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The problem of dipole transition-matrix element calculation for optical transitions in multiply charged
one-electron diatomic quasimolecules with unequal nuclear chargesZ1 andZ2 has been stated and solved. The
quasimoleculeZ1eZ2 is a unique example of a two-center system for which the energy terms and dipole
transition moments have been calculated precisely in the frame of a nonrelativistic approach. Particular ex-
amples for the optical transitions withZ1=1.5,2,2.5,3 andZ2=1 and with the principal quantum number of
the united ionnu=1,2,3,4have been tabulated. The scaling rules make it possible to determine the matrix
elements for quasimolecules having nuclear charge ratios such as 2:1, 3:1, 3:2, and 5:2. Zeros at intermediate
R and zero limiting values at largeR are the highlighted features of the matrix elements. The heteronucleus
case generates a large number of asymptotically forbidden transitions corresponding to transitions of an
electron from one ion to another.
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I. INTRODUCTION

The present work deals with the calculation of dipole
transition-matrix elements and related optical values for tran-
sitions in multiply charged one-electron diatomic quasimol-
ecules with unequal nuclear chargesZ1 andZ2. sHereafter we
use the notationZ1eZ2 for such quasimolecules.d It is impor-
tant to note that the results obtained will be used for subse-
quent spectral profile calculations of the optical transitions
between quasimolecular states which correlate, at small in-
ternuclear distances, with the states of the united nucleus
with principal quantum numbernu=1,2,3,4.

Up to now the most comprehensive calculations of the
dipole transition-matrix elements for the caseZ1=Z2=1 shy-
drogen molecular ion H2

+d have been performed by Ramaker
and Peekf1g and motivated by problems arising in astro-
physics. The data obtained have been applied successfully by
Allard et al. f2g to the calculations of the spectral profiles
produced by the atomic hydrogen Lyman-a and Lyman-b
transitions broadened by collisions with ionized atomic hy-
drogen. The main conclusion off2g is that the variation of
the dipole has to be taken into account to obtain reliable
results to be used as diagnostics of stellar and plasma param-
eters.

The first wave of interest in the spectral profiles produced
by Z1eZ2 quasimolecules with differentZ1 andZ2 was appar-
ently induced by the observations of x-ray radiation under
inner-shell excitation in ion-atom collisions. For a review of
this field until 1984 see Anholtf3g and for some recent ad-
vances see, e.g., Schulzeet al. f4g. Another wave came from
hot dense plasma physics. At some density-temperature pa-

rameters of hot dense plasma, the excited-state orbitals of a
bound electronsor bound electronsd are strongly disturbed by
the field of the nearest-neighbor ion. Therefore, consider-
ation of multiply charged quasimolecule ions makes physical
sense. Within such an approach absorption and emission pro-
cesses in hot dense plasmas are simply optical transitions in
quasimoleculesf5g.

In terms of optical spectroscopy the phenomenon of
quasimolecular radiation suggests two questions. First, what
are the spectral profiles produced by such transitions? Sec-
ond, what is the influence of configuration interactions in
ion-atom collisions or in hot dense plasma conditions on
spectral profiles? It seems reasonable to begin with the first
question regarding the transitions produced by binary colli-
sions of multicharged ions with only one bound electron.
Such a method has been attempted previously in Ref.f6g,
where the spectral profiles produced by Lyman-a transitions
were considered. Being aimed at a general description of the
exchange interaction influence on the spectral profiles, the
problem was considerably simplified inf6g with the assump-
tions of constant dipole matrix elements and exponential in-
teraction energies. Such an approach works well for the de-
scription of spectral profiles that are connected to allowed
transitions in an ion and produced by quasimolecular transi-
tions, in the region of large internuclear distances. But the
approach is totally improper for forbidden transitions marked
by a strong dependence of the dipole matrix elements on the
internuclear distance. Meanwhile an accurate computation of
spectral profiles produced by the quasimoleculesZ1eZ2 in the
semiclassical approachsjustified for collision energies of the
order of several hundreds of eVd needs accurate values of
dipole moments over a wide range of internuclear distances
rather than being restricted to large ones only. In this context,
preliminary computationf7g has revealed the occurrence of
the roots of the dipole matrix elements at specific internu-
clear distances.
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To the best of the authors’ knowledge, the dipole matrix
elements for the quasimoleculeZ1eZ2 with different Z1 and
Z2 in the frame of a nonrelativistic approach have not been
calculated, only the quasimolecular energy terms which have
been reviewed in detail by Komarovet al. f8g. In the present
paper we computed the dipole transition-matrix elements for
one-electron diatomic quasimolecules with the nuclei
chargesZ1.Z2=1. The matrix elements are calculated in a
wide range of the internuclear distancesR for the transitions
coupling the lowest 16 electronic states. Particular attention
is paid to the investigation of the roots of the dipole matrix
elements. The corresponding oscillator strengths and prob-
abilities of the radiative transitions can be immediately ob-
tained from the computed matrix elements and the exact en-
ergy termsssee Sec. IId.

The paper is organized as follows. In Sec. II we derive the
formulas that relate the radiative characteristics of one-
electron heterodiatomic quasimolecules. In Sec. III the
method of calculation of the dipole moment matrix elements
is described. Section IV deals with the results of calculations
and their discussion. Finally, in Sec. V we give some con-
clusions and discuss some applications of the results to spec-
troscopy. The Appendix summarizes some formulas useful to
check the results in two limiting cases, a united nucleus and
separated nuclei. Atomic unitse=m="=1 are used through-
out this work.

II. SCALING RELATIONS FOR THE RADIATIVE
CHARACTERISTICS

The scaling relations between the characteristics of radia-
tive transitions in hydrogenlike ions are well known. For
instance, the probability of a radiative transition from statei
to j for the hydrogenlike ion with nucleus chargeZ can be
expressed by means of the probability for the same transition
in hydrogen, e.g.,WijsZd=Z4Wijs1d f9g. Below we shall de-
rive the formulas that relate the radiative characteristics of
the one-electron diatomic quasimolecule with nuclear
chargesZ1 andZ2 sZ1ùZ2d to the same characteristics of the
one-electron quasimolecule with nuclei chargesZ18=Z1/Z2
andZ28=1.

For an electron in the field of two fixed nucleiZ1 andZ2
separated at the distanceR, the matrix element of the electric
dipole moment operator between states specified by quantum
numbersi ,mi and j ,mj is given by the following formula:

dW imi,jmj
sZ1,Z2,Rd =E cimi

* srW,RdrWc jmj
srW,RddrW. s1d

In Eq. s1d mi and mj stand for the magnetic quantum
numbers, which determine the projection of the orbital mo-

mentum of the electron on the internuclear axisRW , rW denotes
the position vector of the electron, andcimi

andc jmj
are the

two-Coulomb-center wave functions. These wave functions
are solutions of the following Schrödinger equation:

S−
1

2
DrW −

Z1

urW + RW /2u
−

Z2

urW − RW /2u
Dcimi

srW,Rd = Ei umiu
sRdcimi

srW,Rd.

s2d

DrW is the Laplacian andEi umiu
sRd the energy term.

The oscillator strengthf ijsZ1,Z2,Rd corresponding to the
electric dipole transitioni → j is determined by means of the
matrix elements1d f9g, i.e.,

f ijsZ1,Z2,Rd = −
2

3

Ãi jsRd
gi

o
mi,mj

udW imi,jmj
sZ1,Z2,Rdu2, s3d

where Ãi jsRd=Ei umiu
sRd−E j umj u

sRd is the difference between
the energy terms, andgi is the degree of degeneracy or sta-
tistical weight of the initial leveli sgi =1 for states withmi
=0 andgi =2 for states withmi Þ0d.

For spontaneous emission by a quasimoleculeZ1eZ2 from
the statei to j , the probability per time unitAijsZ1,Z2,Rd can
be expressed in terms of the oscillator strength of the corre-
sponding transitionf9g:

AijsZ1,Z2,Rd = 2a3Ãi j
2sRduf ijsZ1,Z2,Rdu, s4d

wherea is the fine structure constantsa=1/137d.
Let us perform the following scale transformation:

rW = rW/Z2, RW = LW /Z2; s5d

then Eq.s2d can be written as

S−
1

2
DrW −

Z18

urW + LW /2u
−

Z28

urW − LW /2u
Dwimi

srW,Ld = «i umiu
sLdwimi

srW,Ld,

s6d

whereZ18=Z1/Z2, Z28=1, and«i umiu
sLd=Z2

−2Ei umiu
sL /Z2d.

It follows from the obtained formulas that the normalized
eigenfunctions and eigenvalues of Eqs.s2d and s6d are con-
nected by the relationsf10g

cimi
srW,Rd = Z2

3/2wimi
sZ2rW,Z2Rd, s7d

Ei umiu
sRd = Z2

2«i umiu
sZ2Rd. s8d

Substitution of Eq.s7d in Eq. s1d gives the relation be-
tween the matrix elements of the quasimoleculesZ1eZ2 and
Z18eZ28 f11g:

dW imi,jmj
sZ1,Z2,Rd =

1

Z2
dW imi,jmj

sZ18,Z28,Ld, s9d

wheredW imi,jmj
sZ18 ,Z28 ,Ld is the matrix element of the electric

dipole moment for the quasimoleculeZ18eZ28.
Now, substituting Eqs.s8d and s9d in Eq. s3d, one can

write

f ijsZ1,Z2,Rd = f ijsZ18,Z28,Ld, s10d

where f ijsZ18 ,Z28 ,Ld is the oscillator strength of the dipole
electric transitioni → j for the quasimoleculeZ18eZ28.

Thus, the oscillator strength of the quasimoleculeZ1eZ2
does not change if we reduce the nuclear charges and in-
crease the nuclear separation by the same factorZ2 simulta-
neously. Next, applying Eq.s4d, one can write

AijsZ1,Z2,Rd = Z2
4AijsZ18,Z28,Ld, s11d

whereAijsZ18 ,Z28 ,Ld is the probability per time unit for the
spontaneous emission taking place from statei to j .
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In the particular case of homonuclear quasimolecules
sZ1=Z2=Zd, the radiative characteristics reduce to the ones
relevant to the hydrogen molecular ion H2

+:

dW imi,jmj
sZ,Z,Rd = Z−1dW imi,jmj

s1,1,ZRd,

f ijsZ,Z,Rd = f ijs1,1,ZRd,

AijsZ,Z,Rd = Z4Aijs1,1,ZRd. s12d

HeredW imi,jmj
s1,1,ZRd, f ijs1,1,ZRd, andsAij1,1,ZRd stand

for the matrix element of the electric dipole moment, the
oscillator strength, and the transition probability for the mol-
ecule H2

+, respectively.
The formulas obtained above reduce the calculation of the

radiative characteristics of one-electron quasimolecules with
the nuclear chargeskZ1 andkZ2 sk=1,2,3, . . .d to the calcu-
lation of the same characteristics for a single quasimolecule
with the nuclear chargesZ18=Z1/Z2 andZ28=1. We emphasize
that the calculation of the radiative characteristics for quasi-
molecules with smaller nuclear charges is time saving and
faced with smaller computational difficulties. It is also im-
portant to note that decreasing the nuclear charges increases
the accuracy of the radiative characteristic computations.

III. CALCULATION OF THE DIPOLE MOMENT
MATRIX ELEMENTS

It is well known that the Schrödinger equations2d is sepa-
rable by using the prolate spheroidal coordinate system
sj ,h ,wd, e.g., f8g, in which the x,y,z components of the
electron position vectorrW can be written in terms of spherical
coordinates as

x =
R

2
Îsj2 − 1ds1 − h2dcosw,

y =
R

2
Îsj2 − 1ds1 − h2dsinw, s13d

z=
R

2
jh.

Then the solution of Eq.s2d can be presented as the follow-
ing product:

cimi
srW,Rd =

1
Î2p

Xi umiu
sj,RdYi umiu

sh,Rdeimiw, s14d

1 ø j , `, − 1ø h ø 1, 0ø w , 2p.

HereXi umiu
sj ,Rd andYi umiu

sh ,Rd stand for the two-Coulomb-
center quasiradial and quasiangular wave functions, which
are normalized according to

R3

8
E

1

` E
−1

1

Xi umiu
2 sj,RdYi umj u

2 sh,Rdsj2 − h2ddj dh = 1.

s15d

After integration overw, the matrix elementsfEq. s1dg
depending on the wave functionscimi

and c jmj
can be ex-

pressed through the forms

sdxdimi,jmj
= ± isdydimi,jmj

=
R4

32SE1

`

Xi umiu
Xj umj u

Îj2 − 1j2dj

3E
−1

1

Yi umiu
Yj umj u

Î1 − h2dh

−E
1

`

Xi umiu
Xj umj u

Îj2 − 1dj

3E
−1

1

Yi umiu
Yj umj u

Î1 − h2h2dhD , s16d

sdzdimi,jmj
=

R4

16SE1

`

Xi umiu
Xj umj u

j3djE
−1

1

Yi umiu
Yj umj u

h dh

−E
1

`

Xi umiu
Xj umj u

j djE
−1

1

Yi umiu
Yj umj u

h3dhD .

s17d

They satisfy the selection rules for the magnetic quantum
number in the case of dipole transitions, i.e.,mj =mi 71 in
Eq. s16d for radiation polarized in the plane perpendicular to

RW ss-p transitionsd andmj =mi in Eq. s17d for radiation po-

larized along the internuclear axisRW ss-s and p-p transi-
tionsd f12g. For simplicity, in what follows, the sign of the
magnetic quantum number is omitted.

The computational procedure implemented is as follows.
First, we determine the separation constants for the equations
and calculate the energy terms; then, we determine the wave
functions of the quasimoleculeZ1eZ2. In order to separate,
from a great many energy terms, those corresponding to a
given set of quantum numbershi ,mij, we find Eimi

sRd at R
!1, taking the value of this term atR=0 as the initial ap-
proximation. Further, increasingR by a DR step, we deter-
mine Eimi

sRd at largerR.
The wave functionsXimi

sj ,Rd and Yimi
sh ,Rd can be ex-

panded in various formsf8g. For the quasiradial wave func-
tion, we use the well-known Jaffe expansionf13g

Ximi
sj,Rd = sj2 − 1dmi/2e−Psj−1dsj + 1dso

s=0

`

asfsj − 1d/sj + 1dgs,

s18d

whereP=RÎ−Eimi
sRd /2 ands=fRsZ1+Z2d /2Pg−mi −1.

For the quasiangular wave function we take

Yimi
sh,Rd = s1 − h2dmi/2e−Ps1+hdo

s=0

`

bss1 + hds s19ad

and
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Yimi
sh,Rd = s1 − h2dmi/2e−Ps1−hdo

s=0

`

bs8s1 − hds, s19bd

where Eqs.s19ad ands19bd are applied to the twoh definite
segmentsf−1,0g and f0,1g, respectively.

The expansion coefficientsas, bs, andbs8 can be calculated
from the three-term recurrence relationsf8g. The recurrence
relations leave the normalization uncertain. Therefore, the
wave functionss19d have to be matched at the pointh=0. As
a consequence of accumulation of computational errors, the
coefficientsas increase monotonically starting from a spe-
cific s. Therefore, such coefficients should be dropped from
the summation in Eq.s18d f8g. The procedure used yields a
relative accuracy of order 10−12 for the energy terms and
accuracy of order 10−8–10−10 for the corresponding quasira-
dial and quasiangular wave functions. Thus, the accuracy of
the calculated matrix elements can be estimated at 10−8.

The signs of the dipole-strength matrix elements in Eqs.
s16d and s17d depend on the phase convention for the in-
volved wave functions. Our phase convention generates a
sign that coincides with the sign of the same matrix element
calculated with parabolic wave functionsf14g in the limit of
separated nucleissee the Appendixd.

IV. RESULTS AND DISCUSSION

With the algorithm described in Sec. III we have calcu-
lated the dipole matrix elements for all transitions between
the states with principal quantum number in the united ion
limit nu=1,2,3, and forfour transitions involvingnu=4. The
calculations have been carried out for quasimolecules with
the nuclear chargesZ1=1.5,2,2.5,3 andZ2=1. It should be
noted that noninteger values of nuclear charges might be
studied with the same algorithm. For example, they naturally
fit the description of screened Coulomb molecular orbitals
f15g. The calculated matrix elements for the transitions cou-

TABLE I. Dipole moment matrix elements for transitions 2ps→1ss and 3ds→1ss in relation to the
distanceR between ionsZ1=1.5, 2.0, 2.5, 3.0 andZ2=1; all values in atomic units.

R

2ps→1ss 3ds→1ss

Z1=1.5 Z1=2.0 Z1=2.5 Z1=3.0 Z1=1.5 Z1=2.0 Z1=2.5 Z1=3.0

0.25 −0.33803 −0.28907 −0.25263 −0.22412 −0.00174 −0.00303 −0.00404 −0.00485

0.50 −0.41545 −0.36026 −0.31328 −0.27264 −0.00488 −0.00885 −0.01202 −0.01446

0.75 −0.50288 −0.42748 −0.35600 −0.29371 −0.01044 −0.01920 −0.02566 −0.02989

1.00 −0.58488 −0.47277 −0.36814 −0.28570 −0.01962 −0.03555 −0.04541 −0.05021

1.50 −0.70306 −0.48210 −0.32696 −0.23558 −0.05478 −0.08810 −0.09784 −0.09613

2.00 −0.73859 −0.41656 −0.26382 −0.19231 −0.12002 −0.15697 −.014965 −0.13021

2.50 −0.68315 −0.33383 −0.21462 −0.16807 −0.20965 −0.21854 −0.18207 −0.14208

3.00 −0.56969 −0.26313 −0.18281 −0.15913 −0.29820 −0.25760 −0.19418 −0.13747

3.50 −0.44511 −0.20898 −0.16470 −0.16077 −0.36338 −0.27608 −0.19380 −0.12248

4.00 −0.33529 −0.16811 −0.15710 −0.16779 −0.40070 −0.28197 −0.18663 −0.10089

4.50 −0.24687 −0.13647 −0.15830 −0.17481 −0.41596 −0.28172 −0.17467 −0.07747

5.00 −0.17850 −0.11095 −0.16738 −0.17913 −0.41672 −0.27920 −0.15713 −0.05717

6.00 −0.08884 −0.07110 −0.19803 −0.18181 −0.39782 −0.27401 −0.10127 −0.03076

7.00 −0.04175 −0.04202 −0.21427 −0.18187 −0.37434 −0.27132 −0.04739 −0.01693

8.00 −0.01880 −0.02280 −0.21733 −0.18147 −0.35788 −0.27062 −0.02052 −0.00928

9.00 −0.00821 −0.01163 −0.21755 −0.18103 −0.35023 −0.27079 −0.00893 −0.00494

10.0 −0.00352 −0.00570 −0.21727 −0.18062 −0.34912 −0.27106 −0.00390 −0.00255

12.0 −0.00062 −0.00127 −0.21655 −0.17992 −0.35424 −0.27107 −0.00074 −0.00063

14.0 −0.00010 −0.00026 −0.21591 −0.17938 −0.35822 −0.27060 −0.00014 −0.00014

16.0 −0.00002 −0.00005 −0.21537 −0.17896 −0.35959 −0.27004 −0.00002 −0.00003

18.0 0.00000 −0.00001 −0.21492 −0.17862 −0.35979 −0.26951 0.00000 −0.00001

20.0 0.00000 0.00000 −0.21455 −0.17834 −0.35957 −0.26904 0.00000 0.00000

22.0 0.00000 0.00000 −0.21423 −0.17810 −0.35922 −0.26862 0.00000 0.00000

24.0 0.00000 0.00000 −0.21397 −0.17790 −0.35883 −0.26825 0.00000 0.00000

26.0 0.00000 0.00000 −0.21373 −0.17773 −0.35844 −0.26793 0.00000 0.00000

28.0 0.00000 0.00000 −0.21353 −0.17759 −0.35807 −0.26764 0.00000 0.00000

30.0 0.00000 0.00000 −0.21336 −0.17746 −0.35773 −0.26739 0.00000 0.00000

` 0.00000 0.00000 −0.21070 −0.17558 −0.35117 −0.26337 0.00000 0.00000
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pling the ground state and the excited states are presented in
Tables I–V with only two matrix elements for the transitions
involving thenu=4 states. Table VI gives examples for tran-
sitions betweennu=4 and excited states.

The most prominent features, which can be deduced from
the tabulated data, are as follows.sid The matrix elements
strongly depend on the internuclear distanceR. sii d Some
matrix elements of the quasimolecules, with differentZ1 at
large R, exchange their limiting values.siii d The limiting
values of some matrix elements, at largeR, tend in pairs to
the same values or to values of equal moduli and opposite
signs, and some of them are equal to zero.sivd Some of the
matrix elements have zeros at intermediateR. Below, some
features are discussed qualitatively in more detail.

A. Limiting values

The coincidence of some limiting values could already be
found from the results obtained inf1g for one-electron homo-

nuclear quasimolecules and checked using the formulas for
the matrix elements of the hydrogen atom in parabolic coor-
dinatesssee the Appendixd, and theg-u symmetry of the
wave functions. A different feature for heteronuclear quasi-
molecules is that the correlation diagram, which relates the
orbitals of the isolated and united ions, now depends onZ1.
Such dependence has been used in the physics of inner-shell
collision excitationf16g. More precisely, the rearrangement
for the dipole matrix elements of the molecular orbitalsMOd
correlation diagrams results in the dependence of the limiting
values onZ1, apart from a trivial scaling, and in the exchange
of the limiting values.

The MO correlation diagrams can be constructed with the
rules obtained in Refs.f15,17g. But with the aim of spectro-
scopic applications, Figs. 1–3 epict the real MO energy dia-
grams. These MO energy diagrams have been calculated
with the procedure described in Sec. III for quasimolecules
with Z1=1.5,2,2.5. There is a one-to-one correspondence
between the united ion and the separated ion states for the

TABLE II. Dipole moment matrix elements for transitions 3ds→1ss and 4fp→1ss in relation to the
distanceR between ionsZ1=1.5, 2.0, 2.5, 3.0 andZ2=1; all values in atomic units.

R

3ds→1ss 4fp→1ss

Z1=1.5 Z1=2.0 Z1=2.5 Z1=3.0 Z1=1.5 Z1=2.0 Z1=2.5 Z1=3.0

0.25 0.00106 0.00184 0.00245 0.00293 0.00003 0.00004 0.00005 0.00006

0.50 0.00292 0.00525 0.00706 0.00840 0.00015 0.00020 0.00025 0.00030

0.75 0.00608 0.01098 0.01437 0.01635 0.00041 0.00056 0.00070 0.00084

1.00 0.01105 0.01939 0.02387 0.02534 0.00089 0.00120 0.00148 0.00171

1.50 0.02825 0.04242 0.04380 0.04037 0.00281 0.00357 0.00405 0.00437

2.00 0.05575 0.06595 0.05785 0.04808 0.00639 0.00737 0.00780 0.00797

2.50 0.08848 0.08269 0.06438 0.05007 0.01172 0.01237 0.01237 0.01204

3.00 0.11794 0.09134 0.06548 0.04912 0.01851 0.01821 0.01727 0.01599

3.50 0.13901 0.09356 0.06358 0.04718 0.02638 0.02446 0.02199 0.01932

4.00 0.15109 0.09151 0.06050 0.04528 0.03495 0.03062 0.02606 0.02172

4.50 0.15556 0.08709 0.05731 0.04385 0.04379 0.03624 0.02922 0.02315

5.00 0.15421 0.08170 0.05455 0.04297 0.05244 0.04103 0.03139 0.02369

6.00 0.14034 0.07121 0.05101 0.04257 0.06767 0.04766 0.03298 0.02280

7.00 0.11981 0.06338 0.04991 0.04315 0.07876 0.05062 0.03173 0.02055

8.00 0.09921 0.05869 0.05039 0.04393 0.08559 0.05077 0.02867 0.01822

9.00 0.08153 0.05677 0.05150 0.04459 0.08906 0.04517 0.02486 0.01647

10.0 0.06731 0.05710 0.05259 0.04511 0.09025 0.03380 0.02123 0.01550

12.0 0.04695 0.06158 0.05407 0.04585 0.08948 0.02146 0.01614 0.01567

14.0 0.03288 0.06578 0.05492 0.04637 0.08813 0.01277 0.01399 0.01731

16.0 0.02189 0.06780 0.05550 0.04676 0.08779 0.00747 0.01427 0.01858

18.0 0.01334 0.06879 0.05594 0.04707 0.08839 0.00426 0.01708 0.01925

20.0 0.00747 0.06941 0.05629 0.04732 0.08944 0.00234 0.02102 0.01965

22.0 0.00394 0.06988 0.05657 0.04753 0.09057 0.00124 0.02286 0.01995

24.0 0.00200 0.07025 0.05682 0.04771 0.09154 0.00064 0.02351 0.02018

26.0 0.00098 0.07057 0.05702 0.04786 0.09230 0.00032 0.02387 0.02038

28.0 0.00047 0.07084 0.05720 0.04798 0.09289 0.00016 0.02413 0.02054

30.0 0.00022 0.07107 0.05736 0.04810 0.09336 0.00000 0.02435 0.02069

` 0.00000 0.07458 0.05966 0.04972 0.09944 0.00000 0.02043 0.01703
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case ofZ1=3, Z2=1 and the caseZ1=2.5, Z2=1.
To exemplify the dependence of the limiting values onZ1

we take the particular case of the matrix element, i.e.,
k010udzu000l=−128/243Z1, for the hydrogenlike ionfsee Eq.
sA5dg. According to Figs. 1–3 this matrix element is the lim-
iting value for the transition between the 3ds and 1ss states
in the case ofZ1=1.5,2, but in the caseZ1=2.5,3, this ma-
trix element is the limiting value for the transition between
the 2ps and 1ss states seesTable Id. Another example is the
matrix elementk011udxu000l=27Î2/256Z1. Indeed, Figs. 1
and 2 demonstrate that this matrix element is the limiting
value for the transitions between the 4fp and 1ss MO states
in the case ofZ1=1.5, but in the case ofZ1=2,2.5,3 this
matrix element is the limiting value for the transition be-
tween the 3dp and 1ss statesssee Table IId. Figures 1–3
show that the 2ss, 2pp, 3ss, and 3pp MO energy diagrams
do not depend onZ1 and their limiting values are determined
by Eqs.sA5d and sA7d.

The equality of the limiting values atR→` may also be
explained in terms of matrix elements for hydrogenlike ions,

calculated in parabolic coordinates. For instance, the result
k010udzu000l=−k100udzu000l fEq. sA4dg leads to the equality
of the matrix elementsk2psudzu1ssl=−k2ssudzu1ssl for Z1

=2.5,3 andk3dsudzu1ssl=−k2ssudzu1ssl for Z1=1.5,2 atR
→` ssee also Tables I and IIId. In a similar way, the result
k011udxu000l=k101udxu000l fEq. sA6dg will lead to the equal-
ity of the limiting values for the matrix elements
k3dpudxu1ssl=k3ppudxu1ssl in the caseZ1=2, 2.5, 3, and for
the matrix elementsk4fpudxu1ssl=k3ppudxu1ssl in the case
Z1=1.5 atR→` ssee also Tables II and IVd.

B. Asymptotically forbidden transitions

When the dipole matrix element between two states of an
atom or an ion is equal to zero, the transition is forbidden.
Nevertheless, interaction between particles during collisions
will allow the dipole matrix elements to become functions of
internuclear distance and optical transitions to be allowed.
Such optical transitions can be identified as true quasimo-

TABLE III. Dipole moment matrix elements for transitions 2ss→1ss and 3ss→1ss in relation to the
distanceR between ionsZ1=1.5, 2.0, 2.5, 3.0 andZ2=1; all values in atomic units.

R

2ss→1ss 3ss→1ss

Z1=1.5 Z1=2.0 Z1=2.5 Z1=3.0 Z1=1.5 Z1=2.0 Z1=2.5 Z1=3.0

0.25 0.00998 0.01681 0.02173 0.02536 0.00434 0.00731 0.00944 0.01101

0.50 0.02243 0.03784 0.04819 0.05470 0.00971 0.01634 0.02077 0.02354

0.75 0.03795 0.06288 0.07688 0.08289 0.01631 0.02694 0.03289 0.03546

1.00 0.05674 0.09032 0.10393 0.10555 0.02419 0.03843 0.04427 0.04506

1.50 0.10344 0.14291 0.14352 0.13277 0.04343 0.06040 0.06112 0.05680

2.00 0.15701 0.180998 0.16492 0.14568 0.06531 0.07659 0.07047 0.06244

2.50 0.20654 0.20391 0.17642 0.15261 0.08571 0.08665 0.07555 0.06539

3.00 0.24396 0.21747 0.18327 0.15686 0.10150 0.09274 0.07851 0.06708

3.50 0.26911 0.22600 0.18775 0.15973 0.11249 0.09659 0.08036 0.06812

4.00 0.28560 0.23177 0.19092 0.16181 0.11996 0.09914 0.08158 0.06880

4.50 0.29672 0.23592 0.19328 0.16338 0.12516 0.10090 0.08241 0.06925

5.00 0.30456 0.23905 0.19510 0.16461 0.12890 0.10216 0.08299 0.06957

6.00 0.31476 0.24346 .19775 0.16644 0.13379 0.10377 0.08370 0.06995

7.00 0.32107 0.24642 0.19960 0.16772 0.13669 0.10467 0.08409 0.07015

8.00 0.32537 0.24857 0.20096 0.16868 0.13850 0.10520 0.08431 0.07026

9.00 0.32848 0.25020 0.20202 0.16943 0.13966 0.10552 0.08443 0.07032

10.0 0.33086 0.25149 0.20286 0.17003 0.14042 0.10571 0.08450 0.07036

12.0 0.33427 0.25340 0.20412 0.17093 0.14125 0.10589 0.08456 0.07039

14.0 0.33662 0.25477 0.20503 0.17157 0.14161 0.10594 0.08457 0.07039

16.0 0.33835 0.25579 0.20571 0.17206 0.14174 0.10593 0.08456 0.07039

18.0 0.33969 0.25659 0.20624 0.17244 0.14176 0.10591 0.08455 0.07038

20.0 0.34077 0.25724 0.20667 0.17275 0.14173 0.10588 0.08453 0.07038

22.0 0.34165 0.25777 0.207703 0.17300 0.14168 0.10584 0.08452 0.07037

24.0 0.34239 0.25821 0.20732 0.17321 0.14161 0.10581 0.08450 0.07037

26.0 0.34302 0.25859 0.20757 0.17339 0.14155 0.10578 0.08449 0.07036

28.0 0.34356 0.25892 0.20779 0.17354 0.14148 0.10575 0.08448 0.07036

30.0 0.34403 0.25919 0.20798 0.17367 0.14142 0.10573 0.08447 0.07035

` 0.35117 0.26337 0.21070 0.17558 0.14063 0.10547 0.08438 0.07031
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lecular ones, and up to now some of these transitions pro-
duced in atomic and ionic collisions have been studied; see
e.g.,f18g.

In their work on the H2
+ dipole matrix elements, Ramaker

and Peekf1sadg have pointed out five asymptotically forbid-
den transitions withDm=0. It is obvious that heteronuclear
quasimolecules also have the same asymptotically forbidden
transitions corresponding to transitions for isolated ions. For
example, the transitionk3psudzu1ssl for Z1=2,2.5,3 ssee
Table Vd, the dipole moment of which tends to the transition
moment k110udzu000l when increasingR, is consequently
equal to zero whenR→` fEq. sA4dg. It can be said that such
transitions are induced by the perturbation of a bound elec-
tron by an external ion.

In heteronuclear quasimolecules there is an additional
possibility for asymptotically forbidden transitions. When at
R→` the upper and lower states belong to different ions, the
corresponding wave functions do not overlap and therefore
the matrix element is equal to zero. At smallerR, the inter-

action between two different ions will allow optical transi-
tions corresponding to the transition of one electron from one
ion to the other. Examples of such transitions are discussed
below.

The prominent distinction of heteronuclear quasimol-
ecules is the transformation of the strongest transition-matrix
elements, connecting the resonance charge exchange states
of the homonuclear quasimolecules, into matrix elements of
forbidden transitions. According to Mullikenf19g for the
homonuclear case, the dipole moments of the resonance
charge transfer transitions are proportional toR/2 at largeR.
In the heteronuclear case, such optical transitions accompany
nonresonant charge exchange, leading to the electron transi-
tion from one ion to another at largeR. Therefore, such tran-
sitions correspond to asymptotically forbidden ones. As ex-
amples the transitions 2ps-1ss for Z1=1.5,2 and 3ds-1ss
for Z1=2.5,3 accompanying the charge exchange between
the lowest ion states with parabolic setss000d and s000d8
correspond to such asymptotically forbidden transitionsssee
Table Id.

TABLE IV. Dipole moment matrix elements for transitions 2pp→1ss and 3pp→1ss in relation to the
distanceR between ionsZ1=1.5, 2.0, 2.5, 3.0 andZ2=1; all values in atomic units.

R

2pp→1ss 3pp→1ss

Z1=1.5 Z1=2.0 Z1=2.5 Z1=3.0 Z1=1.5 Z1=2.0 Z1=2.5 Z1=3.0

0.25 0.23158 0.19653 0.17077 0.15091 0.08968 0.07559 0.06534 0.05751

0.50 0.26521 0.22664 0.19633 0.17182 0.09746 0.08243 0.07107 0.06215

0.75 0.29803 0.25228 0.21432 0.18332 0.10429 0.08767 0.07472 0.06445

1.00 0.32704 0.27084 0.22374 0.18692 0.10984 0.09121 0.07649 0.06501

1.50 0.36996 0.28661 0.22541 0.18400 0.11741 0.09392 0.07645 0.06388

2.00 0.39011 0.28375 0.21981 0.17988 0.12058 0.09298 0.07482 0.06231

2.50 0.38990 0.27591 0.21528 0.17761 0.11994 0.09101 0.07328 0.06102

3.00 0.37859 0.26950 0.21281 0.17660 0.11718 0.08925 0.07209 0.05999

3.50 0.36544 0.26564 0.21169 0.17618 0.11408 0.08796 0.07117 0.05915

4.00 0.35495 0.06375 0.21124 0.17599 0.11151 0.08704 0.07042 0.05843

4.50 0.34806 0.26303 0.21106 0.17589 0.10966 0.08639 0.06979 0.05781

5.00 0.34434 0.26289 0.21100 0.17583 0.10845 0.08590 0.06923 0.05726

6.00 0.34306 0.26314 0.21094 0.17575 0.10743 0.08517 0.06827 0.05634

7.00 0.34524 0.26338 0.21089 0.17570 0.10750 0.08457 0.06746 0.05561

8.00 0.34762 0.26349 0.21085 0.17567 0.10799 0.08399 0.06676 0.05501

9.00 0.34926 0.26380 0.21082 0.17565 0.10852 0.08344 0.06617 0.05452

10.0 0.35021 0.26353 0.21080 0.17563 0.10890 0.08291 0.06566 0.05410

12.0 0.35099 0.26350 0.21076 0.17561 0.10910 0.08197 0.06483 0.05346

14.0 0.35121 0.26347 0.21074 0.17560 0.10881 0.08118 0.06419 0.05297

16.0 0.35126 0.26345 0.21073 0.17560 0.10832 0.08052 0.06369 0.05260

18.0 0.35127 0.26343 0.21072 0.17559 0.10777 0.07997 0.06329 0.05230

20.0 0.35126 0.26342 0.21072 0.17559 0.10724 0.07951 0.06296 0.05206

22.0 0.35125 0.26341 0.21071 0.17559 0.10674 0.07912 0.06268 0.05186

24.0 0.35124 0.26340 0.21071 0.17559 0.10629 0.07878 0.06245 0.05169

26.0 0.35123 0.26340 0.21071 0.17559 0.10588 0.07849 0.06224 0.05154

28.0 0.35122 0.26339 0.21071 0.17559 0.10551 0.07824 0.06207 0.05142

30.0 0.35121 0.26339 0.21071 0.17559 0.10518 0.07801 0.06192 0.05131

` 0.35117 0.26337 0.21070 0.17558 0.09944 0.07458 0.05966 0.04972
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In homonuclear quasimolecules, only one of the two ex-
cited states that are involved in the resonant charge exchange
is tied up by an optical transition to the 1ssg ground state. In
the heteronuclear case, each of the excited states is tied up by
an optical transition with the ground state. In the hetero-
nuclear case, the states that are theu excited states in the
homonuclear case belong, for large interionic distances, to
the ionZ2, in the case of a sufficiently small difference be-
tweenZ1 andZ2 and of smallnu. As a consequence, the states
under discussion have the zero value limit at largeR for
transition-matrix elements for transitions to the ground state.
Of even greater importance for spectroscopy is the fact that,
at intermediateR, the parallel transitions, forbidden in the
homonuclear case due to parity violation and allowed in the
heteronuclear case, are the strongest now. For example, in
theZ1=1.5 case, the strong 3psu-1ssg transition gives rise to
the asymptotically forbidden 3ps-1ss transition, while the
forbidden 2ssg-1ssg transition gives rise to the 2ss-1ss
transition, 2ss-1ss being the dominant transitionssee Tables

III and Vd. In the case of perpendicular transitions involving
p excited states, the transitions forbidden for allR due to the
parity violations are forbidden at largeR in the heteronuclear
case for sufficiently small difference betweenZ1 andZ2, e.g.,
the 3dp-1ss, 2pp-1ss transitions forZ1=1.5 ssee Tables II
and IVd.

C. Zeros in the dipole transition moments

The properties of the dipole transition-matrix elements
discussed above could be predicted, in principle, before any
calculation by examining the correlation diagrams. This is
not the case for zeros in the dipole moments. Up to now
there are no rules that help to predict them reliably.

The existence of zeros in the dipole transition-matrix ele-
ments has already been pointed out for symmetrical quasi-
molecules. For instance, Ramaker and Peekf1g considered
the lowest 20 electronic states of H2

+ and found 14 matrix
elements with zeros. In the heteronuclear case parallel tran-

TABLE V. Dipole moment matrix elements for transitions 3ps→1ss and 4ps→1ss in relation to the
distanceR between ionsZ1=1.5, 2.0, 2.5, 3.0 andZ2=1; all values in atomic units.

R

3ps→1ss 4ps→1ss

Z1=1.5 Z1=2.0 Z1=2.5 Z1=3.0 Z1=1.5 Z1=2.0 Z1=2.5 Z1=3.0

0.25 −0.12796 −0.10778 −0.09289 −0.08137 −0.07421 −0.06223 −0.05341 −0.04662

0.50 −0.13743 −0.11347 −0.09481 −0.08004 −0.07673 −0.06251 −0.05167 −0.04327

0.75 −0.13436 −0.10445 −0.08230 −0.06729 −0.07096 −0.05396 −0.04225 −0.03417

1.00 −0.11617 −0.08495 −0.06615 −0.05399 −0.05717 −0.04080 −0.03165 −0.02597

1.50 −0.06109 −0.04839 −0.04293 −0.03791 −0.02412 −0.01944 −0.01814 −0.01653

2.00 −0.01617 −0.02939 −0.03216 −0.03033 −0.00027 −0.00881 −0.01182 −0.01179

2.50 0.00886 −0.02113 −0.02680 −0.02630 0.01284 −0.00385 −0.00833 −0.00881

3.00 0.01882 −0.01735 −0.02389 −0.02393 0.01881 −0.00122 −0.00606 −0.00665

3.50 0.02062 −0.01549 −0.02229 −0.02235 0.02099 0.00036 −0.00442 −0.00494

4.00 0.01898 −0.01459 −0.02142 −0.02111 0.02138 0.00139 −0.00313 −0.00352

4.50 0.01626 −0.01426 −0.02095 −0.02001 0.02096 0.00211 −0.00207 −0.00231

5.00 0.01345 −0.01431 −0.02062 −0.01897 0.02016 0.00264 −0.00114 −0.00126

6.00 0.00871 −0.01520 −0.01989 −0.01705 0.01817 0.00340 0.00044 0.00047

7.00 0.00537 −0.01666 −0.01885 −0.01537 0.01619 0.00403 0.00177 0.00182

8.00 0.00313 −0.01808 −0.01766 −0.01394 0.01447 0.00465 0.00290 0.00290

9.00 0.00169 −0.01888 −0.01646 −0.01273 0.01306 0.00529 0.00386 0.00378

10.0 0.00080 −0.01894 −0.01536 −0.01171 0.01197 0.00593 0.00469 0.00452

12.0 0.00004 −0.01787 −0.01346 −0.01007 0.01060 0.00714 0.00604 0.00568

14.0 −0.00010 −0.01641 −0.01194 −0.00882 0.01021 0.00821 0.00709 0.00656

16.0 −0.00008 −0.01504 −0.01072 −0.00785 0.01082 0.00913 0.00793 0.00725

18.0 −0.00005 −0.01383 −0.00971 −0.00707 0.01228 0.00993 0.00862 0.00781

20.0 −0.00002 −0.01277 −0.00887 −0.00643 0.01367 0.01061 0.00919 0.00826

22.0 −0.00001 −0.01186 −0.00817 −0.00589 0.01448 0.01120 0.00968 0.00865

24.0 −0.00001 −0.01106 −0.00756 −0.00544 0.01504 0.01172 0.01010 0.00897

26.0 0.00000 −0.01036 −0.00704 −0.00505 0.01552 0.01219 0.01046 0.00926

28.0 0.00000 −0.00973 −0.00659 −0.00471 0.01596 0.01260 0.01078 0.00950

30.0 0.00000 −0.00918 −0.00619 −0.00442 0.01637 0.01296 0.01107 0.00972

` 0.00000 0.00000 0.00000 0.00000 0.02621 0.01966 0.01573 0.01311
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sitions having zeros in the symmetrical case have zeros for
all Z1 values considered here, namely, 4ps-1ss s5U ,1Gd
ssee Table Vd, 4dp-2pp s8G,4Ud, 4ds-2ps s8G,4Ud. The
matrix element for the transition 3ps-1ss s2U ,1Gd has two
zeros but only forZ1=1.5 and has no zero otherwisessee
Table Vd sthe notations in parentheses indicate the proper
transitions for the symmetrical case according tof1gd. The
surprising result is a zero for the transition 3ss-2ps while
this is not the case for the proper transitions5G,1Ud in
homonuclear quasimolecules.

Similarly, there are zeros for allZ1 for the perpendicular
transitions 3ss-2pp s5G,4Ud, 4ds-2pp s6G,4Ud. In the
cases of transitions 3pp-2ps, 4ds-2ss, 4dp-2ss, 4pp-2ss,
there are roots for allZ1 although the proper transitions are
forbidden in the symmetrical case due to parity violation.
Finally, the matrix elements for the transitions 4ss-2ps and
4ss-2pp have zeros, but the proper transitions have not been
analyzed in the homonuclear casef1g.

Inspecting the results of calculations for H2
+ Lewis, Mc-

Dowell, and Moiseiwitschf20g noted that the quasiradial

wave function of the upper state in each of the matrix ele-
ments with zero has at least one node. This condition is
satisfied for the transitions in the heteronuclear quasimol-
ecules under consideration above. The qualitative discussion
of the condition for the existence of zeros in the hetero-
nuclear case can be found inf21g.

Finally, let us consider the transitions 4fs-2ps and 4fp
-2ps. They are forbidden due to parity violation in the
homonuclear case and have no nodes in the quasiradial wave
functions of the upper and lower states. Nevertheless, both of
them have zeros in the heteronuclear casesZ1=1.5,2sTable
VI d. At larger Z1 both transitions can be described qualita-
tively as transitions between two excited states of the heavier
ion in the field of the lighter ionssee Figs. 1–3d.

V. CONCLUSIONS

The dipole matrix elements for the optical transitionss
-s, s-p, p-p in heteronuclear quasimoleculesZ1eZ2 with

TABLE VI. Dipole moment matrix elements for transitions 4fs→2ps and 4fp→2ps in relation to the
distanceR between ionsZ1=1.5, 2.0, 2.5, 3.0 andZ2=1; all values in atomic units.

R

4fs→2ps 4fp→2ps

Z1=1.5 Z1=2.0 Z1=2.5 Z1=3.0 Z1=1.5 Z1=2.0 Z1=2.5 Z1=3.0

0.25 −0.00237 −0.00390 0.00404 −0.00569 0.00137 0.00225 0.00285 0.00328

0.50 −0.00422 −0.00670 0.00825 −0.00929 0.00243 0.00385 0.00473 0.00532

0.75 −0.00529 −0.00813 0.00994 −0.01136 0.00303 0.00464 0.00565 0.00642

1.00 −0.00570 −0.00871 −0.01100 −0.01328 0.00324 0.00491 0.00614 0.00735

1.50 −0.00529 −0.00857 −0.01280 −0.01886 0.00291 0.00459 0.00670 0.00967

2.00 −0.00268 −0.00579 −0.01419 −0.02951 0.00127 0.00258 0.00640 0.01330

2.50 0.00459 −0.00199 −0.01534 −0.05223 −0.00292 −0.00236 0.00487 0.02013

3.00 0.01957 0.01785 −0.01801 −0.10027 −0.01098 −0.01156 0.00226 0.03378

3.50 0.04538 0.04559 −0.02695 −0.18828 −0.02387 −0.02633 −0.00025 0.05844

4.00 0.08494 0.08889 −0.05125 −0.31379 −0.04206 −0.04781 0.00000 0.09401

4.50 0.13993 0.14923 −0.10431 −0.44552 −0.06536 −0.07664 0.00779 0.13157

5.00 0.20882 0.22424 −0.20154 −0.54908 −0.09279 −0.11274 0.03001 0.16009

6.00 0.36267 0.39407 −0.52280 −0.64785 −0.15318 −0.20117 0.12847 0.18030

7.00 0.48942 0.53906 −0.75322 −0.66072 −0.20900 −0.29326 0.21165 0.17037

8.00 0.56566 0.61320 −0.79977 −0.64672 −0.25166 −0.36920 0.22596 0.05220

9.00 0.59768 0.61511 −0.77908 −0.63290 −0.27927 −0.42357 0.20658 0.13662

10.0 0.59865 0.57147 −0.75186 −0.62644 −0.29327 −0.46041 0.17871 0.12700

12.0 0.55419 0.44099 −0.73305 −0.62611 −0.28910 −0.49827 0.13420 0.12499

14.0 0.50122 0.31285 −0.74178 −0.62686 −0.25327 −0.50396 0.11352 0.13511

16.0 0.46830 0.19631 −0.74832 −0.62592 −0.19714 −0.50199 0.11302 0.14277

18.0 0.45910 0.10147 −0.74984 −0.62445 −0.13581 −0.50511 0.13264 0.14619

20.0 0.46871 0.04407 −0.74932 −0.62295 −0.08411 −0.51140 0.16091 0.14793

22.0 0.48823 0.01730 −0.74819 −0.62158 −0.04805 −0.51707 0.17334 0.14905

24.0 0.50731 0.00643 −0.74692 −0.62036 −0.02588 −0.52085 0.17692 0.14989

26.0 0.52012 0.00230 −0.74568 −0.61928 −0.01335 −0.52307 0.17849 0.15055

28.0 0.52703 0.00080 −0.74452 −0.61833 −0.00667 −0.52436 0.17951 0.15111

30.0 0.53047 0.00027 −0.74346 −0.61748 −0.00324 −0.52513 0.18029 0.15157

` 0.52675 0.00000 −0.72548 −0.60457 0.00000 −0.52675 0.18923 0.15769
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Z1=1.5,2,2.5,3,Z2=1, andnu=1,2,3,4have been calcu-
lated. The scaling relation makes it possible to determine the
matrix elements for “one-electron quasi-molecules” having
nuclear charge ratios such as 2:1, 3:1, 3:2, 5:2. The results
obtained are very accurate but they do not include relativistic
effects. Joined to those for the quasimolecule H2

+, they give
reliable input data for spectral line profile calculations in
inner-shell collision physics and hot dense plasma physics.

Zeros at intermediateR and zero limiting values at largeR
are the highlighted features of the matrix elements. Although
such features have been observed for the H2

+ quasimolecule
earlier, the heteronuclear case exhibits some additional fea-

tures. It has been found that, in contrast to homonuclear
quasimolecules, zeros may exist even for nodeless quasira-
dial functions for both states involved. Furthermore, the het-
eronuclear case generates a large number of asymptotically
forbidden transitions corresponding to transitions of one
electron from one ion to another. This latter feature has not
been reported up to now to our knowledge, although it could
be found in nonsymmetrical collisions of heavy rare-gas at-
oms or heavy alkali-metal atoms. Moreover, the approxima-
tion of a constant dipole matrix element in the spectral wing
calculations is generally less justified for heteronuclear
quasimolecules than for homonuclear ones.

Let us emphasize some conclusions useful for experi-
ments. The entire spectra produced by heteronuclear quasi-
molecules are richer than those in the homonuclear case,
essentially due to the exhibition of the former forbiddeng
-g and u-u transitions. The most prominent features of the
spectra are line cores produced by transitions emitted by iso-
lated ions. The wings produced by quasimolecular transitions
can be estimated by the well-known quasistatic approxima-
tion. Within this assumption, the spectral profile in emission
may be written as

I ifsDvd , Rc
2 AifsRcd

UdDUif

dR
U

Rc

e−UisRcd/T. s20d

Here Dv=v−v0 represents the shift from the single-ion
transition frequency, and,DUif =Ui −Uf is taken for the Con-
don pointRc, i.e., Dv=DUifsRcd.

Therefore, the existence of zeros in the dipole matrix el-
ements leads to zeros in the wings of the spectral lines. It is
obvious that this last conclusion is based on the quasistatic
approximation. In fact the zeros in the spectral profiles will
be replaced by minima of intensity, i.e., dips in the spectra,
even in the semiclassical approachf22g.

FIG. 1. Molecular orbital correlation diagram for the quasimol-
eculeZ1eZ2 with Z1=1.5 andZ2=1. For the notation of the molecu-
lar orbitals we use the united ion designation in the left part of the
figure and parabolic quantum numbers in brackets in the right part
of the figure. n stands for the main quantum number in the
separated-ion limit, and the primed numbers are for the ion with
Z1=1.

FIG. 2. Molecular orbital correlation diagram for the quasimol-
eculeZ1eZ2 with Z1=2.0 andZ2=1. The notations are similar to the
ones on Fig. 1.

FIG. 3. Molecular orbital correlation diagram for the quasimol-
eculeZ1eZ2 with Z1=2.5 andZ2=1. The notations are similar to the
ones on Fig. 1.
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We must stress that the description of the line cores of
allowed transitions is beyond the quasistatic approximation,
but in the case of forbidden quasimolecular transitions the
whole spectral profiles can be estimated by Eq.s20d.
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APPENDIX

When R tends to infinity, each of the considered two-
Coulomb-center wave functions transforms itself into the rel-
evant paraboliceZ monocenter wave function. These para-
bolic functions are determined as followsf14g:

wn1n2m =
21/2Z3/2

n2 fn1mSZm

n
D fn2mSZn

n
Deimw/Î2p, sA1d

fnmsrd =
1

m!
Îsn + md!

n!
e−r/2rm/2Fs− n,m+ 1,rd. sA2d

Here n1,2,m are parabolic quantum numbers withn1+n2
+m+1=n, andFs−n,m+1,rd is the confluent hypergeomet-
ric function.

The transition-matrix element for parallel transitions be-
tween the states with parabolic numberssn1n20d andsn18n280d
is given by

kn1n20udzun18n280l = =
1

4n2n82E
0

` E
0

`

sj2 − h2dfn10S j

n1
D

3fn180S j

n18
D fn20S h

n2
D fn280S h

n28
Ddj dh.

sA3d

Therefore

kn1n20udzun18n280l = − kn2n10udzun28n180l. sA4d

For transitions involving the ground state the explicit ex-
pression of the matrix element is given by

kn1n20udzu000l =
8n2

sn + 1d4Z
FFS− n1,1,1,

2

n + 1
D

3FS− n2,3,1,
2

n + 1
D

− FS− n2,1,1,
2

n + 1
D

3FS− n1,3,1,
2

n + 1
DG . sA5d

In a similar way we get for the perpendicular transitions

kn1n21udxun18n280l = kn2n11udxun28n180l sA6d

and for transitions involving the ground state

kn1n21udxu000l =
16n2

sn + 1d5Z
Îsn1 + 1d!sn2 + 1d!

n1!n2!

3 FFS− n1,2,2,
2

n + 1
DFS− n2,3,2,

2

n + 1
D

+ FS− n2,2,2,
2

n + 1
DFS− n1,3,2,

2

n + 1
DG .

sA7d

HereF(−n,a,b,2 /sn+1d) is the hypergeometric function.
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