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Single-photon-counting modulessSPCM’sd, with their high quantum efficiency, have been widely used to
investigate effectively the photon statistics of various light sources, such as the single-photon state and emis-
sion light from controlled molecules, atoms, and quantum dots. However, such SPCM’s cannot distinguish the
arrivals of one photon and twosor more than twod photons at a moment, which makes measurement correction
in real experiments. We analyze the effect of SPCM’s on photon statistics based on the Hanbury-Brown-Twiss
configuration when the total efficiency and background are considered, and it shows that the measured second-
order degree of coherence and MandelQ factor for different quantum states, including single-photon states and
squeezed vacuum states, are corrected in different forms. A way of determining the squeezing of a squeezed
vacuum state based on single-photon detection is presented.
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I. INTRODUCTION

Since the Hanbury-Brown-TwisssHBTd experimentf1g,
photon statistical properties have been widely investigated
and the early experiment was finished by using a photomul-
tiplier tubesPMTd. The nonclassical character of light fields,
such as the photon antibunching effect, was observed based
on HBT configurations by measuring the two-time photo-
electronic correlationf2–6g. In recent years, because of the
development of quantum information science, the generation
of quantum states, especially single-photon states, has played
an important role in the implementation of quantum cryptog-
raphy f7g and quantum computationf8g. Single-photon
sources have been produced by pumping single molecules
f9g, individual quantum dotsf10g, and color centersf11,12g
and by the way of cavity-QEDscavity quantum electrody-
namicsd f13g. It was reported, recently, that deterministic
single photons were demonstrated by one controlled atom
f14g. Single-photon-counting modulessSPCM’sd with high
quantum efficiency and low dark count rate are widely used
in modern quantum optics experiments to measure the
second-order degree of coherencegs2d of light emitted from
single atomsf13g and theQ factor of a triggered single-
photon source radiationf9g. However, the SPCM cannot de-
tect more than one photon per pulse within a time shorter
than its dead time, which means that all photon number prob-
abilitiesPn with nù1 are all detected asP1. Thus we have to
correct the measured results.

In this paper we analyze how such SPCM’s affect photon
statistics based on the HBT configuration. The overall quan-
tum efficiency and the background are taken into account.
The corrected second-order degree of coherencegs2d and
Mandel Q factor are obtained. We investigate several light
fields, including the coherent state, ideal single-photon state,
thermal state, and squeezed vacuum state, and it shows that
for different quantum states the corrections are different. The
second-order degree of coherencegs2d is more sensitive to
real experimental situations than the MandelQ factor in most
cases.

This paper is organized as follows: first we will give the
basic model of detecting the second-order degree of coher-

ence and MandelQ factor in Sec. II. We then describe the
influences of the correction of the SPCM, the detection effi-
ciency, and the background on the coherent state, single-
photon state, thermal state, and squeezed vacuum state in
Sec. III. Numerical results are also presented. In Sec. IV we
summarize the main points of the paper.

II. MODEL OF DETECTION

The second-order degree of coherencegs2d and MandelQ
factor are well known as the important parameters for char-
acterizing the statistical properties of light fields. The param-
eters can be measured by the HBT scheme which is com-
prised of two detectorssD1 and D2d and a 50/50 lossless
beam splittersBSd ssee Fig. 1d. ucl is the input field which
has an intrinsic photon distributionPinsnd. In general, the
joint detection probability of D1 in Dt1 at r1, t1 and D2 in Dt2
at r2, t2 is f15g

P2sr1,t1;r2,t2dDt1Dt2

= P1sr1,t1dDt1P2sr2,t2dDt2

3f1 + lsr1,t1;r2,t2dg, s1d

whereP1sr1,t1dDt1 is the detection probability of D1 in the
time interval Dt1 at r1,t1 and P1sr2,t2dDt2 is the detection
probability of D2 in the time interval Dt2 at r2,t2.

FIG. 1. HBT configuration with the detection efficiencyh and
coherent backgroundubl.
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lsr1,t1; r2,t2d is the normalized intensity correlation func-
tion, which can be expressed in term of the second-order
degree of coherencegs2dsr1,t1; r2,t2d:

lsr1,t1;r2,t2d = gs2dsr1,t1;r2,t2d − 1. s2d

The second-order degree of coherence is then determined by
the detected photon probabilities:

gs2dsr1,t1;r2,t2d =
P2sr1,t1;r2,t2d

P1sr1,t1dP2sr2,t2d
. s3d

Set the time delay between the two detectors ast= t2− t1=0
for simplicity. Assume the two detectors are identical and
have the same distances to the 50/50 lossless beam splitter.
The detection probability of one detector and the joint detec-
tion probability of the two detectors can be written asP1
=P1sr1,t1d=P1sr2,t2d and P2=P2sr1,t1; r2,t2d in the case of
statistical stationary fields. So the measured mean photon
number of the incident field according to the measured pho-
ton probabilities isknl=2P1. From Eq.s3d, we have

gs2d = P2/P1
2, s4d

and the Mandel parameter can be written asf16g

Q =
ksDnd2l − knl

knl
=

4P2s0d
knl

− knl. s5d

It is clear that the second-order degree of coherence and
MandelQ factor are determined by the joint detection prob-
ability of D1 and D2. Let us consider the real situation in
experiment. Suppose the overall detection efficiency, includ-
ing the optical collection efficiency, propagation efficiency,
and quantum efficiency of photon detectors, ish. This over-
all efficiency can be regarded as an attenuation of the inci-
dent field by an attenuator with transmission ofs1−hd. The
background is another problem we have to face, which in-
cludes the environment radiation and the dark counts of the
SPCM. Because the scattering background light from sur-
roundings can be thought as a thermal field with very large
bandwidth and very short coherent timesfor example, even
for a 1-nm bandwidth at wavelength of 500 nm, the coherent
time is about 0.8 psd, the usual photon counting timesnano-
secondsd discussed here is much longer than the coherent
time and the photocounts of such time-average stationary
background show a Poissonian distributionf15g. In a dark
environment, the SPCM also generates random counts that
follow a Poisson distribution. Both of these two random
counts appear in the Poissonian distribution, and thus we can
use a weak coherent fieldubl with a Poissonian photon dis-
tribution Psnd=gne−g /n! with g= ubu2 f9,17g to simulate the
backgroundsssee Fig. 1d.

The photon number distribution after the attenuator isf15g

Ptrsmd = o
n=m

`
n!

m!sn − md!
hms1 − hdsn−mdPinsnd; s6d

then, the beam is mixed with the weak coherent background
and the photon number distribution can be written asf18g

Pmixsld = o
m=0

l
gsl−md

sl − md!
e−gPtrsmd. s7d

The joint probability of detectingN photons on D1 and sl
−Nd photons on D2 can be written asf19g

PsN,l − Nd =
l!

N!sl − Nd!
Pmixsld, s8d

for ideal single-photon detectors. Yet the SPCM gives only
one count within the dead time for one or more than one
incident photon. The measured photon probabilities must be
corrected. Actually, there are total four measured photon
probabilities: Ps0,0d, Ps0,1d, Ps1,0d, and Ps1,1d. The de-
tected joint probability of the two SPCM’s,P2, can be ex-
pressed as the sum of all probabilities that each detector has
one count:

P2 = Ps1,1d = o
l=2

`

o
N=1

l−1 S1

2
Dl l!

N!sl − Nd!
Pmixsld. s9ad

The probability of having one count of one of the two detec-
tors can be written as

P1 = Ps0,1d + Ps1,1d = o
l=1

`

o
N=0

l S1

2
Dl l!

N!sl − Nd!
Pmixsld.

s9bd

The probability of none of the two detectors having photons
is

P0 = Pmixs0d. s9cd

III. NUMERICAL RESULTS FOR DIFFERENT
FIELDS

A. Coherent field

Given the detection efficiencyh and backgroundubl, by
use of Eqs.s9d, a coherent incident fielduwl with a mean
photon numbera= uwu2 gives

P0 = e−sha+gd, s10ad

P1 = 1 −e−sha+gd/2, s10bd

P2 = s1 − e−sha+gd/2d2, s10cd

knl = 2s1 − e−sha+gd/2d. s10dd

Equationss4d and s5d give gs2d=1 andQ=0, which means
that for coherent light, the measured results can characterize
the statistical properties of the input light, and both the
second-order degree of coherence and the Mandel factor are
not affected by the total efficiency and background.

B. Single-photon field

If the incident field is a single-photon state—that is,u1l—
then, according to Eqs.s9d, we get
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P0 = s1 − hde−g, s11ad

P1 =
1

2
S1 +

1

2
hge−g − s3 − 4hde−g + s1 − hde−g/2D ,

s11bd

P2 = 1 + s1 − 2hde−g −
1

2
hge−g − 2s1 − hde−g/2, s11cd

knl = 1 +
1

2
hge−g − s3 − 4hde−g + s1 − hde−g/2. s11dd

The second-order degree of coherencegs2d and Mandel pa-
rameterQ can be given by Eqs.s4d and s5d accordingly.

Figure 2 showsgs2d andQ for the single-photon state as a
function of the overall efficiency. It shows that the measured
gs2d for an ideal single-photon source is strongly affected by
the background and overall efficiency. Clearly, if there is no
background, an ideal single photon will go to either detector
1 or detector 2 after the beam splitter and trigger only one of
the detectorsf20g. So the coincident probability of the two
detectors in the HBT scheme is absolutely zero, which in-
ducesgs2d=0 fsolid line in Fig. 2sadg andQ=−h fsolid line in
Fig. 2sbdg. The background is a Poissonian distribution and
gives the probabilities of two and more than two photons and
would trigger the two detectors simultaneously and thus the
stronger background gives a largergs2d fFig. 2sadg and Man-
del Q factor fFig. 2sbdg. A lower detected efficiency is an
equivalent of higher extra noise induced by losses, which is
also random Poissonian, and consequently higher efficiency
can reveal better the intrinsic photon statistics of the input
field; here, for ideal one photon state, itsgs2d is 0.

The star in Fig. 2 corresponds to the experimental data in
Ref. f9g. In the experiment, the corresponding background is
about g=0.0022 and the overall efficiency is aroundh
=4.55%, which means for an ideal single-photon source the
measuredgs2d andQ should be about 0.09 and −0.04. If the
overall efficiency improves to 50%, which is almost the best
quantum efficiency at 850 nm of the present SPCM that we
can get, then the results can reach to 0.009 and −0.5 accord-
ingly.

For the low overall efficiency, such as 5% in actual ex-
perimentsf9,13g, the MandelQ parameter is very close to
zero. This MandelQ factor cannot provide a distinct crite-
rion to distinguish a single-photon field from a coherent
source; on the other hand, the second-order degree of coher-
ence is more convenient to distinguish a single-photon
source when the overall efficiency cannot be effectively im-
proved but the background is relatively low.

C. Thermal field

For incident single-mode thermal field the photon number
satisfies the Bose distribution

Pn =
an

s1 + adn+1 , s12d

wherea is the mean photon number of the thermal field. The
measured photon probabilities and mean photon number
when taking the efficiency and background into account are

P0 =
e−g

1 + ha
, s13ad

P1 = o
l=1

`

o
N=1

l−1
l!

N! sl − Nd!
S1

2
Dl

o
m=0

l
gsl−md

sl − md!
e−g

3o
n=m

`
n!

m! sn − md!
hms1 − hdn−m an

s1 + adn+1 , s13bd

P2 = o
l=2

`

o
N=1

l−1
l!

N! sl − Nd!
S1

2
Dl

o
m=0

l
gsl−md

sl − md!
e−g

3o
n=m

`
n!

m! sn − md!
hms1 − hdn−m an

s1 + adn+1 , s13cd

knl = 2P1. s13dd

If there is no background, we have

P0 =
1

1 + ha
, s14ad

P1 =
ha

2 + ha
, s14bd

P2 =
shad2

s2 + hads1 + had
, s14cd

FIG. 2. The measured second-order degree of coherencegs2d sad
and MandelQ factor sbd of the single-photon state as a function of
overall efficiency h under different backgrounds:g=0, 0.0022,
0.01, and 0.1. The star represents the experimental data in Ref.f9g.
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knl =
2ha

2 + ha
. s14dd

If the overall efficiency is unity and the background isubl,
we get

P0 =
e−g

1 + a
, s15ad

P1 = 1 −
2

2 + a
e−g/2, s15bd

P2 = 1 −
4

2 + a
e−g/2 +

e−g

1 + a
, s15cd

knl = 2 −
4

2 + a
e−g/2. s15dd

Figure 3 shows the second-order degree of coherencegs2d via
the measured mean photon numberknl and detection effi-
ciencyh for thermal state. It is well known that for a single-
mode thermal state the second-order degree of coherence is 2
and is independent of the mean photon number. Compared to
the single-photon state and coherent state, the thermal state
shows a bunching effect which means that the possibility of
arrivals of multiphotons is higher than previous states and
thus the measured results are affected even strongly by the
SPCM since it cannot distinguish multiphoton. So we can
see that even in the ideal case—i.e.,g=0 andh=100%—the
measuredgs2d is not 2 any more. Actually, it decreases from
2 as the mean photon number increases since the probability
of multiphotons is higher for a larger mean photon number
fsolid line in Fig. 3sadg. When the background exists and the

efficiency is not perfect, the overall result is thatgs2d is in-
creasing from 1 since the nonideal system corresponds a Pos-
sionian background withgs2d=1 and so the mixed result is
between 1 and 2 as we see in Fig. 3sad sdashed lined. The two
effects, either from the SPCM itself or from the nonideal
measurement, have different influences on the coincident
counting and the measured mean photon number; conse-
quently, when we see thegs2d as a function of efficiencyfFig.
3sbdg, for a certain backgroundsa mixed fieldd there exists a
maximum value for a certain efficiency.

The result of theQ factor is shown in Fig. 4. Thesolid
line in Fig. 4sad corresponds to the ideal result of the thermal
field in theory—i.e.,Q=knl. Similar to the above analysis for
gs2d, when the background exists the increase ofQ is slow as
the measured mean photon numberfFig. 4sadg or the overall
detection efficiencyfFig. 4sbdg increases. Higher background
gives relatively lowQ. Compared to thegs2d, the MandelQ
factor is not a very sensitive parameter to the background.

D. Squeezed vacuum state

The squeezed vacuum statesSVSd is a very important and
typical nonclassical state. It is defined as

ujl = Ŝsjdu0l, s16d

whereŜsjd=exps 1
2j* â2− 1

2jâ+2d is the unitary squeeze opera-
tor with j=r expsiud and r = uju is the squeezed parameter.
The photon number distribution of the squeezed vacuum
state isf21g

P2n =
stanhrd2ns2nd!
coshrsn ! 2nd2 , s17d

which clearly tells us that only an even number of photon
distributions exists in this nonclassical field and it shows a
bunching effect. The mean photon number, second-order de-

FIG. 3. The second-order degree of coherencegs2d via the mea-
sured mean photon numbera sad and detection efficiencyh sbd for
the thermal state.

FIG. 4. Mandel parameterQ as a function of the measured mean
photon numbera sad and the overall efficiencyh sbd for the thermal
field. In sbd the mean photon numbera=1.
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gree of coherence, and Mandel parameter of the SVS are
obtained for a given squeezing parameterr in theory:

knsql = sinh2 r , s18ad

gSVS
s2d = 2 +

cosh2 r

sinh2 r
, s18bd

QSVS= sinh2 r + cosh2 r . s18cd

Similarly, from Eqs.s9d, we get the measured photon prob-
ability based on the HBT configuration and SPCM’s:

P0 = e−ro
n=0

`

s1 − hd2nstanhrd2ns2nd!
coshrsn!2nd2 , s19ad

P1 = o
l=1

`

o
N=1

l−1
l!

N! sl − Nd!
S1

2
Dl

o
m=0

l
gsl−md

sl − md!
e−g

3 o
n=fsm+1d/2g

`
s2nd!

m!s2n − md!
hms1 − hd2n−mstanhrd2ns2nd!

coshrsn!2nd2 ,

s19bd

P2 = o
l=2

`

o
N=1

l−1
l!

N! sl − Nd!
S1

2
Dl

o
m=0

l
gsl−md

sl − md!
e−g

3 o
n=fsm+1d/2g

`
s2nd!

m! s2n − md!
hms1 − hd2n−mstanhrd2ns2nd!

coshrsn!2nd2 ,

s19cd

knl = 2P1. s19dd

We can then use Eqs.s4d and s5d to get the results of the
second-order degree of coherence and the Mandel parameter
as the function of the squeezing parameterr and detection
efficiency under different backgrounds. The numerical re-
sults are shown in Figs. 5 and 6.

Because for an ideal SVS there only exists the even pho-
ton number distribution and a very strong bunching effect is
clearly shown, which implies large and sensitive corrections
of statistical properties of the SVS measured by the SPCM in
some cases. In fact the measured second-order degree of co-
herencegs2d is always bigger than 2 and is becoming small
when r is getting largerfFig. 5sadg. gs2d is very sensitive to
the efficiencies and backgrounds for lower squeezing, while
for large squeezing it is not sensitive and the correction is
very small. But in all these cases, the measuredgs2d more or
less reflects the realgs2d of the input SVS itself. This indi-
cates that we can measure the squeezing of the SVS by mea-
suring thegs2d in certain conditions when the correction is
consideredfFig. 5sbdg.

The properties of the MandelQ factor of the SVS is also
strongly corrected just by SPCM’sfFig. 6sbdg. According to
Eq. s18cd, the Q factor of the SVS increases along with the
increasing of squeezingr, but from Fig. 6sad we can see that
theQ factor shows a decrease when the squeezing is increas-
ing even in the case of perfect detection. If we take the

overall efficiency and the background into account, theQ
factor is very close to zero and does not change too much as
squeezing increases. This shows that the measuredQ factor
is quite different from the real value of the input SVS. The
results ofQ are similar to the single-mode thermal state as
both of them are bunching fields.

FIG. 5. The measured second-order degree of coherencegs2d of
the squeezed vacuum state as a function of squeezing parameterr
sad and detection efficiencyh sbd under different backgrounds and
overall efficiencies. The squeezing parameterr =1 in sbd.

FIG. 6. MandelQ factor of squeezed vacuum state as a function
of squeezing parameterr sad and overall efficiencyh sbd. The
squeezing parameterr =1 in sbd.
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IV. CONCLUSION

We have discussed photon statistical properties based on
the HBT experiment with SPCM’s. The general result of the
joint detection probability is obtained by taking the overall
detection efficiency and background into account. The influ-
ence on second-order degree of coherencegs2d and the Man-
del Q factor for various light fields, including the coherent
state, single-photon state, thermal state, and squeezed
vacuum state, are given analytically and numerically. It
shows that for some quantum states, such as the single-
photon state and squeezed vacuum state, the statistical prop-
erties are strongly corrected by SPCM’s as well as the detec-
tion efficiency and background. Especially for well-
investigated single-photon sources, which play an important
role in quantum information, the correction of imperfect
measurements and the SPCM itself must be considered. The
measuredgs2d for an ideal single-photon source is strongly
affected by the background and overall efficiency, while the
MandelQ factor is not so sensitive to the background. But in
the case of zero background,gs2d stays zero and is indepen-
dent of the efficiency, whereas for the MandelQ factor, it
decreases linearly as the overall efficiency increases,Q
=−h.

The photon statistics for the SVS is also investigated, and
it shows that even in the case of ideal measurements—that is,

100% efficiency and no background—the SPCM has its cor-
rection to the photon statistics since the SPCM cannot tell
the difference between one and more than one photon within
its dead time. For some parameters, such as theQ factor of
the SVS, the actual measured value is quite different from
the value of the field itself. As the measured second-order
degree of coherence of the SVS is sensitive to the squeezing
parameter, one can determine the squeezing of the input SVS
just by measuringgs2d under different detection efficiencies
and backgrounds, instead of using the usual homodyne de-
tection with strong local light.

With the help of multidetectors or fiber-optical setup the
performance of single-photon detection can be improved
f22g, yet the two-port HBT configuration is still widely used
in many quantum optics experiments. The analysis and
method described in this paper could be extended to the situ-
ation of multiports to discuss, for example, the higher-order
degree of coherence of light fields.
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