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The problem of dipole transition-matrix element calculation for optical transitions in multiply charged
one-electron diatomic quasimolecules with unequal nuclear chaigmsdZ, has been stated and solved. The
quasimoleculeZ;eZ, is a unique example of a two-center system for which the energy terms and dipole
transition moments have been calculated precisely in the frame of a nonrelativistic approach. Particular ex-
amples for the optical transitions wity=1.5,2,2.5,3 and,=1 and with the principal quantum number of
the united ionn,=1,2,3,4have been tabulated. The scaling rules make it possible to determine the matrix
elements for quasimolecules having nuclear charge ratios such as 2:1, 3:1, 3:2, and 5:2. Zeros at intermediate
R and zero limiting values at large are the highlighted features of the matrix elements. The heteronucleus
case generates a large number of asymptotically forbidden transitions corresponding to transitions of an
electron from one ion to another.

DOI: 10.1103/PhysRevA.71.022512 PACS nunt®er33.70.Ca

[. INTRODUCTION rameters of hot dense plasma, the excited-state orbitals of a
] ) ) bound electrorfor bound electronsare strongly disturbed by

The present work deals with the calculation of dipolethe field of the nearest-neighbor ion. Therefore, consider-
transition-matrix elements and related optical values for tranation of multiply charged quasimolecule ions makes physical
sitions in multiply charged one-electron diatomic quasimol-sense. Within such an approach absorption and emission pro-
ecules with unequal nuclear charggsandZ,. (Hereafter we  cesses in hot dense plasmas are simply optical transitions in
use the notatioZ,eZ, for such quasimoleculgslt is impor-  quasimolecule$5].
tant to note that the results obtained will be used for subse- In terms of optical spectroscopy the phenomenon of
quent spectral profile calculations of the optical transitionsquasimolecular radiation suggests two questions. First, what
between quasimolecular states which correlate, at small irare the spectral profiles produced by such transitions? Sec-
ternuclear distances, with the states of the united nucleugnd, what is the influence of configuration interactions in
with principal quantum number,=1,2,3,4. ion-atom collisions or in hot dense plasma conditions on

Up to now the most comprehensive calculations of thespectral profiles? It seems reasonable to begin with the first
dipole transition-matrix elements for the cagg=Z,=1 (hy-  question regarding the transitions produced by binary colli-
drogen molecular ion kf) have been performed by Ramaker SIONS of multicharged ions with only one bound electron.
and PeeK1] and motivated by problems arising in astro- SUch @ method has been attempted previously in Fg8f.

physics. The data obtained have been applied successfully By1€re the 'Zpecéragp_rofile's prgduced by Lylrrgatrar]si"[ions fih
Allard et al. [2] to the calculations of the spectral profiles ere considered. Being aimed at a general description of the

. exchange interaction influence on the spectral profiles, the
produced by the atomic hydrogen Lymanand Lymang probIerr?was considerably simplified 6] W?th the :Essump-
transitions broaqened by c_olhsmng with ionized atomic hy'tions of constant dipole matrix elements and exponential in-
droge_n. . conclusmn 0?] is that the variation c.)f teraction energies. Such an approach works well for the de-
the dipole has to be 'gaken Into account to obtain rellablescription of spectral profiles that are connected to allowed
results to be used as diagnostics of stellar and plasma param: - <iions in an ion and produced by quasimolecular transi-
eters. . . , ions, in the region of large internuclear distances. But the

The first wave of Interest In t_he spectral profiles prOOIuceCgpproach is totally improper for forbidden transitions marked
by Z,eZ, quasimolecules with differert, andZ, was appar- by a strong dependence of the dipole matrix elements on the
ﬁmg’r 'thdeulfggcit:gtit:ﬁig?gﬁr;?éﬁnsom';ié:gyFrg;j:‘tr'gciew%?rinternuclear distance. Meanwhile an accurate computation of

o ! ) ' spectral profiles produced by the quasimolecdlg, in the
this field until 1984 see Anhof3] and for some recent ad- semiclassical approadfustified for collision energies of the
vances see, €.g., Schule_'eal.[4]. Another wave came from order of several hundreds of ¢Weeds accurate values of
hot dense plasma physics. At some density-temperature IOaipole moments over a wide range of internuclear distances

rather than being restricted to large ones only. In this context,
preliminary computatiorf7] has revealed the occurrence of
* Author to whom all correspondence should be addressed. Emaihe roots of the dipole matrix elements at specific internu-
address: elisabeth.dalimier@upmec.fr clear distances.
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To the best of the authors’ knowledge, the dipole matrix  The oscillator strengtli;(Z;,Z,,R) corresponding to the
elements for the quasimoleculgeZ, with differentZ; and  electric dipole transition— j is determined by means of the
Z, in the frame of a nonrelativistic approach have not beemnatrix elemeni1) [9], i.e.,
calculated, only the quasimolecular energy terms which have 2 (R)
been reviewed in detail by Komar@t al.[8]. In the present __£Tj 3 2
paper we computed the dipole transition-matrix elements for (2122 R) = 2 |d‘mi'jmj(zl’zz’R)| JC)
one-electron diatomic quasimolecules with the nuclei
chargesZ,>Z,=1. The matrix elements are calculated in awhere w;;(R)=&m (R)=&jim|(R) is the difference between
wide range of the internuclear distandes$or the transitions the energy terms, ang| is the degree of degeneracy or sta-
coupling the lowest 16 electronic states. Particular attentiomistical weight of the initial level (g;=1 for states withm,
is paid to the investigation of the roots of the dipole matrix=0 andg;=2 for states withm, # 0).
elgm_ents. The cor.re_sponding. .oscillator str_engths_and prob- For spontaneous emission by a quasimoleZyéZ, from
ab_|I|t|es of the radiative transitions can be immediately ob-the stats to j, the probability per time uniy;(Z;,Z,,R) can
tained from the computed matrix elements and the exact ke expressed in terms of the oscillator strength of the corre-
ergy terms(see Sec. )L _ sponding transitiof9]:

The paper is organized as follows. In Sec. Il we derive the
formulas that relate the radiative characteristics of one- A(Z1,Z,,R) = 2a°w; (R)[f(Z1.Z,,R)], (4)
electron heterodiatomic quasimolecules. In Sec. Il theW
method of calculation of the dipole moment matrix elements
is described. Section IV deals with the results of calculations
and_thelr dISCl:ISSIon. Finally, m_Se_c. V we give some con- F=plZ,, R=LIZy; (5)
clusions and discuss some applications of the results to spec-
troscopy. The Appendix summarizes some formulas useful téhen Eq.(2) can be written as

i m;,m;

herea is the fine structure constatw=1/137.
Let us perform the following scale transformation:

check the results in two limiting cases, a united nucleus an 7! 7!
separated nuclei. Atomic uniesssm=#i=1 are used through- (- ~A- L Z )(pim,(ﬁ,L) = &jjm|(L) ¢im (p,L),
out this work. 20 g+l p-Lr)) ' '
[l. SCALING RELATIONS FOR THE RADIATIVE (6)
CHARACTERISTICS wherezZ{=2,/2,, Z;=1, andejm((L)=2;%Ejm (L1 Zy).

The scaling relations between the characteristics of radia- It follows from the obtained formulas that the normalized
tive transitions in hydrogenlike ions are well known. For eigenfunctions and eigenvalues of E(®). and (6) are con-
instance, the probability of a radiative transition from siate nected by the relationdl0]
to j for the hydrogenlike ion with nucleus char@ecan be L3 ~
expressed by means of the probability for the same transition ‘/’imi(r’R) =2 ‘Pimi(ZZr’ZZR)’ (7
in hydrogen, e.g.Wi,-(Z):Z“VVij(l) [9]. Below we shall de- )
rive the formulas that relate the radiative characteristics of Eijm|(R) = Z3gijm (Z2R). (8)
the one-electron diatomic quasimolecule with nuclear

chargesZ; andZ, (Z,=Z,) to the same characteristics of the tweseunbfr?éu:fa;ri?(f elfgr.r(re)n![g (I)Equh(el) %Zselfn g;:cglat'og:;'
one-electron quasimolecule with nuclei charggsZ7,/Z, q 952

andZ,=1. Z:e2 [11]
For an electron in the field of two fixed nuclg{ andZ, - 1- o
separated at the distanBethe matrix element of the electric dimi,jmj(zl’ZZvR) = Z_dimi,jm,-(zbzz"-)’ (9)
dipole moment operator between states specified by quantum ) 2
numbersi,m andj,m; is given by the following formula: wheredi im (Z;.Z5,L) is the matrix element of the electric

R X dipole moment for the quasimolecufgeZ,.
dimi,jmj(zllZZrR)=J zpimi(F,R)ijmj(F,R)dF. 1) Now, substituting Eqs(8) and (9) in Eqg. (3), one can
write
In Eq. (1) m and m; stand for the magnetic quantum fi(Z0ZoR) = 121, Z5,L), (10)

numbers, which determine the projection of the orbital mo-

mentum of the electron on the internuclear aRjg denotes ~ Where f;;(Z;,25,L) is the oscillator strength/ Of, the dipole
the position vector of the electron, angh, and ¢y, are the electric transitioni — j for the quasimolecul&;eZ,.
two-Coulomb-center wave functions. These wave functions Thus, the oscillator strength of the quasimoleciiez,

are solutions of the following Schrédinger equation: does not change if we reduce the nuclear charges and in-
crease the nuclear separation by the same fatteimulta-

1 Z Z R R i i
(_ EAF_ - i -— i )lﬂimi(r,R) zgilmil(R)‘ﬁimi(r'R)- neously. Next, applying Eq4), one can write
F+Ri2|F-Ri2) A(Z0,2,R) = 2, Ay (23, Z5,L), (1)
2) whereAj;(Z;,Z;,L) is the probability per time unit for the
Ar is the Laplacian and?i‘mi‘(R) the energy term. spontaneous emission taking place from stéte].
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In the particular case of homonuclear quasimolecules After integration overe, the matrix element$Eq. (1)]
(Z,=Z,=2), the radiative characteristics reduce to the oneslepending on the wave functiorqér?mi and I/Ijmj can be ex-
relevant to the hydrogen molecular ion* pressed through the forms

&imi,jmj(z,z, R) = Z-laimi’jmj(l,l,ZR), (

(dx)imi,jmj =z i(dy)imi,jmj =5

5 f Xijm Xjim V&* = 1¢%d¢

f,(Z.Z,R) = f;(1,1ZR), '

1
X[ YiimYim/V1 - 77d
A”(Z,Z,R) - ZAAU(].,].,ZR) (12) f—l I‘m|‘ J‘mjl\ nun
Here&imi,jmj(l,l,ZR), f;(1,1,ZR), and(A;1,1,ZR) stand
for the matrix element of the electric dipole moment, the
oscillator strength, and the transition probability for the mol- N
ecule H*, respectively. v, i_2.2
The formulas obtained above reduce the calculation of the x lY"”‘i‘Y”mJ“l 7dn), (16)
radiative characteristics of one-electron quasimolecules with
the nuclear chargdsz; andkz, (k=1,2,3,..) to the calcu- .
lation of the same characteristics for a single quasimolecule B * 3
with the nuclear charge®, =Z,/Z, andzZ,=1. We emphasize (@i, jm; = 1_(5(_[1 Xijm X m §°0E . Yifmj Yjlmy 7 d77
that the calculation of the radiative characteristics for quasi-
molecules with smaller nuclear charges is time saving and * q ! 3
faced with smaller computational difficulties. It is also im- B . Xi\mi\xj\mjlf 3 _lYi\mi\YHm,-ln 7|
portant to note that decreasing the nuclear charges increases
the accuracy of the radiative characteristic computations. (17

oo /_
— f Xi‘mi‘X”mjl\,'gz_ 1d¢
1

They satisfy the selection rules for the magnetic quantum
number in the case of dipole transitions, i@~=m+1 in
Eq. (16) for radiation polarized in the plane perpendicular to

Itis well known that the Schrdding_er equatiCQ_) is sepa- R (o- transitiong and m;=m; in Eq. (17) for radiation po-
rable by using the prolate spheroidal coordinate systen i aq along the internuclear axie (0-0 and 7-1 transi-

(€,7,¢), e.9.[8], in which thex,y,z components of the jong [12]. For simplicity, in what follows, the sign of the
electrpn position vectar can be written in terms of spherical magnetic quantum number is omitted.
coordinates as The computational procedure implemented is as follows.
R First, we determine the separation constants for the equations
x=—\(&-1)(1- nZ)COSgo, and calculate the energy terms; then, we determine the wave
2 functions of the quasimoleculg,eZ,. In order to separate,
from a great many energy terms, those corresponding to a
y= B\,msm% (13) given sgt of quantum numbe{is, m;}, we find 5imi_(R)_ atR
2 <1, taking the value of this term &=0 as the initial ap-
proximation. Further, increasing by a AR step, we deter-
R mine &, (R) at largerR.
z= 5577- The wave function9(imi(§,R) and Yimi(n,R) can be ex-
panded in various formi3]. For the quasiradial wave func-

Then the solution of E(2) can be presented as the follow- tijon, we use the well-known Jaffe expansid]
ing product:

I1l. CALCULATION OF THE DIPOLE MOMENT
MATRIX ELEMENTS

l/fim#ﬁR):%Xnmi\@ﬂ)wmn(mR)émi«’. (14 Xm(&R) =(@-)™2PEV(E+ )7 af(6- DI(E+ D),
N2 s=0

(18
1<é<owo, -1lsgy=<l1, 0<e<27.
N AN =YE - —m—
Herexilmil(giR) anin|mi|(7]’R) stand for the two-Coulomb- WhereP—RV g|ml(R)/2 anda—[R(Zl+Zz)/2P] m—1.
center quasiradial and quasiangular wave functions, which FOr the quasiangular wave function we take
are normalized according to

oo

R3 o rl Yim- R =(1- 2mi/28—P(1+7]) b51+ s 19
T | KnteRVi e Psean=1. (nR= @A 2 b (199
1 J-1

(15 and
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TABLE I. Dipole moment matrix elements for transitionp®— 1so and 3lo— 1so in relation to the
distanceR between ion¥Z;=1.5, 2.0, 2.5, 3.0 and,=1; all values in atomic units.

2po— 1so 3do— 1so

R z,=15 7,=20 2;=25 2,=30 =15 2,=20 7;=25  7;=3.0

0.25 -0.33803 -0.28907 -0.25263 -0.22412 -0.00174 -0.00303 -0.00404 -0.00485
0.50 -0.41545 -0.36026 -0.31328 -0.27264 -0.00488 -0.00885 -0.01202 -0.01446
0.75 -0.50288 -0.42748 -0.35600 -0.29371 -0.01044 -0.01920 -0.02566 -0.02989
1.00 -0.58488 -0.47277 -0.36814 -0.28570 -0.01962 -0.03555 -0.04541 -0.05021
150 -0.70306 -0.48210 -0.32696 -0.23558 -0.05478 -0.08810 -0.09784 -0.09613
2.00 -0.73859 -0.41656 -0.26382 -0.19231 -0.12002 -0.15697 -.014965 -0.13021
250 -0.68315 -0.33383 -0.21462 -0.16807 -0.20965 -0.21854 -0.18207 -0.14208
3.00 -0.56969 -0.26313 -0.18281 -0.15913 -0.29820 -0.25760 -0.19418 -0.13747
3.50 -0.44511 -0.20898 -0.16470 -0.16077 -0.36338 -0.27608 -0.19380 -0.12248
4.00 -0.33529 -0.16811 -0.15710 -0.16779 -0.40070 -0.28197 -0.18663 -—0.10089
450 -0.24687 -0.13647 -0.15830 -0.17481 -0.41596 -0.28172 -0.17467 -0.07747
500 -0.17850 -0.11095 -0.16738 -0.17913 -0.41672 -0.27920 -0.15713 -0.05717
6.00 -0.08884 -0.07110 -0.19803 -0.18181 -0.39782 -0.27401 -0.10127 -0.03076
7.00 -0.04175 -0.04202 -0.21427 -0.18187 -0.37434 -0.27132 -0.04739 -0.01693
8.00 -0.01880 -0.02280 -0.21733 -0.18147 -0.35788 -0.27062 -0.02052 -0.00928
9.00 -0.00821 -0.01163 -0.21755 -0.18103 -0.35023 -0.27079 -0.00893 -0.00494
10.0 -0.00352 -0.00570 -0.21727 -0.18062 -0.34912 -0.27106 -0.00390 -0.00255
12.0 -0.00062 -0.00127 -0.21655 -0.17992 -0.35424 -0.27107 -0.00074 -0.00063
140 -0.00010 -0.00026 -0.21591 -0.17938 -0.35822 -0.27060 -0.00014 -0.00014
16.0 -0.00002 -0.00005 -0.21537 -0.17896 -0.35959 -0.27004 -0.00002 -0.00003
18.0 0.00000 -0.00001 -0.21492 -0.17862 -0.35979 -0.26951 0.00000 -0.00001
20.0 0.00000 0.00000 -0.21455 -0.17834 -0.35957 -0.26904  0.00000 0.00000
22.0 0.00000 0.00000 -0.21423 -0.17810 -0.35922 -0.26862  0.00000 0.00000
24.0  0.00000 0.00000 -0.21397 -0.17790 -0.35883 -0.26825 0.00000 0.00000
26.0  0.00000 0.00000 -0.21373 -0.17773 -0.35844 -0.26793  0.00000 0.00000
28.0  0.00000 0.00000 -0.21353 -0.17759 -0.35807 -0.26764  0.00000 0.00000
30.0 0.00000 0.00000 -0.21336 -0.17746 -0.35773 -0.26739  0.00000 0.00000
% 0.00000 0.00000 -0.21070 -0.17558 -0.35117 -0.26337  0.00000 0.00000

* The signs of the dipole-strength matrix elements in Egs.
Yim(7,R) = (1 - )2 P hi(1-7)% (19b)  (16) and (17) depend on the phase convention for the in-
s=0 volved wave functions. Our phase convention generates a
sign that coincides with the sign of the same matrix element
calculated with parabolic wave functioh$4] in the limit of
where Eqs(19a and(19b) are applied to the tway definite  separated nucldsee the Appendix
segment$-1,0] and[0,1], respectively.

The expansion coefficients, bs, andb can be calculated
from the three-term recurrence relatidi®. The recurrence
relations leave the normalization uncertain. Therefore, the With the algorithm described in Sec. Il we have calcu-
wave functiong19) have to be matched at the poipt0. As  lated the dipole matrix elements for all transitions between
a consequence of accumulation of computational errors, théne states with principal quantum number in the united ion
coefficientsag increase monotonically starting from a spe- limit n,=1,2, 3, and fofour transitions involvingh,=4. The
cific s. Therefore, such coefficients should be dropped frontalculations have been carried out for quasimolecules with
the summation in Eq(18) [8]. The procedure used yields a the nuclear chargeg;=1.5,2,2.5,3 and,=1. It should be
relative accuracy of order 18 for the energy terms and noted that noninteger values of nuclear charges might be
accuracy of order I6-10"1 for the corresponding quasira- studied with the same algorithm. For example, they naturally
dial and quasiangular wave functions. Thus, the accuracy dft the description of screened Coulomb molecular orbitals
the calculated matrix elements can be estimated &t 10 [15]. The calculated matrix elements for the transitions cou-

IV. RESULTS AND DISCUSSION
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TABLE II. Dipole moment matrix elements for transitions@— 1so and 47— 1so in relation to the
distanceR between ion¥Z;=1.5, 2.0, 2.5, 3.0 and,=1; all values in atomic units.

3do— 1so Af7— 1so

R =15 7,=2.0 7,=25 7,=30 Zz,=15 7,=20 Z,=25  Z;=3.0

0.25 0.00106 0.00184 0.00245 0.00293 0.00003 0.00004 0.00005 0.00006
0.50 0.00292 0.00525 0.00706 0.00840 0.00015 0.00020 0.00025 0.00030
0.75 0.00608 0.01098 0.01437 0.01635 0.00041 0.00056 0.00070 0.00084
1.00 0.01105 0.01939 0.02387 0.02534  0.00089 0.00120 0.00148 0.00171
1.50 0.02825 0.04242 0.04380 0.04037 0.00281 0.00357 0.00405 0.00437
2.00 0.05575 0.06595 0.05785 0.04808 0.00639 0.00737 0.00780 0.00797
2.50 0.08848 0.08269 0.06438 0.05007 0.01172 0.01237 0.01237 0.01204
3.00 0.11794 0.09134 0.06548 0.04912 0.01851 0.01821 0.01727 0.01599
3.50 0.13901 0.09356 0.06358 0.04718 0.02638 0.02446 0.02199 0.01932
4.00 0.15109 0.09151 0.06050 0.04528 0.03495 0.03062 0.02606 0.02172
4.50 0.15556 0.08709 0.05731 0.04385 0.04379 0.03624 0.02922 0.02315
5.00 0.15421 0.08170 0.05455 0.04297 0.05244 0.04103 0.03139 0.02369
6.00 0.14034 0.07121 0.05101 0.04257 0.06767 0.04766 0.03298 0.02280
7.00 0.11981 0.06338 0.04991 0.04315 0.07876 0.05062 0.03173 0.02055
8.00 0.09921 0.05869 0.05039 0.04393 0.08559 0.05077 0.02867 0.01822
9.00 0.08153 0.05677 0.05150 0.04459 0.08906 0.04517 0.02486 0.01647
10.0 0.06731 0.05710 0.05259 0.04511 0.09025 0.03380 0.02123 0.01550
12.0 0.04695 0.06158 0.05407 0.04585 0.08948 0.02146 0.01614 0.01567
14.0 0.03288 0.06578 0.05492 0.04637 0.08813 0.01277 0.01399 0.01731
16.0 0.02189 0.06780 0.05550 0.04676 0.08779 0.00747 0.01427 0.01858
18.0 0.01334 0.06879 0.05594 0.04707 0.08839 0.00426 0.01708 0.01925
20.0 0.00747 0.06941 0.05629 0.04732 0.08944 0.00234 0.02102 0.01965
22.0 0.00394 0.06988 0.05657 0.04753 0.09057 0.00124 0.02286 0.01995
24.0 0.00200 0.07025 0.05682 0.04771 0.09154 0.00064 0.02351 0.02018
26.0 0.00098 0.07057 0.05702 0.04786 0.09230 0.00032 0.02387 0.02038
28.0 0.00047 0.07084 0.05720 0.04798 0.09289 0.00016 0.02413 0.02054
30.0 0.00022 0.07107 0.05736 0.04810 0.09336 0.00000 0.02435 0.02069

o 0.00000 0.07458 0.05966 0.04972 0.09944 0.00000 0.02043 0.01703

pling the ground state and the excited states are presentedniniclear quasimolecules and checked using the formulas for
Tables 1-V with only two matrix elements for the transitions the matrix elements of the hydrogen atom in parabolic coor-
involving then,=4 states. Table VI gives examples for tran- dinates(see the Appendjx and theg-u symmetry of the
sitions betweem,=4 and excited states. wave functions. A different feature for heteronuclear quasi-
The most prominent features, which can be deduced froomolecules is that the correlation diagram, which relates the
the tabulated data, are as follows) The matrix elements orbitals of the isolated and united ions, now dependZpn
strongly depend on the internuclear distariRe(ii) Some  Such dependence has been used in the physics of inner-shell
matrix elements of the quasimolecules, with differ&tat  collision excitation[16]. More precisely, the rearrangement
large R, exchange their limiting valuediii) The limiting  for the dipole matrix elements of the molecular orb{fdlO)
values of some matrix elements, at laigetend in pairs to  correlation diagrams results in the dependence of the limiting
the same values or to values of equal moduli and oppositealues orZ,, apart from a trivial scaling, and in the exchange
signs, and some of them are equal to zén. Some of the  of the limiting values.
matrix elements have zeros at intermediBteBelow, some The MO correlation diagrams can be constructed with the
features are discussed qualitatively in more detalil. rules obtained in Ref$15,17. But with the aim of spectro-
scopic applications, Figs. 1-3 epict the real MO energy dia-
grams. These MO energy diagrams have been calculated
with the procedure described in Sec. Ill for quasimolecules
The coincidence of some limiting values could already bewith Z,=1.5,2,2.5. There is a one-to-one correspondence
found from the results obtained |ih] for one-electron homo- between the united ion and the separated ion states for the

A. Limiting values
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TABLE Ill. Dipole moment matrix elements for transitions@— 1so and 30— 1s¢ in relation to the
distanceR between ion¥Z;=1.5, 2.0, 2.5, 3.0 and,=1; all values in atomic units.

2so— 1so 3so— 1so

R  z=15 =20 =25 7,=30 z;=15 =20 ;=25 Z;=3.0

0.25 0.00998 0.01681 0.02173 0.02536  0.00434  0.00731  0.00944  0.01101
0.50 0.02243 0.03784 0.04819 0.05470 0.00971  0.01634  0.02077  0.02354
0.75 0.03795 0.06288 0.07688 0.08289  0.01631  0.02694  0.03289  0.03546
1.00 0.05674 0.09032 0.10393 0.10555  0.02419  0.03843  0.04427  0.04506
150 0.10344 0.14291 0.14352 0.13277  0.04343 0.06040 0.06112  0.05680
2.00 0.15701  0.180998 0.16492 0.14568  0.06531  0.07659  0.07047  0.06244
250 0.20654 0.20391 0.17642 0.15261  0.08571  0.08665 0.07555  0.06539
3.00 0.24396 0.21747 0.18327 0.15686  0.10150  0.09274  0.07851  0.06708
3.50 0.26911 0.22600 0.18775 0.15973  0.11249  0.09659  0.08036  0.06812
4.00 0.28560 0.23177 0.19092 0.16181  0.11996  0.09914  0.08158  0.06880
450 0.29672 0.23592 0.19328 0.16338  0.12516  0.10090 0.08241  0.06925
5.00 0.30456 0.23905 0.19510 0.16461  0.12890 0.10216  0.08299  0.06957
6.00 0.31476 0.24346 19775 0.16644  0.13379  0.10377 0.08370  0.06995
7.00 0.32107 0.24642 0.19960 0.16772  0.13669  0.10467  0.08409  0.07015
8.00  0.32537 0.24857 0.20096 0.16868  0.13850  0.10520  0.08431  0.07026
9.00 0.32848 0.25020 0.20202 0.16943  0.13966  0.10552  0.08443  0.07032
10.0  0.33086 0.25149 0.20286 0.17003  0.14042  0.10571  0.08450  0.07036
12.0  0.33427 0.25340 0.20412 0.17093  0.14125 0.10589  0.08456  0.07039
14.0 0.33662 0.25477 0.20503 0.17157  0.14161  0.10594  0.08457  0.07039
16.0  0.33835 0.25579 0.20571 0.17206  0.14174  0.10593  0.08456  0.07039
18.0  0.33969 0.25659 0.20624 0.17244  0.14176  0.10591  0.08455  0.07038
20.0  0.34077 0.25724 0.20667 0.17275 0.14173  0.10588  0.08453  0.07038
22.0 0.34165 0.25777 0.207703  0.17300 0.14168 0.10584  0.08452  0.07037
24.0  0.34239 0.25821 0.20732 0.17321  0.14161 0.10581  0.08450  0.07037
26.0  0.34302 0.25859 0.20757 0.17339  0.14155 0.10578 0.08449  0.07036
28.0  0.34356 0.25892 0.20779 0.17354  0.14148 0.10575 0.08448 0.07036
30.0 0.34403 0.25919 0.20798 0.17367  0.14142  0.10573  0.08447  0.07035

% 0.35117 0.26337 0.21070 0.17558  0.14063  0.10547 0.08438  0.07031

case 0fZ,=3, Z,=1 and the cas&;=2.5,Z,=1. calculated in parabolic coordinates. For instance, the result
To exemplify the dependence of the limiting valuesfn  (010d,|000)=-(100d,|000 [Eq. (A4)] leads to the equality
we take the particular case of the matrix element, i.e.of the matrix element$2po]d,|1so)=—(2s0]d,|1s0) for Z,
(010d,|0000=-128/24Z;, for the hydrogenlike iofisee Eq. =2.5,3 and(3da]|d,|1s0) = ~(2s0]d,|1s0) for Z;=1.5,2 atR
(A5)]. According to Figs. 1-3 this matrix element is the lim- _, (see also Tables | and JilIn a similar way, the result

iting value for the transition between the@and Iso states (011/d,/000 =(101/d,|000) [E ;
: - ) - . i N = N g. (A6)] will lead to the equal-
in the case oZ,=1.5,2, but in the casg, =2.5,3, this ma ity of the limiting values for the matrix elements

trix element is the limiting value for the transition betwee _ . _
the 200 and ko states se€Table ). Another example is the (3ddy| Lso) =(3pm|d,|1s0) in the caseZ; =2, 2.5, 3, and for

matrix element(011d,J000=272/256,. Indeed, Figs. 1 the matrix elementg4fad,/1s0)=(3pmid|1so) in the case
and 2 demonstrate that this matrix element is the limitingZ1=1.5 atR— o (see also Tables Il and IV
value for the transitions between thémand Iso MO states
in the case ofz;=1.5, but in the case af,=2,2.5,3 this
matrix element is the limiting value for the transition be-
tween the 87 and Iso states(see Table Ii. Figures 1-3 When the dipole matrix element between two states of an
show that the &, 2p, 3so, and 37 MO energy diagrams atom or an ion is equal to zero, the transition is forbidden.
do not depend o@; and their limiting values are determined Nevertheless, interaction between particles during collisions
by Egs.(A5) and (A7). will allow the dipole matrix elements to become functions of
The equality of the limiting values ®&—c may also be internuclear distance and optical transitions to be allowed.
explained in terms of matrix elements for hydrogenlike ions,Such optical transitions can be identified as true quasimo-

B. Asymptotically forbidden transitions
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TABLE IV. Dipole moment matrix elements for transitionp2— 1so and 37— 1so in relation to the
distanceR between ion¥Z;=1.5, 2.0, 2.5, 3.0 and,=1; all values in atomic units.

2pm— 1so 3pm— 1so

R =15 7,=2.0 7,=25 7,=30 Zz,=15 7,=20 Z,=25  Z;=3.0

0.25 0.23158 0.19653 0.17077 0.15091 0.08968 0.07559 0.06534 0.05751
0.50 0.26521 0.22664 0.19633 0.17182 0.09746 0.08243 0.07107 0.06215
0.75 0.29803 0.25228 0.21432 0.18332 0.10429 0.08767 0.07472 0.06445
1.00 0.32704 0.27084 0.22374 0.18692 0.10984 0.09121 0.07649 0.06501
1.50 0.36996 0.28661 0.22541 0.18400 0.11741 0.09392 0.07645 0.06388
2.00 0.39011 0.28375 0.21981 0.17988 0.12058 0.09298 0.07482 0.06231
2.50 0.38990 0.27591 0.21528 0.17761 0.11994 0.09101 0.07328 0.06102
3.00 0.37859 0.26950 0.21281 0.17660 0.11718 0.08925 0.07209 0.05999
3.50 0.36544 0.26564 0.21169 0.17618 0.11408 0.08796 0.07117 0.05915
4.00 0.35495 0.06375 0.21124 0.17599 0.11151 0.08704 0.07042 0.05843
4.50 0.34806 0.26303 0.21106 0.17589 0.10966 0.08639 0.06979 0.05781
5.00 0.34434 0.26289 0.21100 0.17583 0.10845 0.08590 0.06923 0.05726
6.00 0.34306 0.26314 0.21094 0.17575 0.10743 0.08517 0.06827 0.05634
7.00 0.34524 0.26338 0.21089 0.17570 0.10750 0.08457 0.06746 0.05561
8.00 0.34762 0.26349 0.21085 0.17567 0.10799 0.08399 0.06676 0.05501
9.00 0.34926 0.26380 0.21082 0.17565 0.10852 0.08344 0.06617 0.05452
10.0 0.35021 0.26353 0.21080 0.17563 0.10890 0.08291 0.06566 0.05410
12.0 0.35099 0.26350 0.21076 0.17561 0.10910 0.08197 0.06483 0.05346
14.0 0.35121 0.26347 0.21074 0.17560 0.10881 0.08118 0.06419 0.05297
16.0 0.35126 0.26345 0.21073 0.17560 0.10832 0.08052 0.06369 0.05260
18.0 0.35127 0.26343 0.21072 0.17559 0.10777 0.07997 0.06329 0.05230
20.0 0.35126 0.26342 0.21072 0.17559 0.10724 0.07951 0.06296 0.05206
22.0 0.35125 0.26341 0.21071 0.17559 0.10674 0.07912 0.06268 0.05186
24.0 0.35124 0.26340 0.21071 0.17559 0.10629 0.07878 0.06245 0.05169
26.0 0.35123 0.26340 0.21071 0.17559 0.10588 0.07849 0.06224 0.05154
28.0 0.35122 0.26339 0.21071 0.17559 0.10551 0.07824 0.06207 0.05142
30.0 0.35121 0.26339 0.21071 0.17559 0.10518 0.07801 0.06192 0.05131

o 0.35117 0.26337 0.21070 0.17558 0.09944 0.07458 0.05966 0.04972

lecular ones, and up to now some of these transitions praaction between two different ions will allow optical transi-

duced in atomic and ionic collisions have been studied; settons corresponding to the transition of one electron from one

e.g.,[18]. ion to the other. Examples of such transitions are discussed
In their work on the H" dipole matrix elements, Ramaker below.

and PeeK1(a)] have pointed out five asymptotically forbid- The prominent distinction of heteronuclear quasimol-

den transitions withAm=0. It is obvious that heteronuclear €cules is the transformation of the strongest transition-matrix

quasimolecules also have the same asymptotically forbidde®l€ments, connecting the resonance charge exchange states

transitions corresponding to transitions for isolated ions. FoPf the homonuclear quasimolecules, into matrix elements of

example, the transitiof3pa]d,|1so) for Z,=2,2.5,3 (see forbidden transitions. According to Mullikef19] for the

Table V), the dipole moment of which tends to the transition homonuclear case, the dipole moments of the resonance

. X ; charge transfer transitions are proportionaRt@ at largeR.
moment (110,000 when increasingR, is consequently |, ine heteronuclear case, such optical transitions accompany

equal to zero wheR— = [Eq. (A4)]. It can be said that such 5nresonant charge exchange, leading to the electron transi-
transitions are induced by the perturbation of a bound elecion from one ion to another at large Therefore, such tran-
tron by an external ion. . ~ sitions correspond to asymptotically forbidden ones. As ex-
In heteronuclear quasimolecules there is an additionadmples the transitionspa-1so for Z;=1.5,2 and 8o-1so
possibility for asymptotically forbidden transitions. When atfor z,=2.5,3 accompanying the charge exchange between
R— < the upper and lower states belong to different ions, thehe lowest ion states with parabolic s¢800 and (000’
corresponding wave functions do not overlap and thereforeorrespond to such asymptotically forbidden transiti(sese
the matrix element is equal to zero. At smallerthe inter-  Table ).

022512-7



DEVDARIANI et al. PHYSICAL REVIEW A 71, 022512(2005

TABLE V. Dipole moment matrix elements for transitionpa3— 1so and 40— 1so in relation to the
distanceR between ion¥Z;=1.5, 2.0, 2.5, 3.0 and,=1; all values in atomic units.

3po— 1so 4po— 1so

R z,=15 7,=20 2;=25 2,=30 =15 2,=20 7;=25  7;=3.0

0.25 -0.12796 -0.10778 -0.09289 -0.08137 -0.07421 -0.06223 -0.05341 -0.04662
0.50 -0.13743 -0.11347 -0.09481 -0.08004 -0.07673 -0.06251 -0.05167 -0.04327
0.75 -0.13436 -0.10445 -0.08230 -0.06729 -0.07096 -0.05396 -0.04225 -0.03417
1.00 -0.11617 -0.08495 -0.06615 -0.05399 -0.05717 -0.04080 -0.03165 -0.02597
150 -0.06109 -0.04839 -0.04293 -0.03791 -0.02412 -0.01944 -0.01814 -0.01653
2.00 -0.01617 -0.02939 -0.03216 -0.03033 -0.00027 -0.00881 -0.01182 -0.01179
250 0.00886 -0.02113 -0.02680 -0.02630 0.01284 -0.00385 -0.00833 -0.00881
3.00 0.01882 -0.01735 -0.02389 -0.02393 0.01881 -0.00122 -0.00606 -0.00665
3.50 0.02062 -0.01549 -0.02229 -0.02235 0.02099 0.00036  -0.00442 -0.00494
4.00 0.01898 -0.01459 -0.02142 -0.02111 0.02138 0.00139 -0.00313 -0.00352
450 0.01626 -0.01426 -0.02095 -0.02001  0.02096 0.00211  -0.00207 -0.00231
5.00 0.01345 -0.01431 -0.02062 -0.01897 0.02016 0.00264 -0.00114 -0.00126
6.00 0.00871 -0.01520 -0.01989 -0.01705 0.01817 0.00340 0.00044 0.00047
7.00 0.00537 -0.01666 -0.01885 -0.01537 0.01619 0.00403 0.00177 0.00182
8.00 0.00313 -0.01808 -0.01766 -0.01394  0.01447 0.00465 0.00290 0.00290
9.00 0.00169 -0.01888 -0.01646 -0.01273  0.01306 0.00529 0.00386 0.00378
10.0 0.00080 -0.01894 -0.01536 -0.01171  0.01197 0.00593 0.00469 0.00452
12.0 0.00004 -0.01787 -0.01346 -0.01007 0.01060 0.00714 0.00604 0.00568
14.0 -0.00010 -0.01641 -0.01194 -0.00882  0.01021 0.00821 0.00709 0.00656
16.0 -0.00008 -0.01504 -0.01072 -0.00785 0.01082 0.00913 0.00793 0.00725
18.0 -0.00005 -0.01383 -0.00971 -0.00707 0.01228 0.00993 0.00862 0.00781
20.0 -0.00002 -0.01277 -0.00887 -0.00643  0.01367 0.01061 0.00919 0.00826
22.0 -0.00001 -0.01186 -0.00817 -0.00589  0.01448 0.01120 0.00968 0.00865
240 -0.00001 -0.01106 -0.00756 -0.00544 0.01504 0.01172 0.01010 0.00897
26.0 0.00000 -0.01036 -0.00704 -0.00505 0.01552 0.01219 0.01046 0.00926
28.0 0.00000 -0.00973 -0.00659 -0.00471 0.01596 0.01260 0.01078 0.00950
30.0 0.00000 -0.00918 -0.00619 -0.00442 0.01637 0.01296 0.01107 0.00972
el 0.00000 0.00000 0.00000 0.00000 0.02621 0.01966 0.01573 0.01311

In homonuclear quasimolecules, only one of the two exdll and V). In the case of perpendicular transitions involving
cited states that are involved in the resonant charge exchangeexcited states, the transitions forbidden forRilue to the
is tied up by an optical transition to thed, ground state. In  parity violations are forbidden at larg®in the heteronuclear
the heteronuclear case, each of the excited states is tied up bgse for sufficiently small difference betwe2pandz,, e.g.,
an optical transition with the ground state. In the heterothe 3w-1so, 2pw-1so transitions forZ;=1.5 (see Tables Il
nuclear case, the states that are thexcited states in the and IV).
homonuclear case belong, for large interionic distances, to
the ionZ,, in the case of a sufficiently small difference be-
tweenZ; andZ, and of smalh,. As a consequence, the states
under discussion have the zero value limit at laRydor The properties of the dipole transition-matrix elements
transition-matrix elements for transitions to the ground statediscussed above could be predicted, in principle, before any
Of even greater importance for spectroscopy is the fact thatalculation by examining the correlation diagrams. This is
at intermediateR, the parallel transitions, forbidden in the not the case for zeros in the dipole moments. Up to now
homonuclear case due to parity violation and allowed in théhere are no rules that help to predict them reliably.
heteronuclear case, are the strongest now. For example, in The existence of zeros in the dipole transition-matrix ele-
theZ,=1.5 case, the strongd-1soy transition gives rise to ments has already been pointed out for symmetrical quasi-
the asymptotically forbidden @r-1so transition, while the molecules. For instance, Ramaker and Pgdkconsidered
forbidden &oy-1soy transition gives rise to thesa-1so  the lowest 20 electronic states of,’Hand found 14 matrix
transition, 30-1so being the dominant transitioisee Tables elements with zeros. In the heteronuclear case parallel tran-

C. Zeros in the dipole transition moments
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TABLE VI. Dipole moment matrix elements for transition$o4— 2po and 47— 2po in relation to the
distanceR between ion¥Z;=1.5, 2.0, 2.5, 3.0 and,=1; all values in atomic units.

Afoc— 2po Af 77— 2po

R  z=15 7,=20 27,=25 7,=30 2,=15  2,=2.0 Z,=25 Z;=3.0

0.25 -0.00237 -0.00390 0.00404 -0.00569  0.00137 0.00225 0.00285  0.00328
0.50 -0.00422 -0.00670 0.00825 -0.00929  0.00243 0.00385 0.00473  0.00532
0.75 -0.00529 -0.00813 0.00994 -0.01136  0.00303 0.00464 0.00565  0.00642
1.00 -0.00570 -0.00871 -0.01100 -0.01328 0.00324 0.00491 0.00614  0.00735
150 -0.00529 -0.00857 -0.01280 -0.01886  0.00291 0.00459 0.00670  0.00967
2.00 -0.00268 -0.00579 -0.01419 -0.02951  0.00127 0.00258 0.00640  0.01330
2.50 0.00459 -0.00199 -0.01534 -0.05223 -0.00292 -0.00236  0.00487  0.02013
3.00 0.01957 0.01785 -0.01801 -0.10027 -0.01098 -0.01156 0.00226  0.03378
3.50 0.04538 0.04559  -0.02695 -0.18828 -0.02387 -0.02633 -0.00025 0.05844
4.00 0.08494 0.08889  -0.05125 -0.31379 -0.04206 -0.04781  0.00000 0.09401
450 0.13993 0.14923  -0.10431 -0.44552 -0.06536 -0.07664 0.00779  0.13157
5.00 0.20882 0.22424  -0.20154 -0.54908 -0.09279 -0.11274 0.03001  0.16009
6.00 0.36267 0.39407 -0.52280 -0.64785 -0.15318 -0.20117 0.12847  0.18030
7.00 0.48942 0.53906  -0.75322 -0.66072 -0.20900 -0.29326 0.21165 0.17037
8.00 0.56566 0.61320 -0.79977 -0.64672 -0.25166 -0.36920 0.22596  0.05220
9.00 0.59768 0.61511  -0.77908 -0.63290 -0.27927 -0.42357 0.20658  0.13662
10.0  0.59865 0.57147 -0.75186 -0.62644 -0.29327 -0.46041 0.17871  0.12700
12.0 0.55419 0.44099 -0.73305 -0.62611 -0.28910 -0.49827 0.13420 0.12499
14.0 0.50122 0.31285 -0.74178 -0.62686 -0.25327 -0.50396 0.11352  0.13511
16.0  0.46830 0.19631  -0.74832 -0.62592 -0.19714 -0.50199 0.11302  0.14277
18.0  0.45910 0.10147  -0.74984 -0.62445 -0.13581 -0.50511 0.13264 0.14619
20.0 0.46871 0.04407  -0.74932 -0.62295 -0.08411 -0.51140 0.16091 0.14793
22.0 0.48823 0.01730  -0.74819 -0.62158 -0.04805 -0.51707 0.17334  0.14905
240 0.50731 0.00643  -0.74692 -0.62036 -0.02588 -0.52085 0.17692  0.14989
26.0 0.52012 0.00230  -0.74568 -0.61928 -0.01335 -0.52307 0.17849  0.15055
28.0 0.52703 0.00080 -0.74452 -0.61833 -0.00667 -0.52436  0.17951  0.15111
30.0 0.53047 0.00027  -0.74346 -0.61748 -0.00324 -0.52513 0.18029  0.15157

el 0.52675 0.00000 -0.72548 -0.60457 0.00000 -0.52675 0.18923  0.15769

sitions having zeros in the symmetrical case have zeros favave function of the upper state in each of the matrix ele-
all Z, values considered here, namelypdsdlss (5U,1G) ments with zero has at least one node. This condition is
(see Table V, 4dw-2pm (8G,4U), 4do-2po (8G,4U). The  satisfied for the transitions in the heteronuclear quasimol-
matrix element for the transitionpd-1so (2U,1G) has two  ecules under consideration above. The qualitative discussion
zeros but only forZ;=1.5 and has no zero otherwig¢see of the condition for the existence of zeros in the hetero-
Table V) (the notations in parentheses indicate the propenuclear case can be found [i21].
transitions for the symmetrical case according 1¢). The Finally, let us consider the transitiond&2po and 47
surprising result is a zero for the transitioso32po while  -2po. They are forbidden due to parity violation in the
this is not the case for the proper transiti®G,1U) in  homonuclear case and have no nodes in the quasiradial wave
homonuclear quasimolecules. functions of the upper and lower states. Nevertheless, both of
Similarly, there are zeros for all; for the perpendicular them have zeros in the heteronuclear ca&&esl.5,2 (Table
transitions 30-2pm (5G,4V), 4do-2pm (6G,4U). In the /) At larger Z, both transitions can be described qualita-

cases of transitionsgr-2po, 4do-2sc, 4dw-2so, 4pm-2so, tively as transitions between two excited states of the heavier
there are roots for al; although the proper transitions are 5 in the field of the lighter ior(see Figs. 1-8

forbidden in the symmetrical case due to parity violation.
Finally, the matrix elements for the transitionss42po and

4dso-2pm h_ave zeros, but the proper transitions have not been V. CONCLUSIONS
analyzed in the homonuclear cdgg.
Inspecting the results of calculations fo,H.ewis, Mc- The dipole matrix elements for the optical transitiomns

Dowell, and Moiseiwitsch[20] noted that the quasiradial -o, o-m, 77 in heteronuclear quasimolecul@seZ, with
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FIG. 1. Molecular orbital correlation diagram for the quasimol- 0 5 10 Ra, 15

eculez,.Z, with Z;=1.5 andZ,=1. For the notation of the molecu-

lar orbitals we use the united ion designation in the left part of the FIG. 3. Molecular orbital correlation diagram for the quasimol-
figure and parabolic quantum numbers in brackets in the right pareculeZ,.Z, with Z,=2.5 andZ,=1. The notations are similar to the
of the figure.n stands for the main quantum number in the ones on Fig. 1.

separated-ion limit, and the primed numbers are for the ion with

4=1. tures. It has been found that, in contrast to homonuclear
quasimolecules, zeros may exist even for nodeless quasira-
Z,=15,2,2.5,32,=1, andn,=1,2,3,4have been calcu- dial functions for both states involved. Furthermore, the het-
lated. The scaling relation makes it possible to determine theronuclear case generates a large number of asymptotically
matrix elements for “one-electron quasi-molecules” havingforbidden transitions corresponding to transitions of one
nuclear charge ratios such as 2:1, 3:1, 3:2, 5:2. The resulidectron from one ion to another. This latter feature has not
obtained are very accurate but they do not include relativistibeen reported up to now to our knowledge, although it could
effects. Joined to those for the quasimoleculg,they give  be found in nonsymmetrical collisions of heavy rare-gas at-
reliable input data for spectral line profile calculations inoms or heavy alkali-metal atoms. Moreover, the approxima-
inner-shell collision physics and hot dense plasma physics.tion of a constant dipole matrix element in the spectral wing
Zeros at intermediat® and zero limiting values at larg@  calculations is generally less justified for heteronuclear
are the highlighted features of the matrix elements. Althouglyuasimolecules than for homonuclear ones.
such features have been observed for the dtiasimolecule Let us emphasize some conclusions useful for experi-
earlier, the heteronuclear case exhibits some additional feaments. The entire spectra produced by heteronuclear quasi-
molecules are richer than those in the homonuclear case,
essentially due to the exhibition of the former forbiddgn
-g and u-u transitions. The most prominent features of the
spectra are line cores produced by transitions emitted by iso-
lated ions. The wings produced by quasimolecular transitions
can be estimated by the well-known quasistatic approxima-
tion. Within this assumption, the spectral profile in emission
may be written as

4R

05+

Aif(Rc) e_Ui(Rc)/T
dAU;; '
dR |g

lif(Aw) ~ R (20)

-1.04

Here Aw=w-w, represents the shift from the single-ion

transition frequency, andyU;; =U;—U; is taken for the Con-

) don pointR, i.e., Aw=AU;;(Ry).

41/"" 1o0 oy ™ Therefore, the existence of zeros in the dipole matrix el-
0

5 0 Ra, 15 ements leads to zeros in the wings of the spectral lines. It is

obvious that this last conclusion is based on the quasistatic
FIG. 2. Molecular orbital correlation diagram for the quasimol- approximation. In fact the zeros in the spectral profiles will
eculez,.Z, with Z;=2.0 andZ,=1. The notations are similar to the be replaced by minima of intensity, i.e., dips in the spectra,
ones on Fig. 1. even in the semiclassical approd@?].
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We must stress that the description of the line cores of Therefore
allowed transitions is beyond the quasistatic approximation,
but in the case of forbidden quasimolecular transitions the TAl AN — -
: X n,n,0|d,|n;n30) = — (n,n;0|d,|n;n;0). Ad
whole spectral profiles can be estimated by ). (nunz0ldninz0) = = (nzn;0ldeinzn;0) (A4)
For transitions involving the ground state the explicit ex-

ACKNOWLEDGMENT pression of the matrix element is given by
A.D. would like to gratefully acknowledge the hospitality 2 5
of Professor E. Dalimier at LULI-PAPD, University of (nn,0|d,|000) = —4{|:(_ nl,l,l.—>
Paris 6. (n+1)°Z n+1
XF(— n,,3,1 L)
APPENDIX 221
When R tends to infinity, each of the considered two- 2
Coulomb-center wave functions transforms itself into the rel- - F(— n,,1, 1,—)
evant paraboli®Z monocenter wave function. These para- n+1
bolic functions are determined as follows4]: 2
oo xXF —n1,3,l,m . (A5)
24z Z Zv) .
Pnn,m= —zfn m(l)fn m(_>elm¢/\yza (Al) . . ..
12 n \'n/ 2\ n In a similar way we get for the perpendicular transitions
1 n+m I Y = I A7
fomp) = ﬁ A /%e—pIZPmIZF(_ nm+1p). (A2) (niny1|dy|n;nz0) = (nyn;1|d,/n5n;0) (A6)

Here ny ,,m are parabolic quantum numbers with+n, and for transitions involving the ground state

+m+1=n, andF(-n,m+1,p) is the confluent hypergeomet-

ric function. 1141000 = 160 [(ng+1)!(ny+ 1)
The transition-matrix element for parallel transitions be- (nin,1|d,000) = (n+1)5z ny!ny!

tween the states with parabolic numbéngn,0) and(n;n;0)

S 2 2

is given by X [F(—nl,z,z,—>F<— n2,3,2,—>
) o ; n+1 n+1
nyn,0|d n’n’O::—f f - PAf (—) 2 2

(n1n,0[d,|n;n;0) aen?), (&= 7)o Ny +F(— N, 2,2—— |F —n1,3,2,_) .

n+1 n+1
£ n n A7
xfnio<ni>fnzo<n2 frso o dé dy. (A7)

(A3) HereF(-n,a,b,2/(n+1)) is the hypergeometric function.
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