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We present a single-center model of double photoionizationsDPId of the H2 molecule which combines a
multiconfiguration expansion of the molecular ground state with the convergent close-coupling description of
the two-electron continuum. Because the single-center final-state wave function is only correct in the
asymptotic region of large distances, the model cannot predict the magnitude of the DPI cross sections.
However, we expect the model to account for the angular correlation in the two-electron continuum and to
reproduce correctly the shape of the fully differential DPI cross sections. We test this assumption in kinematics
of recent DPI experiments on the randomly oriented and fixed in space hydrogen molecule in the isotopic form
of D2.
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I. INTRODUCTION

In recent years, remarkable progress has been achieved in
experimental and theoretical studies of atomic and molecular
double photoionizationsDPId. The hydrogen molecule H2,
often substituted for experimental convenience by its heavier
counterpart D2, is a target of particular interest. The DPI
process in H2/D2 is followed by the Coulomb explosion of
the nuclei thus leading to the continuum state of four charged
particles. Description of such a state is one of the most fun-
damental and challenging problems of the few-body physics.

Progressively sophisticated experimental techniques have
been employed to study DPI of the hydrogen molecule. The
first pioneering experimentsf1,2g were performed by detect-
ing photoion-photoion coincidences. In later experiments
f3–7g, electron-electron coincidence, orsg ,2ed reaction, was
implemented. On an earlier application of the cold target
recoil momentum spectroscopysCOLTRIMSd techniquef8g,
DPI from spatially aligned D2 was measured by detecting
one of the photoelectrons in coincidence with both fragment
ions. In the latest COLTRIMS experimentf9,10g, angular
correlation of the two photoelectrons was measured thus fa-
cilitating the sg ,2ed reaction on the fixed in space D2.

On the theoretical side, severalab initio calculations
f11–13g as well as empiricalf14g and symmetry-driven
f15,16g models have been reported for DPI on H2. Despite
these theoretical efforts, considerable amount of experimen-
tal data, especially the latest fully resolved differential cross
sectionssFDCS’sd, have not been reproduced inab initio
calculations. This gives us an incentive to develop a model
which combines a central field expansion of the molecular
ground state with the convergent close-couplingsCCCd de-
scription of the two-electron continuum. The CCC method
proved to be predictive and reliable when applied to DPI of
two-electron atomic targets: the He atomf17–19g, its isoelec-
tronic ion sequencef20g, and alkaline-earth atomsf21g. It is
therefore tempting to implement the CCC approach for DPI

on H2/D2. In this case, however, we are confronted with a
fundamental difficulty of dealing with a two-center nuclear
potential. To circumvent this difficulty we may argue that the
angular correlation in the two-electron continuum is estab-
lished at large distances where the separation of the two nu-
clei can be neglected and they can be viewed as a united
helium atom. As to the ground state, we have a choice of
progressively accurate single-center expansionsf22–25g, the
latter work claiming the chemical accuracy achieved for the
ground-state energy. With the central-field approximation to
the ground and final states, the application of the CCC
method to molecular DPI is straightforward.

The single-center final state is incorrect in the vicinity of
the nuclei where it overlaps with the molecular ground state
and where the photoionization matrix elements gain their
strength. Therefore we cannot expect the present model to
produce accurate absolute DPI cross sections. However, we
hope to reproduce correctly the shape of the DPI FDCS’s.
We have several reasons for hoping so. First, thesg ,2ed
experimentsf3–5g revealed a close resemblance of the pho-
toelectron angular correlation pattern in D2 and He. This
validates our assumption that the angular correlations in the
two-electron continuum are not very different in He and the
randomly oriented H2/D2. Second, asymptotic final states
have been successful in describing shapes of DPI FDCS’s in
He. For instance, Maulbetsch and Briggsf26,27g employed a
product of the three Coulombs3Cd functions to describe the
He DPI FDCS’s at both equal and unequal energy sharings
between the photoelectrons. This is despite the fact that the
3C final state is incorrect in the vicinity of the nucleus and
the magnitude of the FDCS is in error of several hundred
percentf28g. And third, we can isolate separate terms in the
CCC final state which are responsible for the magnitude and
shape of the DPI FDCS. Indeed, we represent the final state
by a close-coupling expansion over the two-electron channel
states each of which is composed of a target bound state and
a continuum statessee Sec. III for more detaild. The bare
photoionization matrix element is taken between the ground
state and the final channel state. This bare matrix element is
modified by an integral term which corresponds to an inelas-
tic electron scattering on the singly ionized target. Due to a
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long-range Coulomb interaction, this inelastic scattering in
dominated by large impact parameters. We believe that it is
the integral term which is responsible for the angular corre-
lation in the continuum whereas the bare photoionization
matrix elements control the overall magnitude of the DPI
cross sections.

The rest of the paper is organized in the following way. In
Sec. II we give the property of the single-center ground state.
In Sec. III we outline the photoionization formalism. Results
for the total and differential DPI cross sections are presented
in Secs. IV A and IV B, respectively. The summary is given
in Sec. V.

II. SINGLE-CENTER EXPANSION FOR THE GROUND
STATE OF H 2

In the present model, we employ a single-center expan-
sion for the1Sg

+ ground state of the H2 molecule proposed by
Hayesf25g. The ground state is constructed as a configura-
tion mixing of symmetrized pairs of the normalized Slater
orbitals:

fnlmsr,zd = Asn,zdrn−1e−zrYlmsrd, s1d

where the normalization coefficient Asn,zd
=s2zdn+1/2fs2nd!g−1/2. The polar coordinates refer to the mol-
ecule midpoint. The full expansion given by Hayesf25g
comprised 57 orbital pairs ofhnlm,n8l8m8j type with
m=−m8 and umuø l. Three sets of orbitals and configuration
mixing coefficients were given for the internuclear separa-
tions of R=1.2, 1.4, and 1.6 a.u. The minimum of the
ground-state energy −1.172 58 a.u. was found at a separation
of 1.400 94 a.u.

For the purpose of numerical computations, we found that
only few leading terms in the configuration mixing were es-
sential. We restricted ourselves with 12 leading configura-
tions built from 19 Slater orbitals which are listed in Table I.
We label orbitals consequently with a single ordinal number
N running from 1 to 19. For a giveni configuration, a pair of
numbersN1

i , N2
i denotes the relevant Slater orbitals and the

configuration mixing coefficientCi specifies the relative
strength of this configuration.

Only axially symmetric orbitals withm=0 are selected in
Table I. This simplifies angular momentum formalism and
allows us to write the ground-state wave function in the fol-
lowing form:

C0sr1,r2d = o
J0

o
nl,n8l8

Nnl,n8l8Bnl,n8l8

3 o
mm8

Clm,l8m8
J0M0 fnlmsr1dfn8l8m8sr2d. s2d

In the above expression, the normalization factorNnl,n8l8
=2−1/2 s1+P12d for nlÞn8l8 and Nnl,n8l8=1 otherwise,P12

denotes the spatial exchange operator. Since the Slater orbit-
als are not orthogonal forl = l8 and nÞn8, we incorporated
an extra overlap factor into Bnl,n8l8=Cnl,n8l8s1
+ uknz in8z8lu2d−1/2, whereCnl,n8l8;Ci are configuration mix-
ing coefficients listed in Table I and the radial overlap inte-
gral is calculated as

knzin8z8l = Asn,zdAsn8,z8d/A2sn̄,z̄d

with 2n̄=n+n8 and 2z̄=z+z8. As is seen from Table I, at
least one of the constituent orbitals in the configuration mix-
ing always has ans orbital character whereas the second
orbital is eithers or d. Therefore the total angular momentum
and its projection in the molecular ground state areJ0=0,2
andM0=0. The Clebsch-Gordan coefficients entering Eq.s2d
areC00,00

00 =C00,20
20 =1.

III. MOLECULAR PHOTOIONIZATION FORMALISM

We align thez axis in the laboratory frame with the po-
larization vector of light«. The linear polarization along the
z axis in the laboratory frame corresponds to two linear po-
larization components parallel and perpendicular to the mo-

lecular axisR̂. We calculate the dipole transition amplitude
in the molecular frame and then transform it to the laboratory
frame using the technique similar to that suggested by Feagin
f14g. To deal with parallel and perpendicular polarizations,
we introduce a two-electron dipole operator which corre-

TABLE I. Configuration mixing coefficientsCi and parameters of the Slater orbitalssn, l ,zd for the ground state of H2 at R=1.4 a.u.

i N1
i N2

i Ci N n l n/z N n l n/z

1 1 1 0.195765 1 1 0 0.978 11 2 0 1.182

2 2 2 0.003276 2 1 0 0.752 12 1 0 1.122

3 2 3 0.581843 3 2 0 1.328 13 1 0 0.984

4 4 5 0.223090 4 2 0 1.598 14 1 0 1.024

5 5 5 −0.012841 5 3 0 0.876 15 2 0 1.170

6 6 7 −0.030708 6 1 0 0.876 16 3 2 1.374

7 6 8 0.007483 7 8 0 1.862 17 5 2 0.932

8 6 9 0.015074 8 11 0 1.830 18 8 2 1.538

9 10 16 0.128358 9 14 0 0.753 19 14 2 0.728

10 11 17 0.061705 10 1 0 0.978

11 12 18 −0.023840

12 12 19 0.013445
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sponds to a particular angular momentum projection of the
photonMP:

dsMPd = S4p

3
D1/2

fr1Y1MP
sr̂ 1d + r2Y1MP

sr̂ 2dg. s3d

The two-electron dipole operators for the parallel and per-
pendicular polarization of light in the molecular frame can be
expressed asz1+z2=ds0d and x1+x2=fds−1d−ds1dg /Î2, re-
spectively. In Eq.s3d the dipole operator is given in the
length form. Analogous expressions in the velocity and ac-
celeration forms can be obtained by substitutingr i with ] /]r i
and 2/r i

3, respectively.
In the CCC formalism, we represent the final state by a

close-coupling expansion over the two-electron channel
states each of which is composed of a target bound statef
and a continuum statek. To calculate the matrix element of
the dipole operators3d between the molecular ground state
C0 and the channel stateukfl we make a partial wave expan-
sion over the angular momentumL and its projectionM of
the continuum statek:

kkf udsMPduC0l = o
JMJ

o
LM

i−LeidLskdYLMskdCLM,l fmf

JMJ s− 1dMP

3dMP+MJ,0
kkLnfl fidsMPdiC0l. s4d

Here we introduced the total angular momentumJ and its
projectionMJ for the two-electron final state. In Eq.s4d, the
reduced dipole matrix element, free of electron angular mo-
mentum projections, is defined as

kkLnfl fidsMPdiC0l = o
J0

o
nl,n8l8

Bnl,n8lNnl,n8l8ĴĴ0s− 1dMP

3SJ0 J 1

0 − MP MP
D

3Fs− 1dl.Îl.kkLirinllknfl fil8n8l

3s− 1dlHJ0 J 1

L l l f
Jdl8l f

+ s− 1dl.Îl.knfl firil8n8lkkLinll

3s− 1dl8HJ0 J 1

l f l8 l
JdlLG . s5d

Here the hat symbolĴ denotess2J+1d1/2. For a spherically
symmetric atomic target,J0=0, J=1, and the matrix ele-
mentss5d are identical for allMP. This is not the case for the
molecular ground states2d which has a substantialJ0=2 con-
tribution. Because of this contribution there is a difference
between the matrix elementss5d with MP=0 and MP=1.
However, due to the axial symmetry of the ground states2d,
the matrix elments withMP= ±1 are identical.

We build the CCC final state from the two-electron chan-
nel states as

C fskd = ukfl + o
j

X d3k8
kkf uTu jk8luk8 jl

E − k82/2 − e j + i0
. s6d

Here kkf uTu jk8l is the half-on-shellT matrix which is found
by solving a set of coupled Lippmann-Schwinger equations
f29g. The dipole matrix element between the ground stateC0
and the final stateC fskd is given by

kC fskdudsMPduC0l = kkf udsMPduC0l + o
j

X d3k8

3
kkf uTu jk8lkk8 j udsMPduC0l

E − k82/2 − e j + i0
. s7d

We strip the angular dependence from theT matrix

kkf uTu jk8l = o
L,L8,J

M,M8,MJ

CLM,l fmf

JMJ CL8M8,l jmj

JMJ YLMskdYL8M8
* sk8d

3kkLnfl fiTJinjl jk8L8l,

and perform the spherical integration and angular momentum
projections’ summation. This leads us to the following ex-
pression:

kCLnfl f
skdiDsMPdiC0l

= kkLnfl fiDsMPdiC0l

+ o
j

X

k8

kkLnfl fiTJinjl jk8L8lkk8L8njl jiDsMPdiC0l
E − k82/2 − e j + i0

, s8d

where we introduced a complex phase-modified matrix ele-
ment:

kkLnfl fiDsMPdiC0l = i−LeidLskdkkLnfl fidsMPdiC0l. s9d

In the CCC formalism, a complete set of bound stateshfj
is obtained by diagonalizing the target Hamiltonian and com-
prises both the positive and negative energy states. By pro-
jecting the positive energy bound state onto the true con-
tinuum state, we can access the doubly ionized continuum
and to calculate the differential and total DPI cross sections.
This technique is no different to the atomic DPIf17,18g. We
write a dipole matrix element between the ground state and
the two-electron continuum state as

kCsk1,k2dudsMPduC0l = o
JM

o
l1l2

YJM
l1l2sk̂1,k̂2dDl1l2

sE1E2d

3s− 1dMPdMP+M,0. s10d

Here we introduced bipolar harmonicsf30g,

YJM
l1l2sk̂1,k̂2d = o

m1m2

Cl1m2,l2m2

JM Yl1m1
sk̂1dYl2m2

sk̂2d.

The reduced matrix element is defined by the following
projection:

Dl1l2
sE1,E2d = kCl ln2l2

sk1diDsMPdiC0lkl2k2il2n2l, s11d

where kl2k2i l2n2l is the radial overlap between the pseu-
dostate of energyen2l2

=E2 and the true continuum radial
wave function of same energy and angular momentum.
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The nonspherically symmetricJ0=2 part of the ground
states2d can couple with the angular momentum of the pho-
ton to produce the two-electron final state withJ=1 and 3.
However, our numerical estimates show that theJ=3 contri-
bution to the matrix elements10d is small and we neglect it
in the following. With this simplification, the angular mo-
mentum summation in Eq.s10d can be reduced to the sum
over a single variable. By introducing symmetric and anti-
symmetric combinations of the radial matrix elements,

Dl1l2
± sE1,E2d =

1

2
hDl1l2

sE1,E2d ± Dl1l2
sE2,E1dj, s12d

we can write

o
l1l2

Y1M
l1l2sk̂1,k̂2dDl1l2

sE1E2d = o
l=0

`

Dll+1
+ sE1,E2dfY1M

ll+1sk̂1,k̂2d

+ Y1M
ll+1sk̂2,k̂1dg + Dll+1

− sE1,E2d

3fY1M
ll+1sk̂1,k̂2d − Y1M

ll+1sk̂2,k̂1dg.

The bipolar harmonics entering Eq.s13d can be evaluated by
using the expression of Manakovet al. f31g:

Y1M
l1l2sk̂1,k̂2d = −

1

4p
S 3

lmax
D1/2

fs− 1dl1Pl1
8 scosu12dsk̂1dM

+ s− 1dl2Pl2
8 scosu12dsk̂2dMg, s13d

where cosu12=sk̂1·k̂2d. This takes us to the following matrix
elements for the parallel and perpendicular polarization:

kCsk1,k2duz1 + z2uC0l = sk1z + k2zdgS
+ + sk1z − k2zdgS

− ,

s14d

kCsk1,k2dux1 + x2uC0l = sk1x + k2xdgP
+ + sk1x − k2xdgP

− .

Here we introduced the symmetric and antisymmetric DPI
amplitudes:

gS/P
± =

Î3

4p
o
l=0

`
s− 1dl

Îl + 1
fPl+18 scosu12d 7 Pl8scosu12dg

3Dll+1
± sE1,E2d, s15d

where indicesS and P correspond to the parallelsMP=0d
and perpendicularsMP= ±1d polarization of light, respec-
tively. The MP dependence is present, but not shown for
brevity, in matrix elementss11d and s12d.

Molecular frame expressions14d can be easily trans-
formed to the laboratory frame. We give this expression for
the case of equal energy sharingE1=E2 when we can sim-
plify notationsg;g+ since allg− vanish:

kCsk1,k2duz1 + z2uC0l = sgS cos2 uR + gP sin2 uRdsk1z + k2zd

+ sgS − gPd cosuR sinuRsk1x + k2xd.

s16d

Here uR is the angle of the molecular axis relative to the
polarization axis of light taken as thez axis in the laboratory

frame. The two axesz andR form thexz plane in the labo-
ratory frame, i.e.,fR=0.

Squared amplitudes16d, with an appropriate kinematical
factor, gives a FDCS of the DPI on a molecule fixed in
space. An analogous expression for a randomly oriented mol-
ecule can be derived by introducing a nonzero polar anglefR
into Eq.s16d and by taking the spherical integral overuR and
fR. The resulting expression is given by Feaginf14g:

ds2+

dV1dV2dE2
=

C

15
hf2ugSu2 + 7ugPu2 + 6 ResgSfP

* dgsk1z + k2zd2

+ ugS − gPu2uk1 + k2u2j. s17d

For a spherically symmetric atomic target,gS=gP and the
second term in the right-hand side of Eqs.s16d and s17d
cancels out. The proportionality constant depends on the
gauge of the dipole operator. In theL gauge,C=4p2v /c.
Expressionss16d and s17d can be easily generalized to the
case of an arbitrarily polarized light.

The total DPI cross section can be obtained by integrating
the FDCS over the angles of the two photoelectrons and the
energy of one of the photoelectrons. This, however, is a very
inefficient computational procedure. Instead, we can use the
completeness of the target states basishfj and obtain the total
cross section as a sum over the positive energy target states.
For a given momentum projection of the photonMP, the
photoionization cross section resolved with respect to the
final target statef and the angle of emission of the photo-
electronVk can be written as

dsnfl f
sMPd

dVk
=

C

3o
mf

ukC fskdudsMPduC0lu2. s18d

The angle-integrated cross section is given by

snfl f
sMPd =

C

3 UoL

kkLnfl fiDsMPdiC0lU2
. s19d

When transforming Eq.s19d to the laboratory frame, the per-
pendicular polarization component~fDs−1d−Ds1dg cancels
out leaving us with the spherically symmetric component
Ds0d. The integration over the angular orientation of the mo-
lecular axis is performed trivialy. The total DPI cross section
is given by the sum over all positive energy final states:

s++ = o
ef.0

snfl f
sMP = 0d. s20d

IV. RESULTS

A. Total DPI cross section

The total DPI cross section of H2 calculated in three
gauges of the dipole operator, the length, velocity, and accel-
eration, is presented in Fig. 1 in comparison with the experi-
ment of Dujardinet al. f1g and a theoretical cross section
reported by Le Rouzof11g. Convergence between calcula-
tions in the three gauges is an indication of an accuracy of
the ground- and final-state wave functions. A very good con-
vergence can be achieved with the CCC final state for He
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provided an accurate Hylleraas-type ground-state wave func-
tion is employedf32g. In a stark contrast, for the H2 mol-
ecule all three gauges strongly diverge and the calculated
cross section should be divided by various factorss20, 2.1,
and 4.5 for theL, V, andA gauges, respectivelyd in order to
normalize it to the absolute cross section reported by Le
Rouzof11g. After this renormalization, theV and A gauges
agree well between each other and with theV gauge of Le
Rouzof11g whereas theL gauge shows a very different en-
ergy dependence.

This strong gauge divergence comes to us as no suprise. It
is typical for asymptotically correct final states as was dem-
onstrated by Luceyet al. f33g for the 3C final state in the
case of DPI on He. What is surprising is a relatively good
gauge convergence in the calculation of Le Rouzof11g.
Similarly to the present work, Le Rouzof11g employed a
multiconfiguration expansion of the H2 ground state built
from elliptical molecular orbitals. As to the final state, this
author used a product of two Coulomb waves in the field of
an asymptotic chargeZ=2. We might envisage that the
ground state employed by Le Rouzof11g is somewhat supe-
rior to that of Hayesf25g, even though the latter claims the
chemical accuracy of the ground-state energy. As to the final
state, the CCC wave function is certainly a better approxi-
mation than a completely noncorrelated product of the two
Coulomb waves.

One more point should be made when discussing Fig. 1.
Both the present calculation and that of Le Rouzof11g com-
pletely ignore the vibrational degrees of freedom and corre-
spond to the vertical double ionization energy of H2 at
51.1 eV. The experimental DPI threshold is somewhat lower
due to the Frank-Condon overlap between the vibrationally
allowed part of the ground state and the strongly repulsive
final state. Le Rouzof12g addressed this question in a later
work but we intentionally made a comparison with an earlier
calculation of this authorf11g which ignored this issue as we
do in our model.

B. Differential cross section

Much of the renewed interest to DPI on H2/D2 is due to
the recent accurate measurements of fully differential cross
sections on randomly orientedf3–7g and fixed in spacef9g
molecular species. In this section we present our calculations
for well documented cases of equal energy sharing kinemat-
ics at the total excess energies of 20 eVf3–5g and
24.5 eVf9g.

1. Randomly oriented molecule

A triply differential cross section of DPI of H2 for the
kinematics of experiment of Reddishet al. f3g is shown in
Fig. 2. In this coplanar kinematics the two photoelectrons
and the polarization vector of light all belong to the same
plane. The escape angles of the photoelectronsu1 sfixedd and
u2 svariabled are counted from the polarization axis of light
shorizontal in polar plots of Fig. 2d.

Two different calculations are presented in Fig. 2. In the
first calculation Eq.s17d is used with two amplitudesgS and
gP fEq. s15dg corresponding to the parallel and perpendicular
orientation of the molecular axis relative to the polarization
of light. To show clearly the role of the molecular effects, in
the second calculation we only use one amplitudegS and the
second amplitude is set to be identicalgP;gS.

Molecular effects due to the second term in the right-hand
side of Eq.s15d should be especially noticeable when the
fixed photoelectron escape angleu1 deviates from 90°. The
atomic-like term in Eq.s15d forbids the two-electron escape
on the cone about the polarizationz axis wherek1z=−k2z. It
suppresses one of the lobes in atomiclike FDCS’ssdashed

FIG. 1. Total DPI cross section calculated in three gauges of the
dipole operator: lengthsL: dotted lined, velocity sV: solid lined, and
accelerationsA: dashed lined. Normalization is made to the calcu-
lation of Le Rouzof11g in theV gaugesthick solid lined by dividing
the present results by the factors of 20, 2.1, and 4.5 for theL, V, and
A gauges, respectively. The experimental data by Dujardinet al. f1g
are indicated by dots.

FIG. 2. Triply differential cross section of DPI on H2 at E1=E2=10 eV and a coplanar kinematics. AV-gauge calculation with amplitudes
gS andgP fEq. s15dg is displayed by a solid line. An atomiclike calculation with identical amplitudesgS=gP is shown by a dashed line. A
fixed escape angle of one of the photoelectrons is indicated by an arrow on the inset polar plots. The polarization axis of light is horizontal.
Experimental data are from Wightmanet al. f5g
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line in Fig. 2d when the direction of escape of one of the
photoelectrons becomes close to the polarization axis. The
molecular term only forbids the antiparallel escapek1=−k2
and enforces just one nodal point. That is why the lobes
should be more symmetric in the molecular case when both
terms contribute in Eq.s15d ssolid line in Fig. 2d. The experi-
mental data seem to show this tendency. However, the theo-
retical difference between the moleculargS, gP and atomic-
like gS=gP calculations is too small. The filling of the
antiparallel escape node is most likely due to a finite angular
resolutions±2.5°d and other experimental effects.

It is instructive to compare the H2 DPI amplitudesgP, gS

with those for the He atom. This comparison is made in Fig.
3. The amplitudessleftd and their phasessrightd are plotted as
functions of the mutual angle of the two photoelectronsu12.

It is also interesting to compare the presently calculated
amplitudes with those introduced empirically by Feaginf14g
to fit the experimental data of Wightmanet al. f5g. Feagin
f14g considered a pair ofreal amplitudesgS, gP in the
Gaussian ansatz,

gS,P ~ expF− 2 ln 2
sp − u12d2

Du12
2 G , s21d

and treated the ratiogP /gS and widthDu12 as two adjustable
parameters. The best fit to the experiment of Wightmanet al.
f5g was achieved atgP /gS=−2.1±0.5 andDu12=76° ±3°.

In the present calculation, the amplitudes are complex.
However, inspection of Fig. 3 shows that the phase differ-
ence betweengS and gP is close to zero for those mutual
anglesu12 where the magnitude of the amplitudes is signifi-
cant. A small phase difference can be accommodated by a
real gP /gS ratio. Fitting with the Gaussian ansatzs21d pro-
duces the width parametersDu12

S =84°, Du12
P =88°, and the

amplitude ratiogP /gS=1.2.1 For comparison, the He width
parameter is 91°. The difference between the width param-
eters in He and H2 is the sole ground-state effect since the
CCC final states are identical in both calculations. We inves-
tigated numerical stability of the Gaussian parameters by
varying the size of the CCC basis. The Gaussian parameters

were not very stable with the width changing by as much as
±5°. However, in all cases we observed thatDu12

S ,Du12
P

,Du12
He.

We note that the molecular effects are weak in our model.
The gP /gS ratio differs from unity by only 20%. This is
consistent with the angular composition of the ground state
given in Table I which has about the same amount of thed
orbital character. In contrast, the amplitude ratio of Feagin
f14g is very far from unity and points to strong molecular
effects.

2. Molecule fixed in space

Recent COLTRIMS measurements of Weberet al. f9g al-
lowed the extraction of FDCS’s at particular orientations of
the molecular axis rather than averaged over all possible ori-
entations. In addition, these authors were able to determine
FDCS’s at various energies of the recoiling ionsf10g. Due to
the Frank-Condon principle, these measurements probe the
molecular ground state at various internuclear separations.
Hayesf25g gave the multiconfiguration expansion of the H2
ground state at three different internuclear distances ofR
=1.2, 1.4, and 1.6 atomic units. By employing these ground-
state expansions we should be able, at least in part, to repro-
duce the evolution of the FDCS’s as the molecule expands or
shrinks.

In Fig. 4 we present our calculation for the case of an H2
molecule being fixed in the plane of the coplanarsg ,2ed
reaction. Both photoelectrons, polarization axis of light, and
the molecular axis all lie in the same plane. The escape angle
of one photoelectron is fixed atu1=10° relative to the polar-
ization axis of light shorizontal in Fig. 4d. In the top-left
panel, all molecular orientations are taken into account
whereas in other panels the molecular axis angleuR varies
from 15° to 90° relative to the polarization of light.

According to Eq.s16d, the gS amplitude dominates the
FDCS whenuR.0 whereas thegp amplitude makes the sole
contribution whenuR=90°. In intermediate cases both ampli-
tudes interfere. AsgP.gS, we see an increase of the mag-
nitude of the FDCS whenuR varies from small angles to-
wards 90°. However, due to the interference, the FDCS
peaks not at 90° but at a somewhat lesser angle of 60°. The
pure P-FDCS at 90° clearly shows an extra lobe which is
also pronounced in the spherically averaged FDCS. Com-
parison is made with experimental data of Weberf34g. The
spherically averaged experiment clearly shows a two-lobe
structure, in agreement with the present calculation. How-
ever, the additional lobe is much broader and the node at the
antiparallel emission of the two photoelectrons is signifi-
cantly filled in. This is probably due a finite angular resolu-
tion of the experiment which also combines with a finite
energy partition acceptance. These factors cannot be ac-
counted for in the present calculation. However, simulation
of the finite angular and energy resolutions with Gaussian
amplitudess21d significantly improves agreement between
calculated and measured FDCSf9g. Experimental data pre-
sented in Fig. 4 show the increase of the magnitude as pre-
dicted by the present calculation. However, at smalluR
angles, the shape of the FDCS is much more isotropic and
the magnitude is far too small. It is unlikely that these effects

1We introduced an additional phase factors−1dMP both to the am-
plitude s4d and the reduced matrix elements5d. Without this factor,
the ratiogP /gS would be negative as reported in Weberet al. f9g

FIG. 3. The DPI amplitudesgS, gP for H2 are shown by the
solid and dashed lines, respectively. Their atomic counterpartsgS

=gP for He are displayed by the thick solid line. The moduli are on
the left panel and the phases are on the right panel.
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are solely due to finite experimental resolutions, rather the
limited scope of the present model may cause this disagree-
ment.

Finally, in Fig. 5 we present the FDCS for perpendicular
geometry of the two-electron escape when one of the photo-
electrons is detected at 90° to the plane formed by the polar-
ization axis of light and the internuclear axis of the molecule.
The second electron is detected in this plane at various
angles relative to the polarization axis of light. The molecule
forms an angleuR=55° relative to this axis. The central panel
of Fig. 5 corresponds to the equilibrium internuclear distance
R=1.4 a.u. whereas on the left and right panels this distance
is 1.6 and 1.2 a.u., respectively. The experimental data of
Weberet al. f10g shown in each panel are taken at different
kinetic energy releasesKERd values. Due to the Frank-
Condon principle and because of a strongly repulsive doubly
ionized final state, the smaller KER values correspond to the
expanded moleculesleft paneld, and the larger KER value is

a signature of a shrunk moleculesright paneld.
The calculation is in a good agreement with experiment at

the equilibrium internuclear distancescentral paneld. How-
ever, there are some obvious features on the experimental
FDCS which are not reproduced by the calculation. We
would expect the present central-field model to fail sooner
for an expanded moleculesleft paneld. Much to our surprise,
it is the shrunk molecule which generates the most unusual
four-lobe FDCS. We stress that Eq.s16d can only describe a
two-lobe FDCS as a function of the photoelectron angleu2 in
the present geometry. It is higher multipoles, most notably
J=3 in the final two-electron continuum, that cause such a
strong deviation from a dipole two-lobe FDCS. The present
model indicates some reduction in magnitude of the FDCS at
smaller internuclear separations, in line with experiment.
However, theJ=3 final channels are far too small to account
for a nondipole structure of the FDCS.

FIG. 4. Triply differential cross section of DPI on H2 at E1=E2=12.5 eV and a coplanar kinematics. The fixed photoelectron escape
direction atu1=10° is indicated by an arrow. The top-left panel shows the FDCS averaged over all molecular orientations. Other panels
correspond to a fixed molecular angleuR relative to the polarization of lightshorizontald. A V-gauge calculation with amplitudesgS andgP

fEq. s15dg is displayed by a solid line. Experimental data are from Weberf34g.

FIG. 5. Triply differential cross section of DPI on H2 at E1=E2=12.5 eV and noncoplanar geometry. The fixed escape direction of one
of the photoelectrons is perpendicular to the plane which contains the polarization of light, the molecule which is at 55° to the polarization
axis, and the escape direction of another photoelectron. The experimental data are from Weberet al. f10g.
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V. CONCLUSIONS

We presented here a formalism and numerical results for
the one-photon two-electron ionization of the H2 molecule
within a simplified single-center model. The model combines
a multiconfiguration expansion for the molecular ground
state and a convergent close-couplingsCCCd expansion for
an atomiclike final state in which the two photoelectrons
move in a field of a pointlikeZ=2 charge. Electron correla-
tion is accounted for both in the ground and final states.

We generated a succession of cross sections, starting with
the total integrated DPI cross section, followed by the fully
differential cross section for a randomly oriented H2 mol-
ecule and, finally, the FDCS for a molecule fixed in space.
We made a comparison with the latest experimental data and,
where available, with previous calculations. We find our
model modestly accurate. Due to an asymptotic nature of the
final state, we do not expect accurate magnitudes of the cal-
culated DPI cross sections. In addition, the total DPI cross
section shows great sensitivity to the gauge of the electro-
magnetic operator, the velocity gauge being the closest to the
experiment and giving the most accurate photon energy de-
pendence. The shapes of the FDCS for randomly oriented H2
molecules is found in fair agreement with experimentf5,9g.
Narrowing of the Gaussian width of the parallel and perpen-
dicular DPI amplitudes as compared with the fully symmet-
ric He amplitude is shown unambiguously. The effects of the
molecular axis orientation and the internuclear separation on
the FDCS are demonstrated within the present model. How-
ever, certain important features of the experimental FDCS

such as strong deviation from a two-lobe dipole structure
f10g cannot be reproduced.

In general, the molecular effects are rather weak in the
present model as expected from a small fraction of the
d-orbital character in the multiconfiguration ground state
f25g. This character does not change appreciably as the in-
ternuclear distance deviates from the equilibrium. The pos-
sible J=3 final channels are too weak to explain nondipole
features of the FDCS.

To improve the accuracy of the present model, it would be
highly desirable to include the molecular effects in the final
state. This can be achieved in the prolate spheroidal coordi-
nates as was demonstrated by Semenov and Cherepkovf35g
in their calculation of the single photoionization cross sec-
tion of H2. We plan this development of our model in the
future.
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