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We investigate the problem of propagation of three-component resonant light pulses with adiabatically
varying amplitudes through a medium consisting of atoms with the tripod level configuration. By means of
both analytic and numerical methods we find the two modes of shape-preserving pulse propagation. The pulse
propagation velocity of the fast mode is equal to the speed of light in vacuum, whereas the group velocity of
the othersslowd mode is significantly slowed down. These two modes represent a general asymptotic solution
of the problem of adiabatic pulse propagation, i.e., a pulse of any shape, which is consistent with the adiaba-
ticity conditions, and a finite duration evolves at large propagation distancessand, correspondingly, at large
times of interaction with the mediumd to a well-separated pair of fast and slow pulses. The experimental
requirements for adiabatic pulse propagation in a tripod medium are similar to that needed for observation of
slow light propagation in a medium with theL configuration of levels. However, the tripod scheme offers a
different possibility, which is absent in theL-medium case: collisions of fast and slow pulses. It is found
numerically that after such a collision the shapes of the pulses change, so these pulses do not match the
classical definition of a soliton.
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I. INTRODUCTION

Coherent population trappingsCPTd is a well-known phe-
nomenon of preparation of atoms in a coherent superposition
of ground or metastable state sublevelssso-called dark stated,
which is immune to excitation by a two-component laser
radiation under the two-photon resonance conditionf1g.
Since the laser radiation is not scattered by atoms in the dark
state, the radiation absorption is dramatically reduced. This
effect is called electromagnetically induced transparency
sEITd and is actively studied since the early 1990’sf2g. One
of the most striking features of EIT is the possibility of
shape-preserving propagation of light pulses with slowly
sadiabaticallyd varying amplitudes at the group velocity sig-
nificantly reduced with respect to the speed of light in
vacuum c f3g. Shape-preserving electromagnetic pulses
propagating in a coherent atomic medium at the reduced
group velocity were called in Ref.f3g “adiabatons.” Experi-
mental observations of light a pulse group velocity less by
many orders of magnitude thanc has been repeatedly re-
portedf4g. Slowing down the laser light followed by spatial
compression of the pulses provides a unique possibility for
the design of nonlinear-optical devices operating on a few-
photon levelf5g. Extreme sensitivity of CPT and EIT to de-
viations from the two-photon resonance allowed us to ob-
serve experimentally large Kerr nonlinearityf6g and
absorptive optical switchingf7g in cold rubidium vapor. Such
nonlinear optical phenomena, along with the possibility of
reversible conversion of a photonic excitation to a collective
spin excitationf8g and trapping light in a medium with the
photonic band gap induced by a periodic modulation of the
EIT resonancef9g, are of great importance for quantum in-
formation storage and processing.

A different direction in CPT and EIT studies is related to
the systems admitting more than one dark state for the given
real Rabi frequenciesuV ju and phasesx j associated with the

resonantly driven transitions. The simplest scheme of such a
kind is the tripod scheme displayed in Fig. 1. Stimulated
Raman adiabatic passagesSTIRAPd in such an optically thin
atomic medium with the tripod level scheme was investi-
gated theoreticallyf10g and demonstrated experimentally
f11g by Bergmann and co-workers. A proposal to use the
tripod scheme as a physical implementation of a qubit has
been made recentlyf12g. A five-level scheme being the ex-
tension of the tripod scheme was considered in Ref.f13g.

The very specifics of the tripod scheme is that during
adiabatically slow change of the external field parameters,
transitions between the two dark state occur. These transi-
tions are described by a non-Abelian phase matrixf14g,
which is a generalization of a geometricsBerryd phasef15g
to the case of degenerate eigenstates of an adiabatic Hamil-
tonian. One may expect that these transitions give rise to rich
and complicated dynamics of laser pulse propagation in an
optically dense medium with the tripod level configuration.
However, only few theoretical works on EIT in such media
are available. Paspalakis and Knightf16g considered para-
metric frequency generation for the case of time-independent
fields at the medium entrance and calculated the group ve-

FIG. 1. Tripod scheme of levels driven by resonant electromag-
netic fields.
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locity of a weak probe field. Petrosyan and Malakyanf17g
investigated theoretically EIT in a tripod medium as a tool
for optical cross-phase modulation and high-precision mag-
netometry in the weak probe field limit. The value of the
group velocity obtained in Refs.f16,17g is strongly reduced
with respect toc in the same way as in the standard case of
EIT in a three-level mediumf3g. In the theoretical interpre-
tation of the experiment on four-wave mixing in a solid-state
system with the tripod level configurationf18g and other
numerical calculations by Hamf19g related to that system,
small optical density of the medium was assumed.

The aim of the present paper is to study pulse propagation
in a medium with the tripod level schemeshereafter briefly
called “tripod medium”d for a general case, in which none of
the three resonant electromagnetic fields is assumed to be
weak compared to others. The paper is organized as follows.
In Sec. II we present the set of equations treating pulse
propagation in the adiabatic regime in a tripod medium be-
yond the weak probe approximation. In Sec. III the analytic
solutions describing slow and fast pulse propagation are ob-
tained. Section IV contains the results of our numerical cal-
culations and their interpretation. Section V deals with some
particular regimes of propagations. Section VI is devoted to
conclusive remarks.

II. BASIC EQUATIONS

If the three electromagnetic fields are tuned exactly in
resonance with the corresponding transitionsu jl↔ u0l, j
=1,2,3, theHamiltonian in the interaction representation
reads as

Ĥ = − "o
j=1

3

V ju0lk j u + H.c., s1d

V j ;uV jueix j =d0jEj /", whered0j is the dipole moment ma-
trix element of the given transition. The electric field in the
j th laser wave isEj expfikjsz− t /cdg+c.c.,kj being the radia-
tion wave number. The complex amplitudeEj is a slowly
varying function of z and t. Expanding the atomic wave
function asucl=a0u0l+o j=1

3 aju jl, we obtain the Schrödinger
equation for the probability amplitudes:

iȧ j = − V j
*a0, j = 1,2,3,

iȧ0 = − o
j=1

3

V jaj . s2d

The set of shortened Maxwell equations for slowly varying
field amplitudes can be written as

S ]

]z
+

1

c

]

]t
DV j = iGja0aj

* , j = 1,2,3, s3d

whereGj =kjnd0j
2 / s2"«0d, where«0 is the dielectric permit-

tivity of vacuum in Système InternationalsSId units, andn is
the atomic number density. Taking into consideration propa-
gation effects described by Eq.s3d is the essence of the
theory developed in the present section, in contrast to the

theory of Ref.f10g, which applies to the case of a refrac-
tively thin medium.

Hereafter we assume that all the matter-field coupling
constants are equal:

G1 = G2 = G3 ; G. s4d

Violation of this assumption leads to adiabaticity breakdown
during the pulse propagation and subsequent pulse front
steepeningf20g. Thermal motion of atoms leads, besides re-
duction of the effective number density of atoms in reso-
nance with the laser radiation, to a similar effect of pulse
front steepeningf21g. However, the pulse shape distortion
effects manifest themselves at propagation distances much
larger than the typical propagation distance associated with
an adiabatonlike pulse formationf20,21g. Therefore we can
neglect both the differences of oscillator strengths associated
with the three laser-driven transitions and thermal motion of
atoms. We also neglect the radiative decay of the excited
state u0l since it plays no role in the adiabatic regime, be-
cause of negligible population of the excited statef3g.

We parametrize the Rabi frequencies by introducing a
generalized Rabi frequencyV=so j=1

3 uV ju2d1/2, two angular
variablesw andq, and three phasesx j:

V1 = sinq cosweix1V,

V2 = cosq cosweix2V, s5d

V3 = sinweix3V.

There are two mutually orthogonal nonabsorbingsdarkd
states associated with the Hamiltonian of Eq.s1d:

uFs1dl = cosqe−ix1u1l − sinqe−ix2u2l,

uFs2dl = sinq sinwe−ix1u1l + cosq sinwe−ix2u2l

− coswe−ix3u3l. s6d

An atom initially prepared in either of these two states re-
mains unexcited since

ĤuFssdl = 0, s= 1,2. s7d

An atom also remains unexcited if the parameters of the laser
radiation vary in time slowly enough to satisfy the adiabatic-
ity conditions

q̇ ! V, ẇ ! V, s8d

and

ẋ j ! V, j = 1,2,3. s9d

However, there are adiabatic transitionsf14g between the
dark states defined by Eqs.s6d, where the instantaneous val-
ues of the varying anglesw andq and phasesx j enter. If at
t→−` an atom was in thesth dark state, its wave function at
subsequent instants of time is
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uCssdl = o
s8=1

2

Bss8stduF
ss8dl, s10d

where the matrixB̂ obeys the equation

Ḃss8std + o
s9

Bss9stdAs8s9std = 0 s11d

with the obvious initial condition

Bss8s− `d = dss8, s12d

and

As8s9std = kFss8du
]

]t
uFss9dl. s13d

Now we recall briefly the derivationf14g of Eqs.s11d and
s13d. First of all, the Hamiltonians1d does not couple the
states10d directly to the excited stateu0l. And if the adiaba-
ticity conditionss8d ands9d are satisfied, the coupling of the
state s10d to the most absorbing stateuJl=o j=1

3 sV j
* /Vdu jl,

which is orthogonal to both the dark states, becomes negli-
gibly small. This means that adiabatic evolution of an arbi-
trary superposition of the atomic dark states is confined to a
two-dimensional subspace of the three-dimensional Hilbert
space with basis vectorsu1l, u2l, u3l. The subspace compris-
ing an arbitrary dark state evolves in time analogously to
rotation of a plane in a three-dimensional Cartesian space. In
a general case the right-hand side of Eq.s13d is nonzero for
s8=1, s9=2. This means that transitions between the two
orthogonal dark states occur even in the adiabatic regime.
However, the two orthogonal states defined by Eq.s10d have
the property

kCs1du
]

]t
uCs2dl = 0, s14d

provided that Eqs.s11d ands13d hold. It means that adiabatic
transitions betweenuCs1dl anduCs2dl are absent, and the time
derivative of each of these two state vectors is always or-
thogonal to both of themsi.e., is collinear with the most
absorbing stated.

Explicitly, Eq. s13d takes the form

A11 = − isẋ1 cos2 q + ẋ2 sin2 qd,

A12 = q̇ sinw − isẋ1 − ẋ2dsinq cosq sinw,

A21 = − A12
* ,

A22 = − ifsẋ1 sin2 q + ẋ2 cos2 qdsin2 w + ẋ3 cos2 wg.

s15d

It is easy to showswe do it in the end of the present
sectiond that if the phases of the laser fields are kept constant
at the medium entrance, then

ẋ j = 0, j = 1,2,3 s16d

in the whole tripod medium. The opposite is not true. If the
absolute values of the field amplitudes are constant at the

medium entrance, but the phases are modulated, then the
absolute values of the fields amplitudes and henceq and w
become time dependent inside the medium. In the present
paper we consider only the case when Eq.s16d holds. In this
case Eqs.s15d are reduced to

A11 = A22 = 0, A12 = − A21 = ṅ, s17d

where

ṅ = q̇ sinw s18d

andnsz,−`d=0. Then Eqs.s11d ands12d yield the following
result f10g:

B11 = B22 = cosn, B12 = − B21 = sinn. s19d

We assume that the tripod medium occupies the half space
z.0. Initially, at t→−`, all the atoms in the medium are in
the coherent superposition of the dark states,

uCs− `dl = cosbuFs1dl + sinbuFs2dl. s20d

The boundary conditions for the fields at the medium en-
trance Vs0,td=V0std, qs0,td=q0std, and ws0,td=w0std are
consistent with Eq.s8d. Thus the adiabatic regime of the laser
radiation propagation inside the medium is ensured. It is con-
venient to introduce new variablesz=z and t= t−z/c, as in
Ref. f3g. Respectively, the derivatives over the new variables
are] / s]td=] / s]td and] / s]zd=] / s]zd+c−1] / s]td.

Now we can solve self-consistently the set of
Schrödinger-Maxwell equationss2d and s3d. First of all, we
note that in the adiabatic regimea0 is very small, and the
probability amplitudes of the low-energy statess j =1,2,3d
are, according to Eqs.s10d, s19d, ands20d,

aj = cossn + bdk j uFs1dl + sinsn + bdk j uFs2dl. s21d

Then we find easily that, similarly to the case of adiabatic
pulse propagation in aL mediumf3g,

]

]z
V = 0, s22d

i.e.,V=V0std. Then we use the trick first applied in Ref.f3g:
We express the small probability amplitude of the excited
state asa0=−si /V j

*d]aj / s]td and substitute this expression
into the shortened Maxwell equationss3d. We get

]

]z
UV j

V
U2

=
G

V2

]

]t
uaju2, j = 1,2,3, s23d

or, explicitly,

]

]z
ssinq coswd2 =

]

]w
fcossn + bdcosq

+ sinsn + bdsinq sinwg2,

]

]z
scosq coswd2 =

]

]w
f− cossn + bdsinq

+ sinsn + bdcosq sinwg2,
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]

]z
sin2 w =

]

]w
fsinsn + bdcoswg2. s24d

Here we introduced, instead oft, a new variablesnonlinear
timed

w =
1

G
E

−`

t

V0
2st8ddt8, s25d

which has the dimension of length. Then Eq.s18d takes the
form

]n

]w
=

]q

]w
sinw. s26d

All the initial conditions set att→−` apply now tow=0.
Only two of Eqs.s24d are independent. After some te-

dious calculations they are reduced to

sinsn + bd
cosw

S ]

]z
+

]

]w
Dw − cossn + bdS ]

]z
+

]

]w
Dq = 0,

cossn + bd
cosw

]w

]z
+ sinsn + bd

]q

]z
= 0. s27d

It is convenient now to change the variables tou1=z−w
andu2=w. The set of Eqs.s26d and s27d takes the form

cossn + bd
cosw

]w

]u1
+ sinsn + bd

]q

]u1
= 0, s28d

sinsn + bd
cosw

]w

]u2
− cossn + bd

]q

]u2
= 0, s29d

]n

]u1
−

]n

]u2
= S ]q

]u1
−

]q

]u2
Dsinw. s30d

Let us now return to explanation of Eq.s16d. In the way
similar to that resulting in derivation of Eq.s23d, we can
obtain an equation describing the evolution of the field
phases inside the medium in a general case:

]

]z
x j =

G

uV ju2
ImSaj

* ]

]t
ajD, j = 1,2,3. s31d

If initially sat t→−`d and at the medium boundarysz=0d
the field phases are set to zero, and the medium is in a su-
perposition of the two dark states with real coefficients, then
for all t andz inside the medium the right-hand side of Eq.
s31d is identically zero, since the coefficientsaj remain real.
It results in Eq.s16d.

Of course, to avoid any doubt in physical applicability of
Eq. s16d, one needs to perform also linear stability analysis
of solutions of the set of Eqs.s28d–s30d with respect to fluc-
tuations of the pulse phases. This problem in its general form
is to be addressed in a separate publication, along with a
theoretical study of adiabatic pulse propagation in a case of
nontrivial boundary and initial conditions forx j. Now we
mention the results of perturbative treatment in a particular
case of unperturbed fields independent on botht and z
f16,17g, where no instability is found. Correspondingly, we

can guess that in the general case of real,t-, andz-dependent
pulse amplitudes spontaneous generation of field phases due
to instability is also impossible.

III. SLOW AND FAST PULSES: ANALYTIC SOLUTION

The set of Eqs.s28d–s30d is especially convenient for
searching analytic solutions in a case when the unknown
functionsw andq depend on only one of the variablesu1, u2.
We find two classes of solutions.

The first one is the class of slow pulses. In this case the
unknown functions depend only onu1=z−w. The group ve-
locity vg of pulses of such has the same form as that of
adiabatons in aL mediumf3g: vg=sc−1+G/V2d−1 and can be
much less thanc. All the derivatives overu2 vanish, thus
making Eq.s29d an identity. The two remaining equations
s28d and s30d become ordinary differential equations, yield-
ing the general solution in the parametric form:

ucoswu =
C1

ucossn + bdu
, usinsq − C2du =

usinsn + bdu
Î1 − C1

2
.

s32d

Here C1, C2 are arbitrary constants, and one may take for
n=nsz−wd any function ofz−w compatible with the adiaba-
ticity conditions s8d. Any solution of the form of Eq.s32d
satisfies the equationsf] / s]zd+vg

−1] / s]tdgw=0 and f] / s]zd
+vg

−1] / s]tdgq=0 thus making obvious the statement thatvg

defined above is the group velocity of a slow pulse.
Similarly, we find a general solution for the class of fast

pulses, obeying the equationsf] / s]zd+c−1] / s]tdgw=0 and
f] / s]zd+c−1] / s]tdgq=0, i.e., propagating at the speed of
light:

ucoswu =
C3

usinsn + bdu
, usinsq − C4du =

ucossn + bdu
Î1 − C3

2
.

s33d

HereC3, C4 are arbitrary constants, and a particularly chosen
form of n=nswd must be compatible with Eq.s8d.

Although the set of Eqs.s28d–s30d looks rather simple and
symmetric, our attempts to find its general solution in the
case of dependence ofw andq on bothu1 andu2 have been
unsuccessful. However, we can prove that a time-dependent
solution in the parametric form

w = wsnd, q = qsnd s34d

does not exist if

]n

]u1
Þ 0,

]n

]u2
Þ 0. s35d

Indeed, Eqs.s28d ands29d can be considered as linear homo-
geneous algebraic equations for sinsn+bd and cossn+bd.
They have a solution if

]q

]u1

]q

]u2
+

1

cos2 w

]w

]u1

]w

]u2
= 0. s36d

But if we make an assumption given by Eq.s34d then Eq.
s36d results in
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]n

]u1

]n

]u2
FSdq

dn
D2

+
1

cos2 w
Sdw

dn
D2G = 0. s37d

If Eq. s35d holds, it follows from Eq.s37d that w=const and
q=const, i.e., there is no variation of the electromagnetic
fields in space and time.

The fact that we have not found other pulse group veloci-
ties thanc and sc−1+G/V2d−1 is in full agreement with the
results of perturbative approachf16,17g.

IV. NUMERICAL SOLUTIONS

It is natural to expect that any pulse of finite duration
evolves in the medium into pairs of fast and slow pulses,
which become more and more separated in space due to the
difference of their group velocities. Indeed, our numerical
simulations confirm such an expectation, so that Eqs.s32d
ands33d appear to be general asymptotic solutions of the set
of Eqs. s28d–s30d in the limit of largez or largew. An ex-
ample is shown in Fig. 2. The quantityw0 used for normal-
ization of the horizontal axes of the plots in Fig. 2 and sub-

sequent determines the order of magnitude ofẇ and q̇,
which are,V2/ sGw0d. The adiabaticity conditions8d results
in the following restriction:w0@V /G. One can see that the
incident pulse evolves into a well separated pair of fastsFd
and slowsSd pulses, and the mixing anglen describing tran-
sitions between the two dark states emergessthe incident
pulse is chosen in such a form thatn;0 at the medium

entranced. The fast and slow pulses at large propagation dis-
tances can be excellently fitted with formulass33d and s32d,
respectively. E.g., fitting with Eq.s33d, C1=0.88,C2=1.75,
for w/w0,15.5 and Eq.s32d, C3=0.43, C4=−0.90, for
w/w0.15.5 yields the plots practically indistinguishable
from the numerical results displayed in Fig. 2sbd.

We also investigated numerically collisions between fast
and slow pulses. The results are presented in Fig. 3. The
pulse sequence is organized in such a way that the pulse of a
shape satisfying Eq.s32d enters the medium first. After some
time delay the next pulse obeying Eq.s33d enters the me-
dium. The first pulses propagates at the slow group velocity
whereas the second one propagates at the speed of light. The
distance between them decreases, and at certainz the two
pulses overlapfthis is marked by O in Fig. 3sbdg. Their non-
linear interaction leads to strong distortion of their shapes,
which becomes apparent at larger propagation distances.
Thus adiabatic pulses in a tripod medium cannot be called
solitons in the exact sense of soliton definition by Zabusky
and Kruskalf22g. Note that it is impossible to arrange a
collision of two adiabatons in aL medium.

The initial conditions used in the numerical simulations
imply z-independent laser fields in the medium atw=0. Of
course, the boundary and initial conditions are consistent,
i.e., they give the same values ofV j, j =1,2,3, at thepoint
sz ,wd=s0,0d. From the initial conditions for the pulse am-
plitudes one can infer from Eq.s5d the initial values forq
andw. The initial atomic state also does not depend onz and
is defined by the constant parameterb, which is equal to 1.12
for Fig. 2 and 1.87 for Fig. 3.

FIG. 2. Splitting of the incident pulse into the fastsFd and slow
sSd pulses. The normalized pulse amplitudesV j /V for j =1 ssolid
lined, 2 sdashed lined, and 3 sdotted lined versus scaled nonlinear
time, w/w0 sthe same line styles are reserved for the pulse ampli-
tudes in the subsequent figuresd are displayed forsad z=0 sthe
boundary conditions at the medium entranced andsbd z=20w0 snu-
merical simulation resultsd. scd Sine of the mixing anglen vs w/w0

for z=0 sdashed lined and 20w0 sdotted lined.

FIG. 3. Collision of pulses.sad The normalized pulse amplitudes
vs w/w0 at sad z=0 sthe boundary conditionsd, sbd z=10w0 snumeri-
cal resultsd, and scd z=30w0 snumerical resultsd. See the text for
more detailed description.
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V. PARTICULAR REGIMES OF PROPAGATION

There are a few particular regimes of adiabatic pulse
propagation admitting analytic treatment. The first one oc-
curs if atoms are prepared initially in a statistical mixture
described by the density matrix %̂= 1

2suFs1dlkFs1du
+ uFs2dlkFs2dud, rather than in a pure state. Such a mixed state
remains invariant under the action of action of the slowly

varying electromagnetic fields:B̂%̂B̂†=%̂, whereB̂ is given
by Eq. s19d. Statistical averaging over%̂ is equivalent to
averaging over the parameterb uniformly distributed be-
tween 0 and 2p, without any correlation with the instanta-
neous values ofw andq. The result of statistical averaging
of Eqs.s24d is

]w

]z
= −

1

2

]w

]w
,

]q

]z
= −

1

2

]q

]w
. s38d

Equations forw andq become decoupled. Their solutionw
=w0sw− 1

2zd, q=q0sw− 1
2zd describes independent propaga-

tion of perturbations ofq andw at the same group velocity
vg=fc−1+G/ s2V2dg−1.

We may hazard a conjecture what occurs if atoms are
prepared in a mixed state with the density matrix%̂8
=quFs1dlkFs1du+s1−qduFs2dlkFs2du, 0øqø1. It is likely that
there are always two classes of pulses with well defined
group velocities. Ifq grows from 0 to 0.5, one of these ve-
locities decreases whereas the other increases. Atq=0.5 they
achieve the same value mentioned in the previous paragraph,
and then again restore their valuesc andsc−1+G/V2d−1, asq
approaches 1. At least, it can be proven easily in the pertur-
bative regime, when the changes of bothw andq are small.

Another interesting regime is related to particular initial
conditions b=0 or b=p /2. Let all the atoms be pumped
initially into the stateu3l. The fields are switched on in the
following order, which is a generalization of the counterin-
tuitive pulse order for aL mediumf3g: Initially, at w=0 only
the field driving the empty transitionu2l↔ u0l is present, i.e.,
w=q=0. Obviously,b=0. Then the field driving the transi-
tion u1l↔ u0l is switched on adiabatically, so thatq grows
and then is kept constant at a certain level. Finally, the field
driving the transitionu3l↔ u0l is switched on.

Whenq changes, sinw=0. Then, according to Eq.s18d, n
remains zero, and Eqs.s27d are reduced to]w / s]u1d=0,
]q / s]u2d=0. Such a propagation regime occurs unless the
front of theq pulse, propagating at the slow group velocity,
approaches the front of thew pulse, propagating atc.

Thus one has a possibility of preparation of a tripod me-
dium in any desired coherent superposition of low-energy
states. Numerical results presented in Fig. 3 illustrate this
conclusion: Finally, atoms in the region 0,z,20w0 are pre-
pared in the state −0.29u1l−0.53u2l−0.80u3l, as can be de-
rived from the valuesw=−0.65,q=0.50 atw=40w0. Then
one can suddenly change the laser radiation parameters in
such a manner that this state will correspond to a coherent
superposition of the two dark states defined with respect to
the new values of the Rabi frequencies, thus obtaining a new
value for the parameterb.

The case ofb=p /2 is physically equivalent to the previ-
ous one, differing only in notation of the states and electro-
magnetic fields.

VI. CONCLUSION

Requirements for experimental implementation of adia-
batic pulse propagation in a tripod medium should not differ
from that for slow light propagation inL media f2,4,8g. A
method for initial preparation of a tripod medium in any
desired superposition state was outlined in the previous sec-
tion. For example, consider a tripod medium with the follow-
ing parameters:d0j <0.4eaB, e being the elementary charge
and aB being the Bohr radius,kj <105 cm−1, n<1012 cm−3.
Let the total laser intensity be of about 2.6 mW/cm2 sclose
to the atomic transition saturation limitd. Hence V<2.4
3106 s−1 and V2/G<104 cm/s si.e., the group velocity of
the slow pulses isvg<0.3310−6cd. The valuew0=0.1 cm of
the scaling parameter of the horizontal axes of the Figs. 2–4
is thus large enough to provide adiabaticity. Therefore the
processes illustrated in Fig. 2–4 can be observed in a gas cell
of a length ranging from 1 cmfFig. 3sbdg to 3 cmfFig. 3scdg.
The time delay between the fast and slow pulses is of about

FIG. 4. Adiabatic pulse propagation for the particular initial
conditionb=0. The boundary conditionssz=0d: sad the normalized
pulse amplitudes andsbd sine functions of the anglesa=q andw vs
w/w0. The numerical results atz=20w0 for scd V j /V andsdd sinq,
sinw.
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0.2 ms, therefore the lifetime of coherence between the states
u jl, j =1,2,3,should be 1 ms or longer. It is achievable in
coated cells or cells with a buffer gas.

To provide an illustrative example, we reconsider Figs.
2–4. If the total laser intensity is kept constant during the
pulse, when the ratios between the amplitudes of the three
components vary, then the variablew becomes a linear func-
tion of time w/w0= t / t0. Accepting the set of parameters de-
scribed above we gett=0.01 ms. Likewise, in terms of the
electric-field amplitudesEj we get V j /V=Ej /Emax, where
Emax=70 V/m.

To observe the slow propagation mode in the absence of
the fast one, it is necessary first to choose adiabatically slow
varying functionnsz−vgtd and the two constants,C1 andC2.
Then the variablesw and q should be obtained using Eq.
s32d. Then Eq.s5d should be used to determine the pulse
slowly varying amplitudesV j and henceEj, j =1,2,3. By
settingz=0, one obtains the formula for the incident pulse
shape. As concerns experiment, one has to pump all the at-
oms into a certain sublevel of the ground state, say, intou1l,
then to apply a pulse sequence as described in Sec. V, to
prepare the medium in the initial state consistent with the
pre-chosen initial values ofw and q. At the final stage, the
amplitudes of the three laser fields must be rapidly changed
sonly if one wants to perform an experiment for the value of
b other than 0 orp /2d and then slowly modulated to create
an incident pulse of the desired form. The time interval be-
tween the medium preparation stage and sending the pulse
must not exceed the lifetime of coherence between the

ground-state sublevels. The procedure for achieving the fast
propagation mode only is completely analogous.

To conclude, we have investigated electromagnetic pulse
propagation in a coherent atomic medium with the tripod
configuration of levels in the adiabatic regime. The propaga-
tion equationss28d–s30d are derived and their solutions in the
form of slow fEq. s32dg and fastfEq. s33dg pulses are ob-
tained analytically. Our numerical simulations confirm that
these solutions are general asymptotic solutions for any inci-
dent pulse of a finite duration. We have suggested a method
of preparation of a tripod medium in an arbitrary superposi-
tion of the low-energy states based on switching on the laser
fields in a counterintuitive order. The tripod scheme provides
two interesting features in comparison to theL scheme. The
first one is adiabatic pulse propagation in a medium prepared
in a statistical mixture of the two dark states. The second one
is the possibility of collisions between the slow and fast
pulses revealing that they change their shapes after nonlinear
interaction and thus do not satisfy the classical definition of a
soliton f22g.
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