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Quantum phase-space picture of Bose-Einstein condensates in a double well
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We present a quantum phase-space model of the Bose-Einstein condB&ES@ta a double-well potential.
In a quantum two-mode approximation we examine the eigenvectors and eigenvalues and find that the energy
correlation diagram indicates a transition from a delocalized to a fragmented regime. Phase-space information
is extracted from the stationary quantum states using the Husimi distribution function. We show that the
mean-field phase-space characteristics of a nonrigid physical pendulum arises from the exact quantum states,
and that only 4—8 particles per well are needed to reach the semiclassical limit. For a driven double-well BEC,
we show that the classical chaotic dynamics is manifest in the dynamics of the quantum states. Phase-space
analogy also suggests thatmaphase-displaced wave packet put on the unstable fixed point on a separatrix
bifurcates to create a superposition of two pendulum rotor states—a macroscopic superposition state of BEC.
We show that the choice of initial barrier height and ramping, following ghase imprinting on the conden-
sate, can be used to generate controlled entangled number states with tunable extremity and sharpness.
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I. INTRODUCTION double-well BEC in a two-mode approximatipf,5,11], and
] ) ] show that the mean-field semiclassical limit of a nonrigid
Although the Bose-Einstein condensaB£C) is well de-  physical pendulum emerges from the exact quantum treat-
scribed by mean-field theofyt], it has many aspects that can ment. By treating the phase and the number difference of the
only be described in a quantum picture containing a propegondensates in two wells as conjugate variables, phase-space
description of correlations. Examples include numberinformation is extracted from the exagivo-mode quantum
squeezind2] and the superfluid to Mott insulator transition wave function using the Husimi projecti¢t2] of semiclas-
[3] observed recently in optical lattices. The essential undersical quantum mechanics. We show that these phase-space
lying physics can be understood with the study of a simpleiprojections of exact quantum eigenstates are localized on the
double-well BEC with a variable barrier height in the well- known classical energy contours of the nonrigid physical
known quantum two-mode approximatidd,5]. Quantum  pendulum10], and thus the mean-field classical phase-space
fluids in a double-well potential exhibit many rich phenom- properties, such as libration and states, are seen to be a
ena related to the coherence, e.g., the Josephson Eflect Property of the exact quantum eigenstates. We explore quan-
and the de Broglie wave interferenfg]. A mean-field de- tum classical correspondence for the stationary states in
scription,  although appropriate in  explaining thesePhase space as a_fu_nctlon of particle number and show that
“Josephson-related effects,” cannot describe the “numbefhe semiclassical limit already emerges for particle numbers

squeezing effects” described earlier. In this paper we deveIoBS_ﬁTa” as :"‘8 pﬁr well. del al | derl
a quantum phase-space picture of BEC in a double well and € quantum phase-space model also reveais an underly-

study the connection between the mean-field and quantur'rqg time-dependent semiclassical dynamics in phase space.

effects. As important applications of our model, we investi-In a study of the dynamics of a displaced coherent state, we
: mpC PP ' . ._show a surprisingly close correspondence between classical
gate dynamics in phase space, study quantum manifestatio

f classical ch in adri doubl I and show d Whorls and guantum dynamics even fdras small as four
of classica cfaos mbla rven IOL:j eweb, and show _i’]naml'l er well. We further illustrate that a sinusoidally driven
generation of tunable entangled number states with wellyq, pje el BEC(a driven physical pendulunshows clear
defined and controlled entanglement.

signatures of classical chaos in the quantum phase space.
It was long ago noted by Andersg8] that the Josephson rpis can be contrasted with a different property of a chaotic
effect, namely, two quantum fluids connected by a tunne

System—th tly observed ph f dynamical
junction[9], may be modeled as a physical pendulum. Simi ystem © fecenty 0DSSIVEC phenomenon of dynamica

: : . > "tunneling[13,14], which is a quantum motion between two
I?rly, SNerZ'EI a_l. n I?ef. [10] SEFng?(tf&aégce sem|ctl)a55|cgl resonance zones in phase space not allowed within the clas-
(largeN) dynamics of two weakly linke S can be moa- gjqy dynamics. We also discuss the dynamics of a coherent

eled as a classical nonrigid physical _pendulum_. We begmground state after a sudden change of barrier hd@Hs)].
here, with the full quantum-mechanical description of a

We show that the oscillations between a number-squeezed
and a phase-squeezed state is a rotation of a pulsing ellipse in
the phase space.

*Present address: Department of Physics, University of Michigan, Due to the macroscopic nature of its wave function, BEC

Ann Arbor, Ml 48109, USA. should be an ideal system for the generation of macroscopic
"Present address: Department of Chemistry, Columbia Universityquantum superposition statéSchrodinger cat statesThe
New York, NY 10027, USA. creation of macroscopic superposition states in various
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condensed-matter systems has received attefttiginIn the  be simplified in the well-known two-mode approximation
context of BEC, several authors have suggested producing,5]. Many authors have studied the double-well condensate
such state$17-2(, although none have been demonstratedising the two-mode approximation. We use the model intro-
experimentally. We show how such macroscopic quantunduced by Spekkens and Sip&]. The exclusion of the non-
superposition states are generated in phase space withliaear tunneling terms in this model gives rise to the Bose-
single-component BEC in a double well. Starting with aHubbard mode[21]. The full two-mode Hamiltonian is
ground state centered at the origin and displacing it through . . .

a  phase imprinting to put it on the hyperbolic fixed point ~ H= €N, + egNg+ [e,r + gTo(N - 1)](a/ag + ala,)

of the classical phase space, the autonomous dynamics splits T . T

the wave packet along the separatrix to create entangled +M(NE+N2R_N)+b(aEaIaRaR+ atala a
number states of the form 2 2

+ 4N, Nr), 3
W) = %(|nLvN_nL>+ IN=n,n)), (1) . - R)A o ©
V2 whereN, =a/a,, Ng=alag, N=N_+Ng, and

where |n_,ng) denotes a state with, particles in the left 9
well, ng in the right well, andN=n, +ng. The idea of the € :f dr¢i(r)<—ﬁ—v2+V(r)>¢j(r), (4)
exploitation of unstable fixed points to generate such en- 2m
tangled states with BEC in a double well and two-component herei i=L R
condensates in a single trap has also been discussed in the JEER
works of Polkovnikovet al. [19] and Micheliet al. [20], a
discussion of which is given in Sec. V. Unlike in other pro- To= f dr ¢ (r); T1=f dr ¢ (r) g(r);
posals[17,19,2Q, we use the barrier height to control the
squeezing of the initial BEC ground state, followed by a
continuous change of barrier height to control both the ex- T —fdr B0) 2 5)
tremity (the value ofn) and the sharpnes&he spread 2= L R
around n.) of the final entangled state. A very simple
particle-loss schemgl8] is used here to test the robustnessHere ¢ and¢g are the left and right localized single-particle
of the entangled states. Schrodinger wave functions, theg, andegg are the energies

The paper is organized as follows. In Sec. Il we introduceof @ single particle in the left and right wellg is the
the model Hamiltonian and examine its ground and excite@ingle-particle tunneling amplituddy is the mean-field en-
states. In Sec. Il we find the Husimi probablity distribution €rgy in each well andr, , are nonlinear tunneling matrix
function for the quantum states, show that the quantum statédements.
are localized on the classical phase-space orbits of a known We make a one-parameter approximatipii] of the
nonrigid physical pendulum. In Sec. IV we analyze phasesingle-particle energies and the tunneling matrix elements
space dynamics for a displaced wave packet, study chaotic
dynamics of a driven double well, and explain phase-space
rotation of a ground state. In Sec. V we provide a phase-
space analysis of the generation of tunable entangled states. T,=—e? (6)
Remarks and a summary in Sec. VI conclude the paper.

g9=1, € =er=To=1, €r=T=-€"

This parametrization allows a simple study of continuous
change in the linear and nonlinear tunneling through varia-
tion of a single parameteat. In our computations with this
model we ignore th&, term, which scales as eiR«). The

A. Model Hamiltonian model Hamiltonian then reduces to

II. QUANTUM TWO-STATE MODEL

The many-body Hamiltonian for a system Nf weakly ~ - < t T
interacting bosons in an external potenti4r), in second H=e N+ erNr+ [er+ gTo(N - D](aar + agar)
uantization, is given b To o~ Ay o~
q gven oy +g—2°(Nf+N§—N). (7)
A A h2 -
H :fdr\IfT(r){——V%V(r)]\If(r)
2m

B. Fock-state analysis

9 TR TINCR PR AL
* 2 f dr ()W (r)w(rw(r), ) The most general state vector is a superposition of all the

. A number states
whereW¥(r) andW'(r) are the bosonic annihilation and cre-
ation field operators,m is the particle mass, and _ 3 B
=(4magh?)/m, wherea, is the s-wave scattering length. )= n2=o C“L|nL’N o, (8)
In studies of double-well BEC or two-component conden- g
sates, the low-energy many-body Hamiltonian in E2j.can  where

N
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Looking at the coefficients of eigenvectors reveals inter-
esting characteristics of the ground and excited states. Fig-
ures 2a) and 2b) show the coefficients of the eigenvectors
200 for the two lowest-lying states for 40 particles fex4. The
lowest delocalized states appear to be like the coordinate
space wave functions of a harmonic oscillator. These are the

R& states that are below the crossover ridge in a correlation dia-
100 % gram as in Fig. 1. For states over the ridge, a similar list of

250

@

150

coefficients for two higher-lying states are shown in Figs.
2(c) and 4d). These do not look like the harmonic oscillator
wave functions. These are examples of states that are super-
S T > 3 " S positions of a macroscopic number of particles on left and

o right well. For these nearly degenerate Schrodinger cat-like
even and odd states, a very high-precision arithmetic is re-
quired to get the coefficients.

50

FIG. 1. Energy correlation diagram for 20 particles showing the
eigenvalues as a function of barrier heightNote the merging of
energy levels as tunneling decreases.

. QUANTUM MECHANICAL PHASE-SPACE ANALYSIS

t\n tyn
a ) R - . .
In,N-n)= (a) tih)ac). (9) A. Classical Hamiltonian

vt V(N=ny)! The classical Hamiltonian that describes the mean-field

dynamics of BEC in a double well has been analyzed in

Finding the eigenvalues and eigenvectors of the mode$everal papersl0,22. In a mean-field assumptida] for the
Hamiltonian in the Fock basis can be easily accomplished bjwo-mode double well, and for large enoulyhthe operators
diagonalizing aN+1) X (N+1) tridiagonal matrix. a; can be replaced by the numbers\s“nje'gi, wherej=L,R.

Authors in Ref.[5] studied condensate fragmentation by With this assumption and defining=(n_—ng)/2, 6= 6, — 6,
looking at the ground state as the barrier is raised. We extengnd starting with our model Hamiltonian E€f) gives the
their analysis to look at the coefficients of the higher-lyingclassical Hamiltonian
states and examine the energy correlation diagram. Figure 1

shows all 21 eigenvalues for a system of 20 particles in a 2n\2 E E

double well fore ranging from 0 to 5. For this range of, He = Ecn®~Ej /1~ (W) cosé+ sz— ECN +e N
the tunneling parameters vary from 1 to 0.0067, going from

a low barrier to a high barrier, leading to a fragmented con- + err\R, (10

densate with a fixed number of particles in each well. The
correlation diagram shows avoided crossings and energywhere E.=gT, and E;=—N[¢ g+gT;(N-1)]. Heren and ¢

level merging. Asa increases the levels start to get doubly are conjugate variables and the equations of motion are
degenerate; at a value of abaut 1.8, the highest levels are

degenerate and all but the ground state is degenerate for 2n\2
higher values ofx. n=-E; 1_<W> sin 6, (11)
1 1

0.5¢ 05
o 0 /\ . N
-0.51¢ -05 \/

FIG. 2. Fock-state coefficients fod=40 for

-1 0 10 20 30 40 -1 0 10 20 30 40 (a) the ground statgp) the first excited statec)
(@) ng (b) ng the 30th state, an¢d) the 31st state. Low-lying
states are similar to harmonic-oscillator wave
1 1 functions, whereas the higher-lying states are
macroscopic quantum superpositions of particles
0.51 0.5 h simultaneously in both wells.
a 0 A A 0 A
o v
| \ \
-0.5 -0.5
-1 -1
0 10 20 30 40 0 10 20 30 40
(C) ny, (d) ng,
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FIG. 3. Comparison of the
classical nonrigid physical pendu-
lum phase space with the Husimi
distributions for different energy
eigenstates for 40 particles.
Shown are(a) classical energy
contour. Husimi projections for
(b) ground state(c) 6th, (d) 12th,
and (e) 35th state.

. 4E;n [13]. MQST refers to the incomplete oscillations of the popu-
0=2En+ o cosé. (12)  |ations between the two wells: motion refers to oscillations
N2+ /1 - (N) such that the average relative phase remains

Equation(10) is the Hamiltonian of a nonrigid physical pen- B. Husimi distribution function

dulum, whered andn are the angle and angular momentum  Since the phase-space distribution function allows one to
of the pendulum. The phase space of a nonrigid physicallescribe the quantum aspects of a system with as much clas-
pendulum allows different dynamical regimes, such as theical language allowed, it is a popular tool to study semiclas-
macroscopic quantum self-trappitilQST) and = motions  sical physics. Among the most popular distribution functions
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FIG. 4. Quantum-classical correspondence in phase space as functions of number of particles. Shown are the ground state, an oscillator
state, a state near the separatrix, and an entangled state for particle n@anli€rgb) 8, (c) 4, and(d) 2. A clear signature of classical
pendulum phase space is manifest Kor 8.

used are the Wigner distribution, Husimi distribution, and thethe number and phase of the electromagnetic fields, were
Q function[12,23. They are all related; th® function is a  discussed by Loudof24]. The (q,p) coherent statg25] is
special case of the Husimi distribution function. The Wignerdefined as
function can take negative values and exhibits complex pat-
terns due to fast oscillations. A smoothing of the Wigner
function with a squeezed Gaussian gives the Husimi distri- P Bn’
bution[12], which has a much simpler structure, is easier to |B) = e IBT2 Y ?|n’>, (13
interpret and, therefore, more useful for the study of quantum w=o VN'!
classical correspondence as performed in this paper.

Husimi distribution function can be used to project, in a
squeezed coherent state representation, the clagsigal ~ which is a superposition of the harmonic-oscillator eigen-
phase space behavior from a stationary quantum wave funstates|n’), here B=q+ip. For BEC in a double well, the
tion. Coherent state representation of the electromagnetighase differenced=6, -6y and the number difference
field, wheren and 6 are conjugate variables corresponding to=(n_—ng)/2 are the conjugate variable analogous tndp,
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FIG. 5. Comparison of the
classical and quantum phase space
for N=40 showing the analog of
7 states in the exact quantum
treatment. Shown ar@) classical
energy contour. Husimi projec-
tions are for(b) 12th, (c) 30th, (d)
34th, and(e) 41st states(d) and
(e) are the analogs self-trappet
states of mean-field theory; the
guantum states here preserve
parity.

respectively. Therefore, i, 6) representations, the coordi- , ] 1 -
nate and momentum representations of a squeezed coherent (N |0+in)= (rrc) V4 exp —ion’ -
state is

(n' = n)?

K

| as
In this representation a probability distribution function can

be defined as

Pi(n,6) = (0 +in|W¥))[?, (16)

| (0 -0)?
<0|0+|n>—(7TK)1,4exp{—|n0—ZK } (14) where
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-5 0 5
0
FIG. 6. A comparison of quantum and classi-
cal dynamics folN=8. We see that the classical

. . points very closely follow the quantum phase-

-5 0 5 space density. The panels are €ar initially, and
0 after (b) the first cycle,(c) second cycle, an¢d)

. i . fourth cycles. The quantum interference effects
for shorter times seem to have localizing effects
in the region with high density of classical whorls
[(@ and (h)]. For much longer times, quantum

] | dynamics shows recurrences as in Fig. 7.
-5 0 5
0
'/'.:.
0 5
0
(n' = n)2 wave packe{12]. Here k= sy2gTyN(-€1,—gTiN). s is the
- | inverse squeezing parameter, which is to be determined after

p{i&n’—

looking at the ground state. It is the ratio of the number
(17 spread of the ground state of the system to a binomial distri-

bution state. The “coarse-graining” parametedetermines

the relative resolution in phase space in the conjugate vari-
Heren’=(n_—ng)/2, rather than being the simpler left par- ables number and phase. Although the Husimi distribution is
ticle counter, anda,, is the corresponding Fock-state coeffi- defined for any value of the parameter[12], taking into
cient. Husimi function is defined for any value of the squeez-account the correct squeezing factor is necessary to obtain
ing parameterx. The Q function in quantum optics is a quantum-classical correspondence. Otherwise the Husimi
special case of the Husimi distribution function wheneverprojections may have too large a spread in the number or
k=w, Wherew is the frequency of a coherent state Gaussiarphase variables.
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20

FIG. 7. Husimi projections
showing fractional revivals in the
dynamics of a phase-displaced
ground state foN=40. The recur-
rence time here i§=12.375. The
panels show(a ground state(b)
ground state phase displaced by
/2, and revivals approximately
at (c) T/4, (d) T/3, (e) T/2, and
(f) T. (e) is an example of a mac-
roscopic superposition of two co-
herent states, an¢f) is approxi-
mately a full revival of(b).

C. Quantum-classical connection for the eigenstates respectively. The Husimi projections confirm the physical

It is natural to ask what aspects of the mean-field phasePendulum characteristics of the eigenstates. As is evident
space properties of a nonrigid physical penduliif] are  from the panels, the ground state is a minimum uncertainty
contained in the exact quantum treatment. We explore thavave packet in both number and phase that is centered at the
question here by investigating the ground and excited statesrigin, the harmonic-oscillator-like low-lying excited states
of the two-mode quantum Hamiltonian and extracting phaseare the analog of pendulum librations, and the higher-lying
space information through the use of the Husimi distributioncat-like states are the analog of pendulum rotor motions,
function. Figure 8a) shows the classical energy contours for with a clear signature of the quantum separatrix state where
40 particles for parameter values=4, g=1, andT,=1. For  the libration and rotation states separate.
these same parameters, Fig)33(e) show the Husimi dis- A systematic exploration is made of the quantum-classical
tributions for the ground state, 6th, 12th, and 35th statesgorrespondence in phase space for different number of par-
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ticles. Figures @)—4(d) show the Husimi distribution for compared for eight particles in Fig. 6. The first column
N=16,8,4,2respectively. For each of the particle numbers,shows the quantum dynamics in Husimi projection space for
it shows the ground state, a low-lying oscillator state, aa N/4 displaced wave packet fer=4, and the second col-
higher-lying separatrix state, and a macroscopic superposimn shows the corresponding classical points initially, after
tion state. Although the classical energy contdas shown the first, second, and fourth cycles, respectively. The effects
in Fig. 3@)] are the same for all different particle numbers, ©f dephasing is apparent in the quantum phase space in Figs.
we see here that fod=4 andN=2 the minimum uncertainty 6(€) and @g). The classical trajectories develop a narrow
spread of the eigenstates blur the clear signature of a pendfhorl-type structure as shown in Figsf6and @h). Surpris-

lum phase-space structure. It is interesting to note that onl{f’d!¥; even for such a small number of particles, the classical

four particles per well are needed to reach the semiclassic%nd quantum dynamics is comparable; the quantum states are

limit where the classical phase-space structure is evident. B If;i_l,lé-esd elrc]etZanseitglolr:]o?; tlr;?] 2?;?:](:5'55;2‘?%\’\'\:52On'sgge_
the semiclassical limit here we mean the laigjémit where P Y- 9

o . : come more convoluted and finer, and the quantum dynamics
guantum mechanics is approaching the classical. For a ve

% inent|
) L ows prominent interference effects, such as recurrences, as
large number of particles the Husimi distributions of thediscussed next.

eigenstates become sharper, approaching the classical limit Schrodingef27] first pointed out that quantum time evo-

of a line trajectory. - _ _lution of a displaced harmonic-oscillator ground state led to a
A fundamental difference between the classical trajectoinimum uncertainty wave packet, which evolves, in time

ries and the quantum states is visible in the rotor state in Figoj|lowing its classical phase-space trajectory without any
3(e), which is a superposition of most particles in the left andspreading. In the nonlinear pendulum considered here, a
right wells. In the classical sense this corresponds to tW@round state displaced by a small amount will evolve in
different trajectories corresponding to rotor motions of aphase space without much spreading. However a state that is
physical pendulum in two opposite directions. The quantunfarther from the origin will show the effects of nonlinearity
states always maintain the parity of the Hamiltonian andand quantum interference a lot quicker. After the full delo-
hence, the combinations of two such classical trajectoriesalization occurs, the interference effects become pro-
make up a quantum state. The localized motion correspondiounced for longer times. Localized peaks appear, which
ing to one classical trajectory is known as macroscopic quanagain delocalize with the appearance of new peaks. Figure 7
tum self-trapping(MQST) [10]. Such parity-violating states shows such fractional revival28,29 in the Husimi projec-
also appear as stationary solutions of the Gross-Pitaevskiion space foN=40 ande=2. For a nonlinear pendulum, as
equation in a double we[l26]. in our model, the revival time has a nontrivial dependence on
In order for the quantum Hamiltonian to correspond to athe various parameters and the initial displacements in phase
momentum-shortened physical pendulum, there should exi§Pace- The periods up to various orders for a similar quantum
7-type motiong 10] among the quantum states. A change inPendulum is given in Re{:30].
the parameters tae=4, g=0.1, andTy=0.1 puts us in a
slightly different regime, as in Fig.(8 showing dynamical B. Quantum-classical correspondence for classically
regimes with an average phase differenceroffhe Husimi chaotic dynamics

projections in Figs. ®)-5(e) are, respectively, for the 12th, |, the context of chaotic dynamics in BEC, dynamical

30th, 34th, and the 41st states. Here the higher-lying quanynneling of ultracold atoms from a BEC in a modulated
tum states are the analog af motions of the mean-field

classical Hamiltonian. Again only 4—8 particles per well are 100

needed to reach the semiclassical limit. 5;
50 5]
SO
IV. DYNAMICS IN PHASE SPACE
A. Comparison of classical and quantum dynamics "-':
=] 02

To illustrate the applications of the quantum phase-space
picture, here we make a comparison of the quantum and e
classical phase-space dynamics. Investigation of the —50 2
guantum-classical correspondence in phase space by ap-
proximating a Gaussian wave packet with a swarm of points
in the classial phase space, although widespread in quantum  _qpp f3a
chaos literature, has not been performed for BEC. This type
of comparison between nonaveraged quantities contains the
maximum amount of information allowed. By approximating  FIG. 8. A composite Poincaré surface of section for 100 trajec-
the quantum wave packet with a swarm of points in the clastories evenly spaced of= 0. This is forN=200 and for a sinusoidal
sical phase space, the mean-field and quantum dynamics liarrier #=2.5+2.5 Co€L0t).
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100 — - -

501

(h)

FIG. 9. Comparison of classi-
cal and quantum dynamics for
points in the chaotic regions of
phase space folN=200. Right
panels show Husimi projections
for the time evolution of the local-
ized superposition of 128th and
129th eigenstates and the left pan-
els show the time evolution of
three bands of classical trajecto-
ries intially localized in the same
region. (a),(b) at t=0; (c),(d) t
=0.17; (e),(f) t=1.7; and(g),(h) t
=5. Quantum states are visibly lo-
calized around the chaotic classi-
cal points.

degree-of-freedom classical system exhibiting chaos. For an

study of a similar system has been done using the Floquetnalogous system of a driven double-well BEC, we make a
operator{ 14]. These authors showed that exact quantum dyeomparison of the quantum states at different times with the
namics of the system can exhibit classically forbidden tun-corresponding classical trajectories and illustrate signatures

neling between two regular regions in the correspondingf quantum chaos. Such comparison is done in phase space

classical phase space, a phenomenon known as dynamigabst usefully between the Husimi projection of a quantum
tunneling[31]. Here we study instead the similarities in the state and the corresponding classical band of points initially
dynamics in the classical and quantum phase space. A driven the same region of phase spd&2]. For a diagnostic to

pendulum is a well-known example of a one-and-half-the classical phase space, Fig. 8 shows the Poincaré section
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20

10

=10

FIG. 10. Husimi projections showing rotations in phase spacéNfod0. (a) The initial phase-squeezed or coherent state=&, (b)
slightly rotated state @t=0.075,(c) t=0.09,(d) att=0.125, a number-squeezed sta&t=0.165,(f) att=0.25 the evolution brings the state
back to the initial phase-squeezed state.

for 200 particles andv=2.5+2.5 co&l0t). As the amplitude Figs. 9¢) and 9d), the quantum state very nicely follows the
of the driving force becomes larger the whole phase spacelassical points. Figures(® and 9f) are a comparison for
becomes chaotic. points showing a visibly chaotic yet localized pattern both in
For comparisons in the chaotic region, the Husimi distri-the classical and quantum phase space. The effect of chaotic
bution of the superpositions of 128th and 129th eigenstates aynamics fully takes effect @5 when the classical phase-
different times are shown in Figs(l9, 9(d), 9(f), and g9h).  space points are diffused throughout the whole region as
The classical trajectories of similar points are shown in Figsshown in Fig. 9g). A comparison with the Husimi projec-
9(a), 9(c), 9e), and 9g). At shorter timet=0.17 as shown in tions in Fig. 9h) makes evident the manifestations of chaos
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FIG. 11. Shown is the evolution to an entangled statd 000 in Husimi projection spacéa) The ground state at0, (b) the w-phase
imprinted ground state at the hyperbolic fixed poi), at t=0.01 the wave packet is bifurcating along the separatdxat t=0.016 it
continues to move along the separat(®, att=0.4 the states become trapped as we increase the barridf) atl=2.3 a sharply peaked
entangled state is obtained.

in the quantum dynamics. A state initially localized in the continuous and the quantum mechanics will more closely
regular regions of phase space does not give rise to sudbllow classical mechanics; any evidence of chaos in the
chaotic structures. In the limit whetah— 0 or equivalently quantum dynamics will be better represented in such com-
1/N—0, the discrete quantum energy spectrum becomepgarisons.
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(a)

y 0.1 (b) (© (d)

0.3 0.3
o 2 0.2 0.2
m IG,| 005 ‘ |
0.1 01 FIG. 12. Shown are the en-
3 tangled states foN=1000 with
6 0 0! different initial heights of the bar-
T 12 0 250 500 750 1000 A rier and, therefore, different initial
t L L squeezings of the BEC ground
12 0.1 state, but the same ramping of the
0.3 0.3 potential. Row (1) shows the
o states wherex=1+2t: (a) the pa-
2 0.2 0.0 rametera as a function of time,
@ I(},LI 0.05 (b) the ground state(c) the final
: 0.1 0.1 entangled state, an@) a magni-
fied view of the Fock-state coeffi-
6 0 0 0! cients. Rowg2) and(3) show the
P 1 450 500 550 0 250 500 750n1000 IR results fora=3+2 and a=5+2,
t L L L respectively. The initial barrier
12 0.1 height controls the extremity of
0.3 0.3 the entangled states. Note that for
o clarity the axes in the panels have
2 . )
0.2 0.2 different scalings.
3 .
3 IG, | 0.05
] 0.1 0.1
i 0 0
01 7 450 500 50 0 250 500 750 1000 om0
ot g, oy, oy,
C. Relative number and phase squeezing in Fig. 10f) the evolution brings it back to the initial coher-

Ground-state number squeezing with a variable barrient state. The period, for a linearized system of equations of
height in double and multiwell systems has been discussedie pendulum is given by 72/ \2EcE;+4E5/N2.
and observed by many authd3,5. The case of a sudden
change of barrier height on a coherent ground state, which
we analyze here, has been discussed on a theoretical baMisGENERATING TUNABLE ENTANGLED STATES USING
[2,15]. In Ref.[15], the authors consider the evolution, in the PHASE ENGINEERING

space of number differences, of an intially perfect binomial The quantum phase-space model presented here points to
number distribution state, and find that for an optimal value q b b P b

) o L .~ . a simple way that an entangled state can be generated with a
of parameters in the Hamiltonian, the initial state per|0d|-Sin le-component BEC in a double well. A wave-packet
cally evolves to a relatively number-squeezed state. 9 P ' b

We perform here a quantum phase-space analysis of thphasc_a displaced to the L!nstable hyperbolic fixed poi_nt _of a
phenomenon and find this to be a property of coheren Jassical phase space bifurcates along the separatrix if al-

. o b L owed to time evolve. With the above motivation, here we
ground state evolving under a Hamiltonian for which it is not rovide a visual explanation in phase space of the creation of
an eigenstate. We show that the initial state rotates in th@ b P P

controlled entangled number states of a BEC in a double
number-angle phase space and thus becomes elongatedv\(l)é” via phase imprinting on the part of the condensate in
well defined in number and phase periodically. We illustrate P P 9 P

this with an example: the ground state fo=0 very closely one of the wells foIIowe_d by a continuous chang_e of barrier
) ; . e height. When properly implemented this results in a state of
approximates a state with a binomial distribution of Fock-

state coefficients. With a sudden raising of the barrietrto the form

=3, we follow the evolution of the state in phase space. The 1

initial coherent ground state is not an eigenstate of the |‘1’>=,—E(|nL,N—nL>+|N—nL,nL>), (18
changed potential and hence will time evolve accordingly. As v

shown in the quantum phase space in FigalQhe initial  where |n_,ng) denotes a state with, particles in the left
state is rather well defined in phas€) and elongated in well, ng in the right well, and with total number of particles
number differencén). Further evolution in the new potential N=n_+ng. Unlike in other proposalgl7—20, we can use the
rotates the elongation in phase space such that after a certdiarrier height to control the squeezing of the initial BEC
period it becomes well defined m[as in Fig. 10d)] oritis  ground state followed by a continuous change of barrier
relatively number squeezed. A full cycle is shown in Fig. 10;height to control both the extremitjthe value ofn_ (n_
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(a) (b) (© (d)

1 0.1
0.3 0.3
o
2 0.2 0.2
O IG, | 0.05
0.1 0.1
3 I I FIG. 13. Shown are the en-
1 0 NI N P 0 tangled states foN=1000 with
o1 3 450 500 550 0 250 500 750 1000 2 30 3% same initial squeezings of the
t o oL oL BEC ground state, but different
12 0.1 ramping of the potential. Rowl)
0.3 0.3 shows the states wherex=3
o +1.5: (a) the parameterr as a
2 0.2 0.2 function of time (note different
@ IC;.LI 0.05 ramping; (b) the ground state, the
0.1 0.1 initial states are the samés) the
3 final entangled state, antd) a
1 0ol 0 0l magnified view of the Fock-state
1 9 450 0 550 0 250 500 750n1000 B3 coefficients. Rows(2) and (3)
t L L L show the results forr=3+2t and
12 0.1 a=3+2.8, respectively. The
0.3 0.3 ramping rate controls the sharp-
o ness of the entangled states.
3) | |20 s 0.2 0.2
; Gyl 0
3 0.1 0.1
i 0 0 o
0 1 2 450 500 550 0 250 500 750 1000 2 0 38
t np, oy, np,

=0,1,2,...N)] and the sharpnegthe spread around, ) of  the process of bifurcating the state. Further evolution along
the entangled state. An extreme entangled state would corrg4th a change of barrier totally splits and traps the state
spond ton, =0 or N. symmetrically above the separatrix, as shown in Fige)l1l
Writing phases on part of a condensate is experimentall§inally giving rise to an entangled state in Fig.(f)lat t
feasible via interaction with a far off-resonance laser. This=2.3. Here the barrier height is ramped up in timeass3
method has been used to generate dark solitons and measur2l. When an entangled state is reached the barrier is sud-
their velocities due to a phase offd&3]. Mathematically, denly raised to essentially halt the evolution. With different
such a method corresponds to multiplying the coefficient ofinitial barrier heights and the same ramping of the potential,
each of the Fock states in the expansion of an eigenstate lilge extremity of the entangled states can be tuned. Examples
€% where|n,) is the corresponding Fock state afiés the  are shown in Fig. 12 where the different values of the barrier
phase offset for particles in the left well. Byphase imprint-  heights area=1+2t, «=3+2t, and «a=5+2 for rows (1),
ing the condensate in one well, the ground state centered &), and(3), respectively. The columns in Fig. 12 sho(@)
the origin (0,0) in phase space is displaced to the unstablghe barrier height and the rampin() the respective ground
equilibrium point(0,#) on the separatrix. Using exact quan- state,(c) the final entangled state at the end of the ramping,
tum time evolution within the framework of the two-mode and (d) a close view of the coefficients for the final state,
model, the resulting quantum wave packet bifurcates as exwhich shows that these are rather sharply peaked entangled
pected. If the barrier is raised as discussed below, then thgfates. As is evident from the pictures, the initial squeezing
wave packet is permanently split, resulting in a superpositio®f the ground state determines the extremity of the final en-
of two classical rotor states. tangled state. Here we choose to show snapshots of the final
states for different barrier heights at the same unitless time
t=2.3. In the phase-space picture, this is the approximate
time it takes the wave-packet points on the unstable fixed
In the situation when there is no decoherence, wellpointto reach the top of the separatrix, the farthest in number
controlled entangled states can be generated within the twalistribution. The velocity of wave-packet points along the
mode quantum dynamics. As an example, Fig. 11 shows howhase-space trajectory is faster for an initial low barrier com-
a number-entangled state with 1000 particles is generategared to an initial high barrier; however, the distance trav-
Figure 11 also shows the evolution in phase space usingled is greater. Thus although nonlinear dynamics is respon-
Husimi projectionsi(a) the ground state(b) a m-phase im-  sible for the classical time evolution, the time to reach a
printed state, andc) and (d) show subsequent evolution in good entangled state is independent of barrier height in our

A. Entangled state generation without decoherence
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0.4; 0.4
N—
& 0.2 0.2
400 450 500 550 600 400 450 500 550 600
(@) ny (b) L
0.4 0.4 FIG. 14. Effects of loss of particles on en-
tangled statega) and (b) show the effect of loss
a4 of 10 particles on the less extreme entangled state
f 0.2 0.2 example of the third row in Fig. 13c) and (d)
show the effects of loss of 30 particlés) shows
l density matrix for panela), indicating that the
0 0 i coherence is not lost.
400 450 500 550 600 400 450 500 550 600
© np (d) ny
600
500
~ e
o 0 MR
[@N 0.2
0.1 /
260 2
500
(9) Il 600

simulations. For the same initial barrier heigeame initial  tion operator at different time intervals during the evolution
squeeziny a different barrier ramping rate can be used toand taking particles out randomly from either well at each
generate final superposition states with differing sharpnes¢éime. Losses can be due to magnetic field changes, three
This is shown in Fig. 13 where different barrier ramping isbody recombinations, or Feshbach resonances. The upper

used for each row resulting in sharply peaked and nonshaﬂtﬁmits are 1.6< 107'® cm?/s for the two-body loss rate coef-

states. Rowg1), (2), and (3) are for «=3+1.8, a=3+2, ficientand 5.8<10°*° cmP/s for the three-body loss rate co-
and a=3+2.8, respectively. Controllability of both extrem- €fficient [35,36. Equation(1) of Ref. [35] can be used to

ity and sharpness helps in the generation of robust entangldthd the loss of particles, which depends on the rate con-
states as is discussed in Sec. V B stants, density of atoms, and the volume of the trap. For a

density of 5< 102 cm™3, a trap of 100< 10X 10 2 and the
upper limit of three-body loss rate mentioned above, seven
B. Entangled state generation with loss particles per millisecond are lost from the trap. Fot’Rb
: " ._condensatey =840 nm,a,.=5.8 nm,e g=-0.0&ge “ (Exis
Macroscopw; superposition states are not obsgrved.maln%con energy from absorption of a phoforand takinggT,
due to interaction with the environment. In elastic COHISIOnS:O_OLER as approximately constant for calculational pur-

where the total number of atom is conserved, phase damping,ges ‘the entangled state in our study is formed at 2.8 ms.
destroys the quantum cohereri@d]. In the case where the Tis amounts to a loss of 15-20 particles during the forma-

number of particles are not conserved, the loss of even gy of the entangled state. Minimal losses can be obtained
single particle destroys an extreme entangled (8¢ as  \yith optimal choice of parameters. This loss in the number
can be seen with the operation of a destruction operator tg¢ narticles is in addition to the phase damping decoherence
such a state mechanisms for which we refer to R¢84].
A 5— N> We simulate here the loss of 1-3 % of the condensate
(N0 +|0N)N2=VNIZIN - 1,0 (19 particles, which is reasonable. Figure 14 shows different re-
The robustness of the entangled states is tested with sudiizations of loss of different number of particles from the
a loss scheme. It is likely that particles from the condensatéeast extreme entangled state example in Fig. 12, third row.
will be lost during the evolution of the state when the barrierFigures 14a) and 14b) are two different simulations for a
is raised. This is simulated by the operation of the destrucloss of 10 particles during the evolution. Figureqd4and
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14(d) show two different runs for a loss of 30 particles from ian average of which is the Husimi distribution, has also
the same entangled state. Results for extreme entangle&inerged as a valuable tool for the description of entangled
states are not shown here as such states are totally destroysthte generation in a two-component condeng2d¢

meaning all the particles are localized in one well. The simu-

lations suggests that a less extreme entangled state is more VI. REMARKS AND SUMMARY

robust, so it may be desirable to sacrifice the extremity of a .

cat state in order for it to survive in a realistic laboratory e have developed a quantum mechanical phase-space
setting. To compare the effects of loss for sharpness, an eRicture of a double-well Bose-Einstein condensate in the
tangled state, which is not sharp and has a Gaussian spred¥/0-mode approximation. In a mean-field approximation, the
has a better chance of having nonvanishing coefficients aftdyvo-mode Hamiltonian reduces to the Hamiltonian of a non-
the loss of particles. So the most robust state would be a ledigid physical pendulum. Examination of the Husimi projec-
extreme entangled state with a Gaussian width of coefficientdons of the stationary quantum states reveals how the mean-
around the two peaks. The coherence is not lost in destroyin@ld classical phase space follows directly from quantum
particles in the fashion done here; this is evident in the denMechanics. We have found eigenstate structures that are lo-
sity matrix [34] for Fig. 14@a) as shown in Fig. 14). The calized, such as classpgl os_cﬂlgtmg, free-rotor, anstates.
off-diagonal peaks in the density matrix that quantifies the The Husimi probability distribution turns out to be an
coherence remains a geometric mean of the diagonal el€xtremely useful tool to study BECs in a double well.
ments because we have not introduced phase damping; cbbrough its study we found unifying connections and in-
herence vanishes only when the final state is localized in on@/ghts into the double-well phase space and its dynamics. For
well. In Ref. [33] the authors study dissipation of a dark a driven dpuble yvell, guantum states are found to diffuse mto
soliton after a phase imprinting has been applied and for 1€ chaotic region of phase space analogous to classical
nonzero temperature. At the higher temperature phase decgt@0s. A phase imprinted condensate put on an unstable
herence is rapid. Finite temperature would lead to a serioutx€d point of the classical phase space bifurcates along the

sharpness of the entangled states produced in this scheme

can be tuned with the initial barrier height and the appropri-

) ~ate ramping of the potential. The model developed here may
During our development of the quantum phase-space piGind applications in the studies of other double-well BEC

ture for the double-well BEC since 20021,37, several dynamics, such as in a study of asymmetric wells, effects of

other authors have also noted that metastable quantum statg§sange of scattering lengths, transitions connected to

and dynamical instability can be exploited to produce enayoided crossings, topics in quantum chaos, and studies of

tangled states in a double w¢ll9] and in a two-component the effects of decoherence.

condensatg20]. All these findings are consistent with the

phase-space model discussed in this paper; our demonstra- ACKNOWLEDGMENTS
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