point of view this means that
one must average the calculated quantities over several real-
izations of the stochastic path, and/or the classical input
noise. Usually, averaging over a hundred of realizations
gives an uncertainty on the numerical results less than 1 dB -30
in the nonzero gain frequency range. Finally we note that
including the stochastic terms do not increase significantly
the numerical complexity of a single realization. -16 : r T + T

Some sample spectra obtained using our algorithm are
presented in Fig. 1 in the cases of SMig. 1(a)], low bire- w52 Z(Aﬁ)z_ 2P, [
fringence VMI[Fig. 1(b)], and high birefringence VMIFig. 20F ™\B) B 3
1(c)]. The energy spectral density is plotted versus the fre-
quency detuning from the pump. The physical parameters i Slow axis Fast axis
used in these simulations are listed in Table I. In every simu-
lation, the pump wave has been supposed to be an unchirped
linearly polarized Gaussian pulse with peak povgrand
full width at half maximum durationTgyyy. NO classical
noise has been added, and an average over 50 realizations of
the stochastic process has been performed.

The frequency detuning of the sidebands agrees with lin-
ear perturbation theoryIn order to make the comparison
easier we have indicated in Figsiak-1(c) the angular fre-

;

Spectral density of energy log,o( Sg [J/Hz] )

-2 -1 0 1 2
Frequency shift Q/2x [THz]

-1
Frequency shift Q / 2n [THZ]

FIG. 1. Ml spectra for various birefringence regime. Simulation

hiftsO) hich : S d parameters are listed in Table(h) Spontaneous SMI in perfectly
quency shiits{ly,y at which maximum gain Is expected on isotropic fiber in the anomalous dispersion regime. Black, dark

the basis of the linear perturbgtlon the_ﬁ’fy-, gray, and light gray curves correspond to a propagation lehgth
Moreover, the SNLSE predict quantitatively the effect of —500, 1000, and 1500 m, respectively. The inset exhibits the pump

vacuum fluctuations on the evolution of the energy spectralpectral broadening due to the self-phase-moduld8@v) effect.

density of the electromagnetic field. In Sec. IV B we will () Spontaneous VMI in a slightly birefringent fiber in the normal

show that this evolution is also in very good agreement withgispersion regime. The pump is polarized along the slow axis;

linear perturbation theory when the number of Stokes angtokes and anti-Stokes photons appear on the orthogonal axis.

anti-Stokes photons generated is small enough. When th@lack, dark gray, and light gray curves correspond to a propagation

side bands are well-developed, the perturbation theory failengthL=16, 24, and 32 m, respectivelg) Spontaneous VMI in a

to predict correct values &:. In contrast, the SNLSE algo- strongly birefringent fiber in the normal dispersion regime. The

rithm still gives accurate results. In this limit numerical re- pump polarization axis makes an angle of 45° with the slow axis.

sults can be easily confronted to experimental dat418},  Stokes(anti-Stokes photons appear on the slofasy axis. Black,

we report an experiment on high birefringence spontaneougark gray, and light gray curves correspond to a propagation length

VMI in the anomalous dispersion regime that shows that thé-=10, 20, and 30 m, respectively.

theoretical spectra from the SNLSE model tally with the ex-

perimental ones. formed the same number of stochastic realizations in both
It is interesting to note that the curves of Figalllook  cases. This is because the number of realizations needed to

more noisy than those of Fig.(d) although we have per- achieve a given precision on the expectation value of a quan-
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TABLE I. Simulation parameters for Figs(a-1(c). that the propagation length has been sdt 410 m and that
the fiber beat lengthz was varied from 10 m to 5 cm. The
Quantity Unit Fig. 18  Fig. (b)  Fig. 10 value of the maximal energy spectral densyin the side-

bands is plotted versus the phase mismatch parameter. By

No nm 1550 1550 1064 lowering Lg, we increase the value of the phase mismatch
B2 ps’ km™! -17 +60 +30 ApB, and the group-velocity mismatch; according to the

Y Wt km™ 2 2 2 relations

Tewnm ns 1 0.1 0.2

Po W 2 400 300
ABy m1 0 2.09 628.31 ABo= zL—W Apy= C)\TO (14)
ABy fs mt 0 172 354.91 B B

& deg 0 0 45

wherec is the vacuum speed of light. When the birefringence
@Angle between the slow axis and the pump polarization axis.  increases, the sidebands move away from the pump spectrum
and their amplitude decreases. Subsequently the sidebands
tum operator is a function of the relative value of the spatiafcquire a double peak structuigee Fig. 2 This behavior is
steph and the typical distance over which the nonlinear ef-due to the walkoff of the produced Stokes and anti-Stokes
fects act; both are different in the simulations of Figjland ~ photons. One easily shows that v}{—1/vgs= V88,4 By,
Fig. 1(b). In practice, the smaller the spatial step, the fewemwherevys and vy, are the Stokes and anti-Stokes photons
the number of realizations needed to achieve a given precBroup velocities, respectively. Applying this formula to our
sion on expectation values. In Fig. 1, 50 realizations argimulation and takings3,=10 m*, one sees that the Stokes
enough to estimat&: with an accuracy of about 1.5 dB. We and anti-Stokes photons have walked 87.6 ps away while
also point out that the noise level visible at non-phasetheir FWHM duration is 100 ps. Stokes and anti-Stokes
matched frequencies has no physical meaning. It can be lowvalkoff limits the coherent exponential amplification of
ered by averaging over a higher number of realizationsguantum noise. The typical length scale over which the side
However, the number of realizations needed to achieve ahands growth takes place is given Byym/ V88,4 8. We
accurate estimation d: in the non-phase-matched part of point out that this analysis also hold for a cw-pump: The
the spectrum is usually very high. When tractable, a lineagoherent amplification of the sidebands stops when the
perturbation analysis will be less time-consuming. walkoff of Stokes and anti-Stokes photons exceeds the co-
Because our algorithm permits us to investigate intermeherence length of the pump. However, in the cw case, Stokes
diate birefringence, we have also studied the effect of groujgnd anti-Stokes photons generated in the first coherence
velocity mismatch on the transition from low to high bire- length act as an input noise that will be amplified in the
fringence limits. To our knowledge, this transition has neverfollowing coherence length. The process is reproduced as
been fully investigated before. Figure 2 shows the results omany times as the number of coherence lengths in the propa-
simulations with the same parameters as in Fip) &xcept gation distance. One usually argyés23] that the weak bi-
refringence phenomenology disappears because the

20 T[T T coherent-coupling terms in Eq&l339—(13d) (those contain-
. ing the factor expt(2)iAByz]) average to zero whefi g3, is
¥ 21F 1 high. This statement is equivalent to saying that,, tends
5m 2ok 3 to infinity. Our analysis shows however that walkoff has an
o even stronger effect.
o 283F 7 Until now we have not yet demonstrated that modeling
s 24F E vacuum-fluctuations induced MI using SNLSE predicts the
g correct values ofs.. In Sec. IV B we compare the absolute
g 25F 3 values of the energy spectral density at the maximum gain
% obtained using our program and the linear perturbation
2 A e 3 analysis. Having clarified in this way the interpretation of the
27 b : results of our numerical simulations we turn to a detailed

-0.5 0.0 0.5 1.0 1.5 2.0 25

comparison of the effect of classical and quantum noises.
Phase mismatch parameter log,( ABy[m™] )

That is we compare the effects of classical noise in the initial

, . . .. conditions and the quantum noise added at each step of the
FIG. 2. The figure illustrates the effect of an increasing b'ref”n'integration

gence on the weak-birefringence VMI phenomenology. The param-
eters of the simulations ar&,=1550 nm, 3,=60 pg km™, y

=2 WL km™, Trwuwm=2100 ps, Po=400 W, andL=40 m. The B. Comparing numerical integration

pump wave is polarized along the slow axis. The fiber beat length and linear perturbation theory

was varied from 10 m to 5 cm. The values dB, and AB; where

deduced from Eq(14). The plot shows the maximum value & in In our numerical simulations we have taken the pump
the sidebands as a function Af3,. Black squareggray squargs laser to be a Gaussian pulse without chirp. Its instantaneous
correspond to a singl@ouble peak structurésee the text power and energy spectral density can be written
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2 ) Propagation distance [m]

t
F’(t)=PoeXP<- 252 (159 0 400 800 1200 1600 2000
(o 21 /r—r-r—r-r-r-r-r-T-r-r-rr-r-—rrrr+r—r+]1-;]

F ()

_Po _&2>
SE(Q)—ZUieXp< 202)’ (15b)

with Utaw:%. The numerical integration of the SNLSE pro-
vides us with the spectral density of enei§yL,()) at the
end of the fiber; see Eq12). On the other hand, the linear ;
perturbation theory is based on small perturbation analysis 30k
around a continuous monochromatic pump. We would like to F
compare quantitatively the predictions of these two ap-
proaches.

For definiteness we carry out this comparison in the case

log,o( Sg [W/HZ] )

of scalar MI. We shall focus our investigation on the inten- s 3
sity of the sidebands at the peak of the Ml géib=0),,,,) in . SBF
the two approaches when we modify the propagation length @ 45E
and as we modify the duratiom, of the pulse. g 3 :
The linear perturbation theory is based on a continuous a E
monochromatic pump. For this reason the theory predicts a € 1.5F
rate of photon production per unit time. This suggests thatif & of
one takes the pump to be a pulse localized in time, the num- £ A5 :
ber of photons produced should be proportional to the pulse &
duration, all other parameters being kept constant. Simula- '35 3
tions based on SNLSE confirm this phenomenology. This is 4sbha b s L b b b

illustrated in Fig. 8a), where the energy spectral density at
QOnaxis plotted as a function ofPyL for three different pulse
durations. Note however that the above argument is valid for £ 3 values of the number of photons created at the maxi-
square pulses but is not very satisfactory for Gaussian onegyum gain frequency obtained by integrating numerically the
A better understanding of the origin of this scaling can besn|LSE as a function of propagation lengthin order to keep the
obtained by making appeal to the notion of mode and oaximum gain frequency constant we have kept the peak pByer
Heisenberg box. constant in each figure. The horizontal axis is given in dimension-
In order to introduce the notion of mode, recall that aless units ofyPoL wherePy is either the power of the continuous
temporal signal can be represented by a distribution in th@ump wave in the linear approximation, or the peak power of the
time-frequency plane. But because of the time-frequency uncaussian pump pulse. The top panel is plotted in the density of
certainty relations, a point in this plane has no physicaknergy representation whereas the bottom panel is plotted in the
meaning. This problem is well known in signal processingnumber of photons-per-mode representation using the rescaling of
where one usually thinks in terms of local time-frequencyEd. (16). In both panels, the up-triangles, the circles, and the down-
decompositions, using windowed Fourier transforv&=T) triangles correspond to FWHM durations respectively equal to 4 ns,
or wavelet transform§24]. Such a local time-frequency de- 1 NS, and 0.25 ns. Note that these three curves coincide perfectly in
composition allows one to decompose a signal into orthogoPane!(b), thereby showing the relevance of the rescaliag. In
nal local functions, callednodes These can be depicted as the bottom panel, the dash-dotted line results from the analytic so-
surface elements in the time-frequency plane. Fourierl-mion Eqg. (9). The dashed line corresponds to Eg) convoluted

transform limited pulses, such as our pump puls&3 and with the pump shape then res_cale_d according to(Ea);_ see the
(15b), are represented by Gaussian distributions on the timeXt: All other parameters are identical to those used in Fig. 1
frequency plane, called the Wigner-Ville distributions. This
distribution is very similar to the Wigner distribution used in is a matter of taste depending on how strong orthogonality is
guantum optics to represent a quantum state of light. In parequired. A usual convention is to take this area equal to
ticular two different Fourier-limited Gaussian pulses suffi- oy X o,=1/2.

ciently different in time or central frequency can be consid- This set of (quasjmode is convenient for our problem
ered as quasiorthogonal modes. A set of quasi-nonbecause, during the pulse propagation in the fiber, the uncer-
overlapping Gaussian Wigner-Ville distributions can betainty on the creation time of a photon is defined by the
taken as a base for the time-frequency decomposition of thearianceo? of the pump pulse, and implies an uncertainty on
field. One can visualize this modal base by imagining thaits frequency defined by the varianog. More precisely, in

the time-frequency plane is paved with adjacent elementarthe case of SMI, the pump pul¢&538 and (15b) produces
surface elements, called Heisenberg boxes, roughly reprghotons that occupy single Heisenberg boxes located at the
senting the area of Gaussian quasi-non-overlapping Wignesame time as the pump but at angular frequencigs()

Ville distributions. The precise area of the Heisenberg boxe$0 << <+2(,,,,). Formulas(8a), (8b), and(9) of Sec. I B

YPoL
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thus give the number of photons created in these Stokes arfid<<1), one is in a quantum regime dominated by vacuum
anti-Stokes modes. fluctuations. In contrast, fan above 1 the modulation insta-

Our numerical simulations provide us with the spectralbility is amplified exponentially and quantum effects become
distribution of energys:. Hence we need to reexpress this asnegligible.

the numbem of photons produced per mode of duration We now investigate the transition between the quantum
and spectral widtl,: and classical regimes in the presence of saotassicalnoise.
— We have chosen to model this noise by modifying the initial
@) _S@)y2In2 conditions and adding a white noise to the amplitude of the
nQ) = 0= . (16) . X . - © )
hwg hog Tewmn pump pulse in the Fourier domain. For definiteness and sim-

Figure 3b) shows the effect of scaling the spectra accordingP“C'ty’ we CO.ntInl.Je- Fo focm_Js~on scalar modulation |nsFab|I|ty.
to Eq.(16). When expressed in terms of the number of pho- The classical initial nois&((2) was chosen according to

tons per modes the three curves of Fi¢p)3corresponding two_criteria: (i) the noise must _correspond to a .ranfjom fluc-
to three different pump durationsome down to a single one tuation of the pump amplitude in the time domain inyithe
in Fig. 3(b) (continuous ling This shows that the notion of statistic ofN({2) (for each frequengymust lead to a spectral

mode helps in interpreting the results of the numerical inteyensity of energyN(Q)N'(Q)) constant as a function of the
gration. The number of produced photons does not depenl‘fjequency. Several noise definitions can meet these criteria.

on the pump duration: The pump duration just alters theifye haye chosen to study two particular cases: the pure spec-
time-frequency characteristics. The dash-dotted curve in Figyal phase noise

3(b) corresponds to a direct application of Ef). A discrep- 5 5
ancy with the simulations based on the SNLSE can be noted. N4(Q) = Aexdim{(Q)], (17)
It is simply due to the fact that our choice of size of Heisen- i _
berg boxes, hence the normalization factor in Etf), is  and the Gaussian noise
somewhat arbitrary. By taking the Heisenberg boxes a bit _ A
bigger, one can put the continuous and dash-dotted curves of Ng(Q) = =[£1(Q) +i (D], (18
Fig. 3(b) in superposition. In the rest of the text, however, we V2
maintain the normalization relation E(L6) for clarity. ~ .
There is another way to compareq%[he results ):)f SNLSI':WhereA is a real .consta}nt an_gjj(Q) are mdependent regl
simulations to the linear perturbation theory that avoids th ero-mean Gaussian _vvh|te.n0|se random fields. .In our simu-
concept of modes. One first computes the power spectr®ions ¢j(¢2) where discretized and replaced with random
density given by the quantum perturbation analysis on &uantities¢ji,] (one for each discretized frequenayrawn
monochromatic pump wave. Then one convolutes this witfccording a zero-mean Gaussian law of variance 1. We have
the Gaussian spectral distribution of the real pump pulsecompared SMI spectra averaged over 50 realizations, ob-
This procedure gives a good approximation of the energ}a'ned from bqth classical nms_émth guantum noise set to
spectral density generated by the Gaussian pump. THEr9. Both noises lead to equivalent results. The difference
dashed curve of Fig.(B) corresponds to the peak energy between _the_spectra is lower th_an 0.3dB on the f_uII spectral
spectral density computed by this method and rescaled agPan, which is less than the residual averaging rsise Fig.
cording to Eq.(16) in order to be independent of the pulse _1(61)], and thgrefore negligible. Hereafter, the cla§S|caI noise
duration. The agreement with the continuous curve is nowS Set according to Eq17). It corresponds to a white flux of
much better. The origin of the small difference in slope in thePhotons without any phase correlations between each fre-
exponential amplification regime still remains unclear. ItdUeéncy component. _ _ _ _
may be due to the self-phase-modulation broadening of the 'N Fig. 4 we compare the peak intensity of side bands in
pump spectrum, which is not taken into account by the lineafh® case of vacuum-fluctuations induced Ml and tbe-
perturbation analysis. physica) case of Ml induced by the classical noise alone. In
As a conclusion we obtain a good quantitative agreemerff’® quantum regime where the number of particles per mode
between the simulation based on SNLSE and the linear pefs Small the two approaches differ strongly whereas in the
turbation analysis. We have also shown that the only physicgPXPonential amplification regime they give similar results,
guantity that can be rigorously predicted by the quantunﬁ'though different classical noise levels give rise to different
nonlinear propagation theory is the energy spectral densitffn@ number of photons. . ,
and that the concept of mode, although very useful, must be The simulations of Fig. 5 take into account both classical
handled with care. Especially formulas lik8a and (8b) and quantum noises. They illustrate the realistic situation
and/or(9) may only be used as a rough approximation toolwhen both noises compete for producing modulation insta-

because there is no objective way to define a time-frequenciility- If the order of magnitude of the classical noise is such
mode. at there is less than one photon per mode, the quantum

noise dominates and the curve(éxcept for very small val-
ues of the gainindistinguishable from the case where there
is no classical noise. On the other hand, if the number of
From Figs. 8a) and 3b) it is clear that the spontaneous noise photons per mode is much larger than one, the classical
MI growth can be divided into two different stages. So longnoise dominates and the intensity of the sidebands is indis-
as the number of particles created by mode is less than orninguishable from purely classical situations depicted in Fig.

C. Classical versus quantum noise
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MLELE I B AR B B B B effect of vacuum fluctuations is indistinguishable from that
- 3 of classical noise. Good quantitative agreement between the
-~ two approaches in the exponential amplification regime is
] P ] obtained when the number of noise photons is 1/2 per mode.
3 < R Note that other quantum effects, such as two mode squeez-

- o . ] ing, may be present in the regime where many photons are
_ - il ° ] produced per mode, but exhibiting them requires looking at
- correlations between the two sidebands.
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:: -------- - 3 D. Using classical noise to compute the instabilities
: ] induced by vacuum fluctuations

log,¢( n [Photons/mode] )
\
A)

\

We can now discuss the well-known trick which consists
T T T in introducing a half photon per mode into a classical simu-
0 1 4 3 4 5 6 7 8 lation (then removing iXto simulate the spontaneous effects.

YPoL To see how this works we compare E(%a) and(4b) which
describe the Ml induced by classical noise and @gwhich

FIG. 4. Comparison between a Ml growing from quantum noisejs derived from the quantum theory and gives the number of
(solid line) and from purely classical noise. The number of phOtonsphotons produced per mode by the action of vacuum fluctua-
in the Stokes and anti-Stokes modes is plotted as a function of thﬁons alone. Now, if we introduce the same amount of Stokes

propagation lengtiiexpressed in dimensionless unig®qL). The and anti-Stokes noise photong in Egs. (4a) and (4b) we
input noises in the classical situation correspond to the foIIowingfind

amount of photons per modé) 1/40 (dash-dotted ling (ii) 1/2
(dotted ling, and (iii) 10 (dashed ling The simulation parameters ng' 1 ngl 1 2 ou_ au
: —— - = =—- - = =sinf(yPoL) =ng"=ng", (19

are those of Fig. (). ong 2 20, 2 (yPoL) =g N (19
4. These numerical results are consistent with E8@.and  whereCl and Qu denote respectively the classical approach
(8b), in which the term 1 represents the contribution of theang the quantum approach. Takin(g=%, Eq. (19) shows the
vacuum fluctuation. Iihs or n, are higher than 1, Eq$8a8)  agreement between the quantum’ predictigright-hand
and (8b) tend to Egs.(4a) and (4b) corresponding to the side and the classical predictiorfeft-hand side Note that
classical description. _ _ Ny can be any real valugexcept for 0, hence the spontane-

In summary, we have shown that if one considers only thgyys growth of the number of photons per mode can be simu-
peak intensity of the sidebands, the quantum origin of theated with any number of initial classical photons if the pump
instability can only be seen in the regime where the numbegepletion is neglected.
of photons per modéroduced or initially presenis small We have compared, using numerical integration, the direct
whereas when the number of photons per mode is large th@uantum approach based on the SNLGE&thout classical
noise and the classical approach in which one first integrates

'

N
T
1

'
w

6F the NLSE with some initial classical noise then rescales the
[ spectra according to the left side of Ed.9). The discrep-
= F ancy between both approaches is measured by the following
2 F ratio in dB scale:
£ 5
=3
e I n
E 7n=10 logq W . (20)
o F - _=
o [ 2ng 2
g I Applying Eq. (20) to the data reported in Fig. 4, one founds

that for yPgL higher than 0.2y is constant for any classical
noise amplitude:#=1.9 dB+0.3 dB. Note that both noise
definitions Eq.(17) and Eq.(18) lead to the samey. More-
over, these results may be extendedy®L lower than 0.2
by increasing the number of realizations. The origin of non-

FIG. 5. Simulated values of the number of photons in the Stoke4€"0 value ofp may come fr_om Fhe mode definition useq in
and anti-Stokes modes in the realistic case when MI grows fronﬁq' (16)..Indeed the nume_ncal integration of SNLSE gives
both quantum and classical noise. The classical noise intensities afg€ Physical spectral density of ener§ywhereas the calcu-
defined in order to correspond to an amount of photons per @Hz: [US trick—left-hand side of Eq(19)—leads to values inter-
0.1 (circles, (ii) 1 (up-triangles, (iii) 10 (down-triangle and(iv) ~ Preted as a number of photons per mode which must be
100 (star3. The squares correspond to a purely quantum noise. Thééscaled to gives:.

3k

simulation parameters are those of Figa)l The inset is a zoom In summary, in the case of pump pulses of finite duration,
corresponding to the the lowegPoL parameters. It is drawn in a @ full quantum treatment based on the SNLSE leads to a
logarithmic scale. direct quantitative prediction whereas the calculus trick only
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gives a good approximation whose accuracy is dependent aterivation of this Hamiltonian and put the emphasis on ap-
the modes definition. propriate approximations. A rigorous derivation requires a
V. CONCLUSION discussion of electromagnetic field quantization in material

. . o media[12,21,25,26 which is outside the scope of this ar-

We generalized to an arbitrary level of birefringence theyjcie. Second, we will use this Hamiltonian to find the Liou-
stochastic nonlinear Schrédinger equations describing thgijle equation describing the evolution of the density opera-
propagation of pulses through a nonling&? medium with  tor of the field and convert it into a Fokker-Planck equation
linear birefringence and group-velocity dispersion, and deyging theP™® representation. Finally, we will establish the

veloped numerical routines to compute them. Because theggnnection between the Fokker-Planck equation and the sto-
stochastic equations are equivalent to quantum field operat@hastic equationtl3a—(13d).

equations, we used them to compute spontane@mrs
vacuum-fluctuations inducg¢anodulation instability spectra
in various birefringence regimes, including weak, high but
also intermediate birefringence which has not been studied In a dispersive birefringent medium the positive-
so far. In particular we showed that the decline of the numbefrequency part of thes-polarized electric field component
of photons generated by the weak-birefringence VMI when(s=x,y) can be decomposed on monochromatic modes in the
the birefringence increases, is attributable to the increase @éllowing way [21]:

the walkoff between Stokes and anti-Stokes photons, al- 1

though the weak-birefringence VMI gain remains constant. é(+)(f) _ iJ dﬂ( hws(ﬂ)vgs(ﬁ)> A BF(x,y)eh

We then investigated the absolute values of the energy spec- s 4mregn(B)CA ' '

tral density at the maximum gain in the case of scalar modu- (A1)
lation instabilities induced by vacuum fluctuations. We ob-

tained good quantitative agreement between the simulatiokquation(Al) can be seen as definirgg(8). The operators
based on SNLSE and the linear perturbation analysis. Theay(g) and its Hermitic conjugateﬂ;r(,B) are, respectively, the
we have carried out a detailed comparison of the effect ohnnihilation and creation operators forsgoolarized photon
classical and quantum noise and shown that the quantugropagating in the fiber with a propagation constgrand
origin of the instability can only be seen in the regime wherehaving an angular frequenay(8). According to the canoni-
the number of photons per mode produced or initially presengal quantization, they satisfy the commutation rule

is small. Finally we note that the quantum nonlinear propa-

gation theory predicts the energy spectral density and that the [a(p).a"(B)]= 8B~ B). (A2)

concept of mode, although very useful, must be handled witrll Eq. (A1)

. . ny(B) andvy{B) are respectively the linear in-
care. .The present vyorlg forms the basis for n.umer_lcal aN%ex of refraction and group velocity corresponding to the
experimental investigation of vacuum-fluctuations induce

VMI in regimes which have been little investigated so far, polarized monochromatic mode with frequenay(), and

and we hope to report on this in the near fut{t8&].

Although we have not developed this aspect in this article A=f f [F(x,y)[?dxdy. (A3)
the stochastic equations can also be used to computed inten-
sity correlations between sidebands and predict special quaihe operator representing tsgolarized electric field com-
tum effects like squeezing. For this reason the stochastiponent is given by
equations(133—(13d) are a valuable tool for computing . N .
quantum effects in birefringent nonlineg® media, espe- E(r)=EX(r) +ES(), (A4)
cially optical fibers. The stochastic model may also be S () et ,
adapted to include Raman and Brillouin effetsee[12] for ~ Where E¢(r)=[E;"(r)]" is the negative-frequency part of
the scalar cageHigher-order dispersion effects can also beE(r).

included in a straightforward way. The total HamiltonianH; representing the sum of the
ACKNOWLEDGMENTS vacuum electromagnetic energy and the dielectric energy
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S=XY

1. Linear and nonlinear Hamiltonians

APPENDIX: STOCHASTIC COUPLED NONLINEAR

SCHRODINGER EQUATIONS takes into account the free-field energy and the energy stored

into the dielectric through linear interactions, including the
In order to derive the SNLSE13a—(13d), we will pro-  effects oflinear dispersion andinear birefringence through

ceed in three stages. First, we will establish the interactioithe dispersion relation®s=w43).

Hamiltonian that governs field evolution in a lossless, disper- If the field bandwidth is narrow compared to the central

sive, and birefringent fiber. We will only present an heuristicangular frequency,, dispersion can be neglected in thé
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interactions and the nonlinear part of the Hamiltonian can be. h pia A aiaa npnin

written Hye=— §®f {(th bt + l/fy'r/’y‘»[’ydfy) +2(1-B) (/fx'ﬁy’/fx';by
A= - %eod f &Y xEETEVEY,  (A6) + BL(4)2yfe? P + (y) 2yfe 24Pz, (A12)

K where

where xjjiq stands forxiji (wg; g, g, —wp). This simplified 3 w22 2

Hamiltonian only takes into account the Kerr effect, which is _ 2N @olgoXoox - A

the dominant one for quasi-monochromatic fields. Since the 4€OnSC2Aeff ' f A '

medium is supposed lossless, ¢ tensor has the full per- f J [F(xy)|*dx dy

mutation symmetnf27]. The degeneracy facta=6 takes

this symmetry into account, by counting the number of ways (A13)

to permute the frequency arguments and the indexes of the,
X tensor. A further useful approximation is to consider that
the x® process is isotropif27,28:

t us note that we have sep=n,y~ny and vgp=uv40
~vgy - The linear HamiltoniarH, can also be expressed in
function of the operatorin}s,fpl), s=x,y, by developing
Xijki = Xxxyyij O + XxyxyOik Sjt + XxyysSil Sik- wgB) in a Taylor expansion aroun@s, up to the second

Since the field bandwidth is supposed narrow, the permutaqrder’

tion symmetry also requires thfyy= Xxyxy o
wy(B) = wo+ wy(B - Bs) + ?S(,B‘ Bs)?+ -+,
Xijki = Xxyxy 8 &1 + Ok0it) + XxyysOil Oik- (A7)

Al4
Using Eq.(A7), the nonlinear Hamiltonian becomes (AL4)
where w;=dws/dB| 5, =vge and wg=d’ws/d? 4. Using Eq.

Hy = - §50Xxxxxf B> E(S->|§(S->é(s+)é(s+> +(1-B) (A14) and inverting Eq.(A10), one finds thatH, =U+H/,
2 s where
FOEC) ) EH) O E®HEE) ~ ~ A
x 2 EJEJEVES +BY ECECESEg ) U=tiwe> | #@d2dz (A15)
s#s’ s#s' S=X,Y
(A8) and
\ivgere Xve definedB= x,yyx Xxxxe and factored outyyyxx . . dz://;ﬁ “Td;/fs "d;/,;rd;/s
= EXxyxy " Xxyyx ) HL:—E g\ —— = e | twe———— |dz.
Another consequence of the narrow-bandwidth assump- 2y dz dz dz dz
tion is that the square-rooted bracket in E&1) can be (A16)

taken out of the integral and one can write
In the Heisenberg picture, the Hamiltonighis responsible

1/2
éf:)(r) ~ i( howge ) F(X'y)l}s(z,t)eiwsoz—wot), for a free oscillation exp-iwgt) of the fields fps (s=x,y).
2ep N C A This oscillation will cancel out the explicit oscillation
(A9)  expliwgt) already present in the definitiofA10). For this
reason, we prefer to continue the discussion in the interaction
where picture:

) dodBed [ (%)) = dheexpl—iwgh), (AL7)
ws(z,t)=&Tw dB:a(B)ePs. (A10)

ﬁ|:F|T_0:|q|I_+|qNL. (A18)
In Egs.(A9) and(A10), Ny, vge, and By stand respectively o . . . .

for the index of refraction, the group-velocity, and the propa-gousgtrirg:gy the notations we will drop thé index in later
gation constant at frequeney, on thes-axis. The operatoy a ' L . .

is an envelope operator because fast oscillations in space and 2. From Liouville to stochastic equations

time have factored out. This implies thats explicitly time- In the quantized theory, the state of the electromagnetic

dependent in the Schrédinger picture. The operafardz ~ fi€ld is represented by the density opergi(. Its evolution,
represents the number sfpolarized photons ifiz, z+dz]. in the interaction picture, is given by the Liouville equation

One can easily check that d. ~ .
ih p=[H.p], (A19)
(Y1), 0, (2 D] = 85e 8z = 2). (A11) )
R where H is the Hamiltonian defined by EqA18). Using
Using Eq.(A9), Hy, takes the following simple form: Egs.(A16) and(A12), the calculation of the right-hand side
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of Eq. (A19) is straightforward, so we do not write it here

explicitly.

In order to obtain stochastic equations from the Liouville

PHYSICAL REVIEW A 71, 023808(2005

(W)™ = f (D™ () "P(W ;) d (W), (A23)

equation(A19), we generalized the argument of Drummond In particular, Eq(A23) shows thafP is normalized to unity:
and Gardinef22] for monomode fields and their extension 1=/P(W¥;t)dw(¥). It can be interpreted as a genuine prob-

to multimode scalar fields given if9]. We introduce the

ability density on the(infinite dimensional space sustained

multimode coherent stat¢gr}) defined as the eigenstates of by the field y(z) and ¢/{(2).

the annihilation operatoray(g)

a(Bah) = a(Bab).

To obtain the time evolution d?, we insert the expansion
(A21) into the Liouville equationfA19) and find

IP - o
As a consequencé{a}) are also eigenstates of the envelope J EA(‘I’)d,U«(‘I’) :f d,U«(‘I’)J dZF’(‘I’;t)<Ck(‘I’)—

operator(A17)

U2l{ad) = p2l{a)),
with

(2 = ,i— f dBsa(B)E Ps P02,
N2

This suggests the alternative notatity(2))=|{a}), with

W(2)=[yx(2),#,(2)], for the multimode coherent state. The
basic idea ofP™ representation is to expand the density
operator on nondiagonal coherent state projection operatorg, C, Cs

defined as

lp(2)(¢")" (2)]
(") (2| p(2)’
where ¢'(2)=[{(2), 4{(2)] is a new set of fields different

from y(2). Denoting W(2)=[4(2),¥1(2), (2), ¥5(2)], this
expansion can be written in the following way:

A(W(2) = (A20)

p(t) = j P(W;H)A(W)du(WP), (A21)

where the integration measuda (W) means that the inte-
gration is carried over all the possible fielgg and w;r, S

=x,y. Taking into account the definitiofA20) one can show
that

U(DA = YA, (A22a)
w(m:(mm 0 )A (A22b)
° ST Sl

Al = wl@A, (A220)
A (z)—( o, (z))f\ (A220)
Ps(2) = 5 l/l;f(z) /2 ,

where 6/ 8ii(z) and &/ &p;r(z) are functional derivatives.
Equations (A22a—(A22d) generalize the corresponding
monomode identities di22].

The P-function always exist and is positive for any den-

sity operator. Thd>-function is useful for calculating normal
ordered moments:

W(2)
&

A Y
&Ifk(zmln(z)) (¥)

(A24)

1
+ =D (¥
2 k(W)

where summation over andl is implied. TheC,’s are the
components of a four-dimension drift vector with

O, S Py
X9z 2 97

+iOBy] yle 22 her,

C(¥)=-o +iO (Yl + (1= B) i)

(A25)

andC, components have a similar forr, is
obtained from Eq(A25) by making the substitutiofi) i —
=i, > g, andyy— . Cyis obtained byii) exchanging
and y indexes in Eq.(A25), and making the subtitution
ABy——ApBy To obtain C,, both substitutiongi) and (ii)
must be performed. ThB,, are the elements of a symmetric
diffusion matrixD that can be written in the forr®=BBT,
where

lﬂx O \\"E wye—lAB()Z 0
sovel O 0 B

fy 0 —\Byethor 0

0 iy 0 —i\Byfe oA

(A26)

Using Eqgs.(A22a—(A22d), one can deduce from E¢A24)
that theP(W;t) verifies a functional Fokker-Planck equation
with a semipositive-definite diffusion matrix. We refer[@)
for a demonstration since EGA24) has the same structure as
Eqg. (4.19 in [9]. Because of the semipositivity of the diffu-
sion matrix, the positivity ofP is maintained during evolu-
tion.

The stochastic equations equivalent to the Fokker-Planck
equation forP can be written in the following compact form:

J

E\I’k(zyt) =C(W) + B (W) ¢ (z1), (A27)
where (k,1) €{1,2,3,42% and {(z,t) are the independent
zero-mean Gaussian white noise random fields introduced in
Sec. Il and characterized by the second-order moméajs

The C vector gives the deterministic evolution of the fields
as predicted by the classical theory of light. The way vacuum
fluctuations modify the classical evolution is determined by
the structure of thé8 matrix. If one discards the stochastic

023808-12
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terms, the fle|d3//S and ¢ appear to be just complex conju-

gated of each other However, when vacuum fluctuations are— + ——
taken into accounl':,/;S and ¢ must be treated as independent 9z

fields that are only complex conjugate in mean.
As they stand, Eq(A27) seems to differ from Egs.
(139—(130). Actually, both writings are equivalent. To high-

PHYSICAL REVIEW A 71, 023808(2005

A, 1A, ) PA
= +|——+|'y[AyA +(1-BAAJA,
Ugyo Ot ngyo
+iyB(A)Z AT 240 + i yhwg £1A,
— VBLA g4, (A290)

light the equivalence we first notice that, according to the

instantaneous-power normalization of I(big,Al) fields, one
has the following relations:

Adz,t) = Vhowgoi(z ), (A283)
Al(z,1) = Vhwggoid(2,1). (A28b)

Inserting Eq. (A28) into Eq. (A27), and noting thatw
=vgp andO = hwgv> g, we find

oA, 1 9A ol PA
T2 rgn A augg a2 T IHAAT ATBIAA)
+i yB(Ay)ZAIe_MBOZ + V’%[g 1A
+\BLAET7, (A293)
+ + /o2 T
— i yB(A]) A& 24507 + \= i yfi o[ LA
N V,B£4Aye+|A,BOZ]' (A29b)

LA w PA
9z vgy Ot 2040 07
— i yB(AD?AE 2850 + = iyhwo[ LA
~ Bz AleTi2A07], (A290)

—iAAIA + (1 -B)AJAJA]

Equations(A29a—(A29d) differ from Eqgs.(138—(13d) only

in the first term of the right member. For each axis, the
group-velocity dispersion parameterfs,= —wg/vio. When
the typical pulse duratiom is such thafl/ 8,5 is much bigger
than the group-velocityg, which is the common situation
in fiber optics, the following operator approximation holds

P
072

1 &
v2g it (A30)
9

Inserting Eq(A30) into Egs.(A29a—A29d), and noting that
usually B~ B,,= B, one obtains the stochastic equations

(138—130).

[1] M. D. Levenson, R. M. Shelby, A. Aspect, M. Reid, and D. F.
Walls, Phys. Rev. A32, 1550(1985.

[2] M. D. Levenson, R. M. Shelby, and S. H. Perlmutter, Opt.

Lett. 10, 514(1985.
[3] A. Sizmann and G. Leuchs, rogress in Optics 3%dited by
E. Wolf (North-Holland, Amsterdam, 1999

QE-18, 1062(1982.

[15] K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. L6, 135
(1986.

[16] K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, Appl. Phys.
Lett. 49, 236(1986.

[17] Y. Lai and H. A. Haus, Phys. Rev. 40, 844 (1989.

[4] M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, IEEE[18] E. M. Wright, Phys. Rev. A43, 3836(199).

Photonics Technol. Lettl4, 983 (2002.

[5] G. P. Agrawal Nonlinear Fiber Optic§fAcademic, San Diego,
1995.

[6] M. J. Potasek and B. Yurke, Phys. Rev.35, 3974(1987).

[7] S. J. Carter, P. D. Drummond, M. D. Reid, and R. M. Shelby,

Phys. Rev. Lett.58, 1841(1987).

[8] P. D. Drummond and S. J. Carter, J. Opt. Soc. Am4,BL565
(1987.

[9] T. A. B. Kennedy and E. M. Wright, Phys. Rev. 88, 212
(1988.

[10] T. A. B. Kennedy and S. Wabnitz, Phys. Rev. 38, 563
(1988.

[11] T. A. B. Kennedy, Phys. Rev. A4, 2113(1991).

[12] P. D. Drummond and J. F. Corney, J. Opt. Soc. AML® 139
(2001).

[13] D. Amans, E. Brainis, Ph. Emplit, and S. Masganpub-
lished.

[14] R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron.

[19] H. A. Haus, Electromagnetic Noise and Quantum Optical
Measurement$Springer-Verlag, Berlin, 2000

[20] N. Korolkova and G. Leuchs, i€oherence and Statistics of
Photons and Atomsedited by J. Piéna (Wiley, New York,
2002.

[21] K. J. Blow, R. Loudon, S. J. D. Phoenix, and T. J. Shepherd,
Phys. Rev. A42, 4102(1990.

[22] P. D. Drummond and C. W. Gardiner, J. Phys.18, 2353
(1980.

[23] C. R. Memyuk, IEEE J. Quantum Electro@3, 174 (1987).

[24] S. Mallat, A Wavelet Tour of Signal Processirigcademic,
San Diego, 1999

[25] M. Hillery and L. D. Mlodinow, Phys. Rev. A30, 1860
(1984.

[26] P. D. Drummond, Phys. Rev. A2, 6845(1990.

[27] R. W. Boyd, Nonlinear Optics(Academic, Boston, 1992

[28] Y. P. Svirko and N. I. ZheludewRolarization of Light in Non-
linear Optics(Wiley, Chichester, 1998

023808-13



