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A spin-dependent density-functional approach for the calculation of highly and multiply excited state of
atomic system is proposed based on the localized Hartree-Fock density-functional method and Slater’s diago-
nal sum rule. In this approach, electron spin orbitals in an electronic configuration are obtained first by solving
the Kohn-Sham equation with an exact nonvariational spin-dependent localized Hartree-Fock exchange poten-
tial. Then a single-Slater-determinant energy of the electronic configuration is calculated by using these elec-
tron spin orbitals. Finally, a multiplet energy of an excited state is evaluated from the single-Slater-determinant
energies of the electronic configurations involved in terms of Slater’'s diagonal sum rule. This approach has
been applied to the calculation of singly, doubly, and especially triply excited Rydberg states of He- and Li-like
ions. The total energies obtained from the calculation with an exchange>6olyly) potential are surprisingly
close to those of Hartree-Fock method and the total energies from the calculation with exchange-correlation
potential are in overall agreement with available theoretical and experimental data. The presented procedure
provides a simple and computationally efficient scheme for the accurate calculation of highly and multiply
excited Rydberg states of an atomic system within density-functional theory.
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[. INTRODUCTION ever, KS eigenvalues can serve as good zero-order excited-
state energies provided that they are gained by solving the

Density-functional theoryDFT) [1,2] has been widely KS equation with a high-quality XC potentigl4]. A number
applied to many areas in theoretical physics and chemistrgf theoretical methods have been developed by adopting this
[3,4] as a powerfulab initio approach of calculating the point of view (see a recent review articld5] for more ap-
ground-state properties of many-electron systems due to ifgroachey in which the work-function-(WF-) based ex-
computational simplicity in dealing with systems having achange potential approa¢hi6—19, the open-shell localized
large number of electrons. The basis of DFT is the HohenHartree-Fock (LHF) density-functional approaci20,21],
berg and Kohn(HK) theorem[1] and the Kohn-ShanKs) and the multireference LHF density-functional approach
equation[2]. The most important and troublesome part in[22,23 have drawn more attention because of their success-
DFT is the exchange-correlatioiXC) potential because it ful applications to the calculations of atomic and molecular
determines not only calculation accuracy but also the usefulexcited states.
ness of a DFT calculatiofb]. However, almost all the calculations using the time-

In a traditional approximation, such as the local densitydependent DFT approach, open-shell LHF approach, and
approximation(LDA) [3,4] and the generalized gradient ap- multireference LHF approach so far are performed for lower
proximation (GGA) [6—8], the XC potential is obtained by singly excited states. Although better results from calcula-
using uniform electron gas. Because of the incomplete cartions of the WF method were reported for both singly and
cellation of spurious self-interactiorf®], the approximate doubly excited states of atomic systefi8,19, one needs
XC potential falls off too fast and thus exhibits some incor-the rotational component of the field in computation, which,
rect asymptotic behaviof40]. As a result, no Rydberg series in general, is very hard to calculate. In the atomic case, it
and only a few bound unoccupied states can be availablmay be neglected in comparison with the irrotational com-
from a calculation with this kind of XC potential. In addi- ponent, but in the molecular case, it cannot be ignored due to
tion, the traditional XC potential has an inherent degeneracyhe departure of electronic structure from spherical symmetry
due to its independence of symmetries such as orbital ang(i15]. Even for the atomic case, WF calculation often encoun-
lar momentum and spin of the state considered and thus thers a self-consistent convergence problem for high-lying
calculated energies for different symmetries may have th&®ydberg excited statd49]. Therefore, an effective, simple,
same value. Therefore, the KS equation with traditional XCand easy-to-be-applied density-functional method for the cal-
potential cannot be directly applied to the calculation ofculation of highly and multiply excited states remains to be
excited-state energy, especially highly excited-state energy.explored.

In fact, DFT itself is a ground-state theory. KS eigenvalue In this paper, we present a spin-dependent density-
differences of unoccupied and occupied orbitals are not rigfunctional approach for the calculation of highly and multi-
orously defined as excitation energies. One needs to go bely excited states of atomic systems based on the LHF
yond the standard DFT, for example, using a time-dependemtensity-functional methofil4,24] and Slater’s diagonal sum
DFT approacH11-13 to calculate excitation energy. How- rule [25]. In this approach, the exchange potential used is an
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exact nonvariational spin-dependent localized Hartree-FocKartree potential can be calculated exactly by

(SLHF) exchange potential constructed by extending the )

ground-state LHF exchange potential to excited states, elec- Vy(r) :f p(r’) dr’ (5)
tron spin orbitals in an electronic configuration are obtained r=r'| "’

by solving KS equation with the SLHF exchange potential, a

single-Slater-determinant energy of the electronic configura/N€reP(r)=pa(r)+p4(r) is the total electron density. Thus

tion is calculated by using these electron spin orbitals, and §nding a suitable XC potential is the key to the calculation of
multiplet energy of an excited state is evaluated from the?0th the ground state and excited states. The XC potential
single-Slater-determinant energies of the electronic configuc@n be divided into the exchange potentigl,(r) and the
rations involved in terms of Slater's diagonal sum rule. Thecorrelation potential/,(r). . .

SLHF exchange potential is free of Coulomb self- Recently, the X-only LHF densﬂy—fqnchonal method has
interactions, dependent on symmetries of the state under coRéen proposed and successfully applied to the ground-state
sideration, requires occupied orbitals only, and exhibits corcalculation of atomic and molecular systefid,24. In that

rect long-range behaviors; it can be used to calculate the spfi€thod, electron orbitals are calculated by solving the KS
orbitals and density for each individual excited state and thu§quation with the LHF exchange potential as its exchange
is promising for the calculation of highly and multiply ex- Potential. The LHF exchange potential is derived under the
cited states of atomic system. We have applied this procedu@ssumption that the X-only KS determinant is equal to the
to the calculations of singly, doubly, and especially triply HF determinant. This potential is free of Coulomb self-
excited states of He- and Li-like ions. Due to the singularityinteractions, requires only occupied orbitals, and exhibits
at the origin and long-range nature of the Coulomb potentialcorrect long-range behaviors. The exchange potential in the
we use the generalized pseudosped®®S method[26]to  Krieger, Li, and lafrat¢KLI) procedurd 27,28, an approxi-
discretize spatial coordinates and optimize solution of the Kgnation of the exact exchangBEX) optimized effective po-
equation so as to obtain accurate eigenvalues and densiigntial(OEP) [29], is an approximation to the LHF exchange
functionals. The total energies obtained from the calculatiorPotential.

with an exchange-onlyX-only) potential (X-only calcula- In this paper, we extend the LHF exchange potential to
tion) are found to be surprisingly close to those of thethe excited-state calculation of the atomic system by assum-
Hartree-Fock(HF) method and the total energies from the ing that the electron spin orbitals of excited states are deter-
calculation with the XC potentialXC calculation are in  mined by the KS equation of a noninteracting system and the

overall agreement with available theoretical and experimenX-only KS determinant of the noninteracting system equals

tal data. the HF determinant of the interacting system for the excited
states. Based on this postulate, following a similar procedure
used in Ref.[14], we obtain the spin-dependent localized
Il. THEORETICAL METHOD ' .
Hartree-Fock SLHF) exchange potential

A. Spin-dependent localized Hartree-Fock

density-functional method Vi () = Vi (1) + Vi (1), (6)
In spin-dependent DFT, the spin-dependent electron derwhere the first ternvs (r) is the Slater potentigP5] and the
sity p,(r) is defined by second termV$ (r) is a correction to the Slater potential.
N Both of them are determined by occupied KS spin orbitals
J and are calculated b
ROEDRVRER(IS (1) Y
i=1 1 N (!
S — o ! ’
where o is the electron spin, equal t@ and g for spin-up Vio(r) == o (r)-z_ Yij(r)f I _r,|dr , (7)
and spin-downN, is the number of electrons with spin AN e
¢i,(r) is the ith spin orbital with spino, and w;, is the  and
occupied number of electrons in the spin orbitg)(r). The N
electron spin orbita;,(r) is determined by the KS equation 1 S oo
P erbliklr) yhes e Ve =—= 3 0, ®
Ho(r)¢io(r) = 8io’€0i0'(r)1 (2) Pe 1=t
with the KS HamiltoniarH (r) given by where yjj(r) andQf are defined by
H,(r) =-3V2+Vef(r), (3) Yi(r) = ¢is(r)@jo(r), (9)
and the local effective potentiaﬁﬁ(r) given by and
V(1) = Vex(r) + V(1) + Vigo(r), (4) Qf =(@o Vs "~ Vil @io)- (10

whereV,,{(r) is the external potentialVy(r) is the Hartree Here,VQ'UL is a nonlocal exchange operator of the form of the
potential (classical Coulomb electrostatic potential betweenHF exchange potential but constructed from KS spin orbitals,
electrony, andV,,(r) is the XC potential. The external po- (@j,|Vae " |¢i,) and(g;.|Vir|@i,) are symmetric matrix ele-

tential is known accurately for a given atomic system. Thements calculated by

022513-2



SPIN-DEPENDENT LOCALIZED HARTREE-FOCK. PHYSICAL REVIEW A 71, 022513(2005

SLHE o SLHE o) to provide an excellent representation of actual correlation
(@1o|Var i) = | ¥{(r")Vyy " (r)dr (11)  energy and will be incorporated into our calculation to esti-
mate the correlation effect.

and
Ne V(P (r! B. Central-field approach of atomic system
NL __ ik ki ) o
(@jo|Vir | €ic) = kzl r—r'| drdr’.  (12) To demonstrate the feasibility of the approach developed

above, we apply it to the excited-state calculation of atomic
In the spin-dependent DFT, the exchange interaction onlpystem. To specify the spin-dependent property, an electron
occurs among electrons with the same spin. In(@f.when  spin orbital is signified by three quantum numbard, and
vg(r(r):o, the SLHF exchange potential is reduced to theo, wheren and| are the principal quantum number and or-
Slater potential of the HF methd@5]. Because\/)‘fg(r) de-  bital angular momentum quantum number of the electron,
pends on\/%HF, the SLHF exchange potentimf;“F(r) has respectively. In spherical coordinates, a spin orhjtalr) of
to be computed in a self-consistent manner. In @4.if the  the electron with quantum numbens |, and o can be ex-
terms withi # j are neglected, the SLHF exchange potentialPressed by
reduces to the KLI exchange potential7,28]. R...(1)
For the spin-dependent DFT, SLHF exchange potentials Gi(r) = "—’Ylm(g, ?), (14
determined by Eqg6)—(12) have two arbitrary additive con- r
stants. The physical orbitals can only be obtained by the Usghere R, (1) is the radial spin orbitalY,(8,¢) is the
of appropriate constants in thg exchange pot_ent|al. To Sett'§pherical harmonian is the azimuthal quantum number, and
down the constants so as to pick up the physical Qrbltals, WEis a set of quantum numbers apart from spiof the spin
demand the highest occupied orbitd} of each spinoc to  pital.
satisfy[14] The electron density is evaluated by substituting Ed)
(on oIVt F= Vi o ) =0. (13)  into Eg.(1). For the atomic system investigated in this work,
7 7 the system is described by a spherically averaged electron
This condition indicates that the highest occupied orbitaldensity given by
does not contribute to the correction teM3 (r). In this
case, the correction termrfa(r) decays exponentially, the
SLHF exchange potential behaves asymptotically as the
Slater potential, and thus approaches tor-at long range
[14]. Moreover, the SLHF exchange potential depends onlyvhere the symbob, stands for a set of quantum numbers for
on the occupied orbitals and thus contains detailed informasummation and the sum is performed over all the occupied
tion of the electronic Configuration considered. Spin-orbitals with Splna' The electron denSity obtained in
It should be noted that the SLHF exchange potentiathis way is accurate for spherically symmettose-shell
above is an extension of the ground-state LHF exchange p&lates, but approximate for nonspherically symmejgen-
tential although they are very similar to each ottigd]. shel) states. When this kind of electron density is used to
Since the SLHF formalism is not derived from a variational €valuate the energy of a nonspherically symmetric state, it
principle for energy, the variational restriction on the groundmay induce an error. However, the error is negligible com-
state being the lowest state of a given space-spin symmetijared to the order of the calculated multiplet splitt[iig).
is not applicable here. Thus the calculation of spin orbitals Substituting Eq(14) into Eq. (2), multiplying the equa-
for excited states by solving the KS equatit®) with the  tion by Y..(6, ¢), integrating the equation over angles, and
SLHF exchange potential is not subject to a variationalaveraging the equation oven, finally, we obtain the radial
bound for energy. Furthermore, unlike the WF method, the<S equation for the radial spin orbit&,,(r),

_1 _ 15 | Ruel?
pa‘(r)_ 47Tfpﬂ(r)dﬂ_ 477% Wn|0'|: r :| ) (15)

SLHF method guarantees the existence of a local effective 1@ 10+1
potential for both the ground state and excited stftds2Q. {_ S+ ( 5 ) + veff(r)] Ruo = €nioRnier~ (16)
Because of the nonvariational nature of the SLHF exchange 2dr 2r 7

potential, the KS equatiof2) is no longer a variational equa- wherev®(r) is the radial effective potential given b
tion and thus the problem of variational collapse to the vy (1) P g y

ground state is avoided in our approach. This is a consider- 1 '

able advantage since, for a variational calculation of excited- vﬁ",ﬁ(r) =—> Yl*m(e, ¢)V§“(r)Y|m(0, ¢)dQ

state energy, to satisfy the wave function orthogonalioy 2A+1m-

ggﬁ:}/glrg)(i\t/?[rllag]l.onal collapgecan be a task of formidable = Dodr) + un(r) + SRR + 0L YP(r). 17)
Calculation of the total energy should include the correla-Here, ver), vu(r), ve="(r), andvs!F(r) are the radial ex-

tion effect. This effect is taken into account via correlationternal potential, radial Hartree potential, radial SLHF ex-

energy in the DFT calculation. Although quite a few ap-change potential, and radial LYP correlation potentfia],

proaches have been developed for this purpose, the seconespectively.

order gradient correlation potential and energy functional In an atomic system, the external potential is the Coulomb

proposed by Lee, Yang, and PéklYP) [7] have been shown potential between the electron and the nucleus. For the atom
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with a nuclear chargg, the radial external potential is given

by

vedn) == Z. (18)

r

PHYSICAL REVIEW A71, 022513(2009

C. Generalized pseudospectral method and optimal solution
of the KS equation

In order to solve the radial KS equation, we use the gen-
eralized pseudospectrédEPS method[26] to discretize Eq.
(16). The GPS method is a kind of collocation-cardinal func-

To calculate the radial Hartree potential, by applying thetion method. The basic idea of this method is to approximate

multipole expansion of 1¢-r’|, the orthonormality of

an exact functiorf(x) defined on the intervdl-1,1] by an

spherical harmonics, and the spherical-harmonic expansioth-order polynomialfy(x) constructed by a cardinal func-

of two spherical harmonics to E¢p), we obtain[30]

1
UH(f):47Tf r—p(r’)r’zdr’, (19)
>
wherer . is the larger ofr andr’, andp(r)=p,(r)+pg(r) is
the spherically averaged total electron density.
Similarly, from Eqgs.(6)—(12), we obtain the radial SLHF
exchange potential

Ve (1) = 03, (1) + U3, (1), (20)
where the radial Slater potential is given by
S
Vyy(r) = = E Z e (21)
X 4’7Tpo(|') i snlmn I'm
and the radial correction is given by
c
= 1’ I 22
vXO'(r) 4 pg(r)% /2: cnImn I'm ( )
In Egs.(21) and(22),
Sglm,n’l’m’(r) = pﬂkr,ﬂ"’d(r)z )\:(m,l’m’qﬁla,n’l’o(r)' (23)
k
Cglm,n’l’m’(r) = pnla,n’l’o(r)all’5mm'/'bglr:1’l" (24)
R Io(r)Rn’l’a"(r)
Prigrtror (1) = =5 ——, (25)
k rk< Ny ! 24!
Uit or (1) = rk_ﬂpnlo,n'vlﬂ(l’ r'edr’, (26)
>

le/m/ (= D)™ "™Imkm — m|l’m’){I’m’km- m’|Im)
(10kO|1"0)("0k0JI0), (27)
and
/-Ln| NIl 2 pnla,noloa(r,)[UE;HF(r,)gn'nodflo
NoloMp
+ Ek x,komovl,m,qﬁo,omn,l,g(r’)}r'2dr’. (28

tion g;(x),

f(x) = fy(x) = 2 f(x)g;(X),

(29
and ensure the approximation to be exact at the collocation
pointx;, namelyfy(x)=f(x). This requires that the cardinal
function satisfie;(x) = g;.

In the Legendre generalized pseudospectflaGPS
method used in this work, the cardinal functigjtx) is con-
structed by théNth-order Legendre polynomiddy(x) and its

first derivativePN(x)
1 (1-X)Py(¥)
N(N+DPy(x)  x=%

gi(x) =~ (30
The collocation pointsyy (=-1), X, Xo, ... Xy (=1), are de-
termined by the roots of the first derivative of theh-order
Legendre polynomial with respect o namely,Py(x)=0

For the electronic structure calculation involving Cou-
lomb interaction, the potential has a singularityrat0 and
long tail at larger. These problems can be overcome by
using the LGPS method associated with an appropriate map-
ping technique. In this procedure, the singularity problem
can be taken considerate care of by the nonuniform colloca-
tion points of the LGPS method and the long-tail problem
can be suppressed efficiently by mapping the semi-infinite
domainr €[0,%] into the finite domainxe[-1,1] with a
mapping functiorr =r(x). The mapping function is taken to
be a nonlinear function given Hy26]

1+Xx

rex)=L——,
td 1-X+Xy

(31)
whereL is a mapping parameter used to optimize calculation
by adjusting distribution of the collocation points amgl
=2L/1 max Wherer .y is the maximumr. This method pro-
vides a very effective and efficient numerical algorithm for a
high-precision solution of the Schrédinger equation and the
KS equation. It has been successfully applied to the calcula-
tion of eigenvalues and eigenfunctions of atomic and mo-
lecular systems for the study of electronic structiire,18,
multiphoton processes in strong field&l,32), and Rydberg
atom spectroscopy and dynam[&s].

Making use of the mapping functididl) in the KS equa-
tion (16), we obtain a differential equation for the trans-
formed radial wave function defined oxe[-1,1], f(x)
=Ry(r(x)/ \% wherer(x) is the first derivative of with

In Eq. (27), the symbok:-----) is the Clebsch-Gordan coef- respect tax. Applying the LGPS method to the new differ-
ficient. According to the property of the Clebsch-Gordan co-ential equation, considering boundary conditions, and fol-

efficient,k=[1-1"], [I=1"|+1,... |+]” andl+]" +k=even.

lowing the symmetrization procedur§26], we finally
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achieve a symmetric matrix eigenvalue equation

N-1 1
El {_ SPit Uiaii]xi ~ EnloXi» (32
=
where
Inn
R LI B~y (33
Xi PN(Xi) Rr‘l|o' i/
+1
w= "o +olm. (34)
S i # |
_) o onxi- x))f) ’
P een >
}w1-x)

and x;=x(x), u=u(x), ri=r(x), andr;=r(x). Solving the

matrix eigenvalue equatiof82), one can obtain the spin or-

bitals and orbital energies.

D. Multiplet excited-state energy

For a particular electron configuration, E§2) is solved

PHYSICAL REVIEW A 71, 022513(2005

ooy = (IMKO[IM)(I” M’ kO]l M )(10K0J10)(1" OKO|1” 0},
(41)

Fﬁl(r,n’l’(r’ :f pnla,nla(r)Qﬁqr,,rynq,(,,(r)l’zdl‘, (42)

and

Gk

nlu,n’l’u/:f pnla,n’l’a’(r)qu,m/U/(r)rzdr- (43)
wherek=0, 2,...,2xmin(l,l") due to the Clebsch-Gordan
coefficient.

From Egs.(27) and (41)—43), if n'l'm’ ¢’ =nlme, the
terms ofEy in Eq. (38) completely cancel those &, in Eq.

(39). This illustrates that the X-only calculation presented
here is free of self-interaction.

The procedure above can only be used to calculate the
energy value for a single Slater determinant. For a multiplet
state that can be described completely by a single Slater de-
terminant, this energy is just the multiplet energy. For a mul-
tiplet state that cannot be represented by a single determi-
nant, the energy can be calculated by means of Slater’s
diagonal sum rulg25]. According to this rule, the sum of the
single-Slater-determinant enerdy(D;) of determinantD;
from an electron configuration is equal to the weighted sum

self-consistently to obtain a set of spin orbitals. Using thesgs the multiplet energyE(M)) of the multiplet stateM; in-
spin orbitals, a single Slater determinant for a specific elecyg|yed in the electron configuration, namely.

tronic state is constructed and its total energy calculated. The

total energy is a sum of noninteracting kinetic enekgy

external-field energ¥,,, Hartree energy,,, exchange en-

ergy E,, and correlation energl.. They are evaluated by

B Ny V2
Ek: 2 2 Wi(rf @ia-(r)(_ _>(Pi(r(r)dr

o=a i=1 2
£ 2 1 101+1)
=> El Wnuff an(f)(— saret 7)Rm0(r)dr,

(36)

Eext= f Vex{Ip(r)dr = 4 f Vex(N)p(r)rédr,  (37)

L

E
H™ o

1
f V(r)p(r)dr :52 st Frionirors (38)
11

B
1 1
EX - EE f V)%O'(r)pﬂ'(r)dr - EE )\:(n"vl/m/Gﬁhf,n'l’(r/ 50'0"1
o=a 11

(39

and E; is computed by using the LYP approximatipn]. In
Egs.(38) and(39),

B vy Vo

> 222,

o0 =a nimp/j'm' K

(40)

%:

2 E(D) = 2 dEM)), (44)
[ j

where the weight; is the times that the multiplet staié;
appears in all the single Slater determinants.

To show how to use this method, let us consider a two-
electron configuratiop?. For this configuration, there are 15
different states and thus 15 determinants corresponding to
various values of£m, and =m,. Of those, there are three
determinants with(m|1msl;m|2m32)=(1a;—1ﬁ), (-1a;1P),
and (O«;0B) that correspond to a particular set Bm=0
and 2ms=0, which are denoted bp,, D,, and D3, respec-
tively. On the other hand, there are three multiplet stafes
3p, and!S that are involved in this particular set, and each
emerges once. According to E@4) we have

E(Dy) + E(D,) + E(D3) =E('D) + E(P) + E(*S). (45)

The energy terms on the left-hand side are computed by us-
ing the single Slater determinants, while the energi¢®)
andEC?P) on the right-hand side can also be determined by
the single Slater determinants. THEES) is calculated from

Eqg. (45). Similar procedures have been employed in recent
excited-state calculatio48,19,34.

IlI. RESULTS AND DISCUSSION

A. The ground-state energy

We first calculate the total ground-state energies for the
neutral atoms oZ < 18 using the procedure introduced in the
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TABLE |. Negative values of the total ground-state energies TABLE Il. Negative values of the exchange energias) for

(a.u) for neutral atoms oZ<18. the ground states of neutral atomszo& 18.
X-only XC Atoms SLHFE HF° BX®
Atoms  SLHF? HF? OEP SLHP? HFC? He 1.026 1.026 1.025
He 2.8617 2.8617 2.9074 2.904 Li 1.779 1.781 1775
' ' ' ' Be 2.663 2.667 2.658

Li 7.4325 7.4327 7.4325 7.4872 7.479

Be 145726 145730 145724 14.6686  14.667 B 3.744 3.744 3.728
' ' ' ' ' C 5.048 5.045 5.032
B 245284 245291 245283 24.6586  24.654 N 6.599 6.596 6.589
C 37.6886  37.6886  37.6889  37.8522  37.845 o 8- 181 8.174 8-169
N 54.4029 54.4009 54.4034 54.5977 54.590 : ) )
F 10.005 10.00 10.02
(@) 74.8115 74.8094 74.8121  75.0798  75.067
Ne 12.112 12.11 12.14
F 99.4085  99.4093  99.4092 99.7393 99.731
Na 14.023 14.02 14.03
Ne 128.5455 128.5471 128.5454 128.9331 128.937 M 15.986 15.99 16.00
Na 161.8565 161.8589 161.8566 162.2687 162.257 Alg 18 .058 18 '07 18 l06
Mg 199.6112 199.6146 199.6116 200.0744 200.059 Si 20' 262 20' 28 20' 27
Al. 241.8728 241.8767 241.8733 242.3726 242.356 P 22 618 29 64 29 62
Si 288.8501 288.8544 288.8507 289.3853 289.374
S 24.983 25.00 24.98
P 340.7140 340.7188 340.7150 341.2835 341.272
Cl 27.490 27.51 27.49
S 397.5018 397.5049 397.5016 398.1388 398.139
Ar 30.155 30.19 30.15

Cl 459.4770 459.4821 459.4776 460.1750 460.196
Ar 526.8118 526.8175 526.8122 527.5658 527.604 ‘Current results.

PReferencd6].
dCurrent results. ‘Referencd 36].
bReference[35].
‘Referencd 28].

dReference$39,4(].

preceding section. Special attention is paid to the nonsym-
metric states of atoms with open shells. In Table I, we TABLE Ill. Negative values of the highest-occupied-orbital en-
present the total ground-state energies obtained from X-onlgrgies(a.u) for neutral atoms oZ<18.
calculation together with those of the HF meth@&b] and
the optimized effective potential OEP method [28] for Atoms SLHF HF OEP Expt*
comparison. Although the spherically averaged electronic
density is used in the calculation, the present SLHF results H_e 0.9179 0.9180 0.904
are in excellent agreement with HF values even for the non- Li 0.1963 0.1963 0.1963 0.198
symmetric states of the open-shell atoms. The maximum de- Be€ 0.3091 0.3093 0.3093 0.343
viation to HF results in energy is about 0.0037%. It occursat B 0.3074 0.3099 0.3097 0.305
a highly nonsymmetric state of N, where the OEP energy C 0.4250 0.4333 0.4353 0.414
also has the maximum deviation with respect to the HF N 0.5707 0.5676 0.5712 0.534
(0]
F

value. The discrepancies of SLHF energies to OEP results 0.5200 0.6319 0.5077 0.501
are less than 0.0009%, a negligibly small number. Thus

- . 0.6578 0.7300 0.6735 0.640
SLHF has practically the same accuracy as OEP and is very

close to HE Ne 0.8495 0.8504 0.8507 0.793
To examine and appraise the SLHF exchange potential we Na 0.1821 0.1821 0.1821 0.189
give, in Table Il, the exchange energies for the ground states Mg 0.2526 0.2531 0.2531 0.281
of neutral atoms oZ<18. We also list in this table the Al 0.2141 0.2100 0.217
results of the HF methofb] and Becke’s gradient-corrected Si 0.2894 0.2971 0.300
density-functional exchange-energy approximati¢BX) = 0.3911 0.3917 0.385
[361. The't(r)]vg]rall agrﬁem(fen:”gf omijr Eil(lcglate(jt exchadng_lgh('en- s 0.3719 0.4374 0.381

ergies wi e results o an is quite good. This
indicates that the SLHF exchange potential has behaviors as cl 0.4629 0.5064 0.477
Ar 0.5902 0.5910 0.5908 0.579

good as those of the HF method.
Orbital energy is a measurement of the basic properties dCurrent results.
electron orbital. The highest-occupied-orbital energy is everiReferencd35].
essential since it is related to the ionization potential in in-*Referencg27].
dependent particle calculation such as the DFT calculatiorfReference$37,39.
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In Table Ill, we present the highest-occupied-orbital energies TABLE IV. Negative values of the total energiésu) for singly
obtained from the X-only SLHF calculation for the ground excited states of He. The SLHF results are obtained from the XC
states of atoms witlZ <18 along with experimental ioniza- calculation.

tion potentialg 37,38, HF resultg 35], and the results from
spin-dependent OER27]. It is shown that our results are ’s 's
very close to OEP results. Compared to the experimental ) ) b c b
resﬁlts, our results are even morepaccurate than I-F|)F results!:onf'gur"jltlon SLHF CRA WF SLHF  CRA

One of the most touchy effects in the DFT calculation is 1s2s 217390 2.17523 2.17545 2.14471 2.14597
the correlation effect. This effect is considered through the ;34 206827 2.06869 2.06890 2.06226 2.06127
_correlatlon energy. So far, all the correlation functionals used 1s4s 203631 203651 203671 203423 203359
in the DFT calculation are developed for the ground state. In
this work, we choose the widely used LYP correlation energy 1s5s 2.02250 2.02262 2.02264  2.02157 2.02118
functional[7] to estimate the electron correlation effect. In 1568 2.01530 2.01538 2.01539 2.01482 2.01456
Table I, we present the total ground-state energies from the 1s7s 2.01108 2.01113 2.01115 2.01080 2.01063
XC calculation for atoms wittZz<18. For comparison, we 1s8s 2.00839 2.00843 2.00845 2.00821 2.00809
also list in Table | the total energies that are obtained from  1s9s 2.00657 2.00660 2.00660 2.00646 2.00637
the sum of HF energie39] and correlation energieig0] 1s10s 2.00529 2.00531 2.00531 2.00521 2.00514

(HFO). It is shown that inclusion of the correlation effect 1s11s 200435 2.00431 2.00431 2.00429 2.00424

does lead to a significant improvement in the ground-state 18125 200364 200365 200365 200359 200355
energies compared to the HFC results. For the total energy, ' ' ' ' '

our results agree very well with HFC results. For larger at- 1s13s 2.00309 2.00310 2.00310 2.00306 2.00302
oms(Z>8), deviations of our results to HFC results are less ~ 1514s 2.00265 2.00266 2.00266 2.00263 2.00260
than 0.008%. For smaller atonf€<8), our total energies 1s15s 2.00230 2.00231 2.00231 2.00228 2.00226
are a little bit more negative than HFC results. The maxi-  1sl6s 2.00202 —— 2.00203 2.00200 2.00199
mum discrepancy is about 0.12%. The larger deviations fo"Current resuls

the smaller atoms are caused by the overestimated Correlaéeference{ﬂ]..

tion (leE]e]rgies computed with LYP correlation energy funC-CReferenCE[l8].

tional [7].

CRA result, 2.175 23 a.u., and 0.07% higher than the WF-I
result, 2.175 45 a.u., indicating that our calculation is accu-
rate and the correlation interaction in the tripiestates is
The main purpose of this paper is to develop a procedurghdeed small and plays an insignificant role. For tisastS
for the excited-state calculation of an atomic system, particustate, the deviation of our result with respect to the CRA
larly for multiply excited states such as triply excited statesresult is 0.06%, illustrating that the calculation for tript
Before performing a multiply excited-state calculation, westates is as precise as that for singbestates. For a highly
would like to report some results for singly and doubly ex-excited Rydberg state with large, the agreement of our
cited states of atomic systems so as to calibrate the accuragysults with those of a more sophisticated CRA calculation
of the approach presented in this paper. becomes excellent for both multiplet states. This signifies
As has been shown above, the total ground-state energigéisat the SLHF exchange potential has very similar
from an X-only calculation are quite accurate and compaasymptotic long-range behaviors to that of CRA because the
rable to HF results. Since the SLHF exchange potential iglectronic structure of the highly excited Rydberg state is
free of self-interactions, dependent on symmetries of elecdominated by the asymptotic long-range Coulomb potential
tronic state, and has good long-range behaviors, it is exarising from exchange potential. For low excited states with
pected to work well in the excited-state calculation of atomicsmall n, our results are slightly higher than those of CRA
system. In Table 1V, we list the total energies from the XCpecause of an underestimation of correlation energy. In all
calculation for singly excited statessds®S and 'S cases for both multiplet states, the deviations are less than
(n=1-18 of He together with the total energies of the com-0.07%. This demonstrates that the calculation with the SLHF
plex rotation approacHCRA) [41] and the WF method exchange potential for singly excited states is comparable to
(WF-I) [18]. According to the LYP correlation energy func- the more sophisticateab initio calculation.
tional [ 7], the spin-dependent correlation interaction only oc- It should be mentioned that many quantum mechanical
curs between electrons with different spins. For the triflet calculations confront a self-consistent convergence problem
states in Table 1V, correlation energies are zero and totdfor highly excited states with larga [42]. Even the WF
energies from the X-only calculation are the same as thosmethod often encounters the same probJ&@j. However, in
from the XC calculation. This may tempt one to concludeour calculation, the advantages of the LGPS procedure over
that the correlation energies for these states are underestire Coulomb potential enable us to obtain converged results
mated by the LYP approximation, particularly for low ex- for all states by using the same number of grid points. It is
cited states where the correlation interaction is expected tetraightforward to extend the calculation to even higher
be larger than highly excited states. However, for tiess?S  states, reflecting the effectiveness of the SLHF exchange po-
state, our result, 2.173 90 a.u., is only 0.06% higher than theential for the excited-state calculation.

B. Singly excited state
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TABLE V. Negative values of the total energiésu) obtained from the XC calculation for singly excited states of He-like ions.

z

States 3 4 5 6 7 8 9 10

1s2s3s 5.1089 9.2951 14.7317 21.4185 29.3554 38.5423 48.9792 60.6662
5.1043 9.2886 14.72468 21.4106

1s2s's 5.0463 9.1969 14.5959 21.2437 29.1406 38.2867 48.6826 60.3278
5.0422 9.1813 14.571G 21.211%

1s2p 3P 5.0241 9.1708 14.5686 21.2170 29.1157 38.2645 48.6634 60.3124
5.0216 9.1647 14.5608 21.207%

1s2p P 5.0138 9.1394 14.5118 21.1321 29.0013 38.1196 48.4873 60.1045
4.9809 9.0886 14.4478 21.0587

4TDM results[43].

To check the feasibility of the SLHF exchange potentialstates(where the correlation energies are 2eace less than
for atomic ions, we also apply it to the calculation of He-like 0.09%, while for the single® andP states, the discrepancies
ions (Z=3-10. The total energies obtained from the XC are no more than 0.66% though a little bit larger. It demon-
calculation are shown in Table V together with the results ofstrates that the SLHF exchange potential together with the
the truncated diagonalization methdd@DM) [43]. It is  LYP correlation potential is reasonably accurate for the cal-
shown that for all the data in the table, our results are close toulation of atomic ions. On the other hand, for all the data in
the results of TDM. The deviations for the tripl&tand P the table, our results are a little bit more negative than those

of TDM. This again hints that the LYP energy functional is
TABLE VI. Negative values of the total energiés.u) for sin-  overestimated to the correlation energies for smaller atoms as

gly excited states of Li. has already been pointed out in the calculations of neutral
atoms.
X-only XC
Others TABLE VII. Negative values of the total energiés.u) for dou-
States SLHF*  WF-I°  SLHF*  WF-I°  CIH® bly excited statess? 'S (n=2-20 of He.
1s°3s%S  7.31003 7.30936 7.35953 7.35773 7.35410 X-only XC
7.3102

b b
1s24s%S  7.27478 7.27466 7.32316 7.31978 7.31853 States SLHF®  WF-I’  SLHF*  WF-I°  WF-I°
2
125525 7.25091 7.25996 7.30785 7.30466 7.30355 o215 071968 07197 073473 07333 076637

1s%6s%S  7.25227 7.30000 3s?'s  0.31996 0.3200 0.33061 0.3265 0.34578
1s?7s%S  7.24783 7.29546 42's  0.17995 0.1800 0.18814 0.1838  0.19659
1s?8s%S  7.24502 7.29259 5s2's  0.11511 0.1152 0.12129 0.1177 0.12754
1s°9s?S  7.24313 7.29067 6s2S  0.07991 0.0800 0.08460 0.0818 0.08808
1s°10ss  7.24180 7.28932 7?1S  0.05869 0.0588 0.06234 0.0601 0.06524
192p%P  7.36474 7.36486 7.41683 7.41204 7.41016 85 S 004492 0.04783 0.04855
7 36507 9¢2's  0.03548 0.03784 0.03889
10s2's  0.02873 0.03068 0.03084
1%3p%P  7.29296 7.29295 7.34236 7.33862 7.33716 1121g (02374 0.02538 0.02503
7.29314 1221S  0.01994 0.02134 0.02121
1s%p2P 7.26804 7.26859 7.31646 7.31262 7.31190 13°'S  0.01698 0.01819 0.01811
1%5p2P  7.25658 7.25756 7.30457 7.30053 7.30030 14s°'S  0.01464 0.01569 0.01555
1s%6p?P  7.25038 7.29816 1521s  0.01275 0.01367 0.01348
1s?7p2P  7.24665 7.29432 16s21s  0.01120 0.01202 0.01176
1s?8p 2P  7.24424 7.29184 1721S  0.00992 0.01064 0.01132
1s?9p2P  7.24258 7.29013 18's  0.00885 0.00949
1s?10p2P  7.24140 7.28893 198?'S  0.00794 0.00852
ST ra—"— 20s21s  0.00716 0.00769
bReference[18]. Current results.
‘Referencd45]. PReferencd 19].
YHF results[44]. ‘Referencd 18].
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TABLE VIIl. Negative values of the total energidsa.u) for TABLE IX. Negative values of the total energiés.u) for dou-
doubly excited states’snp®P (n’=2—-3 n=n’-10 of He. bly excited states’snpP (n'=1-2n=n’—-10 of He.
XC Other results X-only XC Other Expt.
X-only States SLHF? SLHF? theory result§

States WF-II” SLHF*  WF-I° CcCR  RMSP

2s2p P 0.65039 0.69699 0.69275

2s2p3P 07537 0.75354 0.76770 0.76049 0.76086 0.645@ 0.6588

. 0.7682 2s3p'P 056650  0.57407  0.56384
2s3p% 05713 057193 058253 058467 058476 ,o.1p  (s3ses 053860 053418
. 0.5804 2s5pP 0.52225  0.52349
254p P 053757 (054558 054284 054281 o 1p (51519 0.51587
2s5p °P 052205 053121 052571 052475 o015 051104 051134
2s6p °P 051553 0.52367 0.51711 28plP 050836  0.50852
2s7p P 051119 051924 0.51219 20pP 050656  0.50665
2s8p %P 0.50847 0.50910 2s10pP 050528 050533
2s9p °P 0.50663
2510p%P 0.50533 33p'P 029101  0.33001  0.33566 0.33330

3s4p P 0.26380 0.27009 0.27190 0.27014

3
3s3p°P  0.3417 0.34167 0.34918 0.35038 0.35082 3s5p P 0.24730 0.25019 0.25088  0.25020

, 0.3486 36plP 023897  0.24053  0.240%4  0.24060
334p3P 0.27156 027365 027948 027980 5o 1p (23417 023510  0.235%4 023530
3sop P 0.24826 0.25516 025509 3831p (23119 023178  0.23280 0.23184
396p3P 0.23939 024338 0.24274 34,15 (022019 022056
3s7p°pP 0.23442 0.23688 3s10p'P 022780  0.22807
3s8p °p 0.23133
359p %P 0.22929 Z\CNUF”ﬁm fesltu'ﬁ-g ]

-1l results .
3s10p°P 0.22787 °RMSP result§48].
dCurrent results. 9FF result49].
OWE-I| results[19]. *Experimental resultg50].
“WF-I results[18].
“Referencd47]. C. Doubly excited state
*Referencd48].

The calculation of doubly excited state is more challeng-
ing. For doubly excited states, the results of the HF method
are rare. To check the applicability and calibrate the accuracy

In Table VI, we present the total energies obtained fromof the SLHF exchange potential in the doubly excited-state
both the X-only calculation and the XC calculation for singly calculation, we will compare our X-only results with other
excited states£ns?S (n=3-10 and ansz (n=2-10 of  X-only DFT results available in the literature. In Tables
Li. For comparison, we also list the total energies of the WFVII-X, we present the total energies obtained from both the
method (WF-I) [18], the HF method[44], and the X-only calculation and the XC calculation for doubly excited
configuration-interaction Hylleraas meth¢@IH) [45]. The  states n$'S (n=2-20, n’snp®P (n'=2-3, n=n'-10),
deviations of X-only results to HF results are 0.0025%,n'snp'P (n'=2-3, n=n'-10), and np?'D (n=2-20, of
0.0045%, and 0.0032% fois33s %S, 1s22p 2P, and %23p P, He, respectively. In these tables, we also list the available
respectively. This illustrates that our X-only calculation is exp_erimental results and other theoretical results for com-
quite accurate, almost as accurate as the HF method. THESON. _
deviations of X-only results to WF-I results range from _In Table VII, we report the total energies for doubly ex-
0.0051% to 0.0007% forstns2S (n=3-5) states and from Ccitéd Rydberg statess’ 'S (n'=2-20. For the X-only cal-

0.0135% to 0.0001% for<np2P (n=2—5 states. For th culation, our results are in very good agreementwlith those of
010 6 forsinp’P (n=2-9 states. For the o/ "y e" o thodWE-1I) [19], For the XC calculation, our

total energies obtained from the XC calculation, our results
are only a little bit more negative than the WF results an ess negative than those from another WF calculaiti-1)

CIH results due to the overestimation to the correlation en[18] Obviously, the deviations are caused by correlation en-
ergies by the LYP correlation energy functional. Neverthe-g qieq since the correlation energy functionals used in these
less, the maximum discrepancy of our results to the ClI

_ > Fealculations are different from one another. A Wigner-type
results is no more than 0.0738% fas*is“S (n=3-5) states parametrized correlation energy functiofidb] was used in

and 0.0900% for €np?P (n=2-5 states, demonstrating the WF-II, a spin-independent LYP correlation energy func-
the accuracy of our calculation. tional was used in the WF-I, and a spin-dependent LYP cor-

esults are a little bit more negative than those of WF-II and
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TABLE X. Negative values of the total energiés.u) for dou-
bly excited statesip? 'D (n=2-20 of He.

X-only XC

States SLHF*  WF-II®”  SLHF*  WF-I®  WF-I°
2p?'D  0.66868 0.6679 0.69626 0.6823  0.69272
3p?'D  0.30934 0.3091 0.32360 0.3160 0.31540
4p?'D  0.17606 0.1760 0.18565 0.1800  0.18095
5p2'D  0.11326 0.1132 0.12005 0.1158 0.11610
6p2'D  0.07886 0.0788 0.08386 0.0807 0.08115
7p?'D  0.05803 0.0580 0.06183 0.0593  0.05980
8p2lD  0.04447 0.04745 0.04565
9p2'D  0.03516 0.03756 0.03604
10p2'D  0.02849 0.03046 0.02920
11p2'D  0.02356 0.02520 0.02414
12p2'D  0.01980 0.02119 0.02028
13p2'D  0.01687 0.01807 0.01728
140D  0.01455 0.01559 0.01490
150D 0.01268 0.01358 0.01297
16p'D  0.01114 0.01194 0.01140
17p*'D  0.00987 0.01058 0.01010
18p?'D  0.00881 0.00944
190D  0.00790 0.00848
20p2'D  0.00713 0.00765

aCurrent resullts.

bReference[lg].

‘Referencd18].

PHYSICAL REVIEW A71, 022513(2009

relation energy functional is used in our calculation. Because
both the Wigner-type correlation energy functional and the

LYP correlation energy functional are designed basically for

the ground-state calculation, all the calculations for the ex-

cited states by using these functionals are only rough estima-
tions to the correlation energies.

In Table VIII, we present the results of doubly excited
statesn’snp®P (n'=2-3,n=n’'-10 of He. As has already
been mentioned, the correlation energies obtained from the
LYP correlation energy functional are zero for electrons with
the same spin in the spin-dependent calculation. Thus the
total energies from the X-only calculation are the same as
those from the XC calculation. For the X-only calculation,
our results agree well with the WF-II results. For the XC
calculation, our results are close to those of the WF-1, WF-II,
the complex-coordinate rotatiofCCR) methods[47], and
the R-matrix method with saddle-point techniqUBMSP)

[48]. For 2npP (n=2-8) states, the deviations of our re-
sults to the results of the CCR method are less than 1.0%
with an exception of states3p *P, for which the deviation is
2.2%. For 3np®P (n=3-7) states, the errors are a little bit
larger, but no more than 2.8%. The larger deviations may
again be induced by the underestimateero correlation
energies by the LYP correlation energy functional.

In Table 1X we show the total energies of doubly excited
statesn’snp!P (n’=2-3,n=n’-10) of He. For the X-only
calculation, our result for 2p P is 0.74% lower than the
WEF-II result. For the XC calculation, our result for this state
is better than the WF-II result compared to the result of the
RMSP[48]. The deviations of our results to the RMSP re-
sults are less than 1.8% for statesnp'P (n=2-4). For

TABLE XI. Negative values of the total energiés.u) for triply excited states of Li-like ion$Z=3-10.

Li Be* B2*
States SLHF TDMP MSPCF SLHF? TDMP MSPCF! SLHF TDMP
2s2p2 %P 2.2209 2.233(0.55 2.23940.83 4.4163 4.4248.19  4.43610.45 7.3617 7.367(0.07)
2s2p? 2D 2.1517 2.148M.17) 2.15820.30 4.3052 4.2888.39  4.30730.05 7.2062 7.1790.39
2s2p?2S 2.0821 2.082(0.03 2.09500.62 4.2038 4.185®.44  4.208%0.11) 7.0731 7.0416.45
2s2p? 2P 2.0960 2.0676.39 2.07880.83 4.2184 41710.139  4.19000.69 7.0861 7.0248.89
2p3*s 2.0762 2.095@®.91) 4.2085 4.222(0.32 7.0910 7.1000.13
2p°D 2.0606 2.070(.45 2.079G0.89 4.1704 4.165®.12  4.18320.31) 7.0275 7.01060.24
2p3%p 2.0159 2.003%.62) 2.01240.17) 4.1046 4.05401.24  4.07550.71) 6.9405 6.861(11.16)

C3+

N4+ 05+ F6+ Ne7+

States SLHF TDMP MSPCF' SLHP SLHP SLHF SLHF
2s2p2%P  11.0571  11.060D.03  11.07770.19  15.5025 20.6978 26.6432 33.3385
2s2p??D  10.8557  10.820D.32  10.85090.04  15.2541 20.4017 26.2989 32.9457
2s2p2%S  10.6908  10.6494.39  10.68600.049  15.0574 20.1734 26.0389 32.6540
2s2p??P  10.7010  10.6288.69  10.65970.39  15.0640 20.1758 26.0367 32.6469
2p3*s 10.7236  10.728®.05 15.1063 20.2390 26.1218 32.7545
2p3%D 10.6329  10.606®.25  10.63820.05  14.9872 20.0909 25.9440 32.5468
2p%%P 10.5249  10.4198.0)  10.45740.65  14.8582 19.9407 25.7728 32.3544
&Current results. ‘Referencd52].
bReference{43]. dF&eference{Sl].
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TABLE XII. Autoionization channel energie@V) for the triply excited resonance states of Li-like ions.

. . Li Be*

Initial Final

states states  SLHP TDMP MSPCF Expt? SLHP TDMP MSPCF Exptd

22p2P  1s2p°P  76.280  75.86M.55  75.8790.53 75.88+0.10.53 129.378  128.980.31) 128.9920.30) 128.9+0.20.37)

2s2p2°D  1s2s3S  80.470  80.44M.09  80.3490.15 80.26+0.10.26) 135.783  136.060D.20 135.8390.04) 135.8+0.20.00)
12s'S 78767  78.758.02  78.4470.4) 133.111  133.140.02 132.7830.25 132.8+0.20.23
1s2p®P 78163  78.17®.02  78.0890.09 78.13+0.10.04 132.401 132.68®.22 132.5140.09 132.4+0.20.00
1s2p'P  77.882  77.086..03  77.1530.99 131.546  130.61®.71 130.7660.60)

2s2p??S  1s2s3S  82.364  82.22(0.18  82.0670.36) 82.06+0.10.37) 138.543 138.86®.23 138.5320.01) 138.5+0.30.03
12s'S  80.661  80.53®.16  80.16%0.62 80.26+0.10.50 135.870  135.94®.06 135.4770.29 135.4+0.30.35
1s2p®P  80.057  79.958.13  79.8070.31) *79.9+0.10.20 135.160  135.496.25 135.2070.03
1s2p'P  79.776  78.86QL.16  78.8711.15 *78.7+0.21.37) 134.306  133.426.66 133.4600.63

2s2p??P  1s2p®P  79.678  80.36@.86  80.2500.71) 80.26+0.10.73 134.763  135.884.82) 135.6600.66) 135.8+0.20.76)
1s2p'P  79.398  79.27@.15  79.3140.11) 79.30+0.10.12) 133.908  133.818.07) 133.9130.00 134.0+0.20.07)

2p2?D  1s2p3P  80.642  80.30(0.42  80.2440.50 80.26+0.10.49 136.069  136.036.02 135.8790.14) 135.8+0.20.20
1s2p'P  80.361  79.21(L.45  79.3081.33 79.30+0.11.39 135214  133.96%.93 134.1320.81) 134.0+0.20.91)

2p32p 1s2s®S  84.165  84.37@.25  84.3150.18 141.242  142.430.84 142.1660.65 142.4+0.30.81)
12s'S 82462  82.680.27)  82.4130.06 138.570  139.51(D.68 139.1100.39
1s2p3P  81.858  82.110.3)  82.05%0.24 82.06+0.10.25 137.859  139.060.87) 138.8410.72) 138.8+0.20.68)
1s2p'P 81578  81.020.69  81.12G0.56 *81.2+0.20.47) 137.005  136.990.01) 137.0940.06) 137.0+0.30.00

BZ+ C3+

Initial Final N4+ o Fo+ Ne’*

states states  SLHF TDMP SLHF TDMP SLHF?  SLHP SLHP? Hscd Expt? SLHPR?

2s2p?%P  1s2p°P  196.111  195.74®.19 276.467 276.120.12 370.437 478.018 599.205 599(@DD)  599.0+0.70.03 734.003

2s2p2?D  1s2s%S  204.781  205.300.26) 287.431 288.15®.25 383.719  493.635 617.167 618(B20  619.1+0.80.31) 754.319
1s2s'S  201.086 201.14D.03 282.674 282.75D.03 377.874  486.679 609.096 60984  609.4+0.50.05 745.111
1s2p®P  200.343  200.850.26) 281.948 282.64D.25 377.196 486.075 608.574 609(049  609.4+0.50.14) 744.692
1s2pP  198.797  197.79D.51) 279.637 278.599.38 374.083  482.132 603.782 739.034

2s2p??S  1s2s3S  208.403  209.058.31) 291.918 292.810.31) 389.071  499.847 624.242 625(024 625.4+0.50.19 762.257
12s'S  204.707  204.888.09 287.161 287.410.09 383.226  492.892 616.171 617(08l5 616.7+0.50.09 753.048
1s2p3P  203.965 204.608.31) 286.435 287.300.30 382.549  492.288 615.649 617029 616.7+0.50.17) 752.629
1s2p'P  202.419 201.538.44) 284.124 283.250.31) 379.436  488.345 610.857 746.972

2s2p??P  1s2p®P  203.611  205.06D.71) 286.157 287.870.60 382.369  492.222 615.709 618(0139 619.1+0.80.55 752.823
1s2p'P  202.065 202.000.03 283.847 283.828.0) 379.256  488.280 610.917 611(03l3 611.9+0.60.16 747.165

2p2?D  1s2p3P  205.205 205.439.11) 288.010 288.46D.16 384.459 494533 618.231 619043 619.1+0.80.14 755.546
1s2p'P  203.660 202.37®.64 285.700 284.41®.45 381.346  490.590 613.439 613(6M3 613.6+0.60.03 749.889

2p3%p 12s3S  212.011  213.96D.91) 296.432 299.06@.89 394.492 506.179 631.483 770.409
12s'S  208.316  209.79@.71) 291.676 203.66®.68 388.647 499.224 623.412 761.201
1s2p®P  207.573  209.51®.93 290.949 293.55@.89 387.969  498.620 622.890 627(0%67  627.1+0.50.67) 760.782
1s2pP  206.027  206.44®.20 288.639 289.510.30 384.856  494.677 618.098 755.125

Current results. *Referencd51].

PReferencd43]. 'Referencd54].

‘Referencg52]. 9Experimental resultE54].

dExperimental resultg53,52).
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3snp'P (n=3-8) states, the discrepancies of our results ard43], MSPCR [51,57, and hyperspherical close-coupling
less than 1.7% with respect to the results of the FeshbadiiSCO methods[54], as well as the experimental results
formalism approachFF) [49] and less than 1.0% with re- [53,54]. Again, the numbers in the parentheses denote the
spect to the experimental result0], demonstrating the ac- absolute percentage deviations of our results with respect to
curacy of our excited-state calculation. the data followed by the numbers. It is shown that apart from
In Table X, we report the total energies of doubly excitedthe processes related to the2f 'P state in neutral Li the

statesnp? ID (n=2-10 of He. It is shown again that X-only discrepancies of our results with respect to both the experi-
results are in very good agreement with those of WEg]  mental results and other theoretical results are less than

and XC results are close to those of WELB]. 0.95%. Even for the processes involved in ts2d'P state
in neutral Li, the deviations are no more than 1.5%. This
D. Triply excited states illustrates that our calculation of the triply excited states is

quite accurate and the proposed approach with the SLHF

_For the DFT calculation, triply excited states are really 8gychange potential is efficient and effective to the multiply
trial to both the exchange potential and the correlation pogycited-state calculation.

tential because of possible high nonsymmetric atomic struc- |, summary, based on the spin-dependent localized

tures. Even for sophisticatexb initio methods, it is an ordeal Hartree-Fock density functional method and Slater’s diago-

to accurately calculate the electronic structures of triply exy,51 sum rule, we present an approach for the calculation of

cited states. In this section, we present total energies angigp|y and multiply excited states of atomic systems. In this
Auger electron energies from our calculation for triply ex- 5nnroach, the KS exchange potential is replaced by an exact
cited resonance states of Li-like ions. For these resonanGg,ariational SLHF exchange potential. The SLHF ex-

states and Auger processes, there are neither HF results nQ{ange potential qualifies for the calculation of the excited

DFT results to compare to. We will compare our results 0gia16 hecause it provides a potential with free self-interaction,

other theoretical results and experimental data. To OUfhe correct long-range behavior, and the symmetry depen-
knowledge, this is the first time that the triply excited reso-gence of an atomic state. The procedure has been applied to
nance states of Li-like ions have been calculated using thg,e calculation of singly, doubly, and triply excited Rydberg

DFT method. _ , states of He- and Li-like ions. The generalized pseudospec-
In Table XI, we present the total energies obtained fromy 5| method with nonuniform grids is used to discretize the

the XC calculation for triply excited resonance states of Li-gnaia| coordinates and to optimize the solutions of the KS
like ions (2=3-10. Also given in this table are the theoret- g4 ation to obtain accurate spin orbitals and orbital energies
ical results of the truncated diagonalization meti®®M)  for poth the ground state and excited states. X-only results
[43] and the multichannel saddle-point complex-rotationgye jn very good agreement with HF results and X-only WF
(MSPCR method[51,52. The numbers in the parentheses egyits, demonstrating that the proposed procedure is very
denote the absolute percentage deviations of our re'sults Withcurate for the calculations of highly and multiply atomic
respect to the data followed by these numbers. It is showRycited states. The correlation effects are considered by in-
that our results are in very good agreement with those Oforporating the LYP correlation potential and the energy
MSPCR. nge absolutszdewatlons are less than 0.95%. Apaffnctional into calculation. The total energies from the XC
from 2s2p® P and 2>°°P states, the discrepancies of the cajcylation are close to the available sophisticabdnitio
rezuzlts of the TDM are less than 0.91%. F&2@”°P and  theoretical results and experimental data. The maximum dis-
2p°°P states, the deviations are a little bit larger, but nocrepancy of our calculated energies to the available experi-
more than 1.38%. This demonstrates that our calculations fqhental results is less than 1.0%, illustrating that the SLHF
triply (Zexcited states are quite accurate. We noticed that fopychange potential combined with the LYP correlation po-
2s2p?*P and 2°°P states, our results are more negativeential is satisfactory for the excited-state calculation of
than other theoretical results, which may be caused by thgiomic systems. Thus the procedure presented in this paper
overestimations of correlation energy to these states. provides a simple and computationally efficient scheme for

One of the most important processes from the highly tri-the accurate calculation of highly and multiply excited Ryd-
ply excited resonance states of Li-like ions is Auger electroryerg states within the DFT.

emission via autoionization, leaving states of He-like ions

[53,54]. The calculation Qf the Auger'electror.l spectroscopy ACKNOWLEDGMENTS

involves the total energies of the triply excited resonance

states of Li-like ions given in Table XI and the total energies This work was partially supported by the Chemical Sci-
of the singly excited states of He-like ions listed in Table V.ences, Geosciences and Biosciences Division of the Office of
In Table XlI, we report the calculated Auger electron ener-Basic Energy Sciences, Office of Science, U. S. Department
gies for the triply excited resonances of Li-like ions. To ex-of Energy, and by the National Science Foundation. We ac-
amine the calculation precision for triply excited states, weknowledge the Kansas Center for Advanced Scientific Com-
also list, in Table XllI, the theoretical results of the TDM puting for the support of supercomputer time.
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