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A spin-dependent density-functional approach for the calculation of highly and multiply excited state of
atomic system is proposed based on the localized Hartree-Fock density-functional method and Slater’s diago-
nal sum rule. In this approach, electron spin orbitals in an electronic configuration are obtained first by solving
the Kohn-Sham equation with an exact nonvariational spin-dependent localized Hartree-Fock exchange poten-
tial. Then a single-Slater-determinant energy of the electronic configuration is calculated by using these elec-
tron spin orbitals. Finally, a multiplet energy of an excited state is evaluated from the single-Slater-determinant
energies of the electronic configurations involved in terms of Slater’s diagonal sum rule. This approach has
been applied to the calculation of singly, doubly, and especially triply excited Rydberg states of He- and Li-like
ions. The total energies obtained from the calculation with an exchange-onlysX-onlyd potential are surprisingly
close to those of Hartree-Fock method and the total energies from the calculation with exchange-correlation
potential are in overall agreement with available theoretical and experimental data. The presented procedure
provides a simple and computationally efficient scheme for the accurate calculation of highly and multiply
excited Rydberg states of an atomic system within density-functional theory.
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I. INTRODUCTION

Density-functional theorysDFTd f1,2g has been widely
applied to many areas in theoretical physics and chemistry
f3,4g as a powerfulab initio approach of calculating the
ground-state properties of many-electron systems due to its
computational simplicity in dealing with systems having a
large number of electrons. The basis of DFT is the Hohen-
berg and KohnsHKd theoremf1g and the Kohn-ShamsKSd
equationf2g. The most important and troublesome part in
DFT is the exchange-correlationsXCd potential because it
determines not only calculation accuracy but also the useful-
ness of a DFT calculationf5g.

In a traditional approximation, such as the local density
approximationsLDA d f3,4g and the generalized gradient ap-
proximation sGGAd f6–8g, the XC potential is obtained by
using uniform electron gas. Because of the incomplete can-
cellation of spurious self-interactionsf9g, the approximate
XC potential falls off too fast and thus exhibits some incor-
rect asymptotic behaviorsf10g. As a result, no Rydberg series
and only a few bound unoccupied states can be available
from a calculation with this kind of XC potential. In addi-
tion, the traditional XC potential has an inherent degeneracy
due to its independence of symmetries such as orbital angu-
lar momentum and spin of the state considered and thus the
calculated energies for different symmetries may have the
same value. Therefore, the KS equation with traditional XC
potential cannot be directly applied to the calculation of
excited-state energy, especially highly excited-state energy.

In fact, DFT itself is a ground-state theory. KS eigenvalue
differences of unoccupied and occupied orbitals are not rig-
orously defined as excitation energies. One needs to go be-
yond the standard DFT, for example, using a time-dependent
DFT approachf11–13g to calculate excitation energy. How-

ever, KS eigenvalues can serve as good zero-order excited-
state energies provided that they are gained by solving the
KS equation with a high-quality XC potentialf14g. A number
of theoretical methods have been developed by adopting this
point of view ssee a recent review articlef15g for more ap-
proachesd, in which the work-function-sWF-d based ex-
change potential approachf16–19g, the open-shell localized
Hartree-Fock sLHFd density-functional approachf20,21g,
and the multireference LHF density-functional approach
f22,23g have drawn more attention because of their success-
ful applications to the calculations of atomic and molecular
excited states.

However, almost all the calculations using the time-
dependent DFT approach, open-shell LHF approach, and
multireference LHF approach so far are performed for lower
singly excited states. Although better results from calcula-
tions of the WF method were reported for both singly and
doubly excited states of atomic systemsf18,19g, one needs
the rotational component of the field in computation, which,
in general, is very hard to calculate. In the atomic case, it
may be neglected in comparison with the irrotational com-
ponent, but in the molecular case, it cannot be ignored due to
the departure of electronic structure from spherical symmetry
f15g. Even for the atomic case, WF calculation often encoun-
ters a self-consistent convergence problem for high-lying
Rydberg excited statesf19g. Therefore, an effective, simple,
and easy-to-be-applied density-functional method for the cal-
culation of highly and multiply excited states remains to be
explored.

In this paper, we present a spin-dependent density-
functional approach for the calculation of highly and multi-
ply excited states of atomic systems based on the LHF
density-functional methodf14,24g and Slater’s diagonal sum
rule f25g. In this approach, the exchange potential used is an
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exact nonvariational spin-dependent localized Hartree-Fock
sSLHFd exchange potential constructed by extending the
ground-state LHF exchange potential to excited states, elec-
tron spin orbitals in an electronic configuration are obtained
by solving KS equation with the SLHF exchange potential, a
single-Slater-determinant energy of the electronic configura-
tion is calculated by using these electron spin orbitals, and a
multiplet energy of an excited state is evaluated from the
single-Slater-determinant energies of the electronic configu-
rations involved in terms of Slater’s diagonal sum rule. The
SLHF exchange potential is free of Coulomb self-
interactions, dependent on symmetries of the state under con-
sideration, requires occupied orbitals only, and exhibits cor-
rect long-range behaviors; it can be used to calculate the spin
orbitals and density for each individual excited state and thus
is promising for the calculation of highly and multiply ex-
cited states of atomic system. We have applied this procedure
to the calculations of singly, doubly, and especially triply
excited states of He- and Li-like ions. Due to the singularity
at the origin and long-range nature of the Coulomb potential,
we use the generalized pseudospectralsGPSd methodf26g to
discretize spatial coordinates and optimize solution of the KS
equation so as to obtain accurate eigenvalues and density
functionals. The total energies obtained from the calculation
with an exchange-onlysX-onlyd potential sX-only calcula-
tiond are found to be surprisingly close to those of the
Hartree-FocksHFd method and the total energies from the
calculation with the XC potentialsXC calculationd are in
overall agreement with available theoretical and experimen-
tal data.

II. THEORETICAL METHOD

A. Spin-dependent localized Hartree-Fock
density-functional method

In spin-dependent DFT, the spin-dependent electron den-
sity rssr d is defined by

rssr d = o
i=1

Ns

wisuwissr du2, s1d

wheres is the electron spin, equal toa and b for spin-up
and spin-down,Ns is the number of electrons with spins,
wissr d is the ith spin orbital with spins, and wis is the
occupied number of electrons in the spin orbitalwissr d. The
electron spin orbitalwissr d is determined by the KS equation

Hssr dwissr d = «iswissr d, s2d

with the KS HamiltonianHssr d given by

Hssr d = − 1
2¹2 + Vs

effsr d, s3d

and the local effective potentialVs
effsr d given by

Vs
effsr d = Vextsr d + VHsr d + Vxcssr d, s4d

whereVextsr d is the external potential,VHsr d is the Hartree
potential sclassical Coulomb electrostatic potential between
electronsd, andVxcssr d is the XC potential. The external po-
tential is known accurately for a given atomic system. The

Hartree potential can be calculated exactly by

VHsr d =E rsr 8d
ur − r 8u

dr 8, s5d

wherersr d=rasr d+rbsr d is the total electron density. Thus
finding a suitable XC potential is the key to the calculation of
both the ground state and excited states. The XC potential
can be divided into the exchange potentialVxssr d and the
correlation potentialVcssr d.

Recently, the X-only LHF density-functional method has
been proposed and successfully applied to the ground-state
calculation of atomic and molecular systemsf14,24g. In that
method, electron orbitals are calculated by solving the KS
equation with the LHF exchange potential as its exchange
potential. The LHF exchange potential is derived under the
assumption that the X-only KS determinant is equal to the
HF determinant. This potential is free of Coulomb self-
interactions, requires only occupied orbitals, and exhibits
correct long-range behaviors. The exchange potential in the
Krieger, Li, and IafratesKLI d proceduref27,28g, an approxi-
mation of the exact exchangesEEXd optimized effective po-
tential sOEPd f29g, is an approximation to the LHF exchange
potential.

In this paper, we extend the LHF exchange potential to
the excited-state calculation of the atomic system by assum-
ing that the electron spin orbitals of excited states are deter-
mined by the KS equation of a noninteracting system and the
X-only KS determinant of the noninteracting system equals
the HF determinant of the interacting system for the excited
states. Based on this postulate, following a similar procedure
used in Ref.f14g, we obtain the spin-dependent localized
Hartree-FocksSLHFd exchange potential

Vxs
SLHFsr d = Vxs

S sr d + Vxs
C sr d, s6d

where the first termVxs
S sr d is the Slater potentialf25g and the

second termVxs
C sr d is a correction to the Slater potential.

Both of them are determined by occupied KS spin orbitals
and are calculated by

Vxs
S sr d = −

1

rssr d o
i,j=1

Ns

gi j
ssr d E gi j

ssr 8d
ur − r 8u

dr 8, s7d

and

Vxs
C sr d =

1

rssr d o
i,j=1

Ns

gi j
ssr dQij

s , s8d

wheregi j
ssr d andQij

s are defined by

gi j
ssr d = wissr dw jssr d, s9d

and

Qij
s = kw jsuVxs

SLHF − Vxs
NLuwisl. s10d

Here,Vxs
NL is a nonlocal exchange operator of the form of the

HF exchange potential but constructed from KS spin orbitals,
kw jsuVxs

SLHFuwisl and kw jsuVxs
NLuwisl are symmetric matrix ele-

ments calculated by

Z. ZHOU AND S.-I CHU PHYSICAL REVIEW A71, 022513s2005d

022513-2



kw jsuVxs
SLHFuwisl =E gi j

ssr 8dVxs
SLHFsr 8ddr 8 s11d

and

kw jsuVxs
NLuwisl = − o

k=1

Ns E E gik
s sr dgkj

s sr 8d
ur − r 8u

drdr 8. s12d

In the spin-dependent DFT, the exchange interaction only
occurs among electrons with the same spin. In Eq.s6d, when
Vxs

C sr d=0, the SLHF exchange potential is reduced to the
Slater potential of the HF methodf25g. BecauseVxs

C sr d de-
pends onVxs

SLHF, the SLHF exchange potentialVxs
SLHFsr d has

to be computed in a self-consistent manner. In Eq.s8d, if the
terms withi Þ j are neglected, the SLHF exchange potential
reduces to the KLI exchange potentialf27,28g.

For the spin-dependent DFT, SLHF exchange potentials
determined by Eqs.s6d–s12d have two arbitrary additive con-
stants. The physical orbitals can only be obtained by the use
of appropriate constants in the exchange potential. To settle
down the constants so as to pick up the physical orbitals, we
demand the highest occupied orbitalNs of each spins to
satisfy f14g

kwNssuVxs
SLHF − Vxs

NLuwNssl = 0. s13d

This condition indicates that the highest occupied orbital
does not contribute to the correction termVxs

C sr d. In this
case, the correction termVxs

C sr d decays exponentially, the
SLHF exchange potential behaves asymptotically as the
Slater potential, and thus approaches to −1/r at long range
f14g. Moreover, the SLHF exchange potential depends only
on the occupied orbitals and thus contains detailed informa-
tion of the electronic configuration considered.

It should be noted that the SLHF exchange potential
above is an extension of the ground-state LHF exchange po-
tential although they are very similar to each otherf14g.
Since the SLHF formalism is not derived from a variational
principle for energy, the variational restriction on the ground
state being the lowest state of a given space-spin symmetry
is not applicable here. Thus the calculation of spin orbitals
for excited states by solving the KS equations2d with the
SLHF exchange potential is not subject to a variational
bound for energy. Furthermore, unlike the WF method, the
SLHF method guarantees the existence of a local effective
potential for both the ground state and excited statesf14,20g.
Because of the nonvariational nature of the SLHF exchange
potential, the KS equations2d is no longer a variational equa-
tion and thus the problem of variational collapse to the
ground state is avoided in our approach. This is a consider-
able advantage since, for a variational calculation of excited-
state energy, to satisfy the wave function orthogonalitysto
prevent variational collapsed can be a task of formidable
complexity f19g.

Calculation of the total energy should include the correla-
tion effect. This effect is taken into account via correlation
energy in the DFT calculation. Although quite a few ap-
proaches have been developed for this purpose, the second-
order gradient correlation potential and energy functional
proposed by Lee, Yang, and ParrsLYPd f7g have been shown

to provide an excellent representation of actual correlation
energy and will be incorporated into our calculation to esti-
mate the correlation effect.

B. Central-field approach of atomic system

To demonstrate the feasibility of the approach developed
above, we apply it to the excited-state calculation of atomic
system. To specify the spin-dependent property, an electron
spin orbital is signified by three quantum numbersn, l, and
s, wheren and l are the principal quantum number and or-
bital angular momentum quantum number of the electron,
respectively. In spherical coordinates, a spin orbitalwissr d of
the electron with quantum numbersn, l, and s can be ex-
pressed by

wissr d =
Rnlssrd

r
Ylmsu,fd, s14d

where Rnlssrd is the radial spin orbital,Ylmsu ,fd is the
spherical harmonic,m is the azimuthal quantum number, and
i is a set of quantum numbers apart from spins of the spin
orbital.

The electron density is evaluated by substituting Eq.s14d
into Eq.s1d. For the atomic system investigated in this work,
the system is described by a spherically averaged electron
density given by

rssrd =
1

4p
E rssr ddV =

1

4p
o
nl

ns

wnlsFRnls

r
G2

, s15d

where the symbolns stands for a set of quantum numbers for
summation and the sum is performed over all the occupied
spin-orbitals with spins. The electron density obtained in
this way is accurate for spherically symmetricsclose-shelld
states, but approximate for nonspherically symmetricsopen-
shelld states. When this kind of electron density is used to
evaluate the energy of a nonspherically symmetric state, it
may induce an error. However, the error is negligible com-
pared to the order of the calculated multiplet splittingf15g.

Substituting Eq.s14d into Eq. s2d, multiplying the equa-
tion by Ylm

* su ,fd, integrating the equation over angles, and
averaging the equation overm, finally, we obtain the radial
KS equation for the radial spin orbitalRnlssrd,

F−
1

2

d2

dr2 +
lsl + 1d

2r2 + vs
effsrdGRnls = «nlsRnls, s16d

wherevs
effsrd is the radial effective potential given by

vs
effsrd =

1

2l + 1 o
m=−l

l E Ylm
* su,fdVs

effsr dYlmsu,fddV

= vextsrd + vHsrd + vxs
SLHFsrd + vcs

LYPsrd. s17d

Here,vextsrd, vHsrd, vxs
SLHFsrd, andvcs

LYPsrd are the radial ex-
ternal potential, radial Hartree potential, radial SLHF ex-
change potential, and radial LYP correlation potentialf7g,
respectively.

In an atomic system, the external potential is the Coulomb
potential between the electron and the nucleus. For the atom
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with a nuclear chargeZ, the radial external potential is given
by

vextsrd = −
Z

r
. s18d

To calculate the radial Hartree potential, by applying the
multipole expansion of 1/ur −r 8u, the orthonormality of
spherical harmonics, and the spherical-harmonic expansion
of two spherical harmonics to Eq.s5d, we obtainf30g

vHsrd = 4pE 1

r.

rsr8dr82dr8, s19d

wherer. is the larger ofr and r8, andrsrd=rasrd+rbsrd is
the spherically averaged total electron density.

Similarly, from Eqs.s6d–s12d, we obtain the radial SLHF
exchange potential

vxs
SLHFsrd = vxs

S srd + vxs
C srd, s20d

where the radial Slater potential is given by

vxs
S srd = −

1

4prssrdonlm

ns

o
n8l8m8

ns

snlm,n8l8m8
s srd, s21d

and the radial correction is given by

vxs
C srd =

1

4prssrdonlm

ns

o
n8l8m8

ns

cnlm,n8l8m8
s srd. s22d

In Eqs.s21d and s22d,

snlm,n8l8m8
s srd = pnls,n8l8ssrdo

k

llm,l8m8
k qnls,n8l8s

k srd, s23d

cnlm,n8l8m8
s srd = pnls,n8l8ssrddll8dmm8mnl,n8l8

sm8 , s24d

pnls,n8l8s8srd =
RnlssrdRn8l8s8srd

r2 , s25d

qnls,n8l8s8
k srd =E r,

k

r.
k+1pnls,n8l8s8sr8dr8

2dr8, s26d

llm,l8m8
k = s− 1dm8−mklmkm8 − mul8m8lkl8m8km− m8ulml

3kl0k0ul80lkl80k0ul0l, s27d

and

mnl,n8l8
sm8 = o

n0l0m0

ns E pnls,n0l0ssr8dFvxs
SLHFsr8ddn8n0

dl8l0

+ o
k

ll0m0,l8m8
k qn0l0s,n8l8s

k sr8dGr82dr8. s28d

In Eq. s27d, the symbolk¯u¯l is the Clebsch-Gordan coef-
ficient. According to the property of the Clebsch-Gordan co-
efficient,k= ul − l8u, ul − l8u+1, . . . ,l + l8 and l + l8+k=even.

C. Generalized pseudospectral method and optimal solution
of the KS equation

In order to solve the radial KS equation, we use the gen-
eralized pseudospectralsGPSd methodf26g to discretize Eq.
s16d. The GPS method is a kind of collocation-cardinal func-
tion method. The basic idea of this method is to approximate
an exact functionfsxd defined on the intervalf−1,1g by an
Nth-order polynomialfNsxd constructed by a cardinal func-
tion gjsxd,

fsxd . fNsxd ; o
j=0

N

fsxjdgjsxd, s29d

and ensure the approximation to be exact at the collocation
point xi, namelyfNsxid; fsxid. This requires that the cardinal
function satisfiesgjsxid=di j .

In the Legendre generalized pseudospectralsLGPSd
method used in this work, the cardinal functiongjsxd is con-
structed by theNth-order Legendre polynomialPNsxd and its

first derivativeṖNsxd

gjsxd = −
1

NsN + 1dPNsxjd
s1 − x2dṖNsxd

x − xj
. s30d

The collocation points,x0 s=−1d, x1, x2, . . . ,xN s=1d, are de-
termined by the roots of the first derivative of theNth-order

Legendre polynomial with respect tox, namely,ṖNsxid=0.
For the electronic structure calculation involving Cou-

lomb interaction, the potential has a singularity atr =0 and
long tail at larger. These problems can be overcome by
using the LGPS method associated with an appropriate map-
ping technique. In this procedure, the singularity problem
can be taken considerate care of by the nonuniform colloca-
tion points of the LGPS method and the long-tail problem
can be suppressed efficiently by mapping the semi-infinite
domain r P f0,`g into the finite domainxP f−1,1g with a
mapping functionr =rsxd. The mapping function is taken to
be a nonlinear function given byf26g

rsxd = L
1 + x

1 − x + xm
, s31d

whereL is a mapping parameter used to optimize calculation
by adjusting distribution of the collocation points andxm
=2L / rmax, wherermax is the maximumr. This method pro-
vides a very effective and efficient numerical algorithm for a
high-precision solution of the Schrödinger equation and the
KS equation. It has been successfully applied to the calcula-
tion of eigenvalues and eigenfunctions of atomic and mo-
lecular systems for the study of electronic structuref10,18g,
multiphoton processes in strong fieldsf31,32g, and Rydberg
atom spectroscopy and dynamicsf33g.

Making use of the mapping functions31d in the KS equa-
tion s16d, we obtain a differential equation for the trans-
formed radial wave function defined onxP f−1,1g, fsxd
=Rnls(rsxd) /Îṙsxd, whereṙsxd is the first derivative ofr with
respect tox. Applying the LGPS method to the new differ-
ential equation, considering boundary conditions, and fol-
lowing the symmetrization proceduref26g, we finally
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achieve a symmetric matrix eigenvalue equation

o
j=1

N−1F−
1

2
Dij + uidi jGx j = «nlsxi , s32d

where

xi =
Îṙ i

PNsxid
Rnlssr id, s33d

ui =
lsl + 1d

2r i
2 + vs

effsr id, s34d

Dij =5−
2

ṙ isxi − xjd2ṙ j

, i Þ j ,

−
NsN + 1d

3ṙ i
2s1 − xi

2d
, i = j , 6 s35d

and xi =xsxid, ui =usxid, r i =rsxid, and ṙ i = ṙsxid. Solving the
matrix eigenvalue equations32d, one can obtain the spin or-
bitals and orbital energies.

D. Multiplet excited-state energy

For a particular electron configuration, Eq.s32d is solved
self-consistently to obtain a set of spin orbitals. Using these
spin orbitals, a single Slater determinant for a specific elec-
tronic state is constructed and its total energy calculated. The
total energy is a sum of noninteracting kinetic energyEk,
external-field energyEext, Hartree energyEH, exchange en-
ergy Ex, and correlation energyEc. They are evaluated by

Ek = o
s=a

b

o
i=1

Ns

wisE wissr dS−
¹2

2
Dwissr ddr

= o
s=a

b

o
nl

ns

wnlsE RnlssrdS−
1

2

d2

dr2 +
lsl + 1d

2r2 DRnlssrddr,

s36d

Eext=E Vextsr drsr ddr = 4pE vextsrdrsrdr2dr, s37d

EH =
1

2
E VHsr drsr ddr =

1

2o
P

hlm,l8m8
k Fnls,n8l8s8

k , s38d

Ex =
1

2 o
s=a

b E Vxs
S sr drssr ddr = −

1

2o
P

llm,l8m8
k Gnls,n8l8s8

k dss8,

s39d

andEc is computed by using the LYP approximationf7g. In
Eqs.s38d and s39d,

o
P

= o
s,s8=a

b

o
nlm

ns

o
n8l8m8

ns8

o
k

, s40d

hlm,l8m8
k = klmk0ulmlkl8m8k0ul8m8lkl0k0ul0lkl80k0ul80l,

s41d

Fnls,n8l8s8
k =E pnls,nlssrdqn8l8s8,n8l8s8

k srdr2dr, s42d

and

Gnls,n8l8s8
k =E pnls,n8l8s8srdqnls,n8l8s8

k srdr2dr, s43d

wherek=0, 2, . . . ,23minsl , l8d due to the Clebsch-Gordan
coefficient.

From Eqs.s27d and s41d–s43d, if n8l8m8s8=nlms, the
terms ofEH in Eq. s38d completely cancel those ofEx in Eq.
s39d. This illustrates that the X-only calculation presented
here is free of self-interaction.

The procedure above can only be used to calculate the
energy value for a single Slater determinant. For a multiplet
state that can be described completely by a single Slater de-
terminant, this energy is just the multiplet energy. For a mul-
tiplet state that cannot be represented by a single determi-
nant, the energy can be calculated by means of Slater’s
diagonal sum rulef25g. According to this rule, the sum of the
single-Slater-determinant energyEsDid of determinantDi

from an electron configuration is equal to the weighted sum
of the multiplet energyEsMjd of the multiplet stateMj in-
volved in the electron configuration, namely,

o
i

EsDid = o
j

djEsMjd, s44d

where the weightdj is the times that the multiplet stateMj
appears in all the single Slater determinants.

To show how to use this method, let us consider a two-
electron configurationp2. For this configuration, there are 15
different states and thus 15 determinants corresponding to
various values ofoml and oms. Of those, there are three
determinants withsml1

ms1
;ml2

ms2
d=s1a ;−1bd, s−1a ;1bd,

and s0a ;0bd that correspond to a particular set ofoml =0
and oms=0, which are denoted byD1, D2, andD3, respec-
tively. On the other hand, there are three multiplet states1D,
3P, and 1S that are involved in this particular set, and each
emerges once. According to Eq.s44d we have

EsD1d + EsD2d + EsD3d = Es1Dd + Es3Pd + Es1Sd . s45d

The energy terms on the left-hand side are computed by us-
ing the single Slater determinants, while the energiesEs1Dd
andEs3Pd on the right-hand side can also be determined by
the single Slater determinants. ThusEs1Sd is calculated from
Eq. s45d. Similar procedures have been employed in recent
excited-state calculationsf18,19,34g.

III. RESULTS AND DISCUSSION

A. The ground-state energy

We first calculate the total ground-state energies for the
neutral atoms ofZø18 using the procedure introduced in the
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preceding section. Special attention is paid to the nonsym-
metric states of atoms with open shells. In Table I, we
present the total ground-state energies obtained from X-only
calculation together with those of the HF methodf35g and
the optimized effective potentialsOEPd method f28g for
comparison. Although the spherically averaged electronic
density is used in the calculation, the present SLHF results
are in excellent agreement with HF values even for the non-
symmetric states of the open-shell atoms. The maximum de-
viation to HF results in energy is about 0.0037%. It occurs at
a highly nonsymmetric state of N, where the OEP energy
also has the maximum deviation with respect to the HF
value. The discrepancies of SLHF energies to OEP results
are less than 0.0009%, a negligibly small number. Thus
SLHF has practically the same accuracy as OEP and is very
close to HF.

To examine and appraise the SLHF exchange potential we
give, in Table II, the exchange energies for the ground states
of neutral atoms ofZø18. We also list in this table the
results of the HF methodf6g and Becke’s gradient-corrected
density-functional exchange-energy approximationsBXd
f36g. The overall agreement of our calculated exchange en-
ergies with the results of HF and BX is quite good. This
indicates that the SLHF exchange potential has behaviors as
good as those of the HF method.

Orbital energy is a measurement of the basic properties of
electron orbital. The highest-occupied-orbital energy is even
essential since it is related to the ionization potential in in-
dependent particle calculation such as the DFT calculation.

TABLE I. Negative values of the total ground-state energies
sa.u.d for neutral atoms ofZø18.

Atoms

X-only XC

SLHFa HFb OEPc SLHFa HFCd

He 2.8617 2.8617 2.9074 2.904

Li 7.4325 7.4327 7.4325 7.4872 7.479

Be 14.5726 14.5730 14.5724 14.6686 14.667

B 24.5284 24.5291 24.5283 24.6586 24.654

C 37.6886 37.6886 37.6889 37.8522 37.845

N 54.4029 54.4009 54.4034 54.5977 54.590

O 74.8115 74.8094 74.8121 75.0798 75.067

F 99.4085 99.4093 99.4092 99.7393 99.731

Ne 128.5455 128.5471 128.5454 128.9331 128.937

Na 161.8565 161.8589 161.8566 162.2687 162.257

Mg 199.6112 199.6146 199.6116 200.0744 200.059

Al 241.8728 241.8767 241.8733 242.3726 242.356

Si 288.8501 288.8544 288.8507 289.3853 289.374

P 340.7140 340.7188 340.7150 341.2835 341.272

S 397.5018 397.5049 397.5016 398.1388 398.139

Cl 459.4770 459.4821 459.4776 460.1750 460.196

Ar 526.8118 526.8175 526.8122 527.5658 527.604

aCurrent results.
bReferencef35g.
cReferencef28g.
dReferencesf39,40g.

TABLE II. Negative values of the exchange energiessa.u.d for
the ground states of neutral atoms ofZø18.

Atoms SLHFa HFb BXc

He 1.026 1.026 1.025

Li 1.779 1.781 1.775

Be 2.663 2.667 2.658

B 3.744 3.744 3.728

C 5.048 5.045 5.032

N 6.599 6.596 6.589

O 8.181 8.174 8.169

F 10.005 10.00 10.02

Ne 12.112 12.11 12.14

Na 14.023 14.02 14.03

Mg 15.986 15.99 16.00

Al 18.058 18.07 18.06

Si 20.262 20.28 20.27

P 22.618 22.64 22.62

S 24.983 25.00 24.98

Cl 27.490 27.51 27.49

Ar 30.155 30.19 30.15

aCurrent results.
bReferencef6g.
cReferencef36g.

TABLE III. Negative values of the highest-occupied-orbital en-
ergiessa.u.d for neutral atoms ofZø18.

Atoms SLHFa HFb OEPc Expt.d

He 0.9179 0.9180 0.904

Li 0.1963 0.1963 0.1963 0.198

Be 0.3091 0.3093 0.3093 0.343

B 0.3074 0.3099 0.3097 0.305

C 0.4250 0.4333 0.4353 0.414

N 0.5707 0.5676 0.5712 0.534

O 0.5200 0.6319 0.5077 0.501

F 0.6578 0.7300 0.6735 0.640

Ne 0.8495 0.8504 0.8507 0.793

Na 0.1821 0.1821 0.1821 0.189

Mg 0.2526 0.2531 0.2531 0.281

Al 0.2141 0.2100 0.217

Si 0.2894 0.2971 0.300

P 0.3911 0.3917 0.385

S 0.3719 0.4374 0.381

Cl 0.4629 0.5064 0.477

Ar 0.5902 0.5910 0.5908 0.579

aCurrent results.
bReferencef35g.
cReferencef27g.
dReferencesf37,38g.
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In Table III, we present the highest-occupied-orbital energies
obtained from the X-only SLHF calculation for the ground
states of atoms withZø18 along with experimental ioniza-
tion potentialsf37,38g, HF resultsf35g, and the results from
spin-dependent OEPf27g. It is shown that our results are
very close to OEP results. Compared to the experimental
results, our results are even more accurate than HF results.

One of the most touchy effects in the DFT calculation is
the correlation effect. This effect is considered through the
correlation energy. So far, all the correlation functionals used
in the DFT calculation are developed for the ground state. In
this work, we choose the widely used LYP correlation energy
functional f7g to estimate the electron correlation effect. In
Table I, we present the total ground-state energies from the
XC calculation for atoms withZø18. For comparison, we
also list in Table I the total energies that are obtained from
the sum of HF energiesf39g and correlation energiesf40g
sHFCd. It is shown that inclusion of the correlation effect
does lead to a significant improvement in the ground-state
energies compared to the HFC results. For the total energy,
our results agree very well with HFC results. For larger at-
omssZ.8d, deviations of our results to HFC results are less
than 0.008%. For smaller atomssZø8d, our total energies
are a little bit more negative than HFC results. The maxi-
mum discrepancy is about 0.12%. The larger deviations for
the smaller atoms are caused by the overestimated correla-
tion energies computed with LYP correlation energy func-
tional f7g.

B. Singly excited state

The main purpose of this paper is to develop a procedure
for the excited-state calculation of an atomic system, particu-
larly for multiply excited states such as triply excited states.
Before performing a multiply excited-state calculation, we
would like to report some results for singly and doubly ex-
cited states of atomic systems so as to calibrate the accuracy
of the approach presented in this paper.

As has been shown above, the total ground-state energies
from an X-only calculation are quite accurate and compa-
rable to HF results. Since the SLHF exchange potential is
free of self-interactions, dependent on symmetries of elec-
tronic state, and has good long-range behaviors, it is ex-
pected to work well in the excited-state calculation of atomic
system. In Table IV, we list the total energies from the XC
calculation for singly excited states 1sns3S and 1S
sn=1–16d of He together with the total energies of the com-
plex rotation approachsCRAd f41g and the WF method
sWF-Id f18g. According to the LYP correlation energy func-
tional f7g, the spin-dependent correlation interaction only oc-
curs between electrons with different spins. For the tripletS
states in Table IV, correlation energies are zero and total
energies from the X-only calculation are the same as those
from the XC calculation. This may tempt one to conclude
that the correlation energies for these states are underesti-
mated by the LYP approximation, particularly for low ex-
cited states where the correlation interaction is expected to
be larger than highly excited states. However, for the 1s2s 3S
state, our result, 2.173 90 a.u., is only 0.06% higher than the

CRA result, 2.175 23 a.u., and 0.07% higher than the WF-I
result, 2.175 45 a.u., indicating that our calculation is accu-
rate and the correlation interaction in the tripletS states is
indeed small and plays an insignificant role. For the 1s2s 1S
state, the deviation of our result with respect to the CRA
result is 0.06%, illustrating that the calculation for tripletS
states is as precise as that for singletS states. For a highly
excited Rydberg state with largen, the agreement of our
results with those of a more sophisticated CRA calculation
becomes excellent for both multiplet states. This signifies
that the SLHF exchange potential has very similar
asymptotic long-range behaviors to that of CRA because the
electronic structure of the highly excited Rydberg state is
dominated by the asymptotic long-range Coulomb potential
arising from exchange potential. For low excited states with
small n, our results are slightly higher than those of CRA
because of an underestimation of correlation energy. In all
cases for both multiplet states, the deviations are less than
0.07%. This demonstrates that the calculation with the SLHF
exchange potential for singly excited states is comparable to
the more sophisticatedab initio calculation.

It should be mentioned that many quantum mechanical
calculations confront a self-consistent convergence problem
for highly excited states with largen f42g. Even the WF
method often encounters the same problemf19g. However, in
our calculation, the advantages of the LGPS procedure over
the Coulomb potential enable us to obtain converged results
for all states by using the same number of grid points. It is
straightforward to extend the calculation to even higher
states, reflecting the effectiveness of the SLHF exchange po-
tential for the excited-state calculation.

TABLE IV. Negative values of the total energiessa.u.d for singly
excited states of He. The SLHF results are obtained from the XC
calculation.

Configuration

3S 1S

SLHFa CRAb WF-Ic SLHFa CRAb

1s2s 2.17390 2.17523 2.17545 2.14471 2.14597

1s3s 2.06827 2.06869 2.06890 2.06226 2.06127

1s4s 2.03631 2.03651 2.03671 2.03423 2.03359

1s5s 2.02250 2.02262 2.02264 2.02157 2.02118

1s6s 2.01530 2.01538 2.01539 2.01482 2.01456

1s7s 2.01108 2.01113 2.01115 2.01080 2.01063

1s8s 2.00839 2.00843 2.00845 2.00821 2.00809

1s9s 2.00657 2.00660 2.00660 2.00646 2.00637

1s10s 2.00529 2.00531 2.00531 2.00521 2.00514

1s11s 2.00435 2.00431 2.00431 2.00429 2.00424

1s12s 2.00364 2.00365 2.00365 2.00359 2.00355

1s13s 2.00309 2.00310 2.00310 2.00306 2.00302

1s14s 2.00265 2.00266 2.00266 2.00263 2.00260

1s15s 2.00230 2.00231 2.00231 2.00228 2.00226

1s16s 2.00202 —— 2.00203 2.00200 2.00199

aCurrent results.
bReferencef41g.
cReferencef18g.
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To check the feasibility of the SLHF exchange potential
for atomic ions, we also apply it to the calculation of He-like
ions sZ=3–10d. The total energies obtained from the XC
calculation are shown in Table V together with the results of
the truncated diagonalization methodsTDMd f43g. It is
shown that for all the data in the table, our results are close to
the results of TDM. The deviations for the tripletS and P

statesswhere the correlation energies are zerod are less than
0.09%, while for the singletSandP states, the discrepancies
are no more than 0.66% though a little bit larger. It demon-
strates that the SLHF exchange potential together with the
LYP correlation potential is reasonably accurate for the cal-
culation of atomic ions. On the other hand, for all the data in
the table, our results are a little bit more negative than those
of TDM. This again hints that the LYP energy functional is
overestimated to the correlation energies for smaller atoms as
has already been pointed out in the calculations of neutral
atoms.

TABLE V. Negative values of the total energiessa.u.d obtained from the XC calculation for singly excited states of He-like ions.

States

Z

3 4 5 6 7 8 9 10

1s2s 3S 5.1089 9.2951 14.7317 21.4185 29.3554 38.5423 48.9792 60.6662

5.1043a 9.2886a 14.7240a 21.4100a

1s2s 1S 5.0463 9.1969 14.5959 21.2437 29.1406 38.2867 48.6826 60.3278

5.0422a 9.1813a 14.5710a 21.2115a

1s2p 3P 5.0241 9.1708 14.5686 21.2170 29.1157 38.2645 48.6634 60.3124

5.0210a 9.1647a 14.5605a 21.2075a

1s2p 1P 5.0138 9.1394 14.5118 21.1321 29.0013 38.1196 48.4873 60.1045

4.9809a 9.0886a 14.4478a 21.0587a

aTDM resultsf43g.

TABLE VI. Negative values of the total energiessa.u.d for sin-
gly excited states of Li.

States

X-only XC
Others
CIHcSLHFa WF-Ib SLHFa WF-Ib

1s23s 2S 7.31003 7.30966 7.35953 7.35773 7.35410

7.31021d

1s24s 2S 7.27478 7.27466 7.32316 7.31978 7.31853

1s25s 2S 7.25991 7.25996 7.30785 7.30466 7.30355

1s26s 2S 7.25227 7.30000

1s27s 2S 7.24783 7.29546

1s28s 2S 7.24502 7.29259

1s29s 2S 7.24313 7.29067

1s210s 2S 7.24180 7.28932

1s22p 2P 7.36474 7.36486 7.41683 7.41204 7.41016

7.36507d

1s23p 2P 7.29296 7.29295 7.34236 7.33862 7.33716

7.29319d

1s24p 2P 7.26804 7.26859 7.31646 7.31262 7.31190

1s25p 2P 7.25658 7.25756 7.30457 7.30053 7.30030

1s26p 2P 7.25038 7.29816

1s27p 2P 7.24665 7.29432

1s28p 2P 7.24424 7.29184

1s29p 2P 7.24258 7.29013

1s210p 2P 7.24140 7.28893

aCurrent results.
bReferencef18g.
cReferencef45g.
dHF resultsf44g.

TABLE VII. Negative values of the total energiessa.u.d for dou-
bly excited statesns2 1S sn=2–20d of He.

States

X-only XC

SLHFa WF-IIb SLHFa WF-IIb WF-Ic

2s2 1S 0.71968 0.7197 0.73473 0.7333 0.76637

3s2 1S 0.31996 0.3200 0.33061 0.3265 0.34578

4s2 1S 0.17995 0.1800 0.18814 0.1838 0.19659

5s2 1S 0.11511 0.1152 0.12129 0.1177 0.12754

6s2 1S 0.07991 0.0800 0.08460 0.0818 0.08808

7s2 1S 0.05869 0.0588 0.06234 0.0601 0.06524

8s2 1S 0.04492 0.04783 0.04855

9s2 1S 0.03548 0.03784 0.03889

10s2 1S 0.02873 0.03068 0.03084

11s2 1S 0.02374 0.02538 0.02503

12s2 1S 0.01994 0.02134 0.02121

13s2 1S 0.01698 0.01819 0.01811

14s2 1S 0.01464 0.01569 0.01555

15s2 1S 0.01275 0.01367 0.01348

16s2 1S 0.01120 0.01202 0.01176

17s2 1S 0.00992 0.01064 0.01132

18s2 1S 0.00885 0.00949

19s2 1S 0.00794 0.00852

20s2 1S 0.00716 0.00769

aCurrent results.
bReferencef19g.
cReferencef18g.
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In Table VI, we present the total energies obtained from
both the X-only calculation and the XC calculation for singly
excited states 1s2ns2S sn=3–10d and 1s2np 2P sn=2–10d of
Li. For comparison, we also list the total energies of the WF
method sWF-Id f18g, the HF method f44g, and the
configuration-interaction Hylleraas methodsCIHd f45g. The
deviations of X-only results to HF results are 0.0025%,
0.0045%, and 0.0032% for 1s23s 2S, 1s22p 2P, and 1s23p 2P,
respectively. This illustrates that our X-only calculation is
quite accurate, almost as accurate as the HF method. The
deviations of X-only results to WF-I results range from
0.0051% to 0.0007% for 1s2ns2S sn=3–5d states and from
0.0135% to 0.0001% for 1s2np 2P sn=2–5d states. For the
total energies obtained from the XC calculation, our results
are only a little bit more negative than the WF results and
CIH results due to the overestimation to the correlation en-
ergies by the LYP correlation energy functional. Neverthe-
less, the maximum discrepancy of our results to the CIH
results is no more than 0.0738% for 1s2ns2S sn=3–5d states
and 0.0900% for 1s2np 2P sn=2–5d states, demonstrating
the accuracy of our calculation.

C. Doubly excited state

The calculation of doubly excited state is more challeng-
ing. For doubly excited states, the results of the HF method
are rare. To check the applicability and calibrate the accuracy
of the SLHF exchange potential in the doubly excited-state
calculation, we will compare our X-only results with other
X-only DFT results available in the literature. In Tables
VII–X, we present the total energies obtained from both the
X-only calculation and the XC calculation for doubly excited
states ns2 1S sn=2–20d, n8snp3P sn8=2–3, n=n8–10d,
n8snp1P sn8=2–3, n=n8–10d, and np2 1D sn=2–20d, of
He, respectively. In these tables, we also list the available
experimental results and other theoretical results for com-
parison.

In Table VII, we report the total energies for doubly ex-
cited Rydberg statesns2 1S sn8=2–20d. For the X-only cal-
culation, our results are in very good agreement with those of
the WF methodsWF-IId f19g. For the XC calculation, our
results are a little bit more negative than those of WF-II and
less negative than those from another WF calculationsWF-Id
f18g. Obviously, the deviations are caused by correlation en-
ergies since the correlation energy functionals used in these
calculations are different from one another. A Wigner-type
parametrized correlation energy functionalf46g was used in
the WF-II, a spin-independent LYP correlation energy func-
tional was used in the WF-I, and a spin-dependent LYP cor-

TABLE VIII. Negative values of the total energiessa.u.d for
doubly excited statesn8snp3P sn8=2–3,n=n8–10d of He.

States
X-only
WF-IIb

XC Other results

SLHFa WF-Ic CCRd RMSPe

2s2p 3P 0.7537 0.75354 0.76770 0.76049 0.76086

0.7682b

2s3p 3P 0.5713 0.57193 0.58253 0.58467 0.58476

0.5804b

2s4p 3P 0.53757 0.54558 0.54284 0.54281

2s5p 3P 0.52295 0.53121 0.52571 0.52475

2s6p 3P 0.51553 0.52367 0.51711

2s7p 3P 0.51119 0.51924 0.51219

2s8p 3P 0.50847 0.50910

2s9p 3P 0.50663

2s10p 3P 0.50533

3s3p 3P 0.3417 0.34167 0.34918 0.35038 0.35082

0.3486b

3s4p 3P 0.27156 0.27365 0.27948 0.27980

3s5p 3P 0.24826 0.25516 0.25509

3s6p 3P 0.23939 0.24338 0.24274

3s7p 3P 0.23442 0.23688

3s8p 3P 0.23133

3s9p 3P 0.22929

3s10p 3P 0.22787

aCurrent results.
bWF-II resultsf19g.
cWF-I resultsf18g.
dReferencef47g.
eReferencef48g.

TABLE IX. Negative values of the total energiessa.u.d for dou-
bly excited statesn8snp1P sn8=1–2,n=n8–10d of He.

States
X-only
SLHFa

XC
SLHFa

Other
theory

Expt.
resultse

2s2p 1P 0.65039 0.69699 0.69275c

0.6456b 0.6588b

2s3p 1P 0.56650 0.57407 0.56384c

2s4p 1P 0.53568 0.53860 0.53418c

2s5p 1P 0.52225 0.52349

2s6p 1P 0.51519 0.51587

2s7p 1P 0.51104 0.51134

2s8p 1P 0.50836 0.50852

2s9p 1P 0.50656 0.50665

2s10p 1P 0.50528 0.50533

3s3p 1P 0.29101 0.33001 0.33566d 0.33330

3s4p 1P 0.26380 0.27009 0.27110d 0.27014

3s5p 1P 0.24730 0.25019 0.25058d 0.25020

3s6p 1P 0.23897 0.24053 0.24074d 0.24060

3s7p 1P 0.23417 0.23510 0.23574d 0.23530

3s8p 1P 0.23119 0.23178 0.23260d 0.23184

3s9p 1P 0.22919 0.22956

3s10p 1P 0.22780 0.22807

aCurrent results.
bWF-II resultsf19g.
cRMSP resultsf48g.
dFF resultsf49g.
eExperimental resultsf50g.
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relation energy functional is used in our calculation. Because
both the Wigner-type correlation energy functional and the
LYP correlation energy functional are designed basically for
the ground-state calculation, all the calculations for the ex-
cited states by using these functionals are only rough estima-
tions to the correlation energies.

In Table VIII, we present the results of doubly excited
statesn8snp3P sn8=2–3, n=n8–10d of He. As has already
been mentioned, the correlation energies obtained from the
LYP correlation energy functional are zero for electrons with
the same spin in the spin-dependent calculation. Thus the
total energies from the X-only calculation are the same as
those from the XC calculation. For the X-only calculation,
our results agree well with the WF-II results. For the XC
calculation, our results are close to those of the WF-I, WF-II,
the complex-coordinate rotationsCCRd methodsf47g, and
the R-matrix method with saddle-point techniquesRMSPd
f48g. For 2snp3P sn=2–8d states, the deviations of our re-
sults to the results of the CCR method are less than 1.0%
with an exception of state 2s3p 3P, for which the deviation is
2.2%. For 3snp3P sn=3–7d states, the errors are a little bit
larger, but no more than 2.8%. The larger deviations may
again be induced by the underestimatedszerod correlation
energies by the LYP correlation energy functional.

In Table IX we show the total energies of doubly excited
statesn8snp1P sn8=2–3, n=n8–10d of He. For the X-only
calculation, our result for 2s2p 1P is 0.74% lower than the
WF-II result. For the XC calculation, our result for this state
is better than the WF-II result compared to the result of the
RMSP f48g. The deviations of our results to the RMSP re-
sults are less than 1.8% for states 2snp1P sn=2–4d. For

TABLE X. Negative values of the total energiessa.u.d for dou-
bly excited statesnp2 1D sn=2–20d of He.

States

X-only XC

SLHFa WF-IIb SLHFa WF-IIb WF-Ic

2p2 1D 0.66868 0.6679 0.69626 0.6823 0.69272

3p2 1D 0.30934 0.3091 0.32360 0.3160 0.31540

4p2 1D 0.17606 0.1760 0.18565 0.1800 0.18095

5p2 1D 0.11326 0.1132 0.12005 0.1158 0.11610

6p2 1D 0.07886 0.0788 0.08386 0.0807 0.08115

7p2 1D 0.05803 0.0580 0.06183 0.0593 0.05980

8p2 1D 0.04447 0.04745 0.04565

9p2 1D 0.03516 0.03756 0.03604

10p2 1D 0.02849 0.03046 0.02920

11p2 1D 0.02356 0.02520 0.02414

12p2 1D 0.01980 0.02119 0.02028

13p2 1D 0.01687 0.01807 0.01728

14p2 1D 0.01455 0.01559 0.01490

15p2 1D 0.01268 0.01358 0.01297

16p2 1D 0.01114 0.01194 0.01140

17p2 1D 0.00987 0.01058 0.01010

18p2 1D 0.00881 0.00944

19p2 1D 0.00790 0.00848

20p2 1D 0.00713 0.00765

aCurrent results.
bReferencef19g.
cReferencef18g.

TABLE XI. Negative values of the total energiessa.u.d for triply excited states of Li-like ionssZ=3–10d.

States

Li Be+ B2+

SLHFa TDMb MSPCRc SLHFa TDMb MSPCRd SLHFa TDMb

2s2p2 4P 2.2209 2.2331s0.55d 2.2394s0.83d 4.4163 4.4248s0.19d 4.4361s0.45d 7.3617 7.3671s0.07d
2s2p2 2D 2.1517 2.1480s0.17d 2.1582s0.30d 4.3052 4.2885s0.39d 4.3073s0.05d 7.2062 7.1792s0.38d
2s2p2 2S 2.0821 2.0827s0.03d 2.0950s0.62d 4.2038 4.1853s0.44d 4.2085s0.11d 7.0731 7.0415s0.45d
2s2p2 2P 2.0960 2.0675s1.38d 2.0788s0.83d 4.2184 4.1711s1.13d 4.1900s0.68d 7.0861 7.0245s0.88d
2p3 4S 2.0762 2.0953s0.91d 4.2085 4.2221s0.32d 7.0910 7.1000s0.13d
2p3 2D 2.0606 2.0700s0.45d 2.0790s0.89d 4.1704 4.1655s0.12d 4.1832s0.31d 7.0275 7.0108s0.24d
2p3 2P 2.0159 2.0035s0.62d 2.0124s0.17d 4.1046 4.0542s1.24d 4.0755s0.71d 6.9405 6.8611s1.16d

States

C3+

N4+

SLHFa
O5+

SLHFa
F6+

SLHFa
Ne7+

SLHFaSLHFa TDMb MSPCRd

2s2p2 4P 11.0571 11.0601s0.03d 11.0777s0.19d 15.5025 20.6978 26.6432 33.3385

2s2p2 2D 10.8557 10.8207s0.32d 10.8509s0.04d 15.2541 20.4017 26.2989 32.9457

2s2p2 2S 10.6908 10.6494s0.39d 10.6860s0.04d 15.0574 20.1734 26.0389 32.6540

2s2p2 2P 10.7010 10.6283s0.68d 10.6597s0.39d 15.0640 20.1758 26.0367 32.6469

2p3 4S 10.7236 10.7289s0.05d 15.1063 20.2390 26.1218 32.7545

2p3 2D 10.6329 10.6068s0.25d 10.6382s0.05d 14.9872 20.0909 25.9440 32.5468

2p3 2P 10.5249 10.4195s1.01d 10.4574s0.65d 14.8582 19.9407 25.7728 32.3544

aCurrent results.
bReferencef43g.

cReferencef52g.
dReferencef51g.
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TABLE XII. Autoionization channel energiesseVd for the triply excited resonance states of Li-like ions.

Initial
states

Final
states

Li Be+

SLHFa TDMb MSPCRc Expt.d SLHFa TDMb MSPCRe Expt.d

2s2p2 4P 1s2p 3P 76.280 75.864s0.55d 75.879s0.53d 75.88±0.1s0.53d 129.378 128.980s0.31d 128.992s0.30d 128.9±0.2s0.37d
2s2p2 2D 1s2s 3S 80.470 80.444s0.03d 80.349s0.15d 80.26±0.1s0.26d 135.783 136.061s0.20d 135.839s0.04d 135.8±0.2s0.01d

1s2s 1S 78.767 78.755s0.02d 78.447s0.41d 133.111 133.140s0.02d 132.783s0.25d 132.8±0.2s0.23d
1s2p 3P 78.163 78.178s0.02d 78.089s0.09d 78.13±0.1s0.04d 132.401 132.688s0.22d 132.514s0.09d 132.4±0.2s0.00d
1s2p 1P 77.882 77.086s1.03d 77.153s0.94d 131.546 130.618s0.71d 130.766s0.60d

2s2p2 2S 1s2s 3S 82.364 82.220s0.18d 82.067s0.36d 82.06±0.1s0.37d 138.543 138.869s0.23d 138.532s0.01d 138.5±0.3s0.03d
1s2s 1S 80.661 80.532s0.16d 80.165s0.62d 80.26±0.1s0.50d 135.870 135.948s0.06d 135.477s0.29d 135.4±0.3s0.35d
1s2p 3P 80.057 79.955s0.13d 79.807s0.31d *79.9±0.1s0.20d 135.160 135.496s0.25d 135.207s0.03d
1s2p 1P 79.776 78.862s1.16d 78.871s1.15d *78.7±0.2s1.37d 134.306 133.426s0.66d 133.460s0.63d

2s2p2 2P 1s2p 3P 79.678 80.369s0.86d 80.250s0.71d 80.26±0.1s0.73d 134.763 135.884s0.82d 135.660s0.66d 135.8±0.2s0.76d
1s2p 1P 79.398 79.278s0.15d 79.314s0.11d 79.30±0.1s0.12d 133.908 133.813s0.07d 133.913s0.00d 134.0±0.2s0.07d

2p3 2D 1s2p 3P 80.642 80.301s0.42d 80.244s0.50d 80.26±0.1s0.48d 136.069 136.036s0.02d 135.879s0.14d 135.8±0.2s0.20d
1s2p 1P 80.361 79.210s1.45d 79.308s1.33d 79.30±0.1s1.34d 135.214 133.965s0.93d 134.132s0.81d 134.0±0.2s0.91d

2p3 2P 1s2s 3S 84.165 84.378s0.25d 84.315s0.18d 141.242 142.436s0.84d 142.166s0.65d 142.4±0.3s0.81d
1s2s 1S 82.462 82.688s0.27d 82.413s0.06d 138.570 139.517s0.68d 139.110s0.39d
1s2p 3P 81.858 82.111s0.31d 82.055s0.24d 82.06±0.1s0.25d 137.859 139.065s0.87d 138.841s0.71d 138.8±0.2s0.68d
1s2p 1P 81.578 81.020s0.69d 81.120s0.56d *81.2±0.2s0.47d 137.005 136.994s0.01d 137.094s0.06d 137.0±0.3s0.00d

Initial
states

Final
states

B2+ C3+

N4+

SLHFa
O5+

SLHFa
F6+

HSCCf
Ne7+

SLHFaSLHFa TDMb SLHFa TDMb SLHFa Expt.g

2s2p2 4P 1s2p 3P 196.111 195.743s0.19d 276.467 276.126s0.12d 370.437 478.018 599.205 599.29s0.01d 599.0±0.7s0.03d 734.003
2s2p2 2D 1s2s 3S 204.781 205.306s0.26d 287.431 288.153s0.25d 383.719 493.635 617.167 618.39s0.20d 619.1±0.8s0.31d 754.319

1s2s 1S 201.086 201.141s0.03d 282.674 282.751s0.03d 377.874 486.679 609.096 609.35s0.04d 609.4±0.5s0.05d 745.111
1s2p 3P 200.343 200.856s0.26d 281.948 282.642s0.25d 377.196 486.075 608.574 609.74s0.19d 609.4±0.5s0.14d 744.692
1s2p 1P 198.797 197.791s0.51d 279.637 278.592s0.38d 374.083 482.132 603.782 739.034

2s2p2 2S 1s2s 3S 208.403 209.053s0.31d 291.918 292.812s0.31d 389.071 499.847 624.242 625.73s0.24d 625.4±0.5s0.19d 762.257
1s2s 1S 204.707 204.888s0.09d 287.161 287.410s0.09d 383.226 492.892 616.171 617.08s0.15d 616.7±0.5s0.09d 753.048
1s2p 3P 203.965 204.603s0.31d 286.435 287.301s0.30d 382.549 492.288 615.649 617.47s0.29d 616.7±0.5s0.17d 752.629
1s2p 1P 202.419 201.538s0.44d 284.124 283.251s0.31d 379.436 488.345 610.857 746.972

2s2p2 2P 1s2p 3P 203.611 205.067s0.71d 286.157 287.877s0.60d 382.369 492.222 615.709 618.11s0.39d 619.1±0.8s0.55d 752.823
1s2p 1P 202.065 202.000s0.03d 283.847 283.828s0.01d 379.256 488.280 610.917 611.73s0.13d 611.9±0.6s0.16d 747.165

2p3 2D 1s2p 3P 205.205 205.439s0.11d 288.010 288.462s0.16d 384.459 494.533 618.231 619.04s0.13d 619.1±0.8s0.14d 755.546
1s2p 1P 203.660 202.373s0.64d 285.700 284.413s0.45d 381.346 490.590 613.439 613.60s0.03d 613.6±0.6s0.03d 749.889

2p3 2P 1s2s 3S 212.011 213.962s0.91d 296.432 299.069s0.88d 394.492 506.179 631.483 770.409
1s2s 1S 208.316 209.799s0.71d 291.676 293.668s0.68d 388.647 499.224 623.412 761.201
1s2p 3P 207.573 209.513s0.93d 290.949 293.559s0.89d 387.969 498.620 622.890 627.12s0.67d 627.1±0.5s0.67d 760.782
1s2p 1P 206.027 206.446s0.20d 288.639 289.510s0.30d 384.856 494.677 618.098 755.125

aCurrent results.
bReferencef43g.
cReferencef52g.
dExperimental resultsf53,52g.

eReferencef51g.
fReferencef54g.
gExperimental resultsf54g.
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3snp1P sn=3–8d states, the discrepancies of our results are
less than 1.7% with respect to the results of the Feshbach
formalism approachsFFd f49g and less than 1.0% with re-
spect to the experimental resultsf50g, demonstrating the ac-
curacy of our excited-state calculation.

In Table X, we report the total energies of doubly excited
statesnp2 1D sn=2–10d of He. It is shown again that X-only
results are in very good agreement with those of WF-IIf19g
and XC results are close to those of WF-If18g.

D. Triply excited states

For the DFT calculation, triply excited states are really a
trial to both the exchange potential and the correlation po-
tential because of possible high nonsymmetric atomic struc-
tures. Even for sophisticatedab initio methods, it is an ordeal
to accurately calculate the electronic structures of triply ex-
cited states. In this section, we present total energies and
Auger electron energies from our calculation for triply ex-
cited resonance states of Li-like ions. For these resonance
states and Auger processes, there are neither HF results nor
DFT results to compare to. We will compare our results to
other theoretical results and experimental data. To our
knowledge, this is the first time that the triply excited reso-
nance states of Li-like ions have been calculated using the
DFT method.

In Table XI, we present the total energies obtained from
the XC calculation for triply excited resonance states of Li-
like ions sZ=3–10d. Also given in this table are the theoret-
ical results of the truncated diagonalization methodsTDMd
f43g and the multichannel saddle-point complex-rotation
sMSPCRd methodf51,52g. The numbers in the parentheses
denote the absolute percentage deviations of our results with
respect to the data followed by these numbers. It is shown
that our results are in very good agreement with those of
MSPCR. The absolute deviations are less than 0.95%. Apart
from 2s2p2 2P and 2p3 2P states, the discrepancies of the
results of the TDM are less than 0.91%. For 2s2p2 2P and
2p3 2P states, the deviations are a little bit larger, but no
more than 1.38%. This demonstrates that our calculations for
triply excited states are quite accurate. We noticed that for
2s2p2 2P and 2p3 2P states, our results are more negative
than other theoretical results, which may be caused by the
overestimations of correlation energy to these states.

One of the most important processes from the highly tri-
ply excited resonance states of Li-like ions is Auger electron
emission via autoionization, leaving states of He-like ions
f53,54g. The calculation of the Auger electron spectroscopy
involves the total energies of the triply excited resonance
states of Li-like ions given in Table XI and the total energies
of the singly excited states of He-like ions listed in Table V.
In Table XII, we report the calculated Auger electron ener-
gies for the triply excited resonances of Li-like ions. To ex-
amine the calculation precision for triply excited states, we
also list, in Table XII, the theoretical results of the TDM

f43g, MSPCR f51,52g, and hyperspherical close-coupling
sHSCCd methodsf54g, as well as the experimental results
f53,54g. Again, the numbers in the parentheses denote the
absolute percentage deviations of our results with respect to
the data followed by the numbers. It is shown that apart from
the processes related to the 1s2p 1P state in neutral Li the
discrepancies of our results with respect to both the experi-
mental results and other theoretical results are less than
0.95%. Even for the processes involved in the 1s2p 1P state
in neutral Li, the deviations are no more than 1.5%. This
illustrates that our calculation of the triply excited states is
quite accurate and the proposed approach with the SLHF
exchange potential is efficient and effective to the multiply
excited-state calculation.

In summary, based on the spin-dependent localized
Hartree-Fock density functional method and Slater’s diago-
nal sum rule, we present an approach for the calculation of
highly and multiply excited states of atomic systems. In this
approach, the KS exchange potential is replaced by an exact
nonvariational SLHF exchange potential. The SLHF ex-
change potential qualifies for the calculation of the excited
state because it provides a potential with free self-interaction,
the correct long-range behavior, and the symmetry depen-
dence of an atomic state. The procedure has been applied to
the calculation of singly, doubly, and triply excited Rydberg
states of He- and Li-like ions. The generalized pseudospec-
tral method with nonuniform grids is used to discretize the
spatial coordinates and to optimize the solutions of the KS
equation to obtain accurate spin orbitals and orbital energies
for both the ground state and excited states. X-only results
are in very good agreement with HF results and X-only WF
results, demonstrating that the proposed procedure is very
accurate for the calculations of highly and multiply atomic
excited states. The correlation effects are considered by in-
corporating the LYP correlation potential and the energy
functional into calculation. The total energies from the XC
calculation are close to the available sophisticatedab initio
theoretical results and experimental data. The maximum dis-
crepancy of our calculated energies to the available experi-
mental results is less than 1.0%, illustrating that the SLHF
exchange potential combined with the LYP correlation po-
tential is satisfactory for the excited-state calculation of
atomic systems. Thus the procedure presented in this paper
provides a simple and computationally efficient scheme for
the accurate calculation of highly and multiply excited Ryd-
berg states within the DFT.
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