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Stability of a Penning trap with a quadrupole rotating electric field
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We present theoretical and experimental studies of the center-of{mass stability of ions in a Penning
trap with a quadrupole rotating electric field. The rotation frequency of an ion cloud in a Penning trap
determines the cloud density and shape, and it can be precisely controlled by a rotating electric field. The
quadrupole rotating-field scheme can control pure single-species plasmas in contrast to the dipole field, which
is effective only for plasmas composed of two or more species of ions. However, the quadrupole field can
modify the trap stability because of the spatial dependence of the electric field. In this study, we theoretically
and experimentally determine the c.m. stability condition for ions in a Penning trap with a rotating quadrupole
field. The experimental results agree well with the theoretical prediction. In the limit of zero magnetic field we
obtain a type of rf trap which uses a rotating quadrupole field and in which the c.m. motion is analytically
solvable.
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I. INTRODUCTION 1 —_—
Q= E(Q +V0? - 202), 2)
Plasmas consisting of particles with a single sign of
charge(non-neutral plasmassuch as electrons, atomic ions,
or positrons stored in a Penning trap or a rf tfdp9] are 1
interesting subjects of study in atomic physics and plasma wn==(Q-V0%- Zwi). 3
physics—in particular, strongly coupled plasma phy§id3. 2
Laser-cooled atomic-ion plasmas not only provide a particu-
larly good example of a strongly coupled plasma, but areHere,e andm are the charge and mass, respectively, of the
used in high-precision spectroscog{l] and quantum- trapped particlesy, the dc voltage applied between the ring
information processinffl2] studies as well. In this article we and the end-cap electrodgda geometric factor with dimen-
study the stability of the center-of-magsm) motion in a  sions of(length ™ determined by the electrode configuration,
Penning trap. Some of the results derived here for the Perand Q=eB/m the cyclotron frequency.
ning trap can also be applied to the rf trap by setting the Due to theE X B fields, a plasma in a Penning trap un-
magnetic field(i.e., the ion cyclotron frequengyo zero. dergoes a rotation about tk@xis of the trap. This rotation is
In a Penning trap, a static electric field generated by atiniform (does not depend on the radial position of an)ion
least three trap electrodes and a static, uniform magnetic fielthermal equilibrium. The rotation frequenay, determines
B pointing in thez direction confine the charged particles the plasma shape and dengity)] and for stable confinement
[13]. We consider the case where the trap electrodes are largeust satisfyw,< o, <, The plasma rotatiom, can be
compared to the size of the trapped ion cloud. In this caserecisely controlled by the rotating-field technique or, as it is
image charges on the trap electrodes can be neglected asdmetimes called, the rotating-wall techniguet]. In this
the trap potential can be approximated by a static, quadritechnique, an additional electric field that rotates aboutzthe
pole potential. In this limit the c.m. motion of the plasma axis with angular frequency,, is applied. The rotating elec-
separates from the internal degrees of freedom of the plasmtic field applies a force that tends to make the plasma rota-
In general, the c.m. motion is a superposition of an axiakion synchronize with the field rotatiotw,=w,,). For syn-
oscillation(axial frequencyw,/27), a circular cyclotron mo-  chronization,w, should be close ta,, otherwise the plasma
tion (modified cyclotron frequency),/2m), and a circular  slips relative to the rotating electric field and the rotating
magnetron motioimagnetron frequency,,,/2m). These fre-  electric field provides very little control. The spatial depen-
guencies are given byl 3] dence of the rotating field in a plane perpendicular to the
magnetic field is typically constar{tlipole field or linear
(quadrupole field as shown in Fig. 1. The dipole rotating
: eV, field can control the plasma rotation only if the c.m. is sepa-
w0, = m’ 1) rated from the center of charge and is effective only for
plasmas composed of two or more species of id#8. The
qguadrupole rotating fieldQRF), on the other hand, can con-
*Also at Center for Integrated Plasma Studi€sPS), University  trol pure single-species plasmas by distorting the plasma
of Colorado, Boulder, CO 80309, USA. shape. However, the QRF can modify the resonant frequen-
"Electronic address: john.bollinger@boulder.nist.gov cies (), and w,,) and even the trap stability, because an ac
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=0 @B =0 wherer and ¢ are cylindrical coordinates angj is the am-
-_ _ plitude of the rotating field normalized by the trap potential.
300/ \60 24?/ \20 The orderk determines the spatial dependence of the rotating
Q 6 field and is equal to the number of cyclesd®f in 27 rads of
\ /{ }\ ~ / the azimuthal direction. The dipole field correspondskto
240 20 12 240 =1 and the QRF tk=2. Hereafter, we discuss the case of
& So0=0. k=2 only, andé,=4 is defined as a dimensionless quantity
o — o=f,V,,/V,. Here, f, is a dimensionless geometric factor

Dipole Rotating Field  Quadrupole Rotating Field : H . _
=1 =2 determined by the electrode configuration, &ds the volt

age applied to the electrodes that generate the rotating field.

FIG. 1. Dipole (left) and quadrupoldright) rotating-electric- The c.m. motion of a single-species ion plasma in a Pen-
field schemes for controlling the plasma rotation frequency. ac voltning trap with a quadratic trap potential and a QRF separates
agesVsinkm,t—¢] with different phases) are applied to a set of from the internal degrees of freedom of the plasma. The
azimuthally segmented electrodes. The work discussed in this agquations of motion for the c.m. are
ticle used six azimuthally segmented electrodes, and the figure
shows the phaseé for each electrode in this case. For a pure single- d?x dy wf 5 _
species plasma, the dipole fie(l=1) does not couple with the F = Qa + ?X — w58(X COS 2wyt —y sin 2w,t), (5)
plasma rotation, but does drive a circular c.m. motion of the plasma.
The quadrupole fieldk=2), on the other hand, distorts the plasma
shape and can couple with the plasma rotation. dzy dx 2

Pl =- Qa + %y + w28(X SiN 2wyt +y COS Avyt), (6)
electric field with a spatial gradient can parametrically excite
a c.m. motion of the plasmi@,15]. d%z )
Dubin and O’Neil considered the confinement of a plasma ae =T w,Z. )

in a Penning trap with a QRF in Ref10]. They derived

criteria for when the effective potential of a Penning trapThe zdirection stability is always satisfied regardless of the
with a QRF is a quadratic potential wefhs opposed 10 & QRF, and therefore we consider only the radial stability
saddle potential The effective potential of a Penning trap is gnqy),

the apparent potential in a frame rotating with the QRF. Du- e introduce coordinatesand ¢ defined by

bin and O’Neil[10] showed that an effective quadratic well

potential leads to a confined thermally equilibrated plasma X = £CoSw,t + ¢ sinwyt,

state. They did not consider what happens when the effective

trap potential switches from a well to a saddle. The conse- ,

quences of this switch for the plasma dynamics and confine- Y= Coswyt — Sinwyt. (8)
ment are not immediately apparent. In zero magnetic field,
for example, a rotating saddle potential does give rise t
stable confinemerjtl6].

and{ are coordinates in a frame rotating with the QRF. In
erms of¢ and { we can rewrite Eqs(5) and (6) as

In this manuscript we solve the dynamical equations for ¢ de 1
the c.m. motion of a single-species plasma in a Penning trap — = (Q-20w,) 5+ {ww(g - w,) - <- - 5) w§}§: 0
with a QRF. We then determine the condition for when this ~ dt dt 2
motion is stable. F002>2w§ (required for stable trapping 9)

in a Penning trap without a QRFthis stability condition is

the same condition given by E.73 of Ref.[10] for when  and

the effective trap potential switches from a well to a saddle.

We also experimentally measure the c.m. stability condition d?¢ dé 1 2

for a weak QRF in the limi€)> w,,> w, and observe good g2 * Q- wa)a +on(Q-oy) - 5+ 0wy ({=0.
agreement with the theoretical analysis. (10

Note that the coefficients of the derivatives in E(®. and

(10) are constants. The transformation of H§) has re-

moved the explicit time dependence of E¢S). and (6) on

_ ) ) o coq2w,t) and sirf2w,,t). Equationg9) and(10) can be com-
The electric potential provided by a rotating field kih bined into a fourth-order differential equation

order can be expressed as

II. INSTABILITY DUE TO THE QUADRUPOLE
ROTATING FIELD

de, e, o
G th e teE=0, (11)

1
ed, = “mw28rcogk(6+ wyt)], (4)

2 where
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b=(Q - 2w,)%+ 2w,(Q - v,) — 0, 12 2 ) )
(2 - 20,)*+ 20,(Q - 0,) ~ o (12) b3 (C e+ D e, "
W2 |2 =1
C={wW(Q—ww —?Z} —w‘zlﬁz. (13
where theCj's and Dj's are complex constants determined
The solution of Eq(11) for real-valued¢ can be written from initial conditions, and tha;'s are given by

1 7
N = 5\/92 - ng +(Q - 2w,)% + 2\"4(1)352 +(Q - 2w,)%(0? - 2w§),

1
ho=-2 (02— 202+ (Q - 20,)2 - 240" 3 + (Q — 20,)2(Q? - 202). (15)

We verify that we can choosg;'s andD;’s to makeé in |02 - 2w§ -(Q-2w,)3 > 4w§|ﬂ_ (19)
Eqg. (14) real. There are three cases to consider. The first is if
A; is real (insides of the inner and outer square roots areas discussed in the Introduction, the condition of Etf) is
positive); then C;=D; makes¢ real. The second is ikj is  dentical to that of Eq(3.73 in Ref.[10] for when the ef-
imaginary (insides of the inner and outer square roots arefective trap potential changes from a quadratic well to a
positive and negative, respectivglghen C; and D; should  saddle potential.
be real. The third case is X is complex(in§ide of the inner As a special case, suppose a weak QRF is applied
square root is negatiyeln this case\;=-\; (or A\;=X; de- ). we expect thaf),, andw, can be derived from, and

pending on how the principal value of the square root of\, For smalls and assumingy,,> w, we obtain
complex numbers is chosgrand C,=C, and D;=D, (or

C,=D, andD,=C,) make¢ real. o

If we assume tha's are real, then Eq14) can be written AM=—wy,+ Qp+ z
in terms of two characteristic frequenci€s, and \,) and 2(Q = 204)(Q = 200) (L~ @)
two corresponding amplitude@; and A,) and phase$¢, +0(5%
and ¢,) as

&= A1 COINt + by) + Ay COSNL + ¢by). (16) w? 5
Ap=~— + +

From Eqgs.(9) and(10) we observe that is not independent 27T OwTOmT 50— 2w,)(Q = 20) (wy, — ©p)

of & By substituting Eq(16) for £ in Egs.(9) and (10), we

obtain the following solution fot: +0(8". (20
Z N2+ wy(Q = wy,) - (l - 5)w2 We see thai; and \, approach, respectively, the modified
(= (- 200) 2 ZAjSin()\jt + ;). cyclotron frequency and magnetron frequency in a frame ro-
j:l j - W.

tating with w,,. Note that for this case where the rotating-wall
(17 frequencyw,, is in the same direction and greater than the
magnetron frequencyw,,> wy), the magnetron frequency
increases in proportion t6°. We note that this shift is oppo-
site to what happens in the combined Penning-rf trap, where
the addition of an oscillatingbut not rotating quadrupole
field to a Penning trap decreases the magnetron frequency
[17]. Finally, for our experimental work where the ordering

02— 2(03 +(Q - 2m,)2% 2\"4w§52 +(Q - 20,) (0% - 2w§) 0> w,> o, is valid, Eq.(20) can be approximated by

The amplitudegA; andA,) and phase$g$, and ¢,) are de-
termined from the initial condition&, Z,dé&/dt, andd//dt at
t=0).

The c.m. orbit diverges exponentially when eithgrin
Eq. (15 has an imaginary part. Therefore, only if

>0 (18) o
A==yt Qpt 58,
is satisfied will the c.m. motion be stable. FOP> 2w, 2 203
(required for stable trapping in a Penning trap without a

QRBP Eqg.(18) is always satisfied when we take the plus sign. 4
With the minus sign we obtain the stability condition for the Mo = — o+ e Wz 2 21
c.m. of 2T M 02 (= o) (21)
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FIG. 2. Penning trap apparatus. Six azimuthally segmented elec- QREF frequency (kHz)
trodes outside the ring electrodes are used to provide the rotating
electric field as shown in Fig. 1. FIG. 3. Fluorescence intensity 38e" ions as a function of the

QRF frequency. Upper curve: the plasma was rotating faster than
the QRF. Lower curve: the plasma was rotating synchronously with
the QRF. In both cases, the QRF frequency was swept from higher
to lower values.

From Eq.(19), the critical rotation frequencfw,,) of the
QRF, which separates c.m. stability from instability, con-
verges tow,, when §— 0. For Q> w,> o, the critical fre-
guencyw,, obtained from Eq(19) is given by Laplace’s equation with the boundary conditions of the trap

2 2 electrodes, and experimentally determined to be
:&+&f ﬁ’. (22) 0.045+0.007 by measuring the elliptical distortion of the
20 0"V, plasma shape when the plasma was rotating synchronously
With the QRF[14,18

The critical QRF frequencw,, was measured by observ-
ing the fluorescence as,, was swept from higher to lower
values. We expect that the ion plasma is lost and that the
fluorescence becomes zero whep coincides withwg,. Fig-

e 3 shows examples of this observation. This measurement
was carried out withv,=48.5 V andV,,=100 V. One data
set in Fig. 3(upper curvgwas taken with the plasma rotating
faster than the QRFnamely, the ion plasma was slipping
IIl. EXPERIMENTS relative to the QRJ; and the pther data sgower cqrve was
taken with the plasma rotating synchronously with the QRF.

We used the NIST Penning trap, discussed previddsly  No difference was found in the critical frequency between
to demonstrate the stability limits of a QRF. A sketch of thethe two data sets, that is, the rotation frequency of the ion
trap is shown in Fig. 2. The trap is housed in a vacuunmplasma did not affect the c.m. stability, as expected theoreti-
chamber with a background pressure of¥lPa. The 4.465 T  cally. In both cases, the stability condition of the c.m. is so
magnetic field of the trap gives ¥Be" cyclotron frequency stringent that no ions survive fas,, < w,. The fluorescence
QO /2 of 7.608 MHz, and the axial frequency is described byof the lower curve becomes weak when the QRF frequency
Eq. (1), where gVe/m is 2mx25.3 kHz/\2 for °Be. approaches the critical frequency. This is because the plasma
Trapped Bé ions are laser cooled by a 313 nm laser beandensity and rotation frequency decrease with for this
made by the second-harmonic generation of a 626 nm dyease. The fluorescence of the upper curve, in contrast, re-
laser. The fluorescence of the trapped ions is detected by anains constant until the QRF frequency reaches the critical
imaging photomultiplier tube. The temperature of the laserfrequency. This is because the plasma rotation and the den-
cooled ions is typically less than 10 mK, and the ion plasmasity are independent of the QRF frequency when the ion
forms a crystal. The plasma was not required to be a crystgllasma is slipping relative to the QRF. The critical rotation
for this study of the c.m. stability, but the high rate of laserfrequency is more precisely determined from the upper
scattering we obtained at low ion temperatures improved theurve, and therefore we used the scheme in which the plasma
signal-to-noise ratio. is slipping for further measurements.

The QREF is provided by sine waves applied with proper In Fig. 4, the critical frequency is plotted as a function of
phases to the six azimuthal sectors located outside the ring, with two values ofV, (48.5 and 28.5 Y. The critical
electrode. The ring electrode is split into two sections alondrequency depends linearly ov,, as predicted by Eq22).
the z direction so that the QRF penetrates into the trap. The\lso, the two plots have the same slope with different
gap between the ring electrodes is also used for introducing @,/ 27-axis intercepts. Thew./2m-axis intercept of each
cooling laser beam directed perpendicular to the magnetidata set is the magnetron frequeney/27. By comparing
field and for the observation of the ion fluorescence. Thehe slope of Fig. 4 and Ed22), f,, was determined to be
geometric factorf,, was calculated to be 0.043 by solving 0.0480+0.0005, which agrees well with the measured and

Wer

Therefore the critical rotation frequency depends linearly o
V- Because»i is proportional toV;, dependence on the trap
voltageV, occurs only in the first term of Ed22). Further,
Eqg. (22 is independent of mass (note wgocm‘l and Q)
«m1). This means that the critical frequency is not modified
even in the case of plasmas composed of several species
ions.
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w

Finally we consider the special limiting case of zero mag-
netic field(B— 0 and thereforg€) — 0). In this case, the sta-

Vi=48.5V bility condition for the c.m. motion becomes
\e’Ew 1
1<—— <8<+ (23
Vi=28.5V w, 2

Critical Frequency (kHz)
)

/ The first inequality is due to the requirement that E) is
satisfied only if the sum of the terms to the left of the + sign
15 % s in Eq. (18) are positive. The next inequality in E¢R3) is
¥, (V) from the requirement of a positive argument of the square
root in Eq.(18). Finally, the last inequality is from the re-
FIG. 4. Dependence of the critical frequency ¥p for two quirement of Eq.(19). This ion-trapping scheme is recog-
values ofV;. Circles and crosses are experimental results with fittechized as a different type of radio-frequenty) trap. The

lines. Thew,/27-axis intercept of each data set corresponds to thesharacteristic frequencies of this rotating rf trap in a frame

magnetron frequenciy/ 2. rotating with the QRF are given by
2
calculated values off,, discussed earlier in this section. \/ 2_ Yz [Pa? = 202
. . . = -—tw,\ - 2w, 24
These results confirm the theoretical analysis in Sec. l. Wt PR (24

One advantage of the rotating rf trap is the simpler c.m.
motion in this trap compared to the normal rf trap. The radial
We have shown theoretically and experimentally that thec.m. motion in a normal linear rf trap, which is described by
QRF modifies the stability of ions in Penning traps. Froma Mathieu equation, has an infinite number of Fourier com-
both the analysis of the c.m. equations of motion and meaPoNeNtsN{Y s+ wsecyiar Whereld,; is the applied rf frequency,
surements we find that for a given QRF amplitude, the c.mwsecuiariS the secular frequency, andis any integer [13],
stability depends not on the plasma rotation frequency butvhereas the radial c.m. motion in the rotating rf trap consists
only on the frequency of the QRF. For a QRF frequengy Of four Fourier component$-w,tw, in the laboratory
less thanwy, given by Eq.(22), the ions are expelled from frame wherew,; takes on two values from Eq24)]. This
the trap. We obtained good agreement between theory argpuld mean, for example, that the optical spectral lines of
experiment. From this comparison we obtained a value foenergetic ions in the rotating rf trap are simpler than those in
the geometric factof,, that was more precise than that ob- the normal rf trap because of fewer motional sidebands. As
tained by measuring the distortion of the plasma shape due f@r as we know, the rotating rf trap is the only type of rf trap
the QRF. The stability limit studied here implies that the which is not expressed by a Mathieu-type solution.
QRF amplitude must be reduced for experimental work on The rotating rf trap is the electrical analog of the friction-
oblate plasmas whose rotation frequency is only a littleless rotating-saddle trap, which was modeled and discussed
above the magnetron frequency. in detail in Ref.[16]. The rotating-saddle trap consists of a
The stability condition[Eq. (19)] we derived for Q2 ball confined in two dimensions by a rotating saddle-shaped
>2w,” is identical to the condition derived in Rdfl0] for ~ surface and, of course, by gravity and the opposing vertical
when the effective trap potential changes from a quadrati¢orce of the surface in the third. This trap has been used to
well to a saddle potential. This result can be physically undllustrate the principal of rf trapping for years. Referenté]
derstood in the limit of large magnetic field and low rotation shows that for zero friction the motion of the ball perpen-
frequencies of the QRF. In this limit the effective magneticdicular to the rotation axis is analytically solvable and con-
field in a frame rotating with the QRF is large, and thereforesists of four Fourier components, in agreement with our con-
the plasma c.m. motion in this rotating frame and in a direcclusions above.
tion perpendicular to the magnetic field is dominatedbby
X B drift [19]. When the effect[ve potential in the rotating ACKNOWLEDGMENTS
frame switches from a quadratic well to a quadratic saddle,
the equipotential contours in a plane transverse to the mag- This work was supported by the Office of Naval Re-
netic field switch from closed ellipses to open hyperbolassearch. One of the authof3.H.) is supported by Nishina
With E X B drift the plasma c.m. drifts along an equipoten- Memorial Foundatior{Tokyo, Japah We thank T. Heavner
tial surface. Therefore when this surface is an open hyperdNIST) and J. Tan(NIST) for their comments on the manu-
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IV. CONCLUSION AND DISCUSSION
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