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Static properties of positive ions in atomic Bose-Einstein condensates
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The excess number of atoms around an ion immersed in a Bose-Einstein condensate is determined as a
function of the condensate density far from the ion. We use thermodynamic arguments to demonstrate that in
the limit of low densities the excess number of atoms is proportional to the ratio of the atom-ion and atom-atom
scattering lengths. For denser systems we calculate the excess number from solutions of the Gross-Pitaevskii
equation using a model potential that has a*lafttraction coming from the polarization of the neutral atoms
and a hard-core repulsion at short distances. We show that there exist in general many solutions to the
Gross-Pitaevskii equation for a given condensate density, the maximum number of solutions being related to
the number of bound states of the Schrddinger equation for the same potential. With increasing density, pairs
of these solutions merge and disappear, implying a discontinuous change of the state of the system.
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. INTRODUCTION the measured valueg=3203 for *’Rb and@=1633 for

23 : Rb__ Na__ ;

For the helium liquids, measurements on ions have served\& One findg; "~ 7150, and8,"~ 262(g. The quantity
as a valuable probe of liquid properties. As examples we m?_gél gives the distance from the ion beyond which the zero-
mention the use of ions to put in evidence vortex lattices ifENergy atom-ion wave function ceases to oscillate, and it sets
rotating liquid “He and the measurement of ionic mobilities € Scalé of atom-ion scattering lengths, but their actual val-
in superfluid®He to elucidate scattering processes. The first!eS depend on the details of the potential at short distances.
experiments on ions in an ultracold gas®&Rb atoms were We begin by deriving from thermodynamics a general ex-
reported by Ciampinét al. [1], who produced ions by irra- Pression for the excess number of atoms around an ion and
diating a rubidium condensate with laser pulses which ionizého"‘;]thalt n dllLétehsystems the excgss number depends only
atoms through one- and two-photon absorption processes.on the ratio of the atom-ion and atom-atom scattering

Theoretically, the capture of atoms into weakly bound'€ngths. As we shall see, this approach suggests that the
states of the atom-ion potential has been considered in Re‘F.“(;nberf of atomsbass%0|a§ed W'trl‘) an_|ﬁn is typically of the
[2]. In this paper we consider the structure of a positive ion°"9€' od10—100, ut o ath't may be eit Er posmvebor ?)eg_a- q
in a Bose-Einstein condensate when there is no capture g€ In denser systems the excess number must be obtaine
atoms into bound states, and in particular we calculate th§OmM microscopic considerations, and we shall determine the
excess number of atoms associated with an ion. We shaftructure of an ion immersed in a Bose-Einstein condensate
demonstrate that this number is typically of ordef,Jther at zero temperature, assuming that atom-atom interactions
positive or negative. may be described within the framework of the Gross-

The interaction between an atom and a positively Chargegnaevskn(GP)_ mean-field approach. We 'present' sollutlons of
alkali-metal ion(chargee), which are separated by a distance the GP equatlon.for a number _of potentials which include a
r, is given at large distances by the polarization potentiahard-core repulsion, an attractive square well, and one that
caused by the electrostatic fielfls due to the ion,&, resembles the atom-ion interaction, a hard core with @ 1/
=el4mer?, which gives rise to a change in the energy of theattraction at larger distances. N o
neutral atom given by/=-a€2/2, wherea is the polariz- For a given inner boundary condition, the Schrodinger
ability of the atom. Writing the polarizability as=4meya,  €quation has only one solution for a given value of the en-
wherew has the dimension of volume, the energy shift of anergy. By contrast, the GP equation, because it is nonlinear,
atom due to the ion becomes can have more than one solution for a given chemical poten-

2 tial. For potentials like the atom-ion one that can support
a&i‘, (1)  two-body bound states, we shall find that at low densities

2r there are 25+ 1 solutions of the GP equation, whergis the

whereegze2/4m=0. At short distancegr < 10a) the poten- number of bound states of the Schrédinger equation for the

. . : o same potential. With increasing density, pairs of solutions
tial has a repulsive core. An important characteristic Iengthmer e and disappear until there is onlv a sinale solution with
which we denote bys,, may be identified by equating the g pp Y 9

L 5 5 : ~~ no nodes. We shall illustrate this behavior for two potentials,
Kinetic energy:”/2mj5, to the potential energy(5,), result an attractive square well and one with an attractive® 4il.

V(r)=-

Ing in An important question is which of these solutions is physi-
@ m cally relevant. At low condensate densities, one expects the
Ba= am (2)  wave function close to the ion to resemble the zero-energy

solution of the Schrédinger equation, and to haxenodes.
Herem denotes the mass of a neutral atomg,is the electron  This will be the case unless inelastic processes can populate
mass, anday=%#2%/mee5~0.53 A is the Bohr radius. Using lower-lying states. We find that with increasing condensate
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density, this solution ceases to exist. This indicates that the e; PE
evolution of the state with density cannot be continuous even AN=-— - (7)
. . . an oan
in the absence of inelastic processes. a a

The plan of the paper is as follows. In Sec. Il we present One may also calculatAN from the change\F in the
thermodynamic considerations. Section Il contains a dethermodynamic potentiaF=E-u,N when a single ion is
scription of the asymptotic behavior of the condensate wavadded to the system at constant HereE is the total energy
function far from the ion. In Sec. IV we consider two simple andN the total number of atoms. Since the number of atoms
potentials to illustrate important general features of our reis given by
sults, and in Sec. V we analyze the case of a potential that,

like the actual atom-ion potential, behavesra$ at large N:—ﬁ, (8)
distances. We calculate the excess number of atoms from g

npmencal solutions of the Gross—P|.taevsk|| equatlop for at follows immediately that

given background condensate density. The concluding sec-

tion, Sec. VI, discusses our main results. In an Appendix, we _ JAF

address the question of the validity of the Gross-Pitaevskii AN= g 9

equation in the present context. . ) . .
Provided the volume considered is large compared with the

Il. THERMODYNAMIC CONSIDERATIONS scale of the atom excess around the iR, will be indepen-
dent of the volume.

We wish to calculate the excess number of particles asso- Let us begin by making estimates for a dilute gas. Pro-
ciated with an ion. To define this quantity precisely, wevided the scattering of atoms by atoms and of atoms by ions
imagine adding an ion to a condensate. This will generallymay be treated as independent binary events, the energy den-
change the density of atoms far from the ion by an amounsity may be expressed in terms of the scattering lengths as-
that varies as IV, whereV is the volume of the system. A sociated with the atom-atom and atom-ion interactions. If
natural definition of the excess number of atofii$ associ- ion-ion interactions are neglected, we may write
ated with the ion is the number of particles that must be

; 4 . 1
added to keep the atom chemical potential constant, since E(ng,ny) :—Uaan§+ U,ingh;, (10
this will ensure that the properties of the condensate far from 2
the ior_l are ungltered _by the addition of the ion. I_n terms ofyq therefore from Eq(6) we obtain
the microscopic density of atom¥r) around the ion, the

excess number is given by AN=- ﬁ. (1)
. Uaa
AN:47TL dr r?[n(r) = ngl, (3)  The mean-field interaction constads, for speciesj and|,

which may be either atom&) or ions (i), is related to the
wheren is the density of atoms at large distances from thescattering lengtla; by

ion. _ 2mh2a

This is analogous to what has been done earlier to calcu- U= —=, (12
late the excess number &fle atoms associated with’ale

m.
impurity in liquid “He [3]. We shall denote the energy per where my =mm/(m;+m) is the reduced mass of the two

Jl
unit volume as&(n,,n;), wheren, and n; are the number particles. Our result can therefore be expressed as
densities of atoms and ions, respectively. The chemical po-

tential of the atoms is given by ANz - MeaZai (13)
9 My Aaa
Ha= (4)  If, as in Ref.[1], the ion is obtained by photoionization of the
a condensate itself, the latter expression reduces to

and therefore the condition that this be unchanged by adding

: . AN =—a,/a,,. 14
one ion andAN atoms is Bail%ea (14
) To obtain an order of magnitude estimate of the excess num-
Te + ‘92_5 N=0 (5) ber of atoms associated with an ion, we note that the char-
angdn; — on3 acteristic scale for the magnitudes of atom-ion scattering
lengths|a,| is set byg,, given in Eq.(2), while the scale for
or the magnitudes of atom-atom scattering lengdhg is set by
oo PE ] Pe © ( m )1/4
©oongon, [ on?’ Po= zmec6 %o- (15

When the density of ions is sufficiently lowg/an; is equal  Here Cq is the coefficient of 6 in the van der Waals inter-
to the energy change when one ion is added to the con- action, expressed in atomic units. Thus we arrive at the esti-
densate, and therefore mate
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Ba m a2\ tions depend only on the radial coordinateThus Eq.(18)
|AN| ~ 5. \amc.) (16)  becomes
2 42 2
which is of order 35 for Rb and 25 for Na. _id +V(r)+U X - (19)
. s 2 0 2 [X=MX
The fact that the excess number of atoms is so large indi- 2mdr r

cates that it may well be a poor approximation to regard th‘?N

lon as a free par_ticle, Wit_h mass equal to the bare ion mass. The behavior of the condensate wave function at large
Rather, the recoil of the ion will be suppressed by the otheEIistances depends on the nature of the poteMial. On

atoms surrounding the ion, andAN>1 it will be a better . o i .
approximation to regard the ion as being stationary. In thatmearlzmg the GP equatiofi8) and making use of the fact
case the excess number of atoms will be given by hat t_he chemical pot_entlal is related to the condensate wave
function ¢ at large distances by the relatigr=n U, where

ag(m) an No=|1ol% one finds that the deviation

285, S=1h— iy (20)
where the argument af, indicates that the scattering length of the condensate wave function from its asymptotic value
is to be evaluated for a reduced mass equal to the atom masstisfies the linearized GP equation
Expression17) gives a value foAN that is typically of the 42
same order of magnitude as that given by 8d). However < V24V ) _

X ' - r) +2Ugng | 6= = V(r)iy. 21

we stress the fact that the estimate foX depends sensi- 2m ® oo ¥ (Do (21)
tively on the value of the effective mass of the ion, since the ials with a fini | h
atom-ion potential has many bound states, and therefore rela- For.plotenltlas V(‘j’.'t a |n|t$ ran(;r;]e, one mgy r?e%ec_t the
tively small changes in the reduced mass can result in larg otential it a;ge |st§mcr<1as rom t t? on, and the deviation
changes in the scattering length. Given that in the limit oft"at vanishes for— s thus given by

here x=r.

AN=

low atom density the magnitude of the excess number of ek

atoms is expected to be very much greater than unity, the o o (22)
result(14) will generally not give a realistic estimate even in B

that case. wherek,= V2/¢ and ¢ is the healing length for the bulk con-

The perturbation induced by the ionic potential is verydensate,
strong. Therefore the question arises of whether the custom-
ary assumption of an essentially zero range for the atom- gz;_ (23)
atom interaction is valid. We address this point in the Appen- \8ma g
dix, where we argue that the corrections to the GP result

should not be large for the properties of interest here. For a potential, such as the atom-ion potential, that falls

off at large distances less rapidly than the soluti@®), the
behavior is different. The leading term in the solution for
IIl. MICROSCOPIC THEORY larger is then the Thomas-Fermi resulr, given by

We now turn to microscopic considerations. Since, as we V(r) + Ugl el = (24)
shall_s_eg, the d|s_tort|on of the conden_sate wave f“”C“OF‘ "Which, for the atom-ion potential with asymptotic form given
the vicinity of an ion extends to large distances from the |onby Eq. (1), amounts to
and involves many atoms, we expect that the effective mass o
of an ion and its dressing cloud will be much larger than that V(r) (1 . (£€B4)°?

4
;

of an atom, and we may regard the ion as being static. To Ne(r) =ng = U No

) (25
describe the structure of the condensate in the vicinity of an i )

ion we must therefore calculate the structure of the conderff, to first order inV,

sate in a static external potential given by the atom-ion in- V(r)

teraction. Provided the length scale on which the condensate Pre= Yo~ ,
wave functionys varies in space is sufficiently large, we may 2Uotho
do this by employing the Gross-Pitaevskii equation with thewhere we have taket, to be real. The density perturbation
interaction of atoms with the ion included as an externalat large distances is seen to be always positive. Corrections

(26)

potential, to this result for smaller may be calculated from Eq21)
52 by neglecting the potential on the left hand side of the equa-
- —V2+V(r) +U0|¢//|2 U= . (19 tion. The resulting differential equation may be written in
2m terms of a functionSy defined bydy=r éy,
Here and in what follows we shall denote the chemical po- @@, om
tential of an atom byu, and for simplicity we have written (‘ a2’ kg) ox=- ﬁTV(f)l/fo- (27)

Uo=U,,=4mh%a,,/m, sincem,,=m/2. We wish to find so-
lutions that tend to a constant at large distances from the iomhis differential equation may be solved exactly in terms of
and since the potential is spherically symmetric, these soluexponential integrals, the two linearly independent solutions
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of the homogeneous equation being @3#pr) and exgk.r). by |mposmg the boundary conditiop(R)=0. This givesC

By inspection of Eq(27) it is evident that the leading term =-Re&R\n,. Forr close toR this has the form of the scat-
for larger of the particular solution to the inhomogeneoustering solution for the Schroédinger equatiafi=1-R/r. In
equation is given bﬁX:—(Zm/ﬁzké)rV(r)%, which yields fact, for R/é<1 this solution becomes essentially exact,
the Thomas-Fermi expressid26). The correction to this since this function fails to satisfy the GP equation only in the
result may be obtained from the exact solution, but it is sim+egion where =R, and in this region the total change in the
pler to iterate Eq(27) by moving the ternd?sy/dr? to the  slopedy/dr of the radial wave function is small and may be
right hand side and replacing in it by the Thomas-Fermi neglected. As an illustration of this fact, we calculate the

solution. This results in excess number of particles, which is given by E8), and
find
oY 12
W ﬁz"ZV( )< szz) ' 2 AN = 4ang f dr r2<— R RZe_Zkir_R)> S
The leading correction to the Thomas-Fermi result &gr R ' ' 3
given in Eq.(26) is thus seen to be proportionalitef. Since 2, 2§ R3
we have already neglected the potential energy on the left =~ 4mno( RE™+ 2 E + 3) (31)
hand side of Eq.(21), we cannot by this method obtain v
higher-order corrections to the particular solution than the~or ¢> R, this reduces to
one exhibited in Eq(28).
By keeping in the general solution only the exponentially AN = — R _ (32)
decaying term we thus get the asymptotic result 2a,,
St V(r) 682 —kgr Let us now compare this result with the one derived on the
w m(l 2 ) +C— (29 basis of thermodynamic arguments. For a hard-core potential

the scattering length coincides with the core radius. Since we
whereC is an arbitrary constant. have assumed the ion to be stationary, its effective mass is

For r— the asymptotic behavior of the solution is al- taken to be infinitely large, and therefore the reduced mass
ways given by the TF result. However, whether or not thisfor the ion and an atom is, rather than the valus/2 one
behavior is relevant for determining the structure of most ofobtains for an ion and an atom with equal masses. Thus, this
the cloud of atoms surrounding the ion depends on the relaesult is in precise agreement with E43).

tive size of the two characteristic lengtjts and & On the When the core radius is much larger than the healing
one hand, foiB,> ¢ most of the cloud will be described by length, the wave function reaches its asymptotic value on a
the TF approxmation, and only at distances less thdmill length scale that is short comparedRoln Eq. (19) we can

the exponential term become important. On the other handherefore replace the factor tf/appearing in the nonlinear
for £> B, (i.e., for low external densijythe structure will be term by the constant R? and we are left with an effectively
dominated by the exponential term, and the TF tail will be-one-dimensional GP equation whose solution is

come important quantitatively only at very largeAt shorter

distances from the ion, the mean-field energy becomes small =g tanhﬁ, r=R, (33)
compared with the atom-ion potential and the GP equation /

reduces to a good approximation to the Schroédinger equa-
9 PP 9 q and zero otherwise, as may be seen by inspection. The excess

tion.
number of particles is given by
IV. SIMPLE MODEL POTENTIALS R?
A - _7TR3nO = (34)
Before presenting results for the attractiver“ potential V28ga¢

we begin by examining two simpler model potentials, a reyyhere the leading term is due to exclusion of atoms from the
pulsive hard-core and a spherical well potential. core.

A. Hard-core potential B. Attractive square well

Consider an interacting Bose-Einstein condensed gas in \We next consider a more physical potential, an attractive
the presence of a repulsive hard-core potential of raBius well:
This model may be treated analytically in both the small- and

2,
Iarge-cpre—radius limits. The .solgtion to the GP equation at V(r)=- ﬂo r<R, (35)
large distances from the ion is given by Eg2), 2m
— exp(- k) V(r)=0 otherwise. Like the actual atom-ion potential, this
Y= \no| 1 +C—— (300 can have bound states for the two-body problem. With this

potential we shall be able to examine how solutions of the
If one assumes that this expression holds forragireater =GP equation disappear as the condensate density increases.
than R, we can determine the constant of proportionallty The GP equatiorf19) reads
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1 B Il
[ - AL _ - ot — !
{ 242 2 O(R-r)+4ma,, 2 ngl |[x=0 (36) 3 vyt - _Sﬂferr, ‘{‘0=+n;’2

. . . 20k & __ Outer, ‘i‘0=—n:)/2 i
[wherex=ry and (x) is the step functiohand the scattering W
length for this potential is e e

O_ _______
tankgR - |t AR>S
a—R(l——k0> 37 E_l
koR 7

Since this equation is nonlinear, there can be multiple -2y
solutions for the same boundary conditiofi€., the same
bulk densityng). As we will show in the following, for small
Ny it has 2v5+1 solutions, wheregis the number of nodes of -40}
the zero-energy Schrodinger solutigg or, equivalently, the

number of bound states of the Schrédinger equation. Inth =% , ; , , ,

low-background-density limit, inside the well the solution -4 -2 0 2 4 6 8

with the maximum number of nodes approachas i.e., (@ ¥(R)

(r)sin(kyr)/r, while outside it tends toward the uniform "

density ng with the asymptotic behavior given in E(R2), 30p _Icr)lﬂgr ¥ —en'?|]

SYr) = expl—kr) /. sl % s i Y|
With increasingn,, the mean-field repulsion between the I~ —

atoms makes the effective potential shallower, which tends t [0} g’ St L

push nodes of the wave function outward. At the same time N o

the increase in the chemical potential has the opposite effe
on the nodes. What we find is that if the zero-energy solutior © _;,1
of the Schrodinger equation hagnodes, for low condensate
densities the GP equation has one solution with no node: -20r
and two solutions with any nonzero number of nodes less
than or equal tass

To demonstrate this, we analyze separately the behavic  _gol
of the wave function inside and outside the well, and matct
them at some intermediate point, which for this particular  -501

potential we take to be the edge of the well. Specifically, we ” 2 0 2 4 6 8
integrate out from the origin, wherg=0, for different (b) Y(R)

choices of the derivative of atr=0 and calculates and ¢’

at the boundary=R. These trace a curve iy’ space. FIG. 1. (Color online Behavior of (R) and ¢'(R) for the so-

Then we integrate inward from large distances, where théution inside the well(solid line) and outside ifdashed and dot-
solution is defined by the proportionality constabitof the  dashed lines for(r — =)= %y, respectively. In the plots we have
Yukawa asymptotic form Eq(22). As C is varied, another set kyR=9, which gives three bound states for the Schrddinger
curve iny-y space is traced out. If the mean-field interac-equation. We measure energies in unitsi&i/2m and lengths in
tion could be neglected for<R, the ratio ¢/ (R)/(R) units of R. The calculations were performed foi=0.45 in these
would not depend on the normalization of the wave function Units, but results for other values bf, may be obtained k_%zscaling,
and therefore the curve corresponding to the inner boundar§/"ce for a given chemical potentiak and ' vary asU,"*. The
would be a straight line through the origin. In the presence O§ymbo|s near |nt_ersect|ons indicate the number _of nodes of the so-
atom-atom interactions, the ratifd / 4 obtained by integrat- lution, and for this Cas%:f' Thg upper pand) is forf:0.45,
ing outward traces out a spiral. For lawthis crosses the/ ~ 2nd the lower onéb) for x=2.9, just above the valug=2.52 at
! . which the two solutions with three nodes merge and disappear.
axis a number of times equal to the number of nodes the
zero-energy solution of the Schrodinger equation has insidgons of the GP equation. This is illustrated in Figa)l As ng
the potential. This follows from the observation that for low increases, pairs of solutions with the same number of nodes
x'(0) the solution will have the same number of nodes insidqnerge and disappear, as shown in Figh)1Eventually, at
the potential as the zero-energy solution of the Schrédingesufficiently high values ofy, only the nodeless solution sur-
equation, while for very large values gf (0) the effects of vijves.
the mean field will be so strong that the solution has no In Figs. 1 and 2 we show how, on increasing the external
nodes inside the potential. density, the solutions with the highest number of nodes ac-
The corresponding plot obtained by integrating inwardtually merge. For densities higher than this critical value, the
has two branches, depending on whetfi@r— =) is positive  only solutions are ones with a smaller number of nodes.
or negative. Examples of the plots are given in Fig. 1 for Despite its short-range character, the model given above
parameters such that=3. For lowng, there are 25+1 in-  captures the main features of the solutions of the GP equa-
tersections of the two sets of curves, corresponding to solttion for the atom-ion potential, which is long ranged. We
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i FIG. 3. (Color onlineg Condensate wave functions for the two
__.-n'® uppermost states in the ®/potential with the parameters given in

8 | the text forny=10'cm. Both states have seven nodes, but the

resolution of the figure is inadequate to exhibit the rapid oscillations

6t 4 for r close toR. The state that, in the dilute limit, becomes the
zero-energy solution of the Schrédinger equation is given by the
solid line.
4 L .
Ba
2| ] 3. = Py cot{g : (39)

o
H
I

The number of bound states allowed by the potential can be
estimated by increasing the potential strength from 0 to its

actual value. A bound state appears each time the scattering
length diverges, and therefore the number of bound states is
given by

Amplitude of the wave function (R™>2)

|
n

(b) 1R

) ) . N vg= Int(ﬂ) (39

FIG. 2. (Color online Two solutions of the Gross-Pitaevskii S R/’
equation for the attractive square well potentigR andUg are the
same as in Fig. 1. For the upper panel, the chemical potential igvhere Infx) denotes the integer part af To model actual
0.45, as in Fig. (@), while for the lower one it is 2.5, just below the gtom-ion potentials, a physically reasonable value Rof
value at which the solutions merge. The solutions both have threg,qI1d be~10a,. However, the properties of the wave func-
nodes, and are the first to merge as the chemical potential increasggyn of most importance here are those at relatively large

distancesy = 10°a,, so we takeR=300g,, since this should
note that the discontinuous behavior does not occur in a onggive us the correct physical behavior for the distances of
dimensional model. interest. We do not expect the qualitative behavior of the
wave function to depend oR, even though quantities like
the scattering length do, and we have verified this numeri-
cally.

We now turn to a more realistic potential with the same We now describe numerical solutions of the GP equation
r# behavior as the actual atom-ion interaction at large disthat approach a constant densikyfar from the ion. Just as
tances. For definiteness, we consider parameters appropridte the finite-range potential considered in the previous sec-
for a®’Rb condensate, and we talig,=100a,. At large dis-  tion, there is generally more than one solution for a given
tances, we take the atom-ion potential to be given by(Eq. value of the chemical potential, and for small external den-
with @=320a3. The wave functions are sensitive to the short-sities one expectsig+1. In Fig. 3 we show the wave func-
range behavior of the potential, but we may obtain illustra-tions corresponding to the two states with the highest number
tive results by cutting the 1# potential off by a hard core of of nodes, namely, seven for the parameters chosen, in agree-
radiusR. Since many atoms are bound to the ion, we assumeent with the quasiclassical res(®9). The free energy, for
the ion to be static and set,;=m. The atom-ion scattering a given condensate density, is highest for the states with
length of such potential may be calculated in the WKB ap-the highest number of nodes, and decreases as the number of
proximation, and is given bj4] nodes decreases.

V. THE r# POTENTIAL
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FIG. 4. (Color onling Excess number of atoms around a single FIG. 5. (Color online Difference in free energy for the states

ion as a function of the bulk density. The dashed line is the diluted’Ven in the previous figure: the solid lines are for the two states
limit appropriate for a fixed ionAN=-a,/2a,, (R=3008, gives with seven nodes and the dot-dashed line for one of the states with

a,~—-1980, for an infinitely massive ion Results are shown for SiX nodes. The free energy is measured in units offiima. The
the four uppermost levels for this potentiak., the two with seven other4st2ate with six nodes lies much lower, at arouxé~-3
nodes and the two with six nodes, indicated, respectively, by the 1077 /mag.
solid and dot-dashed lingsThe lines are obtained from E), the
circles from Eq.(9). The inset exhibits the behavior at lower one could start with a many-particle wave function of the
densities. Hartree-Fock type in which more than one single-particle
) ) state is occupied, and solve the Hartree-Fock equations. This
In the absence of inelastic processes, we expect only the however, beyond the scope of this paper because the den-
uppermost state of the ionic potential to play an importantity of atoms rises to values sufficiently high that the dilute
role in the capture process, since it is the only one with ayas approximation for the interaction energy employed in the
appreciable overlap with the continuum wave function rep-Gp approach fails at relatively large distances from the ion.
resenting the unbound atorf®. To see this, we note that the density of atoms far from the ion
The excess number of atoms is given in terms of thgyj| pe given by the Thomas-Fermi approximation E25).
atomic density distribution by Eq3) or, alternatively, from  The gilute gas approximation is valid provideh,,|®<1.
the free energyF=E-uN by Eq. (9). In Fig. 4 we show This condition becomes
results obtained from our numerical simulations by both

methods. In the limit of very low condensate density we get 3 |V 5| _ Bﬁaﬁa

values forAN in accord with the thermodynamic arguments N[y ~ U, 2| T gyt 1 (40)
in Sec. Il. The consistency of the two methods of calculation

has been confirmed for core radii that give scattering length8"

in the rangga,| < 5000, r > (Bdasd) V22, (41)

The figure shows that the excess numbers of atoms for
two states with the same number of nodes become equal ®athich for rubidium(a,,~ 1008,) implies that the GP equa-
the density above which the solutions no longer exist. This ision is valid only forr>400g, for such states.
to be expected, since the solutions become identical at this
point. In the Appendix we use quasiclassical arguments to VI. CONCLUSIONS AND DISCUSSION
estimate the density at which solutions merge and disappear,
and these are in good agreement with the numerical results. In this paper we have investigated solutions of the Gross-
Fig. 5 exhibits the difference in free energy for the statesPitaevskii equation for a Bose-Einstein condensate in the
given in Fig. 4. presence of a positive ion. We find that for low condensate
In the detailed calculations described so far we have fodensities, there arev2+1 solutions for a given condensate
cused attention on states with close to the maximum numbegdensity, wherevs is the number of bound states of the
of nodes. In particular, in the low-density limit and in the Schrddinger equation. With increasing condensate density,
absence of inelastic processes that can cause the systempirs of states become degenerate and disappear, and the
relax, one would expect the state of the condensate to be trstate of the system must change discontinuously. An interest-
one that close to the ion resembles the zero-energy solutiang challenge is to find experimental evidence for such a
of the Schrodinger equation. However, three-body processdzehavior.
can relax the system, thereby populating states with lower We have calculated the excess number of atoms around an
numbers of nodes. To calculate properties of such a systergn, and find that for the state that resembles the zero-energy
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solution of the Schrddinger equation it can be either positive r om

or negative, depending on the sign of the atom-ion phase O(r) ”f dr’ ﬁ[M—V(r')—n(f')Uo]- (A2)

shift, and a typical magnitude is of orderl(?. The spatial

size of the density disturbance around an ion is seBpy Deep in the ionic potential, the wave function is given to a

~1 um. Our estimates indicate that the Gross-Pitaevskigood approximation by the semiclassical result, which has an

equation should give a reliable first approximation for theamplitude

wave function of such states. For states with fewer nodes, the

density of atoms may reach values high enough that the GP yo (rpg)t, (A3)

equation fails. . .
there are many outstanding problems. In most of the cal\-"’he,re Pa(r)=[2mVNJ* is the classical momentum of a

culations we have assumed that the state of interest is thR@ticle of zero total energy in the presence of the potential.

with the maximum possible number of nodes. More study is ©" ther™ potential, the amplitude of the wave function is

needed of inelastic processes that will cause atoms to relax {§erefore independent of and we may replace the mean-

lower states[2]. Experimental studies will be valuable in 11€!d energy to a first approximation by a constait,,
providing guidance for future work. whereh is independent of. Expanding expressiofA2) in
the deviationny—h we find
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If we take the interior density to be of the same order of

APPENDIX: VALIDITY OF APPROXIMATIONS magnitude as that far from the ion, one finds
Here we examine the conditions under which it is a good SB(T) ~ }1’232’2 (A6)
approximation to replace the effective atom-atom interaction g’

by the standard expressi¢h2). Later we shall estimate the

density below which the dilute gas res(3) would be ex- Where the healing length is defined in Eg3). Since under
pected to hold. For nonzero wave numbkrshe quantity —experimental conditions the healing length is typically com-
that enters the expression for the energy shiftdéks where — parable tog,, while S is two orders of magnitude smaller,

d is thes-wave phase shift, rather tha5]. Since a typical this shows that the region close to the ion where the Gross-
energy scale for changes éitk is set bya?/2mgg, while the  Pitaevskii equation fails is likely to be unimportant.

potential depth is given bggeg/zﬂ, we expect that the scat- On the basis of the above calculation, we may also esti-
tering length approximation will fail when mate the density below which the low-density rea) is

valid. Using the approximations above, we find that the total

~ 2 2 . X
€ 4 p2p2 accumulated phase out to a distane@,, where the semi-
2r4 > 2mg2 or "< Babs. (A1) classical treatment fails, is of order

The Gross-Pitaevskii approach should therefore be valid if 3

the phase shift due to the region wherer=(8,8¢)"? is D(By) ~ 2 (A7)

negligible. To estimate this phase shift, we make a semiclas-
sical approximation to the GP equation. This gives for theThis indicates that changes to the accumulated phase can be

total accumulated phase out to a distance significant under typical experimental conditions.
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