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We consider the Bose-Hubbard model of atoms in an optical lattice potential when the atom-atom interac-
tions are attractive. If the lowest-energy lattice sites are degeneratessuch as in the homogeneous cased, then, at
a critical value of the interaction strength, a phase-coherent condensate becomes unstable to a quantum super-
position such that the number distribution of each of the degenerate sites becomes double peaked. In the limit
when the interaction dominates, the superposition becomes macroscopic and has the formucl
~o je

if jb̂j
†Nuvacl, whereN is the total number of atoms and the sum ranges over the energy-degenerate sites.
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An optical lattice potential loaded with a Bose-Einstein
condensate of neutral atoms was predicted by Jakschet al.
f1g and recently confirmed by Greineret al. f2g to be a real-
ization of the Bose-Hubbard model of condensed matter
physics f3g. In addition to exemplifying a quantum phase
transition, this system is ideal for creating and controlling the
quantum states of the atoms at the sites of the lattice poten-
tial f2,4g. The Bose-Hubbard model is described by a Hamil-
tonian of the formf1g

H = − Jo
k j ,il

b̂j
†b̂i + o

i

ein̂i +
1

2
Un̂isn̂i − 1d s1d

whereb̂i andn̂i = b̂i
†b̂i are the annihilation and number opera-

tors of the mode localized at theith lattice site.J is the
hopping matrix to neighboring sites,U~as is the strength of
the on-site interactions due tos-wave scattering, andei is an
energy offset due to an additional confining magnetic trap. In
the large hopping regime,J@ uUu, the ground state of this
system is well described by a phase-coherent condensate and
the number fluctuations are approximately Poissonian:dni

;Îkn̂i
2l−ni

2<Îni, whereni =kn̂il. For U.0, increasing the
interaction energy reduces the on-site number fluctuations
sdni ,Înid and, at a critical value ofU /J, the system under-
goes a Mott-insulator phase transitionsdni →0d and all phase
coherence vanishesf2g. In the experimental realization, the
simple global phase-transition picture is complicated by the
presence of the confining trap which produces local Mott
domainsf5g.

The use of neutral atoms opens up the possibility of ex-
ploring the Bose-Hubbard model with attractive interactions
sU,0d as certain species of atom interact via a negative
s-wave scattering length and many atoms can be made to
interact via a negative scattering length by using the tech-
nique of Feshbach resonance to alter the interaction potential
f6g. Attractive interactions are particularly interesting be-
cause they lead to an instability of a phase-coherent conden-
satef7–12g. The aim of this article is to describe the nature
of this instability for the Bose-Hubbard model and its rela-
tionship to the formation of unusual quantum states.

Certain aspects of the behavior of the attractive Bose-

Hubbard model can be deduced from the results for a simple
two-mode model of a condensate in a double-well potential
f13,14g. In contrast to the repulsive case, it is predicted that
the number fluctuations will increasesdni .Înid as the mag-
nitude of the interaction energy is increasedf13g. The behav-
ior as the magnitude of the interaction energy is further in-
creased depends crucially on the single-particle energies of
the two wells,e1 and e2. In the case where the wells are
asymmetric,e1Þe2, the energy is minimized by all atoms
accumulating in the lower-energy site. In the case of sym-
metric wells,e1=e2, Cirac et al. f14g and Steelet al. f13g
have shown that the system is unable to choose which site to
accumulate in and will form a quantum superposition of the
two possibilities. This superposition state is associated with
very large number fluctuations:dni →ni. In the multiwell
case considered here, we expect this superposition state to
form between all sites that are degenerate with the lowest-
energy site.

These results show that if the site energies are degenerate,
then a phase-coherent con-densate will become unstable to a
superposition state. On the other hand, in the absence of a
lattice potential, a condensate with attractive interactions is
known to become unstable as the interaction strength is in-
creasedf7–12g. It is convenient to consider two distinct types
of instability: sId a global implosion of the condensate wave
function confined in a harmonic trapf7,8g and sII d local in-
stabilities of anunconfinedcondensate accompanied by large
density fluctuationsf9,12g. In the present case we find no
evidence of an instability of type I, even with the addition of
a harmonic confining trap, and conclude that the Bose-
Hubbard model becomes invalid before this type of instabil-
ity can occur. However, the instability described here where
a condensate gives way to a superposition state, shows many
similarities to an instability of type II.

We can analyze the stability of a condensate in a lattice
potential via a Bogoliubov-type treatmentf15,16g: in the
limit of large hopping,J@ uUu, the ground state is well ap-
proximated by a phase-coherent condensate described by a
mean field, and we can consider small fluctuations about this

mean field by making the replacementb̂istd=e−imt/"fbi

+ d̂istdg in the Heisenberg equations of motion forb̂i and
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neglecting all terms except those linear in the fluctuationsd̂i.
This results in the equations

0 = −Jo
k j ,il

b j + sei − m + Uubiu2dbi , s2d

dd̂i

dt
= − Jo

k j ,il
d̂ j + s2Uubiu2 + ei − mdd̂i + Ubi

2d̂i
† s3d

for the mean field and fluctuations, respectively. After solv-
ing Eq.s2d for bi andm, Eq.s3d can be solved by making the

Bogoliubov transformationd̂i =okui,ke
−ivktd̂k+vi,k

* eivktd̂k
†, with

the normalization conditionoiuui,ku2− uvi,ku2=1, and solving
the resulting equations forvk, ui,k, andvi,k.

Assuming a homogeneous one-dimensional lattice ofM
sites swith periodic boundary conditionsd containingN at-
oms, Eqs.s2d ands3d can be solved analyticallyf15,16g such
thatm=Un−2J, wheren= ubiu2=N/M is the mean-field solu-
tion and the quasiparticle energies have the form

"vk = Î«ks«k + 2Und s4d

where «k=4J sin2sak/2d. Here k=s2p /aMdm for m
=−M /2 ,¯ ,M /2. This shows that asU becomes increas-
ingly negative, the first quasiparticle energyscorresponding
to k=2p /aMd drops to zero atUn=−2J sin2sp /Md and then
becomes imaginary, signaling a critical point beyond which
the lattice system is unable to support a condensate. An ana-
lytical expression for the on-site number fluctuations can
also be determined from this treatmentf16g ssee alsof17gd as

dni
2 =

n

M
o
k

«k

"vk
. s5d

It is evident that at the critical point the number fluctuations
s5d diverge. Comparing with Ref.f9g we see that a type-II
instability is formally very similar to the present case.

In order to treat the strong interaction regime beyond the
instability swhere the Bogoliubov treatment breaks downd,
we have numerically calculated the exact ground state. In the
Fock state basis the state space of the system is large:sN
+M −1d ! / fN! sM −1d ! g. But the Hamiltonians1d is a very
sparse matrix and so for small numbers of atoms and sites we
can calculate the lowest few eigenvalues and eigenstates by
the Lanczos methodf18g. The results of these calculations
are presented in Fig. 1. After the critical point of the Bogo-
liubov treatment the exact calculations show that the number
distribution becomes double peakedscorresponding to the
formation of a superposition stated which gives rise to the
sudden increase in the number fluctuations shown in Fig. 1.
The two peaks of the distribution move further apart and
narrow as the interaction is increased, which reduces the
single-particle correlation between neighboring sites,C1

=kb̂i
†b̂i+1l, but increases theN-particle correlation CN

=Mkb̂i
†Nb̂i+1

N l /N!. Finally, in the strong attractive interaction
limit, the results confirm that the ground state is a macro-
scopic superposition of the form

ucl =
1

ÎMN!
o
j=1

M

eif jb̂j
†Nuvacl, s6d

and the number fluctuations becomedni =NÎM −1/M or
<N/ÎM for many sites.

In the current experimentsf2,4g, an inhomogeneity is in-
troduced to the lattice system by an harmonic magnetic trap
which is used to confine the atoms in space. In the one-
dimensional case considered here, this gives rise to the
single-particle energiesei =lfi −sM +Dd /2g2, wherei ranges
from 1 to M, l is a measure of th.e curvature, and 0øD
,1 is the offset of the lattice from the center of the confining
potential. Figure 2 shows the results of exact calculations in

FIG. 1. Ground state of a homogeneous one-dimensional lattice.
This figure showsdni ssolid lined, C1 sdashed lined, andCN sdash-
dotted lined as a function ofU /J. The inset shows the energy dif-
ference between the first excited state and the ground state. The
dotted lines correspond to a Bogoliubov treatment.

FIG. 2. Ground state in the presence of a harmonic confining
trap with l=0.1J andD=0.9. sad–scd showni swhite barsd anddni

sblack barsd at each site for various values ofU /J. sdd showsn4

sdashed lined anddn4 ssolid lined as a function ofU /J. The inset in
sdd shows the energy difference between the first excited state and
the ground state.
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the case of nondegenerate sites. Note that the number fluc-
tuations become large close to where the critical point would
have occurred if the sites were degeneratesthe system gets
close to forming a superposition at this pointd and then de-
crease as the atoms accumulate into a single site.

We can also calculate the critical behavior of the inhomo-
geneous system via a Bogoliubov treatment, which requires
the numerical solution of the mean-field equationss2d before
solving the linear equationss3d for the quasiparticles. In the
nondegenerate case when 0,D,1, for M odd, there is al-
ways one site,i =sM +1d /2, with the lowest single-particle
energy. In this case, no critical point is seen and as the inter-
action becomes more attractive, the condensate—which has
an approximately Gaussian spatial profile of width
w—simply decreases in width until all atoms accumulate in
site i =sM +1d /2. In Fig. 3 we have plotted the minimum
energy gap to the first excited state,DEmin sfound by varying
U /J over a broad range of valuesd as a function ofD. The
finite value of this gap forDÞ0 demonstrates the stability of
the condensate in the nondegenerate case. We find no evi-
dence of an instability of type I which would be expected to
occur even in the nondegenerate case.

Figure 4 shows the dependence of the critical point
swhere the first excitation energy becomes imaginaryd on the
curvature in the degenerate case:D=0. The inset shows that
for a broad range of trap curvatures, the critical point occurs
when the condensate width is of the order of the site spacing.

In a realistic situation it may be difficultsif not impos-
sibled to create a lattice with exactly degenerate sites. How-
ever, in current experiments, the high interaction regime is
reached by adynamicprocess whereby the relevant param-
eter kstd= uUstdu /Jstd is increased at a certain rateg sthis is
normally in the adiabatic regime so the system remains in the
ground stated. In this case, close tokstd,1/N swhere the
critical point would be if the sites were degenerated, if one
increaseskstd at a rate faster than the oscillation frequency
between two different sites,g@ se1−e2d /" sbut still slower
than the tunneling rated, then, for short times, the system will
be unaware of the inhomogeneity and it is possible to effec-

tively “capture” the superposition before the atoms are able
to tunnel into the lowest-energy site. To illustrate this point
we have numerically solved the Schrödinger equation for a
two-mode model with the time-dependent interaction
strengthUstd=Ufs1−e−gtd. The results of this simulation are
shown in Fig. 5. The large number fluctuations for a suffi-
ciently largeg sdotted lined confirm the formation of a su-
perposition even though the single-particle energies in the
two wells differ.

Experimental realization of the interaction-dominated re-
gime of the Bose-Hubbard model with a large number of
atoms is complicated by the fact that the localization of allN
atoms at a single lattice site may render the Bose-Hubbard
model invalid unless the magnitude of the scattering length is
small. Approximating the potential at each lattice site by a
harmonic potential of lengthaho, the interaction strength
must satisfyniaho@ kn̂isn̂i −1dluasu, such that the interaction
does not alter the shape of the localized mode functions at

FIG. 3. Minimum energy gap between the ground state and first
excited state as a function ofD for M =50 sites. The values of the
curvature arel=10−3 ssolid lined, l=10−2 sdashed lined, and l
=10−4 sdotted lined.

FIG. 4. Plot of the critical value ofU /J as a function of the
curvature of the confining trap,l, in the case of two degenerate
sites at the center of the trap. The inset shows the widthw of the
condensate at the critical point.

FIG. 5. Nonadiabatic evolution of a two-mode model from the
ground state atUst=0d=0 with the parametersUf =−0.05J, e2−e1

=0.0005J. This figure shows the time evolution of the number fluc-
tuations dn1 for the rates g,0.005J/" ssolid lined and g
=0.01J/" sdashed lined. The inset shows the two-peaked structure
scoresponding to a superposition stated of the number distribution
Psn1d= zkcstd un1,N−n1lz2 at the point corresponding to the arrow.
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each site.sIn fact, we can continue to use the Bose-Hubbard
model beyond this inequality with renormalized parameters
f19g, the ultimate limit being the stability of the localized
mode function against a type-I instability:aho.niuasu.d A
possible method to overcome this is to load a very deep
optical latticesso thatJ is smalld with repulsively interacting
atoms and use Feshbach resonance to slowly tune the inter-
action through zero so it becomes just slightly negative, as
described in Ref.f20g for 7Li. This method has the additional
advantage that it will minimize three-body loss of atoms,
which scales asas

4 f21g.
In conclusion, the ground state of the attractive Bose-

Hubbard model displays behavior fundamentally different
from the repulsive case. In particular, if the lowest-energy
sites are degenerate then, at a critical value of the interaction
strength, a phase-coherent condensate becomes unstable to a
quantum superposition such that the number distribution at
each degenerate site becomes double peaked. The atoms
have a tendancy to accumulate at a single site in order to
minimize the interaction energy but they are unable to

choose which site due to the energy degeneracy and so form
a superposition of all the possibilities. Interestingly, our re-
sults suggest that the Bose-Hubbard model becomes invalid
before an instability of type Isfor a confined condensated
occurs and that an instability of type IIsfor an unconfined
condensated corresponds to the formation of superposition
states due to the homogeneity of free space. In an experimen-
tal realization, atom losssor absorption imagingd will destroy
the superposition by tending to localize the atoms at one site.
Superpositions such ass6d can be destroyed by the loss of
just one atom which will “collapse” the quantum state of the
atoms to one of the degenerate lattice sites. Less macroscopic
superpositions, such as those formed just after the critical
point, will be more robust against lossf14g. Methods of non-
destructive detection of these superposition states will be the
topic of future work.
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