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Adiabatic pulse propagation in coherent atomic media with the tripod level configuration
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We investigate the problem of propagation of three-component resonant light pulses with adiabatically
varying amplitudes through a medium consisting of atoms with the tripod level configuration. By means of
both analytic and numerical methods we find the two modes of shape-preserving pulse propagation. The pulse
propagation velocity of the fast mode is equal to the speed of light in vacuum, whereas the group velocity of
the other(slow) mode is significantly slowed down. These two modes represent a general asymptotic solution
of the problem of adiabatic pulse propagation, i.e., a pulse of any shape, which is consistent with the adiaba-
ticity conditions, and a finite duration evolves at large propagation distdiaces correspondingly, at large
times of interaction with the mediunto a well-separated pair of fast and slow pulses. The experimental
requirements for adiabatic pulse propagation in a tripod medium are similar to that needed for observation of
slow light propagation in a medium with the configuration of levels. However, the tripod scheme offers a
different possibility, which is absent in th&-medium case: collisions of fast and slow pulses. It is found
numerically that after such a collision the shapes of the pulses change, so these pulses do not match the
classical definition of a soliton.
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I. INTRODUCTION resonantly driven transitions. The simplest scheme of such a

Coherent population trappin@PT) is a well-known phe- kind is the tripod scheme displayed in Fig. 1. Stimulated
nomenon of preparation of atoms in a coherent superpositioR@man adiabatic passag&TIRAP) in such an optically thin
of ground or metastable state sublevsis-called dark staje ~ atomic medium with the tripod level scheme was investi-
which is immune to excitation by a two-component lasergated theoretically{10] and demonstrated experimentally
radiation under the two-photon resonance conditjdh  [11] by Bergmann and co-workers. A proposal to use the
Since the laser radiation is not scattered by atoms in the daitkipod scheme as a physical implementation of a qubit has
state, the radiation absorption is dramatically reduced. Thieen made recentpl2]. A five-level scheme being the ex-
effect is called electromagnetically induced transparencyension of the tripod scheme was considered in RES].
(EIT) and is actively studied since the early 199®3 One The very specifics of the tripod scheme is that during
of the most striking features of EIT is the possibility of adiabatically slow change of the external field parameters,
shape-preserving propagation of light pulses with slowlytransitions between the two dark state occur. These transi-
(adiabatically varying amplitudes at the group velocity sig- tions are described by a non-Abelian phase maftig],
nificantly reduced with respect to the speed of light inwhich is a generalization of a geometfierry) phase{15]
vacuum ¢ [3]. Shape-preserving electromagnetic pulsedo the case of degenerate eigenstates of an adiabatic Hamil-
propagating in a coherent atomic medium at the reducetbnian. One may expect that these transitions give rise to rich
group velocity were called in Ref3] “adiabatons.” Experi- and complicated dynamics of laser pulse propagation in an
mental observations of light a pulse group velocity less byoptically dense medium with the tripod level configuration.
many orders of magnitude thashas been repeatedly re- However, only few theoretical works on EIT in such media
ported[4]. Slowing down the laser light followed by spatial are available. Paspalakis and Knighi] considered para-
compression of the pulses provides a unique possibility fometric frequency generation for the case of time-independent
the design of nonlinear-optical devices operating on a fewfields at the medium entrance and calculated the group ve-
photon level5]. Extreme sensitivity of CPT and EIT to de-
viations from the two-photon resonance allowed us to ob-
serve experimentally large Kerr nonlinearity6] and
absorptive optical switching/] in cold rubidium vapor. Such
nonlinear optical phenomena, along with the possibility of
reversible conversion of a photonic excitation to a collective
spin excitation[8] and trapping light in a medium with the
photonic band gap induced by a periodic modulation of the
EIT resonancg9], are of great importance for quantum in-
formation storage and processing. 1> 12>

A different direction in CPT and EIT studies is related to
the systems admitting more than one dark state for the given FIG. 1. Tripod scheme of levels driven by resonant electromag-
real Rabi frequenciekﬂj| and phaseg; associated with the netic fields.
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locity of a weak probe field. Petrosyan and Malakyai] theory of Ref.[10], which applies to the case of a refrac-
investigated theoretically EIT in a tripod medium as a tooltively thin medium.
for optical cross-phase modulation and high-precision mag- Hereafter we assume that all the matter-field coupling
netometry in the weak probe field limit. The value of the constants are equal:
group velocity obtained in Ref$16,17] is strongly reduced
with respect tcc in the same way as in the standard case of G1=G,=G3=G. (4)
EIT in a three-level mediun3]. In the theoretical interpre-
tation of the experiment on four-wave mixing in a solid-state
system with the tripod level configuratiori8] and other
numerical calculations by Harfl9] related to that system,
small optical density of the medium was assumed.

The aim of the present paper is to study pulse propagatio
in a medium with the tripod level schentbereafter briefly
called “tripod mediumj for a general case, in which none o

the three resonant electromagnetic fields is assumed to

weak compared to others. The paper is organized as follow&" adiabatonlike pulse formatlc[ﬂO.,ZJ]. Therefore we can
In Sec. Il we present the set of equations treating pulsgeglect both the differences of oscillator strengths associated

propagation in the adiabatic regime in a tripod medium peWith the three laser-driven transitions and thermal motion of

yond the weak probe approximation. In Sec. Il the analyticatoms' i als_o neglect the rgd|at|ve d_ecay_ of th.e excited
solutions describing slow and fast pulse propagation are Obs_tate|0> since it plays no rple in the adlgbatlc regime, be-
tained. Section IV contains the results of our numerical cal<aus€ of negllglble populatloln of the e>_<C|ted S@}E :
culations and their interpretation. Section V deals with some We parametrize the Rabi frequencies by introducing a

: - —(53 10 121172
particular regimes of propagations. Section VI is devoted t@@eneralized Rabi frequenc=(2i,|(;[)*% two angular
conclusive remarks. variablese and ¢, and three phaseg:

Violation of this assumption leads to adiabaticity breakdown
during the pulse propagation and subsequent pulse front
steepenindg20]. Thermal motion of atoms leads, besides re-
duction of the effective number density of atoms in reso-
ance with the laser radiation, to a similar effect of pulse
ront steepenind21]. However, the pulse shape distortion
f effects manifest themselves at propagation distances much
A%rger than the typical propagation distance associated with

Q, =sin ¥ cosgeXi(),

II. BASIC EQUATIONS

o _ Q, = cosd cosgeX(), (5)
If the three electromagnetic fields are tuned exactly in
resonance with the corresponding transitigps— [0), | i ix
=1,2,3, theHamiltonian in the interaction representation Q3= sin e ().
reads as There are two mutually orthogonal nonabsorbifdark)
R i states associated with the Hamiltonian of Eb:
H=-%2, Q]0)j|+H.c., (1) . .
i |y = cosde ™| 1) — sin 9e7¥2|2),
QO =|Q;|éXi=dyE; /%, wheredy, is the dipole moment ma- _ _ _ _ _
trix element of the given transition. The electric field in the | @) = sin ¥ sin e X1|1) + cosd sin pe X2 2)
jth laser wave i€; exikj(z—t/c)]+c.c.,k; being the radia- — cospe3|3). (6)

tion wave number. The complex amplitudg is a slowly

varying function ofz andt. Expanding the atomic wave An atom initially prepared in either of these two states re-
function as|y)=a|0)+S7,a)[j), we obtain the Schrédinger mains unexcited since

equation for the probability amplitudes:

iy Ao H®®)=0, s=1,2. 7
iaj=-Q;a, [=1,2,3, ) (7)
An atom also remains unexcited if the parameters of the laser

3 radiation vary in time slowly enough to satisfy the adiabatic-

iag = - El Q3. (2 ity conditions
]:
The set of shortened Maxwell equations for slowly varying 9 < Q, o<, (8)
field amplitudes can be written as
and
<i+lé>ﬂ—ie =123 3)
oz cat) 1T R1%% 1= 58S, X <Q =123, 9)

whereGj:kjndéj/(Zﬁso), wheregg is the dielectric permit- However, there are adiabatic transitioffs] between the
tivity of vacuum in Systeme Internationésl) units, andnis  dark states defined by Eq®), where the instantaneous val-
the atomic number density. Taking into consideration propaues of the varying angleg and 9 and phasey; enter. If at
gation effects described by E@3) is the essence of the t— —o an atom was in theth dark state, its wave function at
theory developed in the present section, in contrast to theubsequent instants of time is
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2 ) medium entrance, but the phases are modulated, then the
[W©) = > By (1)), (100  absolute values of the fields amplitudes and hefiGand ¢
s'=1 become time dependent inside the medium. In the present
A ] paper we consider only the case when Bd) holds. In this
where the matriXB obeys the equation case Eqs(15) are reduced to
Bss (1) + % Bse(DAge(t) =0 (11 A11=A»=0, Ap=—-Ay-= v, (17)
. . . . where
with the obvious initial condition
Bss(—) = &g, (12) v=9sing (18)
and andv(z,-»)=0. Then Eqs(11) and(12) yield the following
result[10]:
(0= (@2 o) (13 -
AS,S” - ot ) Bll: 822: COSv, 812: - le: Sinv. (lg)
Now we recall briefly the derivatiofi4] of Egs.(11) and We assume that the tripod medium occupies the half space

(13). First of all, the Hamiltonian(1) does not couple the Z> 0. Initially, att— -, all the atoms in the medium are in
state(10) directly to the excited stat®). And if the adiaba- the coherent superposition of the dark states,

ticity conditions(8) and(9) are satisfied, the coupling of the _ _ (1 : @

state (10) to the most absorbing statE)zﬁjszl(Q;/Q)“), [¥(= =) = cosp| ) + sin B ). (20)
which is orthogonal to both the dark states, becomes neglifhe boundary conditions for the fields at the medium en-
gibly small. This means that adiabatic evolution of an arbi-trance Q(0,t)=Qq(t), 9(0,t)=3(t), and ¢(0,t)=¢y(t) are
trary superposition of the atomic dark states is confined to g@onsistent with Eq(8). Thus the adiabatic regime of the laser
two-dimensional subspace of the three-dimensional Hilbertadiation propagation inside the medium is ensured. It is con-
space with basis vectof$), [2), |3). The subspace compris- venient to introduce new variablgsz and 7=t-z/c, as in

ing an arbitrary dark state evolves in time analogously toref.[3]. Respectively, the derivatives over the new variables
rotation of a plane in a three-dimensional Cartesian space. lare 9/ (97)=d/ (¢t) and 9/ (92) =l (9z) +c Lol (dt).

a general case the right-hand side of Ep) is nonzero for Now we can solve self-consistently the set of
s'=1, s"=2. This means that transitions between the twoschrodinger-Maxwell equation®) and (3). First of all, we
orthogonal dark states occur even in the adiabatic regime\ote that in the adiabatic regim is very small, and the
However, the two orthogonal states defined by @) have  probability amplitudes of the low-energy statgs1,2,3

the property are, according to Eq$10), (19), and(20),

<«1r<1>|§|~1r<2>> =0, (14) aj = cogv+ B)(j|®®) + sin(v+ B)(j|d?). (21

] . ~ Then we find easily that, similarly to the case of adiabatic
prOVIded that qull) and(13) hold. It means that adiabatic pulse propagation in A medium[3]'

transitions betweef ) and|W?) are absent, and the time

derivative of each of these two state vectors is always or- J
thogonal to both of thendi.e., is collinear with the most ;gﬂ‘o’ (22)
absorbing stafe

Explicitly, Eq. (13) takes the form i.e.,Q=0Qu(7). Then we use the trick first applied in REB]:

We express the §mal| probability amplitude of the excited
state asa0=—(i/Qj)o7aj/(ar) and substitute this expression
into the shortened Maxwell equatiof3). We get

A11=—i(j(1C032 19+j(28in2 19),

A= «Ssin(p— i(x1= X2)sin ¥ cosd sin ¢,

Il |?2 G
* — = :_2_|a]|21 j:11213y (23)
Ay =—Ag,, al| Q O“or
or, explicitly,

Ayy=—i[(xy SIMP I + xp cOS D)SIr? ¢ + x5 COS ¢].

(15) i(sim‘}co&p)zz i[cos(v+,8)0051_‘}
It is easy to show(we do it in the end of the present 9 W
section that if the phases of the laser fields are kept constant +sin(v + B)sin ¥ sin¢?,
at the medium entrance, then
xi=0, 1=123 (16) i(cosi} cosg)?= i[— cogv+ B)sin®
in the whole tripod medium. The opposite is not true. If the % w
absolute values of the field amplitudes are constant at the +sin(v+ B)cosd sin ¢,
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J J ) can guess that in the general case of realand/-dependent
&_g Sirf ¢ = (?\_N[S'”(V+ B)cose]”. (24)  pulse amplitudes spontaneous generation of field phases due
to instability is also impossible.

Here we introduced, instead af a new variablgnonlinear
time) I1l. SLOW AND FAST PULSES: ANALYTIC SOLUTION

1 (" The set of Eqs.(28)—(30) is especially convenient for
W:—j Q%(7)d7, (25)  searching analytic solutions in a case when the unknown
Gl functions¢ and depend on only one of the variableg u,.

We find two classes of solutions.

hich has the di i f length. Th 8) takes th
vhich has the dimension ot feng en &) takes the The first one is the class of slow pulses. In this case the

form ;
unknown functions depend only an={-w. The group ve-
dv _dY . locity vy of pulses of such has the same form as that of
woawome (26)  adiabatons in & medium[3]: vy=(c"*+G/Q? " and can be
o - much less tharc. All the derivatives over, vanish, thus
All the initial conditions set at— — apply now tow=0. making Eq.(29) an identity. The two remaining equations
~Only two of Egs.(24) are independent. After some te- (2g) and(30) become ordinary differential equations, yield-
dious calculations they are reduced to ing the general solution in the parametric form:
sin(ﬂﬁ)(ﬁ i) B (i i) _ ) . |sin(v+ B)|
(32
st B ¢, v p =0, 27) _
cose I 274 Here C,, C, are arbitrary constants, and one may take for

v=v({-w) any function of{—w compatible with the adiaba-
ticity conditions (8). Any solution of the form of Eq(32)
satisfies the equatior[s;?/(az)+vala/(o"t)]<p=0 and[d/(9z)

It is convenient now to change the variablesute={—w
andu,=w. The set of Eqs(26) and (27) takes the form

codv+pB) do . I +v51(7/(<9t)]15}:0 thus making obvious the statement thgt

cos¢ 3_111 *sin(v+ B)&_ul =0, (28) defined above is the group velocity of a slow pulse.
Similarly, we find a general solution for the class of fast

sin(v+ B) g 99 pulses, obeying the equatioﬂjé/(&z)+F:‘1a/((9t)]<p:0 and

————_———cogv+p)—=0, (29 [al(9z)+c72al(a)]9=0, i.e., propagating at the speed of
COS¢  dUs AUy light
v v (a9 99 . Cs : [cogv+ B)|
——-——=|——-—/|sine. 30 CoOSp|=7————, |SIN(I-Cy)|=—F——.
e LR L @O leosel= gt a0yl = R

Let us now return to explanation of E(L6). In the way (33

similar to that resulting in derivation of Eq23), we can
obtain an equation describing the evolution of the field
phases inside the medium in a general case:

HereC,, C, are arbitrary constants, and a particularly chosen
form of v=v»(w) must be compatible with Ed8).
Although the set of Eq$28)—(30) looks rather simple and
J G « d . symmetric, our attempts to find its general solution in the
= W Im{ & o) 1= 1,2,3. (31)  case of dependence afand 9 on bothu, andu, have been
unsuccessful. However, we can prove that a time-dependent
If initially (at 7— —) and at the medium boundafy=0) solution in the parametric form
the field phases are set to zero, and the medium is in a su-

perposition of the two dark states with real coefficients, then e=¢(), I=9() (34)

for all 7 and ¢ inside the medium the right-hand side of EQ. does not exist if

(31) is identically zero, since the coefficierdas remain real.

It results in Eq.(16). Mo Py (35)
Of course, to avoid any doubt in physical applicability of y, '

Eq. (16), one needs to perform also linear stability analysis
of solutions of the set of Eq$28)—(30) with respect to fluc-
tuations of the pulse phases. This problem in its general for
is to be addressed in a separate publication, along with
theoretical study of adiabatic pulse propagation in a case of I 09 1 ¢ dg
nontrivial boundary and initial conditions fog;. Now we o T =
mention the results of perturbative treatment in a particular
case of unperturbed fields independent on betland {  But if we make an assumption given by E&4) then Eq.
[16,17], where no instability is found. Correspondingly, we (36) results in

Indeed, Egs(28) and(29) can be considered as linear homo-
geneous algebraic equations for (sifi8) and co$v+p).
ghey have a solution if

+ = 36
&Ul (9U2 CO§ (%) &ul aUZ ( )
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FIG. 2. Splitting of the incident pulse into the fa&) and slow FIG. 3. Collision of pulses(a) The normalized pulse amplitudes

(S) pulses. The normalized pulse amplitudeg () for j=1 (solid  ysw/w, at(a) =0 (the boundary conditions(b) ¢=10w, (numeri-
line), 2 (dashed ling and 3(dotted ling versus scaled nonlinear ca| results, and (c) ¢=30w, (numerical results See the text for
time, w/w, (the same line styles are reserved for the pulse ampliygre detailed description.

tudes in the subsequent figureare displayed for(a) (=0 (the
boundary conditions at the medium entranaad (b) {=20w, (nu-
merical simulation resulis(c) Sine of the mixing angle’ vs w/wjg

entrance The fast and slow pulses at large propagation dis-
for =0 (dashed lingand 2Q0v, (dotted ling. & P ge propag

tances can be excellently fitted with formul&S) and(32),
respectively. E.g., fitting with Eq.33), C,;=0.88,C,=1.75,
ﬂﬂ[(d_ﬁ)ﬂ 1 <d_<p>2]_0 (a7 for wwp<155 and Eq.(32), C;=0.43, C,=-0.90, for
duy du, | \ dv cofo\dr/ | w/wy>15.5 yields the plots practically indistinguishable

. _ from the numerical results displayed in Figh2
If_Eq. (35) .hOIdS’ It fOI.IOWS f“’”? E_q.(37) that ¢=const and . We also investigated numerically collisions between fast
d=const, i.e., there is no variation of the electromagnetic

fields in space and time. and slow pulseg. The rgsult; are presented in Fig. 3. The

The fact that we have not found other pulse group veIocipulse sequence s organized in such away .that the pulse of a
ties thanc and (c"1+G/Q?)"L is in full agreement with the shape satisfying Eq32) enters thg medium first. After some
results of perturbative approahe,17. tlme delay Fhe next pulse obeying E@3) enters the me- '
dium. The first pulses propagates at the slow group velocity
whereas the second one propagates at the speed of light. The
distance between them decreases, and at ceft#lie two

It is natural to expect that any pulse of finite duration pulses overlagthis is marked by O in Fig. ®)]. Their non-
evolves in the medium into pairs of fast and slow pulsesjinear interaction leads to strong distortion of their shapes,
which become more and more separated in space due to thghich becomes apparent at larger propagation distances.
difference of their group velocities. Indeed, our numericalThys adiabatic pulses in a tripod medium cannot be called
simulations confirm such an expectation, so that E88)  solitons in the exact sense of soliton definition by Zabusky
and(33) appear to be general asymptotic solutions of the sefng Kruskal[22]. Note that it is impossible to arrange a
of Egs. (28—(30) in the limit of large{ or largew. An eX-  collision of two adiabatons in & medium.
ample is shown in Fig. 2. The quantity, used for normal- The initial conditions used in the numerical simulations
ization of the horizontal axes of the plots in Fig. 2 anq sub—imp|y L-independent laser fields in the mediumvat0. Of
sequent determines the order of magnitude¢ofand 9, course, the boundary and initial conditions are consistent,
which are~Q?/(Gwp). The adiabaticity conditio8) results  i.e., they give the same values ©f, j=1,2,3, at thepoint
in the following restrictionw,> Q/G. One can see that the ({,w)=(0,0). From the initial conditions for the pulse am-
incident pulse evolves into a well separated pair of {f&t plitudes one can infer from Ed5) the initial values ford
and slow(S) pulses, and the mixing angledescribing tran- ande¢. The initial atomic state also does not depend, @md
sitions between the two dark states emer@be incident s defined by the constant paramegewhich is equal to 1.12
pulse is chosen in such a form that=0 at the medium for Fig. 2 and 1.87 for Fig. 3.

IV. NUMERICAL SOLUTIONS
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V. PARTICULAR REGIMES OF PROPAGATION 1
0.5
There are a few particular regimes of adiabatic pulse g, 0
propagation admitting analytic treatment. The first one oc- G -05¢+
curs if atoms are prepared initially in a statistical mixture - (@)
described by the density matrix@=3(®W) DD 0 10 20 30 40

+|®@) D)), rather than in a pure state. Such a mixed state w/Wo

remains invariant under the action of action of the slowly
varying electromagnetic fieldé@é’f:@, whereB is given

by Eq. (19. Statistical averaging ovep is equivalent to
averaging over the paramet@ uniformly distributed be-
tween 0 and 2, without any correlation with the instanta-

sin @

neous values of and 9. The result of statistical averaging 0 10 20 30 40
of Egs.(24) is w/wo
1 =" N
@z_lﬁ_@’ (9_19:_2(7_13' (39) c 05+
a 2w I 2w = o 4.
S _os|
Equations fore and 9 become decoupled. Their solutign -1 ©)
:<p0(w—§ ), ﬁ:ﬁo(w—% ) describes independent propaga- 0 10 30 30 40
tion of perturbations of} and ¢ at the same group velocity Wiwo
vg=[c1+G/ (209 1
We may hazard a conjecture what occurs if atoms are 051
prepared in a mixed state with the density matgx 8 0
=q|dVNDWV|+(1-q)|PPND?)|, 0<qg=<1. It is likely that g —051t
there are always two classes of pulses with well defined -1 L
group velocities. Ifg grows from 0 to 0.5, one of these ve- 0 10 20 30 40
locities decreases whereas the other increases=At5 they w/wo
achieve the same value mentioned in the previous paragraph, o . ) o
and then again restore their valueand (¢ 1+G/02)™%, asq FIG. 4. Adiabatic pulse propagation for the particular initial

approaches 1. At least, it can be proven easily in the pertui£ondition5=0. The boundary conditiorig=0): (a) the normalized
bative regime, when the changes of batland 9 are small. pulse amplitudes an@) sine functions of the angles= and¢ vs
W/WO The numerical results &t= 20w, for (c) €2;/€ and(d) sin 9,
Another interesting regime is related to particular initial
conditions =0 or B=/2. Let all the atoms be pumped
initially into the state|3). The fields are switched on in the ) ) ) )
following order, which is a generalization of the counterin-  1he case of3=m/2 is physically equivalent to the previ-
tuitive pulse order for & medium[3]: Initially, at w=0 only ~ OUS One, d_|ffer|ng only in notation of the states and electro-
the field driving the empty transitiol®) < |0) is present, i.e., Mmagnetic fields.
¢=39=0. Obviously,8=0. Then the field driving the transi-
tion |1)«|0) is switched on adiabatically, so that grows
and then is kept constant at a certain level. Finally, the field
driving the transition3) < |0) is switched on. Requirements for experimental implementation of adia-
When+ changes, sip=0. Then, according to E418), »  batic pulse propagation in a tripod medium should not differ
remains zero, and Eq€27) are reduced tade/(du;)=0,  from that for slow light propagation ith media[2,4,8. A
d91(du,)=0. Such a propagation regime occurs unless thenethod for initial preparation of a tripod medium in any
front of the 9 pulse, propagating at the slow group velocity, desired superposition state was outlined in the previous sec-
approaches the front of the pulse, propagating at tion. For example, consider a tripod medium with the follow-
Thus one has a possibility of preparation of a tripod me-ng parametersdy; ~0.4eg, e being the elementary charge
dium in any desired coherent superposition of low-energyand ag being the Bohr radiusg; ~ 10° cmt, n=10% cm3,
states. Numerical results presented in Fig. 3 illustrate thifet the total laser intensity be of about 2 6 mW Fcfolose
conclusion: Finally, atoms in the regiond@®< 20w, are pre- to the atomic transition saturation limitHence )=2.4
pared in the state —0.29-0.532)-0.803), as can be de- X1 s andQ?/G=10*cm/si.e., the group velocity of
rived from the valuesp=-0.65, #=0.50 atw=40wn,. Then  the slow pulses isy=~ 0.3X 1078¢c). The valuew,=0.1 cm of
one can suddenly change the laser radiation parameters ihe scaling parameter of the horizontal axes of the Figs. 2—4
such a manner that this state will correspond to a coherens thus large enough to provide adiabaticity. Therefore the
superposition of the two dark states defined with respect tprocesses illustrated in Fig. 2—4 can be observed in a gas cell
the new values of the Rabi frequencies, thus obtaining a newf a length ranging from 1 ciiFig. 3(b)] to 3 cm[Fig. 3(c)].
value for the parametes. The time delay between the fast and slow pulses is of about

VI. CONCLUSION
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0.2 ms, therefore the lifetime of coherence between the stategound-state sublevels. The procedure for achieving the fast
liY, i=1,2,3,should be 1 ms or longer. It is achievable in propagation mode only is completely analogous.
coated cells or cells with a buffer gas. To conclude, we have investigated electromagnetic pulse
To provide an illustrative example, we reconsider Figs.propagation in a coherent atomic medium with the tripod
2—4. If the total laser intensity is kept constant during theconfiguration of levels in the adiabatic regime. The propaga-
pulse, when the ratios between the amplitudes of the thregon equation$28)—<(30) are derived and their solutions in the
components vary, then the va_rlahvlebecomes alinear func- form of slow [Eq. (32)] and fast[Eq. (33)] pulses are ob-
tion of time w/wy=t/t,. Accepting the set of parameters de- 5ined analytically. Our numerical simulations confirm that
scribed above we gat=0.01 ms. Likewise, in terms of the hese solutions are general asymptotic solutions for any inci-
EleCt_”;g's/I? amplitudess; we get();/Q=E;/Ena, Where o pulse of a finite duration. We have suggested a method
m?rx(; obser\r/né the slow propagation mode in the absence (%f preparation of a tripod medium in an arbitr_ary superposi-
the fast one, it is necessary first to choose adiabatically sloqIon of the low-energy states based on switching on the laser
| ' Welds in a counterintuitive order. The tripod scheme provides
varying functl_onv(z—vgt) and the two consta_ntﬁ;l an_d Ca. two interesting features in comparison to thescheme. The
Then the variables and & should be obtamgd using Eq. first one is adiabatic pulse propagation in a medium prepared
(32. Then .Eq.(5) ShOUId be used to detef'“_f“”e the pUIS‘ein a statistical mixture of the two dark states. The second one
S'OV.V'V vilrymg amphtpdesﬂj and hencek,, J_.l’.2’3' By is the possibility of collisions between the slow and fast
settingz=0, one obains the formula for the incident pulse ulses revealing that they change their shapes after nonlinear

shap_e. As concerns experiment, one has to pump aI_I the teraction and thus do not satisfy the classical definition of a
oms into a certain sublevel of the ground state, say, [ihto soliton [22]

then to apply a pulse sequence as described in Sec. V, {0
prepare the medium in the initial state consistent with the

pre-chosen initial values ap and 9. At the final stage, the ACKNOWLEDGMENTS
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