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We present a quantum phase-space model of the Bose-Einstein condensatesBECd in a double-well potential.
In a quantum two-mode approximation we examine the eigenvectors and eigenvalues and find that the energy
correlation diagram indicates a transition from a delocalized to a fragmented regime. Phase-space information
is extracted from the stationary quantum states using the Husimi distribution function. We show that the
mean-field phase-space characteristics of a nonrigid physical pendulum arises from the exact quantum states,
and that only 4–8 particles per well are needed to reach the semiclassical limit. For a driven double-well BEC,
we show that the classical chaotic dynamics is manifest in the dynamics of the quantum states. Phase-space
analogy also suggests that ap phase-displaced wave packet put on the unstable fixed point on a separatrix
bifurcates to create a superposition of two pendulum rotor states—a macroscopic superposition state of BEC.
We show that the choice of initial barrier height and ramping, following ap phase imprinting on the conden-
sate, can be used to generate controlled entangled number states with tunable extremity and sharpness.
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I. INTRODUCTION

Although the Bose-Einstein condensatesBECd is well de-
scribed by mean-field theoryf1g, it has many aspects that can
only be described in a quantum picture containing a proper
description of correlations. Examples include number
squeezingf2g and the superfluid to Mott insulator transition
f3g observed recently in optical lattices. The essential under-
lying physics can be understood with the study of a simpler
double-well BEC with a variable barrier height in the well-
known quantum two-mode approximationf4,5g. Quantum
fluids in a double-well potential exhibit many rich phenom-
ena related to the coherence, e.g., the Josephson effectf6g
and the de Broglie wave interferencef7g. A mean-field de-
scription, although appropriate in explaining these
“Josephson-related effects,” cannot describe the “number-
squeezing effects” described earlier. In this paper we develop
a quantum phase-space picture of BEC in a double well and
study the connection between the mean-field and quantum
effects. As important applications of our model, we investi-
gate dynamics in phase space, study quantum manifestations
of classical chaos in a driven double well, and show dynamic
generation of tunable entangled number states with well-
defined and controlled entanglement.

It was long ago noted by Andersonf8g that the Josephson
effect, namely, two quantum fluids connected by a tunnel
junction f9g, may be modeled as a physical pendulum. Simi-
larly, Smerziet al. in Ref. f10g showed that the semiclassical
slargeNd dynamics of two weakly linked BECs can be mod-
eled as a classical nonrigid physical pendulum. We begin,
here, with the full quantum-mechanical description of a

double-well BEC in a two-mode approximationf4,5,11g, and
show that the mean-field semiclassical limit of a nonrigid
physical pendulum emerges from the exact quantum treat-
ment. By treating the phase and the number difference of the
condensates in two wells as conjugate variables, phase-space
information is extracted from the exactstwo-moded quantum
wave function using the Husimi projectionf12g of semiclas-
sical quantum mechanics. We show that these phase-space
projections of exact quantum eigenstates are localized on the
known classical energy contours of the nonrigid physical
pendulumf10g, and thus the mean-field classical phase-space
properties, such as libration andp states, are seen to be a
property of the exact quantum eigenstates. We explore quan-
tum classical correspondence for the stationary states in
phase space as a function of particle number and show that
the semiclassical limit already emerges for particle numbers
as small as 4–8 per well.

The quantum phase-space model also reveals an underly-
ing time-dependent semiclassical dynamics in phase space.
In a study of the dynamics of a displaced coherent state, we
show a surprisingly close correspondence between classical
whorls and quantum dynamics even forN as small as four
per well. We further illustrate that a sinusoidally driven
double-well BECsa driven physical pendulumd shows clear
signatures of classical chaos in the quantum phase space.
This can be contrasted with a different property of a chaotic
system—the recently observed phenomenon of dynamical
tunnelingf13,14g, which is a quantum motion between two
resonance zones in phase space not allowed within the clas-
sical dynamics. We also discuss the dynamics of a coherent
ground state after a sudden change of barrier heightf2,15g.
We show that the oscillations between a number-squeezed
and a phase-squeezed state is a rotation of a pulsing ellipse in
the phase space.

Due to the macroscopic nature of its wave function, BEC
should be an ideal system for the generation of macroscopic
quantum superposition statessSchrödinger cat statesd. The
creation of macroscopic superposition states in various

*Present address: Department of Physics, University of Michigan,
Ann Arbor, MI 48109, USA.

†Present address: Department of Chemistry, Columbia University,
New York, NY 10027, USA.

PHYSICAL REVIEW A 71, 023615s2005d

1050-2947/2005/71s2d/023615s17d/$23.00 ©2005 The American Physical Society023615-1



condensed-matter systems has received attentionf16g. In the
context of BEC, several authors have suggested producing
such statesf17–20g, although none have been demonstrated
experimentally. We show how such macroscopic quantum
superposition states are generated in phase space with a
single-component BEC in a double well. Starting with a
ground state centered at the origin and displacing it through
a p phase imprinting to put it on the hyperbolic fixed point
of the classical phase space, the autonomous dynamics splits
the wave packet along the separatrix to create entangled
number states of the form

uCl =
1
Î2

sunL,N − nLl + uN − nL,nLld, s1d

where unL ,nRl denotes a state withnL particles in the left
well, nR in the right well, andN=nL+nR. The idea of the
exploitation of unstable fixed points to generate such en-
tangled states with BEC in a double well and two-component
condensates in a single trap has also been discussed in the
works of Polkovnikovet al. f19g and Micheli et al. f20g, a
discussion of which is given in Sec. V. Unlike in other pro-
posalsf17,19,20g, we use the barrier height to control the
squeezing of the initial BEC ground state, followed by a
continuous change of barrier height to control both the ex-
tremity sthe value of nLd and the sharpnesssthe spread
around nLd of the final entangled state. A very simple
particle-loss schemef18g is used here to test the robustness
of the entangled states.

The paper is organized as follows. In Sec. II we introduce
the model Hamiltonian and examine its ground and excited
states. In Sec. III we find the Husimi probablity distribution
function for the quantum states, show that the quantum states
are localized on the classical phase-space orbits of a known
nonrigid physical pendulum. In Sec. IV we analyze phase-
space dynamics for a displaced wave packet, study chaotic
dynamics of a driven double well, and explain phase-space
rotation of a ground state. In Sec. V we provide a phase-
space analysis of the generation of tunable entangled states.
Remarks and a summary in Sec. VI conclude the paper.

II. QUANTUM TWO-STATE MODEL

A. Model Hamiltonian

The many-body Hamiltonian for a system ofN weakly
interacting bosons in an external potentialVsr d, in second
quantization, is given by

Ĥ =E dr Ĉ†sr dF−
"2

2m
¹2 + Vsr dGĈsr d

+
g

2
E dr Ĉ†sr dĈ†sr dĈsr dĈsr d, s2d

whereĈsr d andĈ†sr d are the bosonic annihilation and cre-
ation field operators,m is the particle mass, andg
=s4pas"

2d /m, whereas is thes-wave scattering length.
In studies of double-well BEC or two-component conden-

sates, the low-energy many-body Hamiltonian in Eq.s2d can

be simplified in the well-known two-mode approximation
f4,5g. Many authors have studied the double-well condensate
using the two-mode approximation. We use the model intro-
duced by Spekkens and Sipef5g. The exclusion of the non-
linear tunneling terms in this model gives rise to the Bose-
Hubbard modelf21g. The full two-mode Hamiltonian is

Ĥ = eLLN̂L + eRRN̂R + feLR + gT1sN̂ − 1dgsaL
†aR + aR

†aLd

+
gT0

2
sN̂L

2 + N̂R
2 − N̂d +

gT2

2
saL

†aL
†aRaR + aR

†aR
†aLaL

+ 4N̂LN̂Rd, s3d

whereN̂L=aL
†aL, N̂R=aR

†aR, N̂=N̂L+N̂R, and

ei j =E drfisr dS−
"2

2m
¹2 + Vsr dDf jsr d, s4d

wherei , j =L ,R,

T0 =E drfL
4sr d; T1 =E drfL

3sr dfRsr d;

T2 =E drfL
2sr dfR

2 . s5d

HerefL andfR are the left and right localized single-particle
Schrödinger wave functions, theeLL andeRR are the energies
of a single particle in the left and right wells,eLR is the
single-particle tunneling amplitude;T0 is the mean-field en-
ergy in each well andT1,2 are nonlinear tunneling matrix
elements.

We make a one-parameter approximationf11g of the
single-particle energies and the tunneling matrix elements

g = 1, eLL = eRR= T0 = 1, eLR = T1 = − e−a,

T2 = − e−2a. s6d

This parametrization allows a simple study of continuous
change in the linear and nonlinear tunneling through varia-
tion of a single parametera. In our computations with this
model we ignore theT2 term, which scales as exps−2ad. The
model Hamiltonian then reduces to

Ĥ = eLLN̂L + eRRN̂R + feLR + gT1sN̂ − 1dgsaL
†aR + aR

†aLd

+
gT0

2
sN̂L

2 + N̂R
2 − N̂d. s7d

B. Fock-state analysis

The most general state vector is a superposition of all the
number states

uCl = o
nL=0

N

cnL

sidunL,N − nLl, s8d

where
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unL,N − nLl =
saL

†dnL

ÎnL!

saR
†dnR

ÎsN − nLd!
uvacl. s9d

Finding the eigenvalues and eigenvectors of the model
Hamiltonian in the Fock basis can be easily accomplished by
diagonalizing asN+1d3 sN+1d tridiagonal matrix.

Authors in Ref.f5g studied condensate fragmentation by
looking at the ground state as the barrier is raised. We extend
their analysis to look at the coefficients of the higher-lying
states and examine the energy correlation diagram. Figure 1
shows all 21 eigenvalues for a system of 20 particles in a
double well fora ranging from 0 to 5. For this range ofa,
the tunneling parameters vary from 1 to 0.0067, going from
a low barrier to a high barrier, leading to a fragmented con-
densate with a fixed number of particles in each well. The
correlation diagram shows avoided crossings and energy-
level merging. Asa increases the levels start to get doubly
degenerate; at a value of abouta=1.8, the highest levels are
degenerate and all but the ground state is degenerate for
higher values ofa.

Looking at the coefficients of eigenvectors reveals inter-
esting characteristics of the ground and excited states. Fig-
ures 2sad and 2sbd show the coefficients of the eigenvectors
for the two lowest-lying states for 40 particles fora=4. The
lowest delocalized states appear to be like the coordinate
space wave functions of a harmonic oscillator. These are the
states that are below the crossover ridge in a correlation dia-
gram as in Fig. 1. For states over the ridge, a similar list of
coefficients for two higher-lying states are shown in Figs.
2scd and 2sdd. These do not look like the harmonic oscillator
wave functions. These are examples of states that are super-
positions of a macroscopic number of particles on left and
right well. For these nearly degenerate Schrödinger cat–like
even and odd states, a very high-precision arithmetic is re-
quired to get the coefficients.

III. QUANTUM MECHANICAL PHASE-SPACE ANALYSIS

A. Classical Hamiltonian

The classical Hamiltonian that describes the mean-field
dynamics of BEC in a double well has been analyzed in
several papersf10,22g. In a mean-field assumptionf1g for the
two-mode double well, and for large enoughN, the operators
âj can be replaced by thec numbersÎnje

iu j, where j =L ,R.
With this assumption and definingn=snL−nRd /2, u=uL−uR,
and starting with our model Hamiltonian Eq.s7d gives the
classical Hamiltonian

Hcl = Ecn
2 − EJÎ1 −S2n

N
D2

cosu +
Ec

4
N2 −

Ec

2
N + eLLNL

+ eRRNR, s10d

where Ec=gT0 and EJ=−NfeLR+gT1sN−1dg. Here n and u
are conjugate variables and the equations of motion are

ṅ = − EJÎ1 −S2n

N
D2

sinu, s11d

FIG. 1. Energy correlation diagram for 20 particles showing the
eigenvalues as a function of barrier heighta. Note the merging of
energy levels as tunneling decreases.

FIG. 2. Fock-state coefficients forN=40 for
sad the ground state,sbd the first excited state,scd
the 30th state, andsdd the 31st state. Low-lying
states are similar to harmonic-oscillator wave
functions, whereas the higher-lying states are
macroscopic quantum superpositions of particles
simultaneously in both wells.
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u̇ = 2Ecn +
4EJn

N2Î1 −S2n

N
D2

cosu. s12d

Equations10d is the Hamiltonian of a nonrigid physical pen-
dulum, whereu andn are the angle and angular momentum
of the pendulum. The phase space of a nonrigid physical
pendulum allows different dynamical regimes, such as the
macroscopic quantum self-trappingsMQSTd and p motions

f13g. MQST refers to the incomplete oscillations of the popu-
lations between the two wells.p motion refers to oscillations
such that the average relative phase remainsp.

B. Husimi distribution function

Since the phase-space distribution function allows one to
describe the quantum aspects of a system with as much clas-
sical language allowed, it is a popular tool to study semiclas-
sical physics. Among the most popular distribution functions

FIG. 3. Comparison of the
classical nonrigid physical pendu-
lum phase space with the Husimi
distributions for different energy
eigenstates for 40 particles.
Shown are sad classical energy
contour. Husimi projections for
sbd ground state,scd 6th, sdd 12th,
and sed 35th state.
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used are the Wigner distribution, Husimi distribution, and the
Q function f12,23g. They are all related; theQ function is a
special case of the Husimi distribution function. The Wigner
function can take negative values and exhibits complex pat-
terns due to fast oscillations. A smoothing of the Wigner
function with a squeezed Gaussian gives the Husimi distri-
bution f12g, which has a much simpler structure, is easier to
interpret and, therefore, more useful for the study of quantum
classical correspondence as performed in this paper.

Husimi distribution function can be used to project, in a
squeezed coherent state representation, the classicalsq,pd
phase space behavior from a stationary quantum wave func-
tion. Coherent state representation of the electromagnetic
field, wheren andu are conjugate variables corresponding to

the number and phase of the electromagnetic fields, were
discussed by Loudonf24g. The sq,pd coherent statef25g is
defined as

ubl = es−ubu2/2d o
n8=0

`
bn8

În8!
un8l, s13d

which is a superposition of the harmonic-oscillator eigen-
statesun8l, here b=q+ ip. For BEC in a double well, the
phase differenceu=uL−uR and the number differencen
=snL−nRd /2 are the conjugate variable analogous toq andp,

FIG. 4. Quantum-classical correspondence in phase space as functions of number of particles. Shown are the ground state, an oscillator
state, a state near the separatrix, and an entangled state for particle numberssad 16, sbd 8, scd 4, andsdd 2. A clear signature of classical
pendulum phase space is manifest forN=8.
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respectively. Therefore, insn,ud representations, the coordi-
nate and momentum representations of a squeezed coherent
state is

ku8uu + inl =
1

spkd1/4 expF− inu8 −
su8 − ud2

2k
G , s14d

kn8uu + inl =
1

spkd1/4 expF− iun8 −
sn8 − nd2

2k
G . s15d

In this representation a probability distribution function can
be defined as

Pjsn,ud = uku + inuC jlu2, s16d

where

FIG. 5. Comparison of the
classical and quantum phase space
for N=40 showing the analog of
p states in the exact quantum
treatment. Shown aresad classical
energy contour. Husimi projec-
tions are forsbd 12th,scd 30th,sdd
34th, andsed 41st states.sdd and
sed are the analogs self-trappedp
states of mean-field theory; the
quantum states here preserve
parity.
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ku + inuC jl =
1

spkd1/4 o
n8=−N/2

N/2

cn8
j expFiun8 −

sn8 − nd2

2k
G .

s17d

Here n8=snL−nRd /2, rather than being the simpler left par-
ticle counter, andcn8 is the corresponding Fock-state coeffi-
cient. Husimi function is defined for any value of the squeez-
ing parameterk. The Q function in quantum optics is a
special case of the Husimi distribution function whenever
k=v, wherev is the frequency of a coherent state Gaussian

wave packetf12g. Here k<sÎ2gT0Ns−e12−gT1Nd. s is the
inverse squeezing parameter, which is to be determined after
looking at the ground state. It is the ratio of the number
spread of the ground state of the system to a binomial distri-
bution state. The “coarse-graining” parameterk determines
the relative resolution in phase space in the conjugate vari-
ables number and phase. Although the Husimi distribution is
defined for any value of the parameterk f12g, taking into
account the correct squeezing factor is necessary to obtain
quantum-classical correspondence. Otherwise the Husimi
projections may have too large a spread in the number or
phase variables.

FIG. 6. A comparison of quantum and classi-
cal dynamics forN=8. We see that the classical
points very closely follow the quantum phase-
space density. The panels are forsad initially, and
after sbd the first cycle,scd second cycle, andsdd
fourth cycles. The quantum interference effects
for shorter times seem to have localizing effects
in the region with high density of classical whorls
fsgd and shdg. For much longer times, quantum
dynamics shows recurrences as in Fig. 7.
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C. Quantum-classical connection for the eigenstates

It is natural to ask what aspects of the mean-field phase-
space properties of a nonrigid physical pendulumf10g are
contained in the exact quantum treatment. We explore that
question here by investigating the ground and excited states
of the two-mode quantum Hamiltonian and extracting phase-
space information through the use of the Husimi distribution
function. Figure 3sad shows the classical energy contours for
40 particles for parameter valuesa=4, g=1, andT0=1. For
these same parameters, Figs. 3sbd–3sed show the Husimi dis-
tributions for the ground state, 6th, 12th, and 35th states,

respectively. The Husimi projections confirm the physical
pendulum characteristics of the eigenstates. As is evident
from the panels, the ground state is a minimum uncertainty
wave packet in both number and phase that is centered at the
origin, the harmonic-oscillator-like low-lying excited states
are the analog of pendulum librations, and the higher-lying
cat–like states are the analog of pendulum rotor motions,
with a clear signature of the quantum separatrix state where
the libration and rotation states separate.

A systematic exploration is made of the quantum-classical
correspondence in phase space for different number of par-

FIG. 7. Husimi projections
showing fractional revivals in the
dynamics of a phase-displaced
ground state forN=40. The recur-
rence time here isT=12.375. The
panels showsad ground state,sbd
ground state phase displaced by
p /2, and revivals approximately
at scd T/4, sdd T/3, sed T/2, and
sfd T. sed is an example of a mac-
roscopic superposition of two co-
herent states, andsfd is approxi-
mately a full revival ofsbd.
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ticles. Figures 4sad–4sdd show the Husimi distribution for
N=16,8,4,2,respectively. For each of the particle numbers,
it shows the ground state, a low-lying oscillator state, a
higher-lying separatrix state, and a macroscopic superposi-
tion state. Although the classical energy contoursfas shown
in Fig. 3sadg are the same for all different particle numbers,
we see here that forN=4 andN=2 the minimum uncertainty
spread of the eigenstates blur the clear signature of a pendu-
lum phase-space structure. It is interesting to note that only
four particles per well are needed to reach the semiclassical
limit where the classical phase-space structure is evident. By
the semiclassical limit here we mean the largeN limit where
quantum mechanics is approaching the classical. For a very
large number of particles the Husimi distributions of the
eigenstates become sharper, approaching the classical limit
of a line trajectory.

A fundamental difference between the classical trajecto-
ries and the quantum states is visible in the rotor state in Fig.
3sed, which is a superposition of most particles in the left and
right wells. In the classical sense this corresponds to two
different trajectories corresponding to rotor motions of a
physical pendulum in two opposite directions. The quantum
states always maintain the parity of the Hamiltonian and,
hence, the combinations of two such classical trajectories
make up a quantum state. The localized motion correspond-
ing to one classical trajectory is known as macroscopic quan-
tum self-trappingsMQSTd f10g. Such parity-violating states
also appear as stationary solutions of the Gross-Pitaevskii
equation in a double wellf26g.

In order for the quantum Hamiltonian to correspond to a
momentum-shortened physical pendulum, there should exist
p-type motionsf10g among the quantum states. A change in
the parameters toa=4, g=0.1, andT0=0.1 puts us in a
slightly different regime, as in Fig. 5sad showing dynamical
regimes with an average phase difference ofp. The Husimi
projections in Figs. 5sbd–5sed are, respectively, for the 12th,
30th, 34th, and the 41st states. Here the higher-lying quan-
tum states are the analog ofp motions of the mean-field
classical Hamiltonian. Again only 4–8 particles per well are
needed to reach the semiclassical limit.

IV. DYNAMICS IN PHASE SPACE

A. Comparison of classical and quantum dynamics

To illustrate the applications of the quantum phase-space
picture, here we make a comparison of the quantum and
classical phase-space dynamics. Investigation of the
quantum-classical correspondence in phase space by ap-
proximating a Gaussian wave packet with a swarm of points
in the classial phase space, although widespread in quantum
chaos literature, has not been performed for BEC. This type
of comparison between nonaveraged quantities contains the
maximum amount of information allowed. By approximating
the quantum wave packet with a swarm of points in the clas-
sical phase space, the mean-field and quantum dynamics is

compared for eight particles in Fig. 6. The first column
shows the quantum dynamics in Husimi projection space for
a N/4 displaced wave packet fora=4, and the second col-
umn shows the corresponding classical points initially, after
the first, second, and fourth cycles, respectively. The effects
of dephasing is apparent in the quantum phase space in Figs.
6sed and 6sgd. The classical trajectories develop a narrow
whorl-type structure as shown in Figs. 6sfd and 6shd. Surpris-
ingly, even for such a small number of particles, the classical
and quantum dynamics is comparable; the quantum states are
localized in the region of the classical points with high
phase-space density. For a longer time scale the whorls be-
come more convoluted and finer, and the quantum dynamics
shows prominent interference effects, such as recurrences, as
discussed next.

Schrödingerf27g first pointed out that quantum time evo-
lution of a displaced harmonic-oscillator ground state led to a
minimum uncertainty wave packet, which evolves, in time,
following its classical phase-space trajectory without any
spreading. In the nonlinear pendulum considered here, a
ground state displaced by a small amount will evolve in
phase space without much spreading. However a state that is
farther from the origin will show the effects of nonlinearity
and quantum interference a lot quicker. After the full delo-
calization occurs, the interference effects become pro-
nounced for longer times. Localized peaks appear, which
again delocalize with the appearance of new peaks. Figure 7
shows such fractional revivalsf28,29g in the Husimi projec-
tion space forN=40 anda=2. For a nonlinear pendulum, as
in our model, the revival time has a nontrivial dependence on
the various parameters and the initial displacements in phase
space. The periods up to various orders for a similar quantum
pendulum is given in Ref.f30g.

B. Quantum-classical correspondence for classically
chaotic dynamics

In the context of chaotic dynamics in BEC, dynamical
tunneling of ultracold atoms from a BEC in a modulated

FIG. 8. A composite Poincaré surface of section for 100 trajec-
tories evenly spaced onu=0. This is forN=200 and for a sinusoidal
barriera=2.5+2.5 Coss10td.
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periodic potential has been observedf13g, and a theoretical
study of a similar system has been done using the Floquet
operatorf14g. These authors showed that exact quantum dy-
namics of the system can exhibit classically forbidden tun-
neling between two regular regions in the corresponding
classical phase space, a phenomenon known as dynamical
tunnelingf31g. Here we study instead the similarities in the
dynamics in the classical and quantum phase space. A driven
pendulum is a well-known example of a one-and-half-

degree-of-freedom classical system exhibiting chaos. For an
analogous system of a driven double-well BEC, we make a
comparison of the quantum states at different times with the
corresponding classical trajectories and illustrate signatures
of quantum chaos. Such comparison is done in phase space
most usefully between the Husimi projection of a quantum
state and the corresponding classical band of points initially
in the same region of phase spacef32g. For a diagnostic to
the classical phase space, Fig. 8 shows the Poincaré section

FIG. 9. Comparison of classi-
cal and quantum dynamics for
points in the chaotic regions of
phase space forN=200. Right
panels show Husimi projections
for the time evolution of the local-
ized superposition of 128th and
129th eigenstates and the left pan-
els show the time evolution of
three bands of classical trajecto-
ries intially localized in the same
region. sad,sbd at t=0; scd,sdd t
=0.17; sed,sfd t=1.7; andsgd,shd t
=5. Quantum states are visibly lo-
calized around the chaotic classi-
cal points.
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for 200 particles anda=2.5+2.5 coss10td. As the amplitude
of the driving force becomes larger the whole phase space
becomes chaotic.

For comparisons in the chaotic region, the Husimi distri-
bution of the superpositions of 128th and 129th eigenstates at
different times are shown in Figs. 9sbd, 9sdd, 9sfd, and 9shd.
The classical trajectories of similar points are shown in Figs.
9sad, 9scd, 9sed, and 9sgd. At shorter timet=0.17 as shown in

Figs. 9scd and 9sdd, the quantum state very nicely follows the
classical points. Figures 9sed and 9sfd are a comparison for
points showing a visibly chaotic yet localized pattern both in
the classical and quantum phase space. The effect of chaotic
dynamics fully takes effect att=5 when the classical phase-
space points are diffused throughout the whole region as
shown in Fig. 9sgd. A comparison with the Husimi projec-
tions in Fig. 9shd makes evident the manifestations of chaos

FIG. 10. Husimi projections showing rotations in phase space forN=40. sad The initial phase-squeezed or coherent state att=0, sbd
slightly rotated state att=0.075,scd t=0.09,sdd at t=0.125, a number-squeezed state,sed t=0.165,sfd at t=0.25 the evolution brings the state
back to the initial phase-squeezed state.
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in the quantum dynamics. A state initially localized in the
regular regions of phase space does not give rise to such
chaotic structures. In the limit when"→0 or equivalently
1/N→0, the discrete quantum energy spectrum becomes

continuous and the quantum mechanics will more closely
follow classical mechanics; any evidence of chaos in the
quantum dynamics will be better represented in such com-
parisons.

FIG. 11. Shown is the evolution to an entangled state ofN=1000 in Husimi projection space.sad The ground state att=0, sbd thep-phase
imprinted ground state at the hyperbolic fixed point,scd at t=0.01 the wave packet is bifurcating along the separatrix,sdd at t=0.016 it
continues to move along the separatrix,sed at t=0.4 the states become trapped as we increase the barrier, andsfd at t=2.3 a sharply peaked
entangled state is obtained.
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C. Relative number and phase squeezing

Ground-state number squeezing with a variable barrier
height in double and multiwell systems has been discussed
and observed by many authorsf2,3,5g. The case of a sudden
change of barrier height on a coherent ground state, which
we analyze here, has been discussed on a theoretical basis
f2,15g. In Ref.f15g, the authors consider the evolution, in the
space of number differences, of an intially perfect binomial
number distribution state, and find that for an optimal value
of parameters in the Hamiltonian, the initial state periodi-
cally evolves to a relatively number-squeezed state.

We perform here a quantum phase-space analysis of this
phenomenon and find this to be a property of coherent
ground state evolving under a Hamiltonian for which it is not
an eigenstate. We show that the initial state rotates in the
number-angle phase space and thus becomes elongated or
well defined in number and phase periodically. We illustrate
this with an example: the ground state fora=0 very closely
approximates a state with a binomial distribution of Fock-
state coefficients. With a sudden raising of the barrier toa
=3, we follow the evolution of the state in phase space. The
initial coherent ground state is not an eigenstate of the
changed potential and hence will time evolve accordingly. As
shown in the quantum phase space in Fig. 10sad, the initial
state is rather well defined in phasesud and elongated in
number differencesnd. Further evolution in the new potential
rotates the elongation in phase space such that after a certain
period it becomes well defined inn fas in Fig. 10sddg or it is
relatively number squeezed. A full cycle is shown in Fig. 10;

in Fig. 10sfd the evolution brings it back to the initial coher-
ent state. The period, for a linearized system of equations of
the pendulum is given by 2p /Î2ECEJ+4EJ

2/N2.

V. GENERATING TUNABLE ENTANGLED STATES USING
PHASE ENGINEERING

The quantum phase-space model presented here points to
a simple way that an entangled state can be generated with a
single-component BEC in a double well. A wave-packetp
phase displaced to the unstable hyperbolic fixed point of a
classical phase space bifurcates along the separatrix if al-
lowed to time evolve. With the above motivation, here we
provide a visual explanation in phase space of the creation of
controlled entangled number states of a BEC in a double
well via phase imprinting on the part of the condensate in
one of the wells followed by a continuous change of barrier
height. When properly implemented this results in a state of
the form

uCl =
1
Î2

sunL,N − nLl + uN − nL,nLld, s18d

where unL ,nRl denotes a state withnL particles in the left
well, nR in the right well, and with total number of particles
N=nL+nR. Unlike in other proposalsf17–20g, we can use the
barrier height to control the squeezing of the initial BEC
ground state followed by a continuous change of barrier
height to control both the extremityfthe value ofnL snL

FIG. 12. Shown are the en-
tangled states forN=1000 with
different initial heights of the bar-
rier and, therefore, different initial
squeezings of the BEC ground
state, but the same ramping of the
potential. Row s1d shows the
states wherea=1+2t: sad the pa-
rametera as a function of time,
sbd the ground state,scd the final
entangled state, andsdd a magni-
fied view of the Fock-state coeffi-
cients. Rowss2d ands3d show the
results fora=3+2t and a=5+2t,
respectively. The initial barrier
height controls the extremity of
the entangled states. Note that for
clarity the axes in the panels have
different scalings.
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=0,1,2, . . . ,Ndg and the sharpnesssthe spread aroundnLd of
the entangled state. An extreme entangled state would corre-
spond tonL=0 or N.

Writing phases on part of a condensate is experimentally
feasible via interaction with a far off-resonance laser. This
method has been used to generate dark solitons and measure
their velocities due to a phase offsetf33g. Mathematically,
such a method corresponds to multiplying the coefficient of
each of the Fock states in the expansion of an eigenstate by
einLu, whereunLl is the corresponding Fock state andu is the
phase offset for particles in the left well. Byp phase imprint-
ing the condensate in one well, the ground state centered at
the origin s0,0d in phase space is displaced to the unstable
equilibrium points0,pd on the separatrix. Using exact quan-
tum time evolution within the framework of the two-mode
model, the resulting quantum wave packet bifurcates as ex-
pected. If the barrier is raised as discussed below, then the
wave packet is permanently split, resulting in a superposition
of two classical rotor states.

A. Entangled state generation without decoherence

In the situation when there is no decoherence, well-
controlled entangled states can be generated within the two-
mode quantum dynamics. As an example, Fig. 11 shows how
a number-entangled state with 1000 particles is generated.
Figure 11 also shows the evolution in phase space using
Husimi projections:sad the ground state,sbd a p-phase im-
printed state, andscd and sdd show subsequent evolution in

the process of bifurcating the state. Further evolution along
with a change of barrier totally splits and traps the state
symmetrically above the separatrix, as shown in Fig. 11sed,
finally giving rise to an entangled state in Fig. 11sfd at t
=2.3. Here the barrier height is ramped up in time asa=3
+2t. When an entangled state is reached the barrier is sud-
denly raised to essentially halt the evolution. With different
initial barrier heights and the same ramping of the potential,
the extremity of the entangled states can be tuned. Examples
are shown in Fig. 12 where the different values of the barrier
heights area=1+2t, a=3+2t, and a=5+2t for rows s1d,
s2d, ands3d, respectively. The columns in Fig. 12 show:sad
the barrier height and the ramping,sbd the respective ground
state,scd the final entangled state at the end of the ramping,
and sdd a close view of the coefficients for the final state,
which shows that these are rather sharply peaked entangled
states. As is evident from the pictures, the initial squeezing
of the ground state determines the extremity of the final en-
tangled state. Here we choose to show snapshots of the final
states for different barrier heights at the same unitless time
t=2.3. In the phase-space picture, this is the approximate
time it takes the wave-packet points on the unstable fixed
point to reach the top of the separatrix, the farthest in number
distribution. The velocity of wave-packet points along the
phase-space trajectory is faster for an initial low barrier com-
pared to an initial high barrier; however, the distance trav-
eled is greater. Thus although nonlinear dynamics is respon-
sible for the classical time evolution, the time to reach a
good entangled state is independent of barrier height in our

FIG. 13. Shown are the en-
tangled states forN=1000 with
same initial squeezings of the
BEC ground state, but different
ramping of the potential. Rows1d
shows the states wherea=3
+1.5t: sad the parametera as a
function of time snote different
rampingd; sbd the ground state, the
initial states are the same;scd the
final entangled state, andsdd a
magnified view of the Fock-state
coefficients. Rows s2d and s3d
show the results fora=3+2t and
a=3+2.5t, respectively. The
ramping rate controls the sharp-
ness of the entangled states.
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simulations. For the same initial barrier heightssame initial
squeezingd, a different barrier ramping rate can be used to
generate final superposition states with differing sharpness.
This is shown in Fig. 13 where different barrier ramping is
used for each row resulting in sharply peaked and nonsharp
states. Rowss1d, s2d, and s3d are for a=3+1.5t, a=3+2t,
anda=3+2.5t, respectively. Controllability of both extrem-
ity and sharpness helps in the generation of robust entangled
states as is discussed in Sec. V B

B. Entangled state generation with loss

Macroscopic superposition states are not observed mainly
due to interaction with the environment. In elastic collisions
where the total number of atom is conserved, phase damping
destroys the quantum coherencef34g. In the case where the
number of particles are not conserved, the loss of even a
single particle destroys an extreme entangled statef18g, as
can be seen with the operation of a destruction operator to
such a state

â1suN,0l + u0,Nld/Î2 =ÎN/2uN − 1,0l. s19d

The robustness of the entangled states is tested with such
a loss scheme. It is likely that particles from the condensate
will be lost during the evolution of the state when the barrier
is raised. This is simulated by the operation of the destruc-

tion operator at different time intervals during the evolution
and taking particles out randomly from either well at each
time. Losses can be due to magnetic field changes, three
body recombinations, or Feshbach resonances. The upper
limits are 1.6310−16 cm3/s for the two-body loss rate coef-
ficient and 5.8310−30 cm6/s for the three-body loss rate co-
efficient f35,36g. Equations1d of Ref. f35g can be used to
find the loss of particles, which depends on the rate con-
stants, density of atoms, and the volume of the trap. For a
density of 531013 cm−3, a trap of 100310310 m3 and the
upper limit of three-body loss rate mentioned above, seven
particles per millisecond are lost from the trap. For a87Rb
condensate,l=840 nm,asc=5.8 nm,eLR=−0.04ERe−a sER is
recoil energy from absorption of a photond, and takinggT0
=0.04ER as approximately constant for calculational pur-
poses, the entangled state in our study is formed at 2.8 ms.
This amounts to a loss of 15–20 particles during the forma-
tion of the entangled state. Minimal losses can be obtained
with optimal choice of parameters. This loss in the number
of particles is in addition to the phase damping decoherence
mechanisms for which we refer to Ref.f34g.

We simulate here the loss of 1–3 % of the condensate
particles, which is reasonable. Figure 14 shows different re-
alizations of loss of different number of particles from the
least extreme entangled state example in Fig. 12, third row.
Figures 14sad and 14sbd are two different simulations for a
loss of 10 particles during the evolution. Figures 14scd and

FIG. 14. Effects of loss of particles on en-
tangled states.sad andsbd show the effect of loss
of 10 particles on the less extreme entangled state
example of the third row in Fig. 13.scd and sdd
show the effects of loss of 30 particles.sed shows
density matrix for panelsad, indicating that the
coherence is not lost.
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14sdd show two different runs for a loss of 30 particles from
the same entangled state. Results for extreme entangled
states are not shown here as such states are totally destroyed,
meaning all the particles are localized in one well. The simu-
lations suggests that a less extreme entangled state is more
robust, so it may be desirable to sacrifice the extremity of a
cat state in order for it to survive in a realistic laboratory
setting. To compare the effects of loss for sharpness, an en-
tangled state, which is not sharp and has a Gaussian spread,
has a better chance of having nonvanishing coefficients after
the loss of particles. So the most robust state would be a less
extreme entangled state with a Gaussian width of coefficients
around the two peaks. The coherence is not lost in destroying
particles in the fashion done here; this is evident in the den-
sity matrix f34g for Fig. 14sad as shown in Fig. 14sed. The
off-diagonal peaks in the density matrix that quantifies the
coherence remains a geometric mean of the diagonal ele-
ments because we have not introduced phase damping; co-
herence vanishes only when the final state is localized in one
well. In Ref. f33g the authors study dissipation of a dark
soliton after a phase imprinting has been applied and for a
nonzero temperature. At the higher temperature phase deco-
herence is rapid. Finite temperature would lead to a serious
source of decoherence for the system considered here.

C. Discussions

During our development of the quantum phase-space pic-
ture for the double-well BEC since 2002f11,37g, several
other authors have also noted that metastable quantum states
and dynamical instability can be exploited to produce en-
tangled states in a double wellf19g and in a two-component
condensatef20g. All these findings are consistent with the
phase-space model discussed in this paper; our demonstra-
tion of the tunability and sharpening of the entangled states
in a double-well setting provides a useful improvement that
may be important for experimental detection and other prac-
tical purposes. The Wigner distribution function, the Gauss-

ian average of which is the Husimi distribution, has also
emerged as a valuable tool for the description of entangled
state generation in a two-component condensatef20g.

VI. REMARKS AND SUMMARY

We have developed a quantum mechanical phase-space
picture of a double-well Bose-Einstein condensate in the
two-mode approximation. In a mean-field approximation, the
two-mode Hamiltonian reduces to the Hamiltonian of a non-
rigid physical pendulum. Examination of the Husimi projec-
tions of the stationary quantum states reveals how the mean-
field classical phase space follows directly from quantum
mechanics. We have found eigenstate structures that are lo-
calized, such as classical oscillating, free-rotor, andp states.

The Husimi probability distribution turns out to be an
extremely useful tool to study BECs in a double well.
Through its study we found unifying connections and in-
sights into the double-well phase space and its dynamics. For
a driven double well, quantum states are found to diffuse into
the chaotic region of phase space analogous to classical
chaos. Ap phase imprinted condensate put on an unstable
fixed point of the classical phase space bifurcates along the
separatrix if allowed to time evolve. The extremity and the
sharpness of the entangled states produced in this scheme
can be tuned with the initial barrier height and the appropri-
ate ramping of the potential. The model developed here may
find applications in the studies of other double-well BEC
dynamics, such as in a study of asymmetric wells, effects of
change of scattering lengths, transitions connected to
avoided crossings, topics in quantum chaos, and studies of
the effects of decoherence.
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