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Bose-Hubbard model with attractive interactions
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We consider the Bose-Hubbard model of atoms in an optical lattice potential when the atom-atom interac-
tions are attractive. If the lowest-energy lattice sites are degenstatk as in the homogeneous gasieen, at
a critical value of the interaction strength, a phase-coherent condensate becomes unstable to a quantum super-
position such that the number distribution of each of the degenerate sites becomes double peaked. In the limit
when the interaction dominates, the superposition becomes macroscopic and has thefyform

ocheWJBjTN\an, whereN is the total number of atoms and the sum ranges over the energy-degenerate sites.
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An optical lattice potential loaded with a Bose-Einstein Hubbard model can be deduced from the results for a simple
condensate of neutral atoms was predicted by Jaks@l.  two-mode model of a condensate in a double-well potential
[1] and recently confirmed by Greinet al.[2] to be a real- [13,14). In contrast to the repulsive case, it is predicted that
ization of the Bose-Hubbard model of condensed mattethe number fluctuations will increa$éhi>\s‘ﬁ) as the mag-

physics[3]. In addition to exemplifying a quantum phase pjtyde of the interaction energy is increagé@]. The behav-
transition, this system is ideal for creating and controlling thejg, 55 the magnitude of the interaction energy is further in-

quantum states of the atoms at the sites of the lattice poteiteased depends crucially on the single-particle energies of
tial [2,4]. The Bose-Hubbard model is described by a Ham"'the two wells,e, and e,. In the case where the wells are

tonian of the form{1] asymmetric,e; # €5, the energy is minimized by all atoms
1 accumulating in the lower-energy site. In the case of sym-
H=-JD, bJ-Tbi + 2 gh + ZUA (A — 1) (1)  metric wells, e;=¢,, Ciracet al. [14] and Steelet al. [13]
G0 i 2 have shown that the system is unable to choose which site to
A o accumulate in and will form a quantum superposition of the
whereb, andf= bini are the annihilation and number opera- two possibilities. This superposition state is associated with
tors of the mode localized at thigh lattice site.J is the very large number fluctuationsin,—n;. In the multiwell
hopping matrix to neighboring sites),« a; is the strength of ~case considered here, we expect this superposition state to
the on-site interactions due sawave scattering, ane is an  form between all sites that are degenerate with the lowest-
energy offset due to an additional confining magnetic trap. Irenergy site.
the large hopping regimel>|U|, the ground state of this These results show that if the site energies are degenerate,
system is well described by a phase-coherent condensate affgn a phase-coherent con-densate will become unstable to a
the number fluctuations are approximately Poissonim: superposition state. On the other hand, in the absence of a
= (A?)-n?~ Jn,, wheren =(f). For U>0, increasing the lattice potential, a condensate with attractive interactions is
interaction energy reduces the on-site number fluctuation§NOWn to become unstable as the interaction strength is in-
(dn, <)) and, at a critical value 0fl/J, the system under- cre_asecﬂ?_l—lz]. Itis convement tq consider two distinct types
goes a Mott-insulator phase transitioin, — 0) and all phase of instability: (1) a global implosion of the condensate wave

coherence vanishd®]. In the experimental realization, the function confined in a harmonic trd,8] and(ll) local in-

simple global phase-transition picture is complicated by thestabmtles of anunconfineccondensate accompanied by large

presence of the confining trap which produces local MottdenSIty fluctuationg9,12]. In the present case we find no

domains{5]. evidence of an instability of type I, even with the addition of

The use of neutral atoms opens up the possibility of exd harmonic confining trap, and conclude that the Bose-

ploring the Bose-Hubbard model with attractive interactions|_|Ubbard model becomes invalid before this type of instabil-

(U<0) as certain species of atom interact via a negativéty can occur. Hlowever, the instability (_jgscnbed here where
. a condensate gives way to a superposition state, shows many
s-wave scattering length and many atoms can be made (0

interact via a negative scattering length by using the tech§Imi|arities to an instability of type .
9 g ‘engih by 9 We can analyze the stability of a condensate in a lattice

nique of Feshbach resonance to alter the interaction potential . . . i -
[6]. Attractive interactions are particularly interesting be_potentlal via a Bogoliubov-type treatmefit5,14: in the

cause they lead to an instability of a phase-coherent conder|1'[nlt of large hopping.J>>|U], the ground state is well ap-

sate[7-12). The aim of this article is to describe the nature proxm}gtﬁjd by da phase—cohg(;ent conlijﬁnsate _descrg:)ed ?13.' a
of this instability for the Bose-Hubbard model and its rela-"1oan 11€10, ahd We can consider sma uctuations about this

tionship to the formation of unusual quantum states. mean field by making the replacemeii(t)=e~""[4,
Certain aspects of the behavior of the attractive Bose+ 6 (t)] in the Heisenberg equations of motion fbr and
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neglecting all terms except those linear in the fluctuatibns
This results in the equations

o:—J<2>Bj +(g-pn+U|BPS;, )
],I

c
~ w

~IX 5+ UIBP+ 6~ wa+UES  (3)
.0y

4

dt

for the mean field and fluctuations, respectively. After solv-

ing Eq.(2) for B; and u, Eq. (3) can be solved by making the

Bogoliubov transformatios; = =,u; ,& 48, +v; &5, with

the normalization conditior®;|u; |~ |v;/?=1, and solving

the resulting equations fawy, u;, andv . FIG. 1. Ground state of a homogeneous one-dimensional lattice.
Assuming a homogeneous one-dimensional latticé/of This figure showssn; (solid ling), C; (dashed ling andCy (dash-

sites (with periodic boundary conditionscontainingN at- dotted ling as a function ofU/J. The inset shows the energy dif-

oms, Eqgs(2) and(3) can be solved analyticalfy.5,16] such ference between the first excited state and the ground state. The

thatu=Un-2J, Wheren:|,8i|2:N/M is the mean-field soly- dotted lines correspond to a Bogoliubov treatment.

tion and the quasiparticle energies have the form

o= Vey(eg+2Un) (4) l) =

1 M

_— i¢ [N

\;MN!Ee bNvao, (6)

where g,=4Jsirf(ak/2). Here k=(2w/aM)m for m o

=-M/2,---,M/2. This shows that atl becomes increas- and the number fluctuations becond®,=NVM-1/M or

ingly negative, the first quasiparticle enerfgorresponding ~N/\M for many sites.

to k=27/aM) drops to zero an=-2J sir’(7r/M) and then In the current experimen{®,4], an inhomogeneity is in-

becomes imaginary, signaling a critical point beyond whichtroduced to the lattice system by an harmonic magnetic trap

the lattice system is unable to support a condensate. An anahich is used to confine the atoms in space. In the one-

lytical expression for the on-site number fluctuations candimensional case considered here, this gives rise to the

also be determined from this treatméh6] (see als¢17]) as  single-particle energieg=\[i—(M+A)/2]?, wherei ranges
from 1 to M, \ is a measure of th.e curvature, ang=Q

,_ N &y <1 is the offset of the lattice from the center of the confining
on’ = M - m ®) potential. Figure 2 shows the results of exact calculations in
Itis e_vident that at the crit_ical point the number fluctuations 10 @ U0 1[® Uz 1@ 71Uy
(5) diverge. Comparing with Ref9] we see that a type-Il -
instability is formally very similar to the present case. & 0 ﬂ
In order to treat the strong interaction regime beyond the o_.uJ]_M]_[L._ o i e
instability (where the Bogoliubov treatment breaks dgwn lattice sites
we have numerically calculated the exact ground state. Inthe ~ pw====or— 3
Fock state basis the state space of the system is lake: 8 (@ \‘ =
+M-1)!/[NI(M=21)!]. But the Hamiltonian(1) is a very oW
sparse matrix and so for small numbers of atoms and sites we st N=9 \ u'f _f
can calculate the lowest few eigenvalues and eigenstates by M=8 \
the Lanczos methoff18]. The results of these calculations 5 -1 05 0
are presented in Fig. 1. After the critical point of the Bogo-
liubov treatment the exact calculations show that the number
distribution becomes double peakécbrresponding to the
formation of a superposition statevhich gives rise to the

sudden increase in the number fluctuations shown in Fig. 1.

S -2 -1 0 1 2

The two peaks of the distribution move further apart and u/J

narrow as the interaction is increased, which reduces the

single-particle correlation between neighboring sit€s, FIG. 2. Ground state in the presence of a harmonic confining

=(b'b.,;), but increases theN-particle correlation C trap withx=0.1J andA=0.9. (8)~(c) shown; (white bars and o,
b AIT+I\112N ) ) P o N (black barg at each site for various values tf/J. (d) showsn,
=M(b;"bi;)/N!. Finally, in the strong attractive interaction (gashed lingand on, (solid line) as a function ofJ/J. The inset in

limit, the results confirm that the ground state is a macro<{d) shows the energy difference between the first excited state and
scopic superposition of the form the ground state.
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FIG. 3. Minimum energy gap between the ground state and first FIG. 4. Plot of the critical value ofJ/J as a function of the
excited state as a function af for M=50 sites. The values of the curvature of the confining trap,, in the case of two degenerate
curvature arex=107 (solid line, A=10"2 (dashed ling and A sites at the center of the trap. The inset shows the widtf the
=10 (dotted ling. condensate at the critical point.

the case of nondegenerate sites. Note that the number flutively “capture” the superposition before the atoms are able
tuations become large close to where the critical point wouldo tunnel into the lowest-energy site. To illustrate this point
have occurred if the sites were degener@be system gets we have numerically solved the Schrodinger equation for a
close to forming a superposition at this pgiand then de- two-mode model with the time-dependent interaction
crease as the atoms accumulate into a single site. strengthU(t)=U¢(1-€ ). The results of this simulation are

We can also calculate the critical behavior of the inhomo-shown in Fig. 5. The large number fluctuations for a suffi-
geneous system via a Bogoliubov treatment, which requiresiently large y (dotted ling confirm the formation of a su-
the numerical solution of the mean-field equati¢2sbefore  perposition even though the single-particle energies in the
solving the linear equation@®) for the quasiparticles. In the two wells differ.
nondegenerate case whert@ <1, for M odd, there is al- Experimental realization of the interaction-dominated re-
ways one sitej=(M+1)/2, with the lowest single-particle gime of the Bose-Hubbard model with a large number of
energy. In this case, no critical point is seen and as the integtoms is complicated by the fact that the localization of\all
action becomes more attractive, the condensate—which hasoms at a single lattice site may render the Bose-Hubbard
an approximately Gaussian spatial profile of width modelinvalid unless the magnitude of the scattering length is
w—simply decreases in width until all atoms accumulate insmall. Approximating the potential at each lattice site by a
site i=(M+1)/2. In Fig. 3 we have plotted the minimum harmonic potential of lengtta,, the interaction strength
energy gap to the first excited stateE,,;, (found by varying ~must satisfyna,,> (fi(f—1))|ad, such that the interaction
U/J over a broad range of valueas a function ofA. The  does not alter the shape of the localized mode functions at
finite value of this gap foA # 0 demonstrates the stability of
the condensate in the nondegenerate case. We find no evi- Sl 0.05 U—0.032J
dence of an instability of type | which would be expected to 40 e
occur even in the nondegenerate case.

Figure 4 shows the dependence of the critical point
(where the first excitation energy becomes imagipharythe .30
curvature in the degenerate cade:0. The inset shows that
for a broad range of trap curvatures, the critical point occurs
when the condensate width is of the order of the site spacing.

In a realistic situation it may be difficuliif not impos-
sible) to create a lattice with exactly degenerate sites. How- 10
ever, in current experiments, the high interaction regime is ; . . .
reached by alynamicprocess whereby the relevant param- -0.04 -0.03 -0.02 -0.01
eter k(t)=|U(t)|/J(t) is increased at a certain rate(this is Ut
normally in the adiabatic regime so the system remains in the
gr_o_und Stf"‘t)3 Inthis cgse, clqse ta(t) ~1/N (where the ground state atl(t=0)=0 with the parametert;=-0.05), e;—€;
criical point would be if the sites were degenejaieone -0 0003. This figure shows the time evolution of the number fluc-
increases«(t) at a rate faster than the oscillation frequencyations on, for the rates y<0.008/# (solid line and y
between two different sitesy> (e;-¢€,)/A (but still slower  =0.01)/% (dashed ling The inset shows the two-peaked structure
than the tunneling rajethen, for short times, the system will (coresponding to a superposition sjabé the number distribution
be unaware of the inhomogeneity and it is possible to effecP(ny) =[(y(t)|n;,N-n.)|? at the point corresponding to the arrow.
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FIG. 5. Nonadiabatic evolution of a two-mode model from the
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each site(In fact, we can continue to use the Bose-Hubbardchoose which site due to the energy degeneracy and so form
model beyond this inequality with renormalized parametersa superposition of all the possibilities. Interestingly, our re-
[19], the ultimate limit being the stability of the localized sults suggest that the Bose-Hubbard model becomes invalid
mode function against a type-l instabilitg,,>nilad.) A pefore an instability of type [for a confined condensate
possible method to overcome this is to load a very deepqcyrs and that an instability of type (for an unconfined

optical lattice(so thatJ is smal) with repulsively interacting condensate corresponds to the formation of superposition
atoms and use Feshbach resonance to slowly tune the mtert—ates due to the homogeneity of free space. In an experimen-
action through zero so it becomes just slightly negative, asg 9 y pace. P

described in Ref,20] for “Li. This method has the additional t@! realization, atom lostr absorption imagingwill destroy
advantage that it will minimize three-body loss of atoms,the superposition by tending to localize the atoms at one site.
which scales as [21]. Superpositions such d$§) can be destroyed by the loss of
In conclusion, the ground state of the attractive Bosejust one atom which will “collapse” the quantum state of the
Hubbard model displays behavior fundamentally differentatoms to one of the degenerate lattice sites. Less macroscopic
from the repulsive case. In particular, if the lowest-energysuperpositions, such as those formed just after the critical
sites are degenerate then, at a critical value of the interactigooint, will be more robust against log&4]. Methods of non-
strength, a phase-coherent condensate becomes unstable tdestructive detection of these superposition states will be the
quantum superposition such that the number distribution aopic of future work.
each degenerate site becomes double peaked. The atoms
have a tendancy to accumulate at a single site in order to The authors would like to thank A. Kawaguchi, Y. Tokura,
minimize the interaction energy but they are unable toand R. Hulet for useful discussions.
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