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The excess number of atoms around an ion immersed in a Bose-Einstein condensate is determined as a
function of the condensate density far from the ion. We use thermodynamic arguments to demonstrate that in
the limit of low densities the excess number of atoms is proportional to the ratio of the atom-ion and atom-atom
scattering lengths. For denser systems we calculate the excess number from solutions of the Gross-Pitaevskii
equation using a model potential that has a 1/r4 attraction coming from the polarization of the neutral atoms
and a hard-core repulsion at short distances. We show that there exist in general many solutions to the
Gross-Pitaevskii equation for a given condensate density, the maximum number of solutions being related to
the number of bound states of the Schrödinger equation for the same potential. With increasing density, pairs
of these solutions merge and disappear, implying a discontinuous change of the state of the system.
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I. INTRODUCTION

For the helium liquids, measurements on ions have served
as a valuable probe of liquid properties. As examples we may
mention the use of ions to put in evidence vortex lattices in
rotating liquid 4He and the measurement of ionic mobilities
in superfluid3He to elucidate scattering processes. The first
experiments on ions in an ultracold gas of87Rb atoms were
reported by Ciampiniet al. f1g, who produced ions by irra-
diating a rubidium condensate with laser pulses which ionize
atoms through one- and two-photon absorption processes.

Theoretically, the capture of atoms into weakly bound
states of the atom-ion potential has been considered in Ref.
f2g. In this paper we consider the structure of a positive ion
in a Bose-Einstein condensate when there is no capture of
atoms into bound states, and in particular we calculate the
excess number of atoms associated with an ion. We shall
demonstrate that this number is typically of order 102, either
positive or negative.

The interaction between an atom and a positively charged
alkali-metal ionschargeed, which are separated by a distance
r, is given at large distances by the polarization potential
caused by the electrostatic fieldEes due to the ion,Ees
=e/4pe0r

2, which gives rise to a change in the energy of the
neutral atom given byV=−aEes

2 /2, wherea is the polariz-
ability of the atom. Writing the polarizability asa=4pe0ã,
whereã has the dimension of volume, the energy shift of an
atom due to the ion becomes

Vsrd = − ã
e0

2

2r4 , s1d

wheree0
2;e2/4pe0. At short distancessr &10a0d the poten-

tial has a repulsive core. An important characteristic length,
which we denote byb4, may be identified by equating the
kinetic energy"2/2mb4

2 to the potential energyVsb4d, result-
ing in

b4 =Î ã

a0

m

me
. s2d

Herem denotes the mass of a neutral atom,me is the electron
mass, anda0;"2/mee0

2,0.53 Å is the Bohr radius. Using

the measured valuesã=320a0
3 for 87Rb and ã=163a0

3 for
23Na, one findsb4

Rb<7150a0 andb4
Na<2620a0. The quantity

b4 gives the distance from the ion beyond which the zero-
energy atom-ion wave function ceases to oscillate, and it sets
the scale of atom-ion scattering lengths, but their actual val-
ues depend on the details of the potential at short distances.

We begin by deriving from thermodynamics a general ex-
pression for the excess number of atoms around an ion and
show that in dilute systems the excess number depends only
on the ratio of the atom-ion and atom-atom scattering
lengths. As we shall see, this approach suggests that the
number of atoms associated with an ion is typically of the
order of 10–100, but that it may be either positive or nega-
tive. In denser systems the excess number must be obtained
from microscopic considerations, and we shall determine the
structure of an ion immersed in a Bose-Einstein condensate
at zero temperature, assuming that atom-atom interactions
may be described within the framework of the Gross-
PitaevskiisGPd mean-field approach. We present solutions of
the GP equation for a number of potentials which include a
hard-core repulsion, an attractive square well, and one that
resembles the atom-ion interaction, a hard core with a 1/r4

attraction at larger distances.
For a given inner boundary condition, the Schrödinger

equation has only one solution for a given value of the en-
ergy. By contrast, the GP equation, because it is nonlinear,
can have more than one solution for a given chemical poten-
tial. For potentials like the atom-ion one that can support
two-body bound states, we shall find that at low densities
there are 2nS+1 solutions of the GP equation, wherenS is the
number of bound states of the Schrödinger equation for the
same potential. With increasing density, pairs of solutions
merge and disappear until there is only a single solution with
no nodes. We shall illustrate this behavior for two potentials,
an attractive square well and one with an attractive 1/r4 tail.
An important question is which of these solutions is physi-
cally relevant. At low condensate densities, one expects the
wave function close to the ion to resemble the zero-energy
solution of the Schrödinger equation, and to havenS nodes.
This will be the case unless inelastic processes can populate
lower-lying states. We find that with increasing condensate
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density, this solution ceases to exist. This indicates that the
evolution of the state with density cannot be continuous even
in the absence of inelastic processes.

The plan of the paper is as follows. In Sec. II we present
thermodynamic considerations. Section III contains a de-
scription of the asymptotic behavior of the condensate wave
function far from the ion. In Sec. IV we consider two simple
potentials to illustrate important general features of our re-
sults, and in Sec. V we analyze the case of a potential that,
like the actual atom-ion potential, behaves asr−4 at large
distances. We calculate the excess number of atoms from
numerical solutions of the Gross-Pitaevskii equation for a
given background condensate density. The concluding sec-
tion, Sec. VI, discusses our main results. In an Appendix, we
address the question of the validity of the Gross-Pitaevskii
equation in the present context.

II. THERMODYNAMIC CONSIDERATIONS

We wish to calculate the excess number of particles asso-
ciated with an ion. To define this quantity precisely, we
imagine adding an ion to a condensate. This will generally
change the density of atoms far from the ion by an amount
that varies as 1/V, whereV is the volume of the system. A
natural definition of the excess number of atomsDN associ-
ated with the ion is the number of particles that must be
added to keep the atom chemical potential constant, since
this will ensure that the properties of the condensate far from
the ion are unaltered by the addition of the ion. In terms of
the microscopic density of atomsnsrd around the ion, the
excess number is given by

DN = 4pE
0

`

dr r2fnsrd − n0g, s3d

wheren0 is the density of atoms at large distances from the
ion.

This is analogous to what has been done earlier to calcu-
late the excess number of4He atoms associated with a3He
impurity in liquid 4He f3g. We shall denote the energy per
unit volume asEsna,nid, where na and ni are the number
densities of atoms and ions, respectively. The chemical po-
tential of the atoms is given by

ma =
]E
]na

, s4d

and therefore the condition that this be unchanged by adding
one ion andDN atoms is

]2E
]na]ni

+
]2E
]na

2DN = 0 s5d

or

DN = −
]2E

]na]ni
Y ]2E

]na
2 . s6d

When the density of ions is sufficiently low,]E /]ni is equal
to the energy changeei when one ion is added to the con-
densate, and therefore

DN = −
]ei

]na
Y ]2E

]na
2 . s7d

One may also calculateDN from the changeDF in the
thermodynamic potentialF=E−maN when a single ion is
added to the system at constantma. HereE is the total energy
andN the total number of atoms. Since the number of atoms
is given by

N = −
]F

]ma
, s8d

it follows immediately that

DN = −
]DF

]ma
. s9d

Provided the volume considered is large compared with the
scale of the atom excess around the ion,DF will be indepen-
dent of the volume.

Let us begin by making estimates for a dilute gas. Pro-
vided the scattering of atoms by atoms and of atoms by ions
may be treated as independent binary events, the energy den-
sity may be expressed in terms of the scattering lengths as-
sociated with the atom-atom and atom-ion interactions. If
ion-ion interactions are neglected, we may write

Esna,nid =
1

2
Uaana

2 + Uainani , s10d

and therefore from Eq.s6d we obtain

DN = −
Uai

Uaa
. s11d

The mean-field interaction constantUjl for speciesj and l,
which may be either atomssad or ions sid, is related to the
scattering lengthajl by

Ujl =
2p"2ajl

mjl
, s12d

where mjl =mjml / smj +mld is the reduced mass of the two
particles. Our result can therefore be expressed as

DN = −
maa

mai

aai

aaa
. s13d

If, as in Ref.f1g, the ion is obtained by photoionization of the
condensate itself, the latter expression reduces to

DN = − aai/aaa. s14d

To obtain an order of magnitude estimate of the excess num-
ber of atoms associated with an ion, we note that the char-
acteristic scale for the magnitudes of atom-ion scattering
lengthsuaaiu is set byb4, given in Eq.s2d, while the scale for
the magnitudes of atom-atom scattering lengthsuaaau is set by

b6 = S2
m

me
C6D1/4

a0. s15d

HereC6 is the coefficient ofr−6 in the van der Waals inter-
action, expressed in atomic units. Thus we arrive at the esti-
mate
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uDNu ,
b4

b6
, S m

2me

ã2

C6
D1/4

, s16d

which is of order 35 for Rb and 25 for Na.
The fact that the excess number of atoms is so large indi-

cates that it may well be a poor approximation to regard the
ion as a free particle, with mass equal to the bare ion mass.
Rather, the recoil of the ion will be suppressed by the other
atoms surrounding the ion, and ifDN@1 it will be a better
approximation to regard the ion as being stationary. In that
case the excess number of atoms will be given by

DN = −
aaismd
2aaa

, s17d

where the argument ofaai indicates that the scattering length
is to be evaluated for a reduced mass equal to the atom mass.
Expressions17d gives a value forDN that is typically of the
same order of magnitude as that given by Eq.s16d. However,
we stress the fact that the estimate forDN depends sensi-
tively on the value of the effective mass of the ion, since the
atom-ion potential has many bound states, and therefore rela-
tively small changes in the reduced mass can result in large
changes in the scattering length. Given that in the limit of
low atom density the magnitude of the excess number of
atoms is expected to be very much greater than unity, the
results14d will generally not give a realistic estimate even in
that case.

The perturbation induced by the ionic potential is very
strong. Therefore the question arises of whether the custom-
ary assumption of an essentially zero range for the atom-
atom interaction is valid. We address this point in the Appen-
dix, where we argue that the corrections to the GP result
should not be large for the properties of interest here.

III. MICROSCOPIC THEORY

We now turn to microscopic considerations. Since, as we
shall see, the distortion of the condensate wave function in
the vicinity of an ion extends to large distances from the ion
and involves many atoms, we expect that the effective mass
of an ion and its dressing cloud will be much larger than that
of an atom, and we may regard the ion as being static. To
describe the structure of the condensate in the vicinity of an
ion we must therefore calculate the structure of the conden-
sate in a static external potential given by the atom-ion in-
teraction. Provided the length scale on which the condensate
wave functionc varies in space is sufficiently large, we may
do this by employing the Gross-Pitaevskii equation with the
interaction of atoms with the ion included as an external
potential,

F−
"2

2m
¹2 + Vsrd + U0ucu2Gc = mc. s18d

Here and in what follows we shall denote the chemical po-
tential of an atom bym, and for simplicity we have written
U0;Uaa=4p"2aaa/m, sincemaa=m/2. We wish to find so-
lutions that tend to a constant at large distances from the ion,
and since the potential is spherically symmetric, these solu-

tions depend only on the radial coordinater. Thus Eq.s18d
becomes

F−
"2

2m

d2

dr2 + Vsrd + U0
uxu2

r2 Gx = mx, s19d

wherex=rc.
The behavior of the condensate wave function at large

distances depends on the nature of the potentialVsrd. On
linearizing the GP equations18d and making use of the fact
that the chemical potential is related to the condensate wave
function c0 at large distances by the relationm=n0U0 where
n0= uc0u2, one finds that the deviation

dc = c − c0 s20d

of the condensate wave function from its asymptotic value
satisfies the linearized GP equation

S−
"2

2m
¹2 + Vsrd + 2U0n0Ddc = − Vsrdc0. s21d

For potentials with a finite range, one may neglect the
potential at large distances from the ion, and the deviation
that vanishes forr →` is thus given by

dc ~
e−kjr

r
, s22d

wherekj=Î2/j andj is the healing length for the bulk con-
densate,

j =
1

Î8paaan0

. s23d

For a potential, such as the atom-ion potential, that falls
off at large distances less rapidly than the solutions22d, the
behavior is different. The leading term in the solution for
large r is then the Thomas-Fermi resultcTF, given by

Vsrd + U0ucTFu2 = m, s24d

which, for the atom-ion potential with asymptotic form given
by Eq. s1d, amounts to

nTFsrd = n0 −
Vsrd
U0

= n0S1 +
sjb4d2

r4 D s25d

or, to first order inV,

cTF < c0 −
Vsrd

2U0c0
, s26d

where we have takenc0 to be real. The density perturbation
at large distances is seen to be always positive. Corrections
to this result for smallerr may be calculated from Eq.s21d
by neglecting the potential on the left hand side of the equa-
tion. The resulting differential equation may be written in
terms of a functiondx defined bydx=rdc,

S−
d2

dr2 + kj
2Ddx = −

2m

"2 rVsrdc0. s27d

This differential equation may be solved exactly in terms of
exponential integrals, the two linearly independent solutions
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of the homogeneous equation being exps−kjrd and expskjrd.
By inspection of Eq.s27d it is evident that the leading term
for large r of the particular solution to the inhomogeneous
equation is given bydx=−s2m/"2kj

2drVsrdc0, which yields
the Thomas-Fermi expressions26d. The correction to this
result may be obtained from the exact solution, but it is sim-
pler to iterate Eq.s27d by moving the termd2dx /dr2 to the
right hand side and replacingx in it by the Thomas-Fermi
solution. This results in

dc

c0
= −

2m

"2kj
2VsrdS1 +

12

kj
2r2D . s28d

The leading correction to the Thomas-Fermi result fordc
given in Eq.s26d is thus seen to be proportional tor−6. Since
we have already neglected the potential energy on the left
hand side of Eq.s21d, we cannot by this method obtain
higher-order corrections to the particular solution than the
one exhibited in Eq.s28d.

By keeping in the general solution only the exponentially
decaying term we thus get the asymptotic result

dc

c0
, −

Vsrd
2n0U0

S1 +
6j2

r2 D + C
e−kjr

r
, s29d

whereC is an arbitrary constant.
For r →` the asymptotic behavior of the solution is al-

ways given by the TF result. However, whether or not this
behavior is relevant for determining the structure of most of
the cloud of atoms surrounding the ion depends on the rela-
tive size of the two characteristic lengthsb4 and j. On the
one hand, forb4@j most of the cloud will be described by
the TF approxmation, and only at distances less than,j will
the exponential term become important. On the other hand,
for j@b4 si.e., for low external densityd the structure will be
dominated by the exponential term, and the TF tail will be-
come important quantitatively only at very larger. At shorter
distances from the ion, the mean-field energy becomes small
compared with the atom-ion potential and the GP equation
reduces to a good approximation to the Schrödinger equa-
tion.

IV. SIMPLE MODEL POTENTIALS

Before presenting results for the attractive 1/r4 potential
we begin by examining two simpler model potentials, a re-
pulsive hard-core and a spherical well potential.

A. Hard-core potential

Consider an interacting Bose-Einstein condensed gas in
the presence of a repulsive hard-core potential of radiusR.
This model may be treated analytically in both the small- and
large-core-radius limits. The solution to the GP equation at
large distances from the ion is given by Eq.s22d,

c . În0S1 + C
exps− kjrd

r
D . s30d

If one assumes that this expression holds for allr greater
than R, we can determine the constant of proportionalityC

by imposing the boundary conditioncsRd=0. This givesC
=−RekjRÎn0. For r close toR this has the form of the scat-
tering solution for the Schrödinger equation,c=1−R/ r. In
fact, for R/j!1 this solution becomes essentially exact,
since this function fails to satisfy the GP equation only in the
region wherer .R, and in this region the total change in the
slopedx /dr of the radial wave function is small and may be
neglected. As an illustration of this fact, we calculate the
excess number of particles, which is given by Eq.s3d, and
find

DN = 4pn0E
R

`

dr r2S− 2R
e−kjsr−Rd

r
+ R2e−2kjsr−Rd

r2 D −
4pn0R

3

3

= − 4pn0SRj2 +
3R2j

2Î2
+

R3

3 D . s31d

For j@R, this reduces to

DN = −
R

2aaa
. s32d

Let us now compare this result with the one derived on the
basis of thermodynamic arguments. For a hard-core potential
the scattering length coincides with the core radius. Since we
have assumed the ion to be stationary, its effective mass is
taken to be infinitely large, and therefore the reduced mass
for the ion and an atom ism, rather than the valuem/2 one
obtains for an ion and an atom with equal masses. Thus, this
result is in precise agreement with Eq.s13d.

When the core radius is much larger than the healing
length, the wave function reaches its asymptotic value on a
length scale that is short compared toR. In Eq. s19d we can
therefore replace the factor 1/r2 appearing in the nonlinear
term by the constant 1/R2 and we are left with an effectively
one-dimensional GP equation whose solution is

c = În0 tanh
r − R
Î2j

, r ù R, s33d

and zero otherwise, as may be seen by inspection. The excess
number of particles is given by

DN = −
4

3
pR3n0 −

R2

Î2aaaj
, s34d

where the leading term is due to exclusion of atoms from the
core.

B. Attractive square well

We next consider a more physical potential, an attractive
well:

Vsrd = −
"2k0

2

2m
, r , R, s35d

Vsrd=0 otherwise. Like the actual atom-ion potential, this
can have bound states for the two-body problem. With this
potential we shall be able to examine how solutions of the
GP equation disappear as the condensate density increases.
The GP equations19d reads
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F−
1

2

d2

dr2 −
k0

2

2
usR− rd + 4paaaS uxu2

r2 − n0DGx = 0 s36d

fwherex=rc andusxd is the step functiong and the scattering
length for this potential is

a = RS1 −
tank0R

k0R
D . s37d

Since this equation is nonlinear, there can be multiple
solutions for the same boundary conditionssi.e., the same
bulk densityn0d. As we will show in the following, for small
n0 it has 2nS+1 solutions, wherenS is the number of nodes of
the zero-energy Schrödinger solutioncS or, equivalently, the
number of bound states of the Schrödinger equation. In the
low-background-density limit, inside the well the solution
with the maximum number of nodes approachescS, i.e.,
csrd~sinsk0rd / r, while outside it tends toward the uniform
densityn0 with the asymptotic behavior given in Eq.s22d,
dcsrd~exps−kjrd / r.

With increasingn0, the mean-field repulsion between the
atoms makes the effective potential shallower, which tends to
push nodes of the wave function outward. At the same time,
the increase in the chemical potential has the opposite effect
on the nodes. What we find is that if the zero-energy solution
of the Schrödinger equation hasnS nodes, for low condensate
densities the GP equation has one solution with no nodes,
and two solutions with any nonzero number of nodes less
than or equal tonS.

To demonstrate this, we analyze separately the behavior
of the wave function inside and outside the well, and match
them at some intermediate point, which for this particular
potential we take to be the edge of the well. Specifically, we
integrate out from the origin, wherex=0, for different
choices of the derivative ofx at r =0 and calculatec andc8
at the boundaryr =R. These trace a curve inc-c8 space.
Then we integrate inward from large distances, where the
solution is defined by the proportionality constantC of the
Yukawa asymptotic form Eq.s22d. As C is varied, another
curve inc-c8 space is traced out. If the mean-field interac-
tion could be neglected forr ,R, the ratio c8sRd /csRd
would not depend on the normalization of the wave function,
and therefore the curve corresponding to the inner boundary
would be a straight line through the origin. In the presence of
atom-atom interactions, the ratioc8 /c obtained by integrat-
ing outward traces out a spiral. For lown0 this crosses thec8
axis a number of times equal to the number of nodes the
zero-energy solution of the Schrödinger equation has inside
the potential. This follows from the observation that for low
x8s0d the solution will have the same number of nodes inside
the potential as the zero-energy solution of the Schrödinger
equation, while for very large values ofx8s0d the effects of
the mean field will be so strong that the solution has no
nodes inside the potential.

The corresponding plot obtained by integrating inward
has two branches, depending on whethercsr →`d is positive
or negative. Examples of the plots are given in Fig. 1 for
parameters such thatnS=3. For lown0, there are 2nS+1 in-
tersections of the two sets of curves, corresponding to solu-

tions of the GP equation. This is illustrated in Fig. 1sad. As n0
increases, pairs of solutions with the same number of nodes
merge and disappear, as shown in Fig. 1sbd. Eventually, at
sufficiently high values ofn0 only the nodeless solution sur-
vives.

In Figs. 1 and 2 we show how, on increasing the external
density, the solutions with the highest number of nodes ac-
tually merge. For densities higher than this critical value, the
only solutions are ones with a smaller number of nodes.

Despite its short-range character, the model given above
captures the main features of the solutions of the GP equa-
tion for the atom-ion potential, which is long ranged. We

FIG. 1. sColor onlined Behavior ofcsRd and c8sRd for the so-
lution inside the wellssolid lined and outside itfdashed and dot-
dashed lines forcsr →`d= ±c0, respectivelyg. In the plots we have
set k0R=9, which gives three bound states for the Schrödinger
equation. We measure energies in units of"2k0

2/2m and lengths in
units of R. The calculations were performed forU0=0.45 in these
units, but results for other values ofU0 may be obtained by scaling,
since for a given chemical potential,c and c8 vary asU0

−1/2. The
symbols near intersections indicate the number of nodes of the so-
lution, and for this casenS=3. The upper panelsad is for m=0.45,
and the lower onesbd for m=2.9, just above the valuem=2.52 at
which the two solutions with three nodes merge and disappear.
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note that the discontinuous behavior does not occur in a one-
dimensional model.

V. THE r−4 POTENTIAL

We now turn to a more realistic potential with the same
r−4 behavior as the actual atom-ion interaction at large dis-
tances. For definiteness, we consider parameters appropriate
for a 87Rb condensate, and we takeaaa=100a0. At large dis-
tances, we take the atom-ion potential to be given by Eq.s1d
with ã=320a0

3. The wave functions are sensitive to the short-
range behavior of the potential, but we may obtain illustra-
tive results by cutting the 1/r4 potential off by a hard core of
radiusR. Since many atoms are bound to the ion, we assume
the ion to be static and setmai=m. The atom-ion scattering
length of such potential may be calculated in the WKB ap-
proximation, and is given byf4g

aai = b4 cotFb4

R
G . s38d

The number of bound states allowed by the potential can be
estimated by increasing the potential strength from 0 to its
actual value. A bound state appears each time the scattering
length diverges, and therefore the number of bound states is
given by

nS= IntS b4

pR
D , s39d

where Intsxd denotes the integer part ofx. To model actual
atom-ion potentials, a physically reasonable value ofR
would be,10a0. However, the properties of the wave func-
tion of most importance here are those at relatively large
distances,r *103a0, so we takeR=300a0, since this should
give us the correct physical behavior for the distances of
interest. We do not expect the qualitative behavior of the
wave function to depend onR, even though quantities like
the scattering length do, and we have verified this numeri-
cally.

We now describe numerical solutions of the GP equation
that approach a constant densityn0 far from the ion. Just as
for the finite-range potential considered in the previous sec-
tion, there is generally more than one solution for a given
value of the chemical potential, and for small external den-
sities one expects 2nS+1. In Fig. 3 we show the wave func-
tions corresponding to the two states with the highest number
of nodes, namely, seven for the parameters chosen, in agree-
ment with the quasiclassical results39d. The free energy, for
a given condensate densityn0, is highest for the states with
the highest number of nodes, and decreases as the number of
nodes decreases.

FIG. 2. sColor onlined Two solutions of the Gross-Pitaevskii
equation for the attractive square well potential.k0R andU0 are the
same as in Fig. 1. For the upper panel, the chemical potential is
0.45, as in Fig. 1sad, while for the lower one it is 2.5, just below the
value at which the solutions merge. The solutions both have three
nodes, and are the first to merge as the chemical potential increases.

FIG. 3. sColor onlined Condensate wave functions for the two
uppermost states in the 1/r4 potential with the parameters given in
the text forn0=1014 cm−3. Both states have seven nodes, but the
resolution of the figure is inadequate to exhibit the rapid oscillations
for r close toR. The state that, in the dilute limit, becomes the
zero-energy solution of the Schrödinger equation is given by the
solid line.
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In the absence of inelastic processes, we expect only the
uppermost state of the ionic potential to play an important
role in the capture process, since it is the only one with an
appreciable overlap with the continuum wave function rep-
resenting the unbound atomsf2g.

The excess number of atoms is given in terms of the
atomic density distribution by Eq.s3d or, alternatively, from
the free energyF=E−mN by Eq. s9d. In Fig. 4 we show
results obtained from our numerical simulations by both
methods. In the limit of very low condensate density we get
values forDN in accord with the thermodynamic arguments
in Sec. II. The consistency of the two methods of calculation
has been confirmed for core radii that give scattering lengths
in the rangeuaaiu,5000a0.

The figure shows that the excess numbers of atoms for
two states with the same number of nodes become equal at
the density above which the solutions no longer exist. This is
to be expected, since the solutions become identical at this
point. In the Appendix we use quasiclassical arguments to
estimate the density at which solutions merge and disappear,
and these are in good agreement with the numerical results.
Fig. 5 exhibits the difference in free energy for the states
given in Fig. 4.

In the detailed calculations described so far we have fo-
cused attention on states with close to the maximum number
of nodes. In particular, in the low-density limit and in the
absence of inelastic processes that can cause the system to
relax, one would expect the state of the condensate to be the
one that close to the ion resembles the zero-energy solution
of the Schrödinger equation. However, three-body processes
can relax the system, thereby populating states with lower
numbers of nodes. To calculate properties of such a system,

one could start with a many-particle wave function of the
Hartree-Fock type in which more than one single-particle
state is occupied, and solve the Hartree-Fock equations. This
is, however, beyond the scope of this paper because the den-
sity of atoms rises to values sufficiently high that the dilute
gas approximation for the interaction energy employed in the
GP approach fails at relatively large distances from the ion.
To see this, we note that the density of atoms far from the ion
will be given by the Thomas-Fermi approximation Eq.s25d.
The dilute gas approximation is valid providednuaaau3!1.
This condition becomes

nuaaau3 < UVsrd
U0

aaa
3 U =

b4
2aaa

2

8pr4 ! 1 s40d

or

r @ sb4uaaaud1/2/2, s41d

which for rubidiumsaaa<100a0d implies that the GP equa-
tion is valid only for r @400a0 for such states.

VI. CONCLUSIONS AND DISCUSSION

In this paper we have investigated solutions of the Gross-
Pitaevskii equation for a Bose-Einstein condensate in the
presence of a positive ion. We find that for low condensate
densities, there are 2nS+1 solutions for a given condensate
density, wherenS is the number of bound states of the
Schrödinger equation. With increasing condensate density,
pairs of states become degenerate and disappear, and the
state of the system must change discontinuously. An interest-
ing challenge is to find experimental evidence for such a
behavior.

We have calculated the excess number of atoms around an
ion, and find that for the state that resembles the zero-energy

FIG. 4. sColor onlined Excess number of atoms around a single
ion as a function of the bulk density. The dashed line is the dilute
limit appropriate for a fixed ion,DN=−aai /2aaa sR=300a0 gives
aai<−1980a0 for an infinitely massive iond. Results are shown for
the four uppermost levels for this potentialsi.e., the two with seven
nodes and the two with six nodes, indicated, respectively, by the
solid and dot-dashed linesd. The lines are obtained from Eq.s3d, the
circles from Eq. s9d. The inset exhibits the behavior at lower
densities.

FIG. 5. sColor onlined Difference in free energy for the states
given in the previous figure: the solid lines are for the two states
with seven nodes and the dot-dashed line for one of the states with
six nodes. The free energy is measured in units of 10−5"2/ma0

2. The
other state with six nodes lies much lower, at aroundDF<−3
310−4"2/ma0

2.
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solution of the Schrödinger equation it can be either positive
or negative, depending on the sign of the atom-ion phase
shift, and a typical magnitude is of order,102. The spatial
size of the density disturbance around an ion is set byb4
,1 mm. Our estimates indicate that the Gross-Pitaevskii
equation should give a reliable first approximation for the
wave function of such states. For states with fewer nodes, the
density of atoms may reach values high enough that the GP
equation fails.

There are many outstanding problems. In most of the cal-
culations we have assumed that the state of interest is that
with the maximum possible number of nodes. More study is
needed of inelastic processes that will cause atoms to relax to
lower statesf2g. Experimental studies will be valuable in
providing guidance for future work.
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APPENDIX: VALIDITY OF APPROXIMATIONS

Here we examine the conditions under which it is a good
approximation to replace the effective atom-atom interaction
by the standard expressions12d. Later we shall estimate the
density below which the dilute gas results13d would be ex-
pected to hold. For nonzero wave numbersk, the quantity
that enters the expression for the energy shift is −d /k, where
d is thes-wave phase shift, rather thana f5g. Since a typical
energy scale for changes ind /k is set by"2/2mb6

2, while the
potential depth is given byãe0

2/2r4, we expect that the scat-
tering length approximation will fail when

ãe0
2

2r4 @
"2

2mb6
2 or r4 ! b4

2b6
2. sA1d

The Gross-Pitaevskii approach should therefore be valid if
the phase shift due to the region wherer ! r̄ =sb4b6d1/2 is
negligible. To estimate this phase shift, we make a semiclas-
sical approximation to the GP equation. This gives for the
total accumulated phase out to a distancer

Fsrd < Er

dr8Î2m

"2 fm − Vsr8d − nsr8dU0g. sA2d

Deep in the ionic potential, the wave function is given to a
good approximation by the semiclassical result, which has an
amplitude

c ~ srpcl
1/2d−1, sA3d

where pclsrd=f2mVsrdg1/2 is the classical momentum of a
particle of zero total energy in the presence of the potential.
For ther−4 potential, the amplitude of the wave function is
therefore independent ofr, and we may replace the mean-
field energy to a first approximation by a constantñU0,
where ñ is independent ofr. Expanding expressionsA2d in
the deviationn0− ñ we find

Fsrd < F0srd + sn0 − ñd
2mU0

"2 E
0

r

dr8
1

2Î− 2mVsr8d/"2
.

sA4d

Due to the mean-field interaction, the accumulated phase out
to a distancer , r̄ =sb4b6d1/2 is therefore changed by an
amount

dFsr̄d < sn0 − ñdaaasb4b6
3d1/2. sA5d

If we take the interior density to be of the same order of
magnitude as that far from the ion, one finds

dFsr̄d ,
b4

1/2b6
3/2

j2 , sA6d

where the healing length is defined in Eq.s23d. Since under
experimental conditions the healing length is typically com-
parable tob4, while b6 is two orders of magnitude smaller,
this shows that the region close to the ion where the Gross-
Pitaevskii equation fails is likely to be unimportant.

On the basis of the above calculation, we may also esti-
mate the density below which the low-density results13d is
valid. Using the approximations above, we find that the total
accumulated phase out to a distance,b4, where the semi-
classical treatment fails, is of order

dFsb4d ,
b4

2

j2 . sA7d

This indicates that changes to the accumulated phase can be
significant under typical experimental conditions.
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