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The fine structure of high-angular-momentumn=9 and 10 Rydberg states of barium has been measured
precisely, using the resonant excitation Stark ionization spectroscopy method. Optical transitions corresponding
to sn,n8d=s10,30d, s9,17d, and s9,20d were induced with a Doppler-tuned CO2 laser, determining the fine-
structure energies corresponding to alln=9 and 10 levels withLù6. The pattern of these fine-structure
energies conforms closely with an effective potential model, by comparison with which the dipole and quad-
rupole polarizabilities of Ba+ can be determined. Combining our data with earlier measurements made it
possible to deduce, in addition, the portion ofa2 due to the lowest excitedD state of Ba+. Our best estimates
of these three properties area1=124.30s16da0

3, a2=2462s361da0
5, anda2

0=1828s88da0
5.
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I. INTRODUCTION

The fine-structure patterns in nonpenetrating high-L Ryd-
berg states provide a unique signature of interactions be-
tween the Rydberg electron and the positive ion core that
break the symmetry of the dominant simple Coulomb poten-
tial. Measurements of these patterns can provide precise de-
terminations of the core properties such as dipole polarizabil-
ity and quadrupole moments, which control these
interactions and so set the scale of the fine-structure patterns.
Achieving this requires measurements in a wide enough
range ofL’s to establish the fine-structure pattern clearly and
in states with large enoughL, typically Lù5, so that com-
plications due to core penetration can be neglected. Success-
ful studies of this type have been carried out previously in
the neon atomf1g and the H2 and D2 moleculesf2,3g using
the resonant excitation Stark ionization spectroscopy
sRESISd microwave method, resulting in determinations of
the dipole polarizabilities and quadrupole moments of the
core ions. More recently, the same approach has been used to
determine the polarizability of the Na-like ion Si3+ f4g and
the Mg-like ion Si2+ f5g by measuring the fine-structure pat-
tern in high-L Rydberg states with these ion cores. The RE-
SIS technique provides a general method of accessing the
high-angular-momentum levels that are required for such
studies. With this method, the Rydberg atoms, molecules, or
ions are formed by single-electron capture from an acceler-
ated ion beam. All possible angular momentum states are
formed at some level in this process. Specific high-L Ryd-
berg levels in the resulting fast beam can be detected by
upward excitation using a Doppler-tuned CO2 laser followed
by Stark ionization of the upper state of the excitation and
collection of the resulting ions. The fact that the laser exci-
tation is upwards from existing levels means that all angular
momentum states are eligible to be detected in this way, and
as long as the fine-structure energies exceed the laser resolu-
tion, individual Rydberg levels can be selectively detected.

In most past studies, the relatively small fine-structure inter-
vals have been measured directly using microwave reso-
nance methods, relying on the selective RESIS excitation to
provide detection of those transitionsf1–5g. In other cases,
the fine-structure energies have been large enough that sim-
ply measuring the frequencies of the RESIS transitions was
sufficient to determine the fine-structure energies at an inter-
esting level of precisionf6–8g. The existence of these high-L
fine-structure patterns, coupled with a practical and general
method of studying them, provides a versatile tool for mea-
suring certain properties of positive ions that is, in some
ways, superior to methods available for the study of neutral
atom propertiesf5g.

One of the most interesting ions whose properties could
be studied with these techniques is the Ba+ ion. The alkali-
metal atoms Cs and Fr and the alkali-like ions Ba+ and Ra+

are among the best candidates for precise atomic tests of
parity violating weak interactions. The most successful mea-
surements to date have been carried out in Csf9g, but mea-
surements are being actively pursued in Frf10g and Ba+ f11g.
In each case, however, achieving a precise test of standard
model predictions requires, in addition to the experimental
measurements, a reliable understanding of the atomic-
structure matrix elements that connect the measured quanti-
ties to fundamental interaction strengths. In Cs, a comparison
of measurements and calculations of a number of related
atomic properties have been examined to estimate the preci-
sion of the matrix elements. In that case, the precision of the
calculations appears to be about 0.4% and is the limiting
factor in comparing PNC measurements to standard model
predictionsf9g. Among the atomic properties which can be
compared with calculations at this level of precision are ex-
cited state lifetimes, hyperfine constants, and polarizabilities
or Stark-shift rates. In the case of Fr, recent experiments now
test properties similar to those studied in Cs with similar
precision f12–14g. In Ba+, however, although calculations
have been carried out with similar caref15g, there are far
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fewer precise experimental tests. For example, the lifetime of
6P states in Ba+ has been measured only to a precision of
about 1.3%f16g. Therefore a precise measurement of the
ground-state polarizability of Ba+ by means of the spectros-
copy of Rydberg states of barium would be a significant ad-
ditional test of the theory of this significant ion.

Rydberg states of the barium atom have been studied pre-
viously by Gallagher and co-workersf17g. In one of the ear-
liest examples of high-L Rydberg spectroscopy, they deter-
mined the fine structure intervals between 6snl-6snl8 with l
=4–7 states andn=18–23. Analysis of the level structure
was complicated by the large nonadiabatic contributions to
the structure, but they were still able to obtain the first mea-
surements of the dipole and quadrupole polarizabilities of the
Ba+ ground state,a1=125.5s1.0da0

3 and a2=2050s100da0
5.

This work extends that study to include a range of higher-L
levels within then=9 and 10 levels of barium. Our conclu-
sions confirm the earlier result fora1 with increased preci-
sion. We find a somewhat larger value ofa2 and also resolve
separately the contribution toa2 from the lowest excitedD
state of the Ba+ core. The extended data pattern also confirms
the significant nonadiabatic effects that occur in this system,
even in states withL.5. In addition, the present study pro-
vides additional measurements of spin-doublet splittings first
observed in barium Rydberg states in the study of Gallagher
et al. f17g and later given a theoretical explanation by Snow
et al. f18g.

The barium Rydberg states described here are almost
without exception all 6snl states with total angular momen-
tum L=l. For simplicity we will denote the state byn andL,
abbreviating the total angular momentumL with standard
spectroscopic notation, i.e.,S,P,D ,F ,G, H sL=5d, I sL=6d,
K sL=7d, L sL=8d, M sL=9d, andN sL=10d. Although con-
venient, this notation is potentially confusing, especially
when the symbolL is used to denote the specific value 8
rather than the total angular momentum. The distinction
should, however, be clear from the context.

II. EXPERIMENT

The fine structure of barium Rydberg levels is studied
here by measuring the frequencies of the RESIS excitation
transitions and comparing them with hydrogenic frequencies.
Transitions excitingn=10 Rydberg levels ton=30 andn
=9 Rydberg levels ton=17 or 20 are close enough to the
frequencies of discrete CO2 laser lines that they can be Dop-
pler tuned into resonance by varying the angle of intersection
between the CO2 laser and the fast barium beam. The reso-
nance angle is measured precisely and used to deduce the
resonance frequency, using independent measurements of the
beam velocity. The difference of this transition frequency
from a purely hydrogenic transition is due to the fine-
structure energies of both the upper and lower states of the
transition, but most of the contribution comes from the lower
state. Thus the measurements essentially determine the fine-
structure energies of high-L n=9 and 10 Rydberg states.
These can be compared with an effective potential model to
determine the dipole and quadrupole polarizabilities of Ba+.

The schematic of the apparatus used in this work is shown
in Fig. 1. A 9.5-keV ion beam is created in a Colutron model-

101 ion source, and the Ba+ ion is selected by use of av
3B velocity filter. The ions are then collided with a selec-
tively excited 8F/9D Rb targetf6g. Depending on the target
conditions, charge transfer occurs for 0.5%–2% of the ion
beam. When charge transfer of a single electron takes place,
the binding energy of the electron tends to remain constant.
This creates a fast neutral barium beam with a population
centered aboutn=8 and with a significant fraction inn=9
and 10. States ofn=15 and higher are then Stark ionized in
the initial stripper and deflected with the remaining Ba+ ions.
This allows only the states withn,15 to enter the CO2 laser
interaction region. Here a Doppler-tuned CO2 laser excites a
particular transition to a higher state of neutral barium. These
higher states are then Stark ionized in the stripper, and the
resulting Ba+ ions are collected. Figure 2 shows data from a
typical RESIS signal, the 10L-30M transition of barium. The
ionization current collected in the detector is plotted versus

FIG. 1. Schematic diagram of the optical RESIS apparatus used
for this study.s1d A Ba+ ion beam is created in a Colutron model-
101 ion source. The ions are then collided with a selectively excited
8F /9D Rb target ats2d where some ions capture an electron. States
of n=15 and higher are then Stark ionized in the initial stripper and
deflected with the remaining Ba+ ions at s3d to be collected in a
Faraday cup. Neutral barium atoms withn,15 enter the CO2 laser
interaction regions4d. Here a Doppler-tuned CO2 laser excites a
particular transition to a higher state of neutral barium for example
n=10 atoms might be excited ton=30. The excited states are then
Stark ionized in the stripper and focused by the lens ats5d and the
resulting Ba+ ions are deflected collected on a channeltron plate at
s6d while the neutral beam continues straight and is collected in a
Faraday cup.

FIG. 2. Measured ionization current using RESIS optical
method vs the intersection angle of the Doppler-tuned CO2 laser.
The large peak is the barium 10L-30M transition. The peak at
smaller intersection angle is the Stark admixed,DL=2, 10L-30N
transition, whose relative amplitude can be used to determine the
amount of stray electric field present in the laser interaction region.
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the Doppler-tuned intersection angle of the CO2 laser. The
angular width of the resonance, about 0.30°, is determined
jointly by the transit time through the CO2 laser and by the
collimation of the barium beams<0.20°d. Resonance curves
such as Fig. 2 were fit to determine the resonance angle with
a typical precision of 0.02°.

The large size of the barium fine structure combined with
the limited Doppler tuning range of the CO2 laser determined
which barium lines can be observed. The speed of the barium
beam limits the tuning range to less than 0.04% of the CO2
laser line frequency, or about 0.38 cm−1. Since the separation
between CO2 laser lines is about 2 cm−1, this leaves some
frequencies unavailable. Listed in Table I are the measured
barium transitions, the CO2 laser lines used to observe them,
and the intersection angle at which they were observed.
Some of these transitions have doublet splittings, and in
these cases two positions are given. The quoted intersection
angle is measured with respect to the beam axis, with zero
degrees representing laser propagation directly into the
barium beam. The calibration procedure used to determine
the intersection angle from experimental measurements is
described below. Also shown in Table I are the values of the
Doppler-tuned laser frequencies corresponding to each tran-
sition, again obtained by use of the calibration procedure
described below, and the differences of these frequencies
from the corresponding hydrogenic transition frequencies,
which are taken to be

DvHyd = 109 736.877 cm−1F 1

nL
2 −

1

nU
2 G , s1d

wherenU and nL are the principal quantum numbers of the
upper and lower states of the RESIS transition.

As seen in Fig. 1, the Doppler tuning of the CO2 laser is
accomplished with a single mirror mounted on a rotation
stage. The laser enters the region through a ZnSe window,
intersecting the beam initially at approximately 90° and then
reflecting off the mirror to intersect the beam a second time

at an angle controlled by the setting of the stage. The angle
of intersection is given by

uInt = 90 − 2sustage− uperpd, s2d

whereustageis the reading of the rotation stage, whichper se
has no significance since it contains an arbitrary offset, and
uperp is the reading of the rotation stage at which the reflected
laser beam intersects the Ba beam at exactly 90°. The value
of uperp must be determined carefully by calibration measure-
ments in order to convert the recorded stage angle reading to
an actual intersection angle. This single-reflection rotation
stage is a simpler design than has been used in previous
RESIS measurementsf8g.

Calibration of this system was performed by inducing
analogous transitions in the helium atom whose frequencies
have been calculated to high precision. The speed of the
helium beam at 9.5 keV is an order of magnitude faster than
the barium beam and as a result these transitions can be
measured with multiple CO2 laser lines at different Doppler-
tuned angles. Numerous observations of these helium transi-
tions can be fit with unique values ofb and uperp to the
following relation, which translates the stage angle to a fre-
quency:

n8 =
nL

Î1 − b2
h1 + b sinf2sustage− uperpdgj, s3d

wheren8 is the transition frequency,nL is the frequency of
the laser line, andb=v /c. The frequencies of the CO2 laser
lines, nL, are taken from a standard referencef19g and are
manually maintained within ±10 MHz of the center of the
gain profile. Listed in Table II are the helium transition fre-
quencies, obtained from the calculations of Drakef20g. Also
given are the stage angles at which these transitions were
observed, the CO2 line used in the observation, the stage
angles predicted from the fit to Eq.s3d, and the difference of
the observed angle from that predicted by the best fit. The
difference of the fit from the accepted values has a root mean

TABLE I. Measured transitions listed with the number of times observed, the CO2 laser frequency, the
experimental intersection angle for138Ba corrected for influence of other barium isotopes, the corresponding
frequency corrected for the Stark-shift contributions, and the difference of this frequency from a purely
hydrogenic transition.

nL-n8L8 No. of observations
Laser frequency

scm−1d uInt s°d n0 scm−1d
n0-hydrogenic

scm−1d

s9I-17Kda 2 977.2139s2d 131.685s94d 976.9646s3d 1.9007s3d
s9I-17Kdb 2 977.2139s2d 127.187s92d 976.9873s4d 1.9234s4d
s9K-20Lda 2 1081.0874s2d 57.806s84d 1081.3083s4d 0.8742s4d
s9K-20Ldb 2 1081.0874s2d 57.135s84d 1081.3126s4d 0.8785s4d
s9L-20Md 3 1081.0874s2d 123.900s77d 1080.8561s3d 0.4220s3d

s10I-30Kda 4 977.2139s2d 129.168s79d 976.9777s3d 1.5388s3d
s10I-30Kdb 4 977.2139s2d 125.130s78d 976.9988s3d 1.5599s3d
s10K-30Lda 2 975.9304s2d 56.223s83d 976.1386s4d 0.6997s4d
s10K-30Ldb 2 975.9304s2d 55.605s95d 976.1420s4d 0.7031s4d
s10L-30Md 2 975.9304s2d 112.736s77d 975.7859s4d 0.3470s4d
s10M-30Nd 1 975.9304s2d 145.804s116d 975.6212s5d 0.1823s5d
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square of 0.034°. This calibration procedure was repeated
following two separate data runs measuring the barium RE-
SIS transitions, and consistent results were found in the two
calibrations. However, it was observed that the scatter in the
observed helium resonance angular positions was somewhat
larger than the statistical errors obtained in fits of the reso-
nance lines. The limiting error in the calibration appears to
be the pointing stability of the barium beam. This was colli-
mated to a full width of about 0.20°. It appears that varia-
tions in the average angular position of the barium beam
within this 0.20° window are responsible for the 0.034° rms
scatter in the calibration fit. Examination of the time corre-
lation of the fit residuals indicates that the pointing stability
error is approximately random, so we attach this statistical
error to the best value ofuperp determined from the calibra-

tion fits. This proves to be the most significant source of
experimental error in determining the barium RESIS transi-
tion frequencies. The best values ofuperp and b for the he-
lium calibration runs were found to be

bHe = 0.002 251 6s12d,

uperp= 183.587s34d.

The fitted value ofbHe corresponds to a kinetic energy of
9.449s13d keV, in approximate agreement with the nominal
9.50 keV acceleration voltage.

The value ofuperp is the same for both helium and barium.
The acceleration voltage of the ion source also remains the
same for both ions. Thus the speed of the barium beam is

TABLE II. Helium calibration transitions listed with the calculated frequency, the laser frequency used,
the observed stage angle, the fitted angle predicted from Eq.s3d, and difference of the observed angle from
the fit.

nL-nL8
Calc. freq.

scm−1d
Laser freq.

scm−1d
Obs. angle

s°d
Fitted angle

s°d
Obs.-fit

s°d

10F-30G 975.4016 977.2139 155.880s17d 155.823 0.057

10F-30G 975.4016 975.9304 176.552s5d 176.603 −0.051

10F-30G 975.4016 975.9304 176.580s4d 176.603 −0.023

10F-30G 975.4016 974.6219 193.914s11d 193.967 −0.053

10F-30G 975.4016 974.6219 193.915s13d 193.967 −0.052

10F-29G 966.8487 966.2504 191.543s20d 191.509 0.034

10F-29G 966.8487 967.7072 171.910s5d 171.927 −0.017

10F-27G 946.8042 947.7420 170.552s8d 170.493 0.059

10F-27G 946.8042 945.9802 194.963s5d 194.904 0.058

10G-27H 946.7372 947.7420 169.511s3d 169.481 0.030

10G-27H 946.7372 945.9802 193.902s17d 193.934 −0.032

9G-17H 979.9665 974.6219 188.091s8d 188.080 0.011

9G-17H 979.9665 975.9304 170.543s9d 170.555 −0.012

9G-20H 1080.3235 1078.5906 206.268s18d 206.306 −0.039

9G-20H 1080.3235 1081.0874 174.420s6d 174.420 0.000

9F-17G 975.0555 974.6219 189.284s8d 189.261 0.023

9F-17G 975.0555 975.9304 171.818s8d 171.834 −0.016

9F-20G 1080.4139 1081.0874 175.525s5d 175.534 −0.009

9F-20G 1080.4139 1081.0874 175.491s9d 175.534 −0.043

9F-20G 1080.4139 1078.5906 207.884s22d 207.869 0.015

Second run

10F-30G 975.4016 977.2139 155.789s14d 155.783 0.006

10F-30G 975.4016 977.2139 155.775s9d 155.783 −0.008

10F-30G 975.4016 975.9304 176.6462s5d 176.579 0.067

10F-30G 975.4016 975.9304 176.630s5d 176.579 0.051

10F-30G 975.4016 974.6219 193.948s4d 193.951 −0.003

10F-30G 975.4016 974.6219 193.963s5d 193.951 0.012

9F-17G 975.0555 974.6219 189.227s10d 189.243 −0.016

9F-17G 975.0555 974.6219 189.245s3d 189.243 0.002

9F-17G 975.0555 975.9304 171.783s3d 171.807 −0.024

9F-20G 1080.4139 1081.0874 175.491s4d 175.509 −0.019

9F-20G 1080.4139 1078.5906 207.856s4d 207.864 −0.008
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simply the square root of the mass ratio times the speed of
the helium beam. Because the mass resolution of our veloc-
ity filter is Dm/m=0.04, all barium ions are present in the
ion beam at their natural abundance. However, because of
their different speeds due to the different masses, the RESIS
signals are partially resolved. Simulations show that the cen-
ter of the composite RESIS signal is very close to the posi-
tion expected for a pure138Ba beam, the most abundant iso-
topes72%d. The mass of the138Ba+ ion is 137.9050 amu and
the He+ ion has a mass of 4.002 055 amu, givingbBa
=0.000 383 6s21d. This was used to convert the fitted stage
angle positions to the Doppler-shifted frequencies given
in Table I. A small systematic correction, less than
0.0003 cm−1, was applied to account for the residual influ-
ence of the other barium isotopes.

Only one other systematic correction was applied to ob-
tain the results shown in Table I. As seen in previous RESIS
experiments, static electric fields can build up over time in
the laser interaction region. Magnetic shielding was used in
this region to eliminate motional fields due to the Earth’s
magnetic field. Still significant electric fields build up due to
the charging of nominally conducting surfaces. Stark effects
from these electric fields cause frequency shifts in the tran-
sitions and Stark mixing of adjacent levels, which begin to
allow forbiddenDL=0 or 2 transitions. Stark-shift rates can
be calculated for each of the upper states from approximate
knowledge of the dipole polarizability. Also, observations of
normally forbiddenDL=0 or 2 transitions, such as theDL
=2 transition shown in Fig. 2, can be used to estimate the
strength of ambient stray fields. The ratio of forbidden to
allowed transition amplitudes is assumed to be proportional
to the square of the wave function admixture, which in turn
can be related to the ambient stray field by theory of the
Stark effectf8g. The estimated fields ranged from 0.05 V/cm
to 0.17 V/cm. The Stark shifts produced by fields of this size
are not large. They are most significant for the transitions
where the upper state isn=30, and in this case, corrections
as large as 0.0005 cm−1 were applied. The error bar for each
transition was expanded by half the applied Stark-shift cor-
rection, and these errors are included in the last two columns
of Table I.

III. ANALYSIS

A. Spin splittings

The transitions originating inL=6 andL=7 states exhibit
a spin splitting which is much larger than the Dirac spin-orbit
splitting, whose magnitude might be expected to approxi-
mate the spin splitting in these states. Similar splittings were
observed in the previous study by Gallagheret al. f17g and
were recently attributed to an “indirect spin-orbit” effect due
to admixtures of excitedP and D states into the nominally
S-state ion coref18g. The new observations here significantly
extend the data pattern of observed barium spin splittings.
Figure 3 illustrates that pattern. The square points are the
ratios of the previously observed splittings in 18ønø23,
L=5, 6, and 7 levelsf17g, normalized to the naïve Dirac
spin-orbit splittingsf18g. The triangular points show the later
measurements of Vassenet al. in L=5 levelsf21g. The round

points show the splittings of theL=6 and 7 levels inn=9
and 10 measured in this study. The dashed lines show the
theoretical predictions using the model of the indirect spin-
orbit splittings presented earlierf18g. The model shows very
good agreement with the measurements inL=7 levels, across
a wide range ofn. The agreement is poorer in theL=6 lev-
els, especially at highn. We believe this is due to the poorer
convergence of the adiabatic expansion, which is assumed in
deriving the indirect spin orbit modelf18g in theL=6 levels.
This is closely related to the comparison between measured
L=6 fine-structure intervals and the effective potential
model, discussed in more detail below. The apparently good
agreement between the spin splitting model and highn mea-
surements inL=5 levels is, we believe, fortuitous, since the
convergence of the adiabatic expansion is even worse in
these levels. This is confirmed by the increasingly poor
agreement with measurements in lower-n, L=5 levels. These
show the influence of strong quadrupole mixing with the
5d4f level which occurs near the 6s10h level f21g. Table III
lists the new splittings measured here along with the pre-
dicted splittings obtained from the indirect spin-orbit model.

B. Fine-structure intervals

The level of agreement between the observed and pre-
dicted spin splittings is sufficient so that the interval between
the centers of gravity of the spin doublets can be accurately
deduced with the use of this theory. The two observed tran-
sition energies are transitions between corresponding levels
in the two states, either betweenK=L+1/2 states or between
K=L−1/2 states, whereK is the total angular momentum
exclusive of Rydberg-electron spin. According to the indirect
spin-orbit model, the state with higherK has the higher en-
ergy and the splitting innU is much smaller than the splitting
in nL. Therefore the higher transition energyhn+ comes from
the states withK=L−1/2, and anexpression for the interval
between the center of gravity of the two spin doublets is

FIG. 3. Observed spin splittings for severalL=5, 6, and 7 states
divided by the Dirac spin-orbit calculated for each state. Previous
measurements by Gallagheret al. f17g are given plotted as square
points. Measurements performed by Vassenet al. f21g are given as
triangles. The current measurements are shown as circles and the
lines are the predictions based on the indirect spin orbit modelf18g
with a1=124.30 anda2

0=1828.

DETERMINATION OF DIPOLE AND QUADRUPOLE… PHYSICAL REVIEW A 71, 022510s2005d

022510-5



DEc.g. =
sL + 1dhv− + Lhv+

s2L + 1d
−

DEspinsnUd
s2L + 1ds2L + 3d

. s4d

This expression eliminates dependence on the calculated spin
splitting in thesnL ,Ld state, and the dependence on the split-
ting in the snU ,L+1d state,DEspinsnUd, is smaller than the
experimental error bars in all cases and so is essentially neg-
ligible. Table III listsDEFS, the inferred interval between the
centers of gravity of each doublet, less the hydrogenic en-
ergy, for each measured transition.

C. Comparison with theory

The hope of extracting ion properties from fine-structure
measurements in high-L, nonpenetrating Rydberg states rests
on the relative simplicity of their fine structure and the pos-
sibility to characterize that structure precisely with a small
number of parameters which represent properties of the free
ion core. These ideas are not newf22–24g, but they have
been developed with increasing rigor as more precise experi-
mental studies, and especially studies in Rydberg states of
higherL, have appeared. The key idea is that, in many cases,
there exists an “effective potential” whose expectation value
over the Rydberg-electron wave function gives the fine-
structure energy of any particular Rydberg state. The leading
term in this potential forS-state ion cores is just the familiar
adiabatic dipole polarization energy,

Vef fsrd < −
1

2

a1

r4 + ¯ , s5d

wherea1 is the core ion’s dipole polarizability andr is the
radial coordinate of the Rydberg electron. This form would
be expected to correctly describe the leading correction to
the hydrogenic energy for a Rydberg electron moving very
slowly and very far from the ion core. Of course, neither of
these conditions is truly valid, and so many authors have
considered how this simple idea could be modified to pro-
vide a more realistic description of the electron core interac-

tion. Much of the early work on this question originated from
workers interested in electron scattering, where similar ques-
tions appear. It is not obviousa priori that any potential can
be found whose expectation value will accurately describe a
wide range of Rydberg fine structures. Nevertheless, much
more elaborate forms of this effective potential have been
advanced over the years, including both higher-order adia-
batic terms and several different forms of corrections for
nonadiabatic effects in the interactionf25,26g. The study of
Rydberg fine structure in the helium atom played an impor-
tant role in these developments both because of its relative
simplicity and because of the availability of precise measure-
mentsf27,28g. The most significant progress in helium, as
measured by its impact on the general problem of Rydberg
fine structure, is certainly the systematic development of the
effective potential model by Drachmanf29–32g. In a series
of papers, Drachman showed rigorously that it was possible
to formulate the helium fine-structure energies in terms of an
effective potential containing increasing negative powers of
r, and for this particularly simple core ion, he calculated the
coefficients analytically for terms up tor−10. His approach
was quite formal, using the Feshbach projection operators to
systematize the calculation. Ultimately, the utility of this ap-
proach is limited by the convergence of the asymptotic series
represented by the effective potential, but the convergence
improves as the angular momentum of the Rydberg state in-
creases. For helium Rydberg states withLù7 this approach
gives higher precision than even the most precise calcula-
tions by more traditional methodsf33g. A similar effective
potential approach has been described by Laughlin in appli-
cation to the Rydberg states of Ca, where the core ion is also
an S state. This applies ideas very similar to Drachman’s
treatment of helium to the more general case, expanding on
earlier ideas, which incorporate nonadiabatic corrections in
other waysf34g.

For the present purposes, it is not sufficient to simply cite
these previous theoretical works since, as will be seen, they
are not entirely adequate to describe our experimental mea-
surements. In order to develop some insight into the possible
reasons for this failure, it is helpful to present a less rigorous
heuristic treatment of the effective potential model. The start-
ing point for this model is the assumption of a zeroth-order
description of the system in which the core ion and the Ry-
dberg electron are completely independent. We take the
Hamiltonian for the system to be given in atomic units by

H = H0 + V,

H0 = 3oi=1

N−1 S upW iu2

2
−

Z

ri
D + o

i=1

j.i

N−1
1

r ij 4 + F upWNu2

2
−

Q

rN
G ,

V = o
i=1

N−1
1

r iN
−

sN − 1d
rN

= o
i=1

N−1

o
k=1

`
r i

k

rN
k+1CksVidCksVNd, s6d

whereZ is the nuclear charge,N is the total number of elec-
trons, andQ=Z−N+1 is the charge of the core ion. Clearly,
H0 describes the desired independent systems: the free core

TABLE III. The difference of the observed frequency to the
purely hydrogenic transitions is given in column 2.DEFS, listed for
each measured transitions in column 3, is the interval between the
centers of gravity of each doublet minus the hydrogenic energy. The
splitting DEspin is the observed splitting of the measured transition.
The final column gives the predictions of the indirect spin-orbit
theory for the measured transitions.

nL-n8L8
n0- hyd
scm−1d

DEFS

scm−1d
DEspin

scm−1d
DEspin predicted

scm−1d

9I-17K 1.9007s3d
1.9234s4d 1.9112s3d 0.0227s3d 0.0262

9K-20L 0.8742s4d
0.8785s4d 0.8762s3d 0.0043s3d 0.0050

10I-30K 1.5388s3d
1.5599s3d 1.5485s2d 0.0211s2d 0.0230

10K-30L 0.6997s4d
0.7031s4d 0.7013s3d 0.0034s3d 0.0047
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ion and the hydrogenic Rydberg electron. Two important as-
sumptions are embedded in this formulation:s1d The Ryd-
berg electron, theNth electron, is assumed to be distinguish-
able from the core electrons. This is the justification for the
asymmetric treatment of theNth electron in the Hamiltonian.
s2d There is assumed to be no penetration of the core wave
function by the Rydberg electron. This justifies dropping the
scalar term in the interactionV. Less essential, perhaps, is the
assumption of a nonrelativistic Hamiltonian for the core ion.
However, it is convenient for this heuristic discussion. For
simplicity, the electron spin is neglected in this discussion.

With this starting point, the energy of Rydberg states can
be developed through perturbation theory. The zeroth-order
wave functions are just products of core eigenfunctions
snc, lcd and Rydberg-electron functionssn, ld, coupled to form
total angular momentumL. For present purposes, we will
assume that the core ion ground state haslc=0, and so the
total angular momentumL is equal to the angular momentum
of the Rydberg electron,l. For simplicity, we will denote the
core ground state asugl. In zeroth order, of course, all Ryd-
berg states of the samen are degenerate with this Hamil-
tonian. Note that the first-order perturbation inV vanishes for
S-state core ions because of the assumption of nonpenetra-
tion. Clearly this limits the applicability of this approach to
high-L Rydberg states. The first nonzero contribution to the
fine structure, then, comes from the second-order perturba-
tion in V,

Ef2gsg,nl;Ld = − o
nC8 ,lC8

n8,l8

ukg,sn,ld;LuVusnC8 ,lC8 d,sn8,l8d;Llu2

fECsnC8 ,lC8 d − ECsgdg + fEsn8d − Esndg
.

s7d

This expression can be further expanded in two other ways:
First, the multipole expansion of the perturbationV divides
Ef2g into separate contributions from each multipole order.
Second, the energy denominator in each term can be for-
mally expanded in terms of the ratio of Rydberg to core
energy differences, the “adiabatic expansion,”

1

fDEcore+ DERydg
=

1

DEcore
−

DERyd

sDEcored2 +
sDERydd2

sDEcored3 − ¯ ,

s8d

DEcore= Esnc8lc8d − Esgd,

DERyd= Esn8d − Esnd.

Substituting only the first term of this expansion intoEf2g

leads to the adiabatic polarization energies

Ead
f2g = −

1

2
a1kr−4lnL −

1

2
a2kr−6lnL + ¯ , s9d

where the brackets stand for radial expectation values in the
Rydberg radial coordinate and

a1 =
2

3o
nc8

fgirinc8lc = 1g2

sDEcored
,

a2 =
2

5o
nc8

fgir2inc8lc = 2g2

sDEcored
s10d

are the adiabatic dipole and quadrupole polarizabilities of the
core ion. The square brackets above stand for radial inte-
grals. In this limit, the Rydberg fine-structure energies are
indeed the expectation value of an effective potential.

The nonadiabatic corrections to this picture have been
dealt with in a number of ways by different authors, but the
approach of Drachman amounts to substituting the second
term of Eq. s8d into the expression forEf2g and using the
properties of hydrogenic radial functions and integration by
parts to express the result from the first two terms as

Ead+1stNA
f2g = −

1

2
sa1kr−4lnl − 6b1kr−6lnl + ¯ d −

1

2
sa2kr−6lnl

− 15b2kr−8lnl + ¯ d, s11d

where

b1 =
1

12o
nc8

fgirinc8lc = 1g2

sDEcored2 ,

b2 =
1

20o
nc8

fgir2inc8lc = 2g2

sDEcored2 . s12d

In this approach, the nonadiabatic corrections appear as
higher inverse powers ofr in the effective potential. Again
the coefficients of the potential depend on only a few param-
eters, which are relatively simple properties of the free ion
core. So the concept of an effective potential, independent of
n and l, survives with this method. The influence of all pos-
sible core excited states is also naturally included with this
approach. However, the method relies upon the convergence
of the adiabatic expansionfEq. s8dg, which may be question-
able when the core ion has low-lying excited states.

Incorporation of higher-order terms in perturbation theory,
higher-multipole terms inV, and successive terms in the
adiabatic expansion generates numerous additional terms in
the expression above, all of which can be expressed in terms
of a radial expectation value of a higher inverse power of the
Rydberg radial coordinate. Of course, the utility of this for-
mal expansion depends on the rapid convergence of the con-
tributions from successive terms. The rate of convergence
depends on the quantum numbers of the particular Rydberg
state under study and especially on the angular momentum of
that state, since this determines the inner turning point of the
radial wave function. In practice, for any finite value ofL,
even if all the coefficients are known as in helium, succes-
sive terms begin to increase at some point, limiting the pre-
cision with which the fine-structure energy can be predicted.
For the present purposes, the effective potential may be rep-
resented, to sufficient precision, by the first three terms,
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Vef fsrd = −
a1

2

1

r4 −
sa2 − 6b1d

2

1

r6 +
A8

r8 . s13d

The term proportional tor−8 is added as a stand-in for pos-
sible higher order terms, but most of our interest will be in
the first two terms.

Two refinements must be made to this analysis before we
can accurately treat the data. The first of these is especially
significant when the dipole polarizability is large, as in the
case of Ba+. The most significant portion of the fourth-order
perturbation inV is found to be equivalent to the action of
Vef f, applied in second order in the space of Rydberg levels.
This “second-order polarization energy” is simply a function
of a1,n, andL in the case where the scale of the fine struc-
ture pattern is largely determined bya1, and it has been
explicitly calculated for this casef35g. Given an approximate
knowledge ofa1 for Ba+, the second-order polarization en-
ergy can be calculated for each state of interest and sub-
tracted from the observed intervals to obtain a result that can
be compared directly to the expectation value ofVef f. The
second refinement is accounting for the small relativistic
contribution to the measured intervals, coming from the
well-known “p4” correction to the Rydberg-electron kinetic
energy. These corrections are listed for each transition in
Table IV. The fourth column lists the corrected fine structure
intervals. These represent the difference of the fine structure
energy of the lower state and the upper state, after subtract-
ing the calculated contribution from relativistic effects and
the second-order polarization energy. If the effective poten-
tial model describes the Rydberg fine structure accurately,
these numbers should be equal to the difference of the ex-
pectation value ofVef f in the two states. In order to check
this, the difference of hydrogenic radial expectation values in
each pair of states can be computed, using the analytic ex-
pressions for the radial expectation valuesf36g, corrected for
finite core ion mass. The rough variation of the measured
intervals can be removed by normalizing each measurement
to the difference in the expectation value ofr−4 in the two
states,Dkr−4l. This produces values that are approximately
constant, which would be expected to vary approximately
linearly when plotted versusDkr−6l /Dkr−4l. Figure 4 shows

such a plot of the scaled intervals.
In order to determine the core polarizabilities from the

measured transitions the data was fit to the following:

DEcorr

Dkr−4l
= A4 + A6

Dkr−6l
Dkr−4l

+ A8
Dkr−8l
Dkr−4l

. s14d

TheA4 parameter represents half the dipole polarizability,A6
represents 1/2sa2−6b1d, andA8 allows for the possibility of
contributions from higher terms. One obvious problem oc-
curs in carrying out this fit. There is no choice of the three
parameters which will consistently fit all the data, including
both the 9I -17K and the 10I -30K intervals. Regardless of
this, the best choice of the interceptA4 and the initial slope
A6 appears to be tightly constrained by the data pattern. This
can be illustrated by excluding one or the othernI -n8K in-
tervals from the fit, resulting in the two smooth curves shown
in Fig. 4. The resulting values ofA4 and A6 are virtually
identical in the two fits. The precise form of the curvature
does not appear to be critical either, since when these two fits
are repeated including a term proportional tor−7 instead of

TABLE IV. The relativisticsDEreld and second-ordersDEf2gd contributions to each measured transition are
shown in columns 2 and 3, respectively.DEcorr is the measured intervalDEFS corrected for the relativistic
effects and second-order energies. The corrected interval is normalized toDkr−4l in column 5, and the
calculated ratioDkr−6l /Dkr−4l for each transition is also given.

nL-n8L8
DErel

scm−1d
DEf2g

scm−1d
DEcorr

scm−1d DEcorr/Dkr −4l Dkr −6l /Dkr −4l

9I-17K 0.0005 0.0207 1.8900s3d 62.030s10d 1.3888*10−3

9K-20L 0.0003 0.0035 0.8724s3d 61.921s21d 6.1596*10−4

9L-20M 0.0002 0.0007 0.4211s3d 62.026s44d 2.6645*10−4

10I-30K 0.0004 0.0170 1.5311s2d 62.172s8d 1.4761*10−3

10K-30L 0.0003 0.0030 0.6980s3d 61.952s27d 7.0577*10−4

10L-30M 0.0002 0.0006 0.3462s4d 62.005s72d 3.4754*10−4

10M-30N 0.0002 0.0001 0.1820s5d 62.174s171d 1.6442*10−4

FIG. 4. The measured fine-structure intervals corrected for rela-
tivistic and second-order energy effects as described in the text and
normalized toDkr−4l are plotted versusDkr−6l /Dkr−4l. The solid
lines indicate the fit to the data from the effective potential model
excluding one or the other of the rightmost points, which corre-
spond to exciting the 9I and 10I states.
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the term proportional tor−8, neither the intercept nor the
initial slope is significantly altered. Taking into consideration
the fitted values ofA4 andA6 in all four of these fits, the best
values are found to be

A4 = 62.178s87d,

A6 = − 828s260d.

The dipole polarizability determined in this way is

a1 = 2A4 = 124.36s17da0
3. s15d

In order to extract a value for the quadrupole polarizabil-
ity from A6, we first need to determineb1. To a very rough
approximation this can be estimated by assuming that the
dipole polarizability comes entirely from the lowest excited
core state whose excitation energys0.097 455 a.u.d is known.
If this were the case, the value ofa1 found above and Eqs.
s10d and s12d would imply thatb1=645 a.u.. This is an up-
per limit to the actual value since all other excitedP states
have larger excitation energies. For a more accurate estima-
tion, the 6s−6p matrix element calculated by Dzubaet al.
f15g can be used to find the lowest state contribution to the
dipole polarizability. This turns out to contribute about 96%
of the total. Based on this information and the value ofa1
obtained above, an improved estimate ofb1 is obtained
which should be adequate for the present purposes. We take
b1=583s20da0

5, attaching a conservative estimate of error. As
a result, the adiabatic quadrupole polarizability of Ba+ is de-
termined to be

a2 = 2A6 + 6b1 = 1842s533da0
5. s16d

The lack of complete agreement between the measured
intervals and the fit to Eq.s14d is still a cause for some
concern. It appears to indicate that the effective potential
model fails, even for states withL=6. The situation appears
even worse when previous measurements ofnI-nK and nH
-nI intervals inn=18–21f17g are included in the picture, as
in Fig. 5. In this previous study a singlenG state is prepared
by a series of laser excitations and then excited to the final
state by single and multiphoton microwave transitions. Two
values are reported for each transition as a result of the spin
splitting mentioned earlier. These give the positions of the
two members of the spin doublet with respect to the original
nG state. The indirect spin orbit theoryf18g gives a suffi-
ciently accurate description of the splittings that we can con-
fidently state that the higher-energy state is the state with
K=L+1/2. This information allows us to take a proper
weighted average of the two level positions in the doublet to
determine the center of gravity for eachnL level, still with
respect to the singlenG level. Then the difference between
these values for states with differentL’s can be taken to
determine theDL=1 intervals listed in column 2 of Table V
asDE. As in the treatment of the new data discussed above,
corrections were made to these measurements to account for
relativistic effects and second-order energy corrections, and
these are listed in Table V. Core penetration is not expected
to be significant for states withLù5, for which the inner
turning point of radial motion is 15a0. Calculated estimates
of penetration corrections for bariumnH and nI statesf37g

suggest they may be marginally significant for thenH-nI
intervals measured by Gallagheret al. f17g. Therefore those
data are also corrected for these contributions, shown sepa-
rately in Table V. Similar corrections are insignificant for
higher-L intervals. The resulting corrected intervals are
scaled and plotted along with the new data as solid points in
Fig. 5. Also shown in Fig. 5 by solid lines are the extrapo-
lated fit functions from Fig. 4. Not only do these functions
fail to intersect or even closely approach the older data, but it
is apparent that no choice of the parametersA4,A6, andA8
could ever fit all the data, since a function of this form must
monotonically change its slope. Thus, inclusion of the older
data confirms that, while the effective potential model ap-
pears adequate for states withLù7, it fails to describe mea-
surements of states withLø6.

The complete pattern of data shown in Fig. 5 is in clear
contrast to the expectations based on the effective potential
model. It was for this reason that we presented the heuristic
explanation of the assumptions underlying the model. The
basic multipole expansion of the interaction seems secure.
Certainly the weakest link in the assumptions is the use of
the “adiabatic expansion”fEq. s8dg to formally express nona-
diabatic corrections to each multipole order of the second-
order energy as successively higher inverse powers ofr. The
convergence of this expansion and of the potential derived
from it depends of the relative size of the core and Rydberg
energy differences. The dipole polarization energy is prob-
ably not a problem in this respect, since the excitation energy
of the lowestP state of the core is about 2.6 eV. The quad-
rupole polarization energy, however, appears quite problem-
atic since the lowestD state of the cores5Dd is only about

FIG. 5. The solid points less than 0.002 on thex axis and the
two solid lines are taken from Fig. 4, while the solid points above
0.002 are the results from the previous study by Gallagher and
co-workersf17g. Each of these points is scaled and plotted as in Fig.
4. Clearly, neither of the Fig. 4 fits is an adequate fit of all the data.
The open points and the dashed line illustrate the quality of the fit to
the modified potential model represented by Eq.s20d of the text.
The term proportional toA0 in Eq. s20d is not a smooth function of
the x axis in this figure. Therefore to illustrate the fit we have
subtracted from the data points the fitted contribution of this term,
leading to the open points. These are then compared with the
dashed line, which represents the best fit to Eq.s20d, but again with
the term proportional toA0 excluded.
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0.6 eV above the ground state, and this is comparable to the
energy differences between intermediate Rydberg states. The
convergence of the adiabatic expansion of the quadrupole
second-order energy therefore, which is assumed to obtain
the effective potential, may be questionable. Fortunately, it is
not difficult to check this point directly. The portion of the
quadrupole second-order energy due solely to the lowestd
state, the 5d state, can be isolated and directly compared with
the approximation derived by retaining only the first two
terms of the adiabatic expansion. The first part of this calcu-
lation is precisely the route followed by Gallagheret al. f17g.
They introduced the correction factorkQ, which relates the
entire quadrupole second-order energy, due to this single-
core excitation, as

Ek=2
f2g s62S1/2,nl;Ld5d only; −

1

2
kQa2

0kr−6lnL, s17d

where

a2
0 =

2

5

f6sur i
2u5dg2

E5d − E6s
s18d

is the part of the adiabatic quadrupole polarizability due ex-
clusively to the 5D state of the Ba+ ion and

kQ ;
3sE5d − E6sd

2s4L2 − 1ds2L + 3dknLur2
−6unLl

3Fs2L − 1dsL + 1dsL + 2do
n8

fn8l + 2ur2
−3unlg2

E5dn8 − E6sn

+
2sL2 + Lds2L + 1d

3 o
n8

fn8l ur2
−3unlg2

E5dn8 − E6sn

+ s2L + 3dsL2 − Ldo
n8

fn8l − 2ur2
−3unlg2

E5dn8 − E6sn
G . s19d

We note that while Eq.s19d agrees with Ref.f17g it differs
by a factor of 5 from that given in Ref.f38g.

OncekQ is computed in this way, it can be compared with
the approximate form that would be obtained by retaining
only the first two terms of the adiabatic expansion of the
quadrupole polarization energy, again including only the 5d
core excitation:

kQ
approx= 1 −

15

E5d − E6s

kr−8lnL

kr−6lnL
. s20d

This comparison is shown in Fig. 6 forn=10 Ba Rydberg
states with 6øLø9. In this case, the approximate form ap-
pears to be a reasonable first approximation of the nonadia-
batic correction only forL=9. For states withLù7 the first
correction is at least much smaller than 1, suggesting that the
series may converge and eventually approximate the full re-
sult. However, forL=6 the first correction term is nearly as

TABLE V. Barium fine-structure intervals as determined by previous measurements of Ref.f17g. Column
2 gives the interval between the center of gravity of the two fine-structure levels listed in column 1, computed
with the use of the indirect spin-orbit model. Relativistic, second-order energy, and core penetration contri-
butions are listed and the resulting corrected energy interval is given asDEcorr in column 5. The normalized
interval is listed in column 6 and with the calculated ratioDkr−6l /Dkr−4l in column 7.

nL-n8L8
Wtd. ave.DE

sMHzd
DErel

sMHzd
DEf2g

sMHzd
DE penetration

sMHzd
DEcorr

sMHzd DEcorr/Dkr −4l Dkr −6l /Dkr −4l

18H-18I 10 910.7 0.9 620.5 17.9 10 271.4 52.394s8d 0.005 251

19H-19I 9330.2 0.7 529.7 15.5 8784.3 52.581s7d 0.005 278

20H-20L 8011.2 0.6 455.7 13.4 7541.5 52.549s6d 0.005 301

21H-21I 6944.7 0.5 394.8 11.7 6537.7 52.648s9d 0.005 321

18I-18K 4876.9 0.6 86.6 0.3 4789.4 63.811s23d 0.002 546

19I-19K 4174.4 0.5 74.1 0.3 4099.5 64.037s27d 0.002 565

20I-20K 3593.5 0.4 63.9 0.2 3529.0 64.124s29d 0.002 581

21I-21K 3114.9 0.4 55.4 0.2 3058.9 64.196s38d 0.002 595

FIG. 6. The nonadiabatic correction factorskQ calculated for
n=10 barium Rydberg levels are shown by the solid points. The
approximate valueskQ

approx determined from the first two terms of
the adiabatic expansionfEq. s20dg are shown as open points. In both
cases, the difference ofkQ from one represents the nonadiabatic
correction. Clearly, the accuracy of the approximate method in-
creases withL, and inclusion of subsequent terms in the adiabatic
expansion would be expected to improve the agreement further.
However, forL=6, since the first correction inkQ

approx is almost as
large as 1 it seems unlikely that this approach to describing the
nonadiabatic corrections can succeed for barium Rydberg states
with Lø6.

SNOW et al. PHYSICAL REVIEW A 71, 022510s2005d

022510-10



large as the leading term, making the convergence unlikely.
This indicates that the reason for the failure of the effective
potential model in Fig. 5 is likely the inappropriate adiabatic
expansion of the second-order quadrupole energy.

If indeed this is the reason for the discordant data pattern
of Fig. 5, it may also suggest a better way to treat the data.
There is no reason to doubt the convergence of the adiabatic
expansion for whatever part of the quadrupole second-order
energy is due to higherD states of Ba+, which are at least 5.6
eV above the ground state.sThis is easily confirmed by re-
peating the test of Fig. 6 after artificially expanding the 5d
excitation energy.d It should be possible, therefore, to write a
modified potential, whose expectation value should give the
Rydberg fine-structure energy as

Vpolsn,Ld = −
a1

2

1

r4 −
sa2 − 6b1d

2

1

r6 −
a2

0

2
fkQsnLd − 1g

1

r6

+
A8

r8 + ¯ . s21d

In this expression,a1,b1, anda2 have their usual definitions,
and the term proportional toskQ−1d describes the entire
nonadiabatic contribution to the part of the quadrupole
second-order energy due to the 5d state. As indicated, since
kQ is a function ofn andL, this is no longer a true effective
potential. Nevertheless, since it avoids the convergence dif-
ficulties discussed above, it might give a better account of
the data pattern. In order to test this, we fit the data to a
function of the form

DEcorr

Dkr−4l
= A4 + A6

Dkr−6l
Dkr−4l

+ A0
DbskQ − 1dkr−6lc

Dkr−4l
+ A8

Dkr−8l
Dkr−4l

.

s22d

The third term requires independent calculation of thekQ
factors for each level studied. The Appendix tabulates the
values calculated for each of the levels of this study and
describes the method used to calculate them, which differs in
some respects from that used in the study of Gallagheret al.
f17g.

All of the data shown in Fig. 5 can be fit with Eq.s22d,
and this confirms our hypothesis that the failure of the effec-
tive potential model is due to the low-lying 5d state. In order
to illustrate this fit in Fig. 5, the contribution of the term
proportional toA0 was subtracted from each point to obtain
the open circle points in Fig. 5. Then a dashed curve corre-
sponding to the remaining three terms in the fit function was
added to show the quality of the fit. This appears to give a
very satisfactory resolution of the difficulty initially pre-
sented by Fig. 5. Our conclusion is that the nonadiabatic
corrections to the quadrupole polarization energies for states
with Lø6 are very large and dominated by the contributions
of the lowest core-excitedd state, the 5d state. The excitation
energy of this state is so small that the adiabatic expansion,
used to derive the form of the effective potential, fails badly.
However, it is possible to treat the part of the quadrupole
polarization energy coming from the 5d state independently
and to calculate a nonadiabatic correction factorkQ for each
Rydberg level studied. The remainder of the fine-structure

energy is still described by an effective potential model and
can be fit consistently in this way to extract core parameters.
As in the fit of Fig. 4, we also repeated the fit of Fig. 5 data
using a term proportional tor−7, instead of proportional to
r−8 and found little effect on the fitted values ofA4 andA6. In
both of these fits, to avoid giving excessive weight to the
older data, which appeared internally inconsistent, the uncer-
tainties for that data were arbitrarily expanded by a factor of
7. It was still necessary to expand the fitted parameter errors
slightly to account for the excess scatter in the fit. For best fit
values ofA4,A6, andA0, we quote the average of the results
found in the two types of fit

A4 = 62.152s74d,

A6 = − 518s170d,

A0 = 914s44d.

The fitted values ofA4 and A6 are consistent with the
values obtained from the fits of Fig. 4. The fitted value ofA0
implies a value fora2

0, the 5d state contribution to the quad-
rupole polarizability,

a2
0 = 2A0 = 1828s88d. s23d

Our conclusions about the parameters characterizing the Ba+

core, as derived from the separate fits of Fig. 4 and 5, are
very similar. They are summarized in Table VI.

The previous measurements ofa1 anda2 are also shown
in Table VI. Comparison of our results with these measure-
mentsf17g is complicated by the different methods of data
analysis. The previous study fit their measurements by as-
suming that

Ef2g = −
1

2
kda1kr−4lnl −

1

2
kQa2kr−6lnl, s24d

where the factorskd and kQ are introduced to account for
nonadiabatic corrections to the fine-structure energies. In
both the dipole and quadrupole cases, these factors were cal-
culated under the simplifying assumption that only one core
excited state contributes to the polarizability. That is, only
the lowestp state contributes toa1 and only the lowestd
state contributes toa2. In the case ofa1, we now believe that
the lowestp state contributes about 96% of the total dipole
polarizability. The calculated nonadiabatic correction factors
kd are also close to 1, meaning that the nonadiabatic correc-
tions are smallf17g. The nonadiabatic corrections to the
small portion of the dipole polarization energy coming from
higher p states are certainly much smaller than the correc-

TABLE VI. Values of core parameters derived from the fits of
Figs. 4 and 5 and previous determinations ofa1 anda2 from Ref.
f17g.

Quantity Fig. 4 fit Fig. 5 fit Previous expt.

a1sa0
3d 124.36s17d 124.30s15d 125.5s1.0d

a2sa0
5d 1842s533d 2462s361d 2050s100d

a2
0sa0

5d 1828s88d

DETERMINATION OF DIPOLE AND QUADRUPOLE… PHYSICAL REVIEW A 71, 022510s2005d

022510-11



tions to the dominant portion. Still, the error incurred by
assuming that the calculatedkd applies to the entire polariza-
tion energy is not large, approximately 0.2%. Therefore it is
not surprising that we find good agreement with the previ-
ously reported value ofa1 in spite of the different methods
of analysis. Comparison with the previously reported value
of a2 is not as satisfactory. In this case the assumption that
the correction factorkQ, calculated by including only the
lowest d state, can be assumed to apply to the entire quad-
rupole polarization energy is more seriously in error. This is
partly due to the fact that the lowestd state contributes a
smaller fraction of the total quadrupole polarization energy
f74s11d% by our estimateg, but also due to the fact that the
nonadiabatic corrections are much larger. Consequently, the
previous result underestimatesa2; our result is 1.20s15d
times larger. The large nonadiabatic corrections to the quad-
rupole polarization energies play a dominant role in the data
pattern, as illustrated in Fig. 5. For this reason, it is not
surprising that the previous result is closer to our estimate of
a2

0, the portion ofa2 due exclusively to the 5d state, for
which the nonadiabatic corrections are large.

Table VII collects previous theoretical calculations of the
core polarizabilities measured here. Fora1, the calculated
values range from 117 to 144. The result of Porsev and Der-
evianko, columnA, using the relativistic many-body theory
method is in excellent agreement with our measured result.
This method is expected to provide the most accurate theo-
retical description of the Ba+ ion. Unfortunately, it is not
possible to compare with this calculation at the level of pre-
cision of the experiment because of the limited number of
digits in the reported theoretical result. Agreement with cal-
culations obtained with other methods is less satisfactory.
Comparison with theoretical calculations ofa2 anda2

0 are far
less clear-cut. The results of Porsev and Derevianko, column
A, who in this case report results with the Dirac-Hartree-
Fock methodf39g, overestimate both properties by about a
factor of 2, although the ratio of the two values is predicted
correctly. The disagreement between experiment and theory
for a2

0 is particularly disturbing because of the importance of
this particular matrix element in interpreting the proposed
parity violation measurements in Ba+ f11g. Agreement with
some of the other calculations is somewhat better. For ex-
ample, the calculation of Cohen, columnB, shows better
agreement fora2

0, but still apparently overestimatesa2. Other
calculations show better agreement fora2, but do not report
a separate value fora2

0. We hope to improve the precision of
this measurement and obtain a more decisive test of theoret-
ical calculations by extending our study to higher-L levels
using microwave methods.

IV. CONCLUSION

A factor of 6 increase in precision of the dipole polariz-
ability of Ba+ has been achieved through an optical RESIS
study of high-L n=9 and 10 barium Rydberg states. An ef-
fective potential model used to describe the fine structure
works for states of very high angular momentum, but in the
case of barium begins to break down forL,7 states because
of a low-lying core-excitedd state. A modified effective po-
tential model has been introduced and used to reconcile the
fine-structure measurements of this work with older mea-
surements, and this procedure also gives an independent de-
termination of the portion of the quadrupole polarizability
due to the 5d state,a2

0. Good agreement with a recent theo-
retical calculation ofa1 is found, but agreement with calcu-
lations ofa2 anda2

0 is rather poor.
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APPENDIX

In order to obtain the most accurate values ofkQ possible
for use in the analysis of the data in this study, several im-
provements over the steps used in referencef17g were under-
taken.

s1d Since the 5d state is actually split into two fine-
structure states, the definition ofkQ was expanded to include
this core fine-structure splitting. Including the core spin also
means that there are twonL Rydberg levels withK=L
+1/2 andK=L−1/2, with somewhat different second-order
quadrupole energies. To compare with experimental data, we
computed the weighted average of these two energies. Re-
taining the definition ofkQ as

Ek=2
f2g s62S1/2,nl;Ld5d only

K average; −
1

2
kQa2

0kr−6lnL, sA1d

where

a2
0 =

2

5

k6sur i
2u5dl2

sE5ddc.g. − E6s
, sA2d

but including the 5d fine-structure energy in the perturbation
denominators, we find

TABLE VII. Calculated values of the core parameters measured in this work. ColumnA: relativistic
many-body perturbation theorysa1d, Dirac Hartree-Focksa2d f39g. Column B: model potentialf40,41g.
ColumnsC,D ,E: Coulomb approximationscited in Ref.f42gd; columnF, Hartree-Slaterscited in Ref.f42gd.

Quantity A B C D E F

a1sa0
3d 124 135 117.1 118.7 122.6 144.1

a2sa0
5d 4240 4301 2245.1 2370.0 2589 3102.7

a2
0sa0

5d0 3268 2076
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kQ ;
3fsE5ddc.g. − E6sg

2s4L2 − 1ds2L + 3dknLur2
−6unLlF2

5S f+o
n8

fn8l + 2ur2
−3unlg2

E5d3/2n8 − E6sn
+ f0o

n8

fn8l ur2
−3unlg2

E5d3/2n8 − E6sn
+ f−o

n8

fn8l − 2ur2
−3unlg2

E5d3/2n8 − E6sn
D

+
3

5S f+o
n8

fn8l + 2ur2
−3unlg2

E5d5/2n8 − E6sn
+ f0o

n8

fn8l ur2
−3unlg2

E5d5/2n8 − E6sn
+ f−o

n8

fn8l − 2ur2
−3unlg2

E5d5/2n8 − E6sn
DG , sA3d

where

f+ ; s2L − 1dsL + 1dsL + 2d,

f0 ; S2

3
DsL2 + Ldss2L + 1d,

f− ; s2L + 3dsL2 − LdS2

3
D .

s2d To evaluate the sums occurring in the definitions of
kQ, we used the Dalgarno-Lewis methodf43g so that our
calculation consistently includes contributions from both dis-

crete and continuum levels. This implicitly assumes that all
the intermediate Rydberg levels are hydrogenic.

s3d For the 6snhstates alone, where the perturbations by
the 5d4f and 5d5f are significant, we included a quantum
defect for these states only, using a value of 0.05, as indi-
cated in a spectroscopic study off44g.

With these steps, we obtained thekQ values shown in
Table VIII for the states relevant to this study. Since our
calculation necessarily evaluated the contributions tokQ
from intermediate Rydberg levels withL8= l −2,l, andl +2, it
was possible to note that the most significant variation ofkQ
with L and thus the most significant effect on the fine-
structure intervals was found in theL8= l −2 channel. Thus,
for example, the nonadiabatic effects on the fine structure of
6snh levels were mostly due to 5dn8f states.
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