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Determination of dipole and quadrupole polarizabilities of Ba" by measurement of the fine
structure of high-L n=9 and 10 Rydberg states of barium
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The fine structure of high-angular-momentum9 and 10 Rydberg states of barium has been measured
precisely, using the resonant excitation Stark ionization spectroscopy method. Optical transitions corresponding
to (n,n’)=(10,30, (9,17, and (9,20 were induced with a Doppler-tuned G@aser, determining the fine-
structure energies corresponding to a#9 and 10 levels with.=6. The pattern of these fine-structure
energies conforms closely with an effective potential model, by comparison with which the dipole and quad-
rupole polarizabilities of Bacan be determined. Combining our data with earlier measurements made it
possible to deduce, in addition, the portiona®fdue to the lowest exciteD state of BA. Our best estimates
of these three properties ang=124.3016)a3, a,=2462361)a3, and a3=182888)a3.
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I. INTRODUCTION In most past studies, the relatively small fine-structure inter-
vals have been measured directly using microwave reso-
The fine-structure patterns in nonpenetrating HigRyd-  nance methods, relying on the selective RESIS excitation to
berg states provide a unique signature of interactions besrovide detection of those transitiops-5]. In other cases,
tween the Rydberg electron and the positive ion core thathe fine-structure energies have been large enough that sim-
break the symmetry of the dominant simple Coulomb potenply measuring the frequencies of the RESIS transitions was
tial. Measurements of these patterns can provide precise dsufficient to determine the fine-structure energies at an inter-
terminations of the core properties such as dipole polarizabilesting level of precisiofi6—8]. The existence of these high-
ity and quadrupole moments, which control thesefine-structure patterns, coupled with a practical and general
interactions and so set the scale of the fine-structure patternsiethod of studying them, provides a versatile tool for mea-
Achieving this requires measurements in a wide enouglsuring certain properties of positive ions that is, in some
range ofL’s to establish the fine-structure pattern clearly andways, superior to methods available for the study of neutral
in states with large enough, typically L=5, so that com- atom propertie$5].
plications due to core penetration can be neglected. Success- One of the most interesting ions whose properties could
ful studies of this type have been carried out previously inbe studied with these techniques is the' Ban. The alkali-
the neon atonjl] and the H and D, moleculeg2,3] using  metal atoms Cs and Fr and the alkali-like ions'Bad Rd
the resonant excitation Stark ionization spectroscopyare among the best candidates for precise atomic tests of
(RESIS microwave method, resulting in determinations of parity violating weak interactions. The most successful mea-
the dipole polarizabilities and quadrupole moments of thesurements to date have been carried out if %sbut mea-
core ions. More recently, the same approach has been usedgarements are being actively pursued in 2] and B4 [11].
determine the polarizability of the Na-like ion35i[4] and  In each case, however, achieving a precise test of standard
the Mg-like ion St* [5] by measuring the fine-structure pat- model predictions requires, in addition to the experimental
tern in hight Rydberg states with these ion cores. The RE-measurements, a reliable understanding of the atomic-
SIS technique provides a general method of accessing th&ructure matrix elements that connect the measured quanti-
high-angular-momentum levels that are required for suchies to fundamental interaction strengths. In Cs, a comparison
studies. With this method, the Rydberg atoms, molecules, oof measurements and calculations of a number of related
ions are formed by single-electron capture from an acceleratomic properties have been examined to estimate the preci-
ated ion beam. All possible angular momentum states arsion of the matrix elements. In that case, the precision of the
formed at some level in this process. Specific higRyd-  calculations appears to be about 0.4% and is the limiting
berg levels in the resulting fast beam can be detected bfactor in comparing PNC measurements to standard model
upward excitation using a Doppler-tuned Cla@ser followed predictions[9]. Among the atomic properties which can be
by Stark ionization of the upper state of the excitation andcompared with calculations at this level of precision are ex-
collection of the resulting ions. The fact that the laser exci-cited state lifetimes, hyperfine constants, and polarizabilities
tation is upwards from existing levels means that all angulaor Stark-shift rates. In the case of Fr, recent experiments now
momentum states are eligible to be detected in this way, antist properties similar to those studied in Cs with similar
as long as the fine-structure energies exceed the laser resoprecision[12-14. In Ba’, however, although calculations
tion, individual Rydberg levels can be selectively detectedhave been carried out with similar caf#5], there are far
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fewer precise experimental tests. For example, the lifetime of »m @ @ 4) (5) (6)
6P states in Ba has been measured only to a precision of
about 1.3%[16]. Therefore a precise measurement of the
ground-state polarizability of Baby means of the spectros-
copy of Rydberg states of barium would be a significant ad- ' @
ditional test of the theory of this significant ion.

Rydberg states of the barium atom have been studied pre-
viously by Gallagher and co-workef&7]. In one of the ear-
liest examples of high- Rydberg spectroscopy, they deter-  FIG. 1. Schematic diagram of the optical RESIS apparatus used
mined the fine structure intervals betweesnb6snl’ with | for this study.(1) A Ba' ion beam is created in a Colutron model-
=4-7 states anth=18-23. Analysis of the level structure 101 ion source. The ions are then collided with a selectively excited
was complicated by the large nonadiabatic contributions t@F/9D Rb target a(2) where some ions capture an electron. States
the structure, but they were still able to obtain the first meaof n=15 and higher are then Stark ionized in the initial stripper and
surements of the dipole and quadrupole polarizabilities of theleflected with the remaining Béons at(3) to be collected in a
Ba" ground state,al:125.E(1.0)a§ and a2:205(1100)ag. _Farada)_/ cup. l\_leutral barium atoms witk< 15 enter the C@I_aser
This work extends that study to include a range of higher- interaction region(4). Here a Doppler-tuned COlaser excites a
levels within then=9 and 10 levels of barium. Our conclu- particular transition to a higher state of neutral barium for example
sions confirm the earlier result far, with increased preci- 1= 10 atoms might be excited tw=30. The excited states are then
son. We find a somewhat lrger valuesfand aio resave 0250 1 e upperand foused by e enpen e
zgi:rgﬁ:]yetggci)?gfr%phuetlg?(tteo;]z dzgn(;z:thaeplgt\f[ve er?]tzﬁgglt:eodr?ﬁrm 5(26) while the neutral beam continues straight and is collected in a
the significant nonadiabatic effects that occur in this system, araday cup.
even in states with. >5. In addition, the present study pro- 01 ion source, and the Bdon is selected by use of &
vides additional measurements of spin-doublet splittings firs '

observed in barium Rydberg states in the study of Gallaghetr B velocity filter. The ions are then collided with a selec-
et al.[17] and later given a theoretical explanation by Snow lvely excited 8F/9D Rb targgb]. Depending on the target

et al. [18] conditions, charge transfer occurs for 0.5%—-2% of the ion
Tﬁe bérium Rvdbera states described here are aImobeam' When charge transfer of a single electron takes place,
Y g %e binding energy of the electron tends to remain constant.

mrtr:]iu—tleégfgtilr?]n I?J:f%;ﬁﬁ%gg}(gﬂ g;gt;lejla;g:%Ten- This creates a fast neutral barium beam with a population
o phicity ' centered aboubh=8 and with a significant fraction im=9

abbreviating the total angular momentumwith standard and 10. States ai=15 and higher are then Stark ionized in

steLcirgscli)p:_c_né)tal\t/llonL,l.gS,P,%NF,E_, 1HO(L:It5h), I (h:G)’ the initial stripper and deflected with the remaining' Bans.
(L=7),L (L=8), M (L=9), andN (L=10). ough con-  his allows only the states with<<15 to enter the CQlaser

venient, this notati_on is potentially confusing,' ,eSpeCia”yinteraction region. Here a Doppler-tuned Cl@ser excites a
when the symboL is used to denote the specific value 8

her th h | I he distincti rﬁarticular transition to a higher state of neutral barium. These
rather than the total angular momentum. The distinctiorjgher states are then Stark ionized in the stripper, and the
should, however, be clear from the context.

resulting B4 ions are collected. Figure 2 shows data from a
Il. EXPERIMENT typical RESIS signal, the 1830M transition of barium. The

] . . _ionization current collected in the detector is plotted versus
The fine structure of barium Rydberg levels is studied

here by measuring the frequencies of the RESIS excitation . 030

transitions and comparing them with hydrogenic frequencies. g 025

Transitions excitingn=10 Rydberg levels ta=30 andn c

=9 Rydberg levels tm=17 or 20 are close enough to the = 02

frequencies of discrete GQaser lines that they can be Dop- L o015

pler tuned into resonance by varying the angle of intersection < 0.10

between the C@laser and the fast barium beam. The reso- = )

nance angle is measured precisely and used to deduce the o 0.05

resonance frequency, using independent measurements of the 5 000

beam velocity. The difference of this transition frequency o 005 | | | | |
from a purely hydrogenic transition is due to the fine- ) M5 1120 1125 1130 1135
structure energies of both the upper and lower states of the Oin(degrees)

transition, but most of the contribution comes from the lower
state. Thus the measurements essentially determine the fine- Fig. 2. Measured ionization current using RESIS optical
structure energies of high-n=9 and 10 Rydberg states. method vs the intersection angle of the Doppler-tuned, G@er.
These can be compared with an effective potential model tqhe large peak is the barium 14BOM transition. The peak at
determine the dipole and quadrupole polarizabilities of.Ba smaller intersection angle is the Stark admixad,=2, 10.-30N

The schematic of the apparatus used in this work is showmansition, whose relative amplitude can be used to determine the
in Fig. 1. A9.5-keV ion beam is created in a Colutron model-amount of stray electric field present in the laser interaction region.
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TABLE I. Measured transitions listed with the number of times observed, thel&®@r frequency, the
experimental intersection angle fbfBa corrected for influence of other barium isotopes, the corresponding
frequency corrected for the Stark-shift contributions, and the difference of this frequency from a purely
hydrogenic transition.

Laser frequency °-hydrogenic
nL-n’L’ No. of observations (ecm™) Ot (°) 0 (em™) (em™)
(91-17K)a 2 977.213%R) 131.685%94) 976.96463) 1.90073)
(91-17K)b 2 977.213®2) 127.18792) 976.9878%4) 1.92344)
(9K-20L)a 2 1081.0874) 57.80684) 1081.308%4) 0.87424)
(9K-20L)b 2 1081.0874) 57.135%84) 1081.312¢4) 0.878%4)
(9L-20M) 3 1081.0874) 123.90077)  1080.85613) 0.422@3)
(101-30K)a 4 977.213%) 129.16879 976.97713) 1.53883)
(101-30K)b 4 977.213%) 125.13@79) 976.99883) 1.55993)
(10K-30L)a 2 975.93042) 56.22383) 976.13864) 0.69974)
(10K-30L)b 2 975.93042) 55.60595) 976.14204) 0.70314)
(10L-30M) 2 975.93042) 112.73677) 975.785%4) 0.347Q4)
(10M-30N) 1 975.93042) 145.804116) 975.62125) 0.18235)

the Doppler-tuned intersection angle of the C@ser. The at an angle controlled by the setting of the stage. The angle
angular width of the resonance, about 0.30°, is determinedf intersection is given by
jointly by the transit time through the GQaser and by the By = 90 = Ao B @)
collimation of the barium beart=0.20). Resonance curves Int stage™ Operp)
such as Fig. 2 were fit to determine the resonance angle witwhere 0,4 is the reading of the rotation stage, whigér se
a typical precision of 0.02°. has no significance since it contains an arbitrary offset, and
The large size of the barium fine structure combined withg,,is the reading of the rotation stage at which the reflected
the limited Doppler tuning range of the G@ser determined laser beam intersects the Ba beam at exactly 90°. The value
which barium lines can be observed. The speed of the bariumf ¢, must be determined carefully by calibration measure-
beam limits the tuning range to less than 0.04% of theg COments in order to convert the recorded stage angle reading to
laser line frequency, or about 0.38 tinSince the separation an actual intersection angle. This single-reflection rotation
between CQ laser lines is about 2 cih this leaves some stage is a simpler design than has been used in previous
frequencies unavailable. Listed in Table | are the measureRESIS measuremen{8].
barium transitions, the CQaser lines used to observe them, Calibration of this system was performed by inducing
and the intersection angle at which they were observedanalogous transitions in the helium atom whose frequencies
Some of these transitions have doublet splittings, and imave been calculated to high precision. The speed of the
these cases two positions are given. The quoted intersectidielium beam at 9.5 keV is an order of magnitude faster than
angle is measured with respect to the beam axis, with zerthe barium beam and as a result these transitions can be
degrees representing laser propagation directly into theneasured with multiple CQaser lines at different Doppler-
barium beam. The calibration procedure used to determintined angles. Numerous observations of these helium transi-
the intersection angle from experimental measurements igons can be fit with unique values @ and 6, to the
described below. Also shown in Table | are the values of théollowing relation, which translates the stage angle to a fre-
Doppler-tuned laser frequencies corresponding to each tramuency:
sition, again obtained by use of the calibration procedure ,
described below, and the differences of these frequencies = Lﬂz{l + B SiN2(Osage Operp 1} (3)

V - |t
from the corresponding hydrogenic transition frequencies, V1

which are taken to be where v’ is the transition frequency; is the frequency of

1 1 the laser line, an@@=v/c. The frequencies of the GQaser
F - n_2 ' ) lines, v, are taken from a standard refered®] and are
v manually maintained within +10 MHz of the center of the
whereny andn_ are the principal quantum numbers of the gain profile. Listed in Table Il are the helium transition fre-
upper and lower states of the RESIS transition. guencies, obtained from the calculations of DraR@]. Also
As seen in Fig. 1, the Doppler tuning of the €laser is  given are the stage angles at which these transitions were

accomplished with a single mirror mounted on a rotationobserved, the CQline used in the observation, the stage
stage. The laser enters the region through a ZnSe windowangles predicted from the fit to E(B), and the difference of
intersecting the beam initially at approximately 90° and thernthe observed angle from that predicted by the best fit. The
reflecting off the mirror to intersect the beam a second timalifference of the fit from the accepted values has a root mean

Avyyg= 109 736.877 cﬁi{
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TABLE Il. Helium calibration transitions listed with the calculated frequency, the laser frequency used,
the observed stage angle, the fitted angle predicted front3tgand difference of the observed angle from

the fit.
Calc. freq. Laser freq. Obs. angle Fitted angle Obs.-fit
nL-nL’ (cm™) (cm™) ©) ©) ©)
10F-30G 975.4016 977.2139 155.880) 155.823 0.057
10F-30G 975.4016 975.9304 176.568 176.603 -0.051
10F-30G 975.4016 975.9304 176.5@80 176.603 -0.023
10F-30G 975.4016 974.6219 193.904) 193.967 -0.053
10F-30G 975.4016 974.6219 193.9(=3) 193.967 -0.052
10F-29G 966.8487 966.2504 191.542) 191.509 0.034
10F-29G 966.8487 967.7072 171.98) 171.927 -0.017
10F-27G 946.8042 947.7420 170.58 170.493 0.059
10F-27G 946.8042 945.9802 194.963 194.904 0.058
10G-27H 946.7372 947.7420 169.5B) 169.481 0.030
10G-27H 946.7372 945.9802 193.97) 193.934 -0.032
9G-17TH 979.9665 974.6219 188.0&) 188.080 0.011
9G-17TH 979.9665 975.9304 170.543 170.555 -0.012
9G-20H 1080.3235 1078.5906 206.288) 206.306 -0.039
9G-20H 1080.3235 1081.0874 174.43) 174.420 0.000
9F-17G 975.0555 974.6219 189.2@) 189.261 0.023
9F-17G 975.0555 975.9304 171.863 171.834 -0.016
9F-20G 1080.4139 1081.0874 175.58% 175.534 -0.009
9F-20G 1080.4139 1081.0874 175.491 175.534 -0.043
9F-20G 1080.4139 1078.5906 207.822) 207.869 0.015
Second run
10F-30G 975.4016 977.2139 155.7@9Y) 155.783 0.006
10F-30G 975.4016 977.2139 155.7% 155.783 -0.008
10F-30G 975.4016 975.9304 176.646G2 176.579 0.067
10F-30G 975.4016 975.9304 176.6() 176.579 0.051
10F-30G 975.4016 974.6219 193.948 193.951 -0.003
10F-30G 975.4016 974.6219 193.963 193.951 0.012
9F-17G 975.0555 974.6219 189.2¢10) 189.243 -0.016
9F-17G 975.0555 974.6219 189.2¢8 189.243 0.002
9F-17G 975.0555 975.9304 171.783 171.807 -0.024
9F-20G 1080.4139 1081.0874 175.491 175.509 -0.019
9F-20G 1080.4139 1078.5906 207.886 207.864 -0.008

square of 0.034°. This calibration procedure was repeatetion fits. This proves to be the most significant source of
following two separate data runs measuring the barium REexperimental error in determining the barium RESIS transi-
SIS transitions, and consistent results were found in the twtion frequencies. The best values &f,, and g for the he-
calibrations. However, it was observed that the scatter in théum calibration runs were found to be

observed helium resonance angular positions was somewhat

larger than the statistical errors obtained in fits of the reso- Bre=10.002 251 612),
nance lines. The limiting error in the calibration appears to
be the pointing stability of the barium beam. This was colli- fperp= 183.58734).

mated to a full width of about 0.20°. It appears that varia-

tions in the average angular position of the barium beanThe fitted value ofg, corresponds to a kinetic energy of
within this 0.20° window are responsible for the 0.034° rms9.44913) keV, in approximate agreement with the nominal
scatter in the calibration fit. Examination of the time corre-9.50 keV acceleration voltage.

lation of the fit residuals indicates that the pointing stability =~ The value off,, is the same for both helium and barium.
error is approximately random, so we attach this statisticalhe acceleration voltage of the ion source also remains the
error to the best value o, determined from the calibra- same for both ions. Thus the speed of the barium beam is
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simply the square root of the mass ratio times the speed of
the helium beam. Because the mass resolution of our veloc- A
ity filter is Am/m=0.04, all barium ions are present in the
ion beam at their natural abundance. However, because of
their different speeds due to the different masses, the RESIS
signals are partially resolved. Simulations show that the cen-
ter of the composite RESIS signal is very close to the posi-
tion expected for a pur&®Ba beam, the most abundant iso-
tope(72%). The mass of th&*®8Ba" ion is 137.9050 amu and
the H€ ion has a mass of 4.002 055 amu, givifs, &'
=0.000 383 621). This was used to convert the fitted stage 10
angle positions to the Doppler-shifted frequencies given 8 12 16 20 2
in Table 1. A small systematic correction, less than n
0.0003 cm?, was applied to account for the residual influ-
ence of the other barium isotopes.

Only one other systematic correction was applied to o

-
[=4
[=1
o

A
A
T } L=5

-
e
-

100 -

A Egpiitting / A Epirac

FIG. 3. Observed spin splittings for seveta5, 6, and 7 states
b_divided by the Dirac spin-orbit calculated for each state. Previous

tain the results shown in Table I. As seen in previous RES|gNeasurements by Gallagher al. [17] are given plotted as square
experiments, static electric fields can build up over time inPoints. Measurements performed by Vasseal. [21] are given as

. . . . - - triangles. The current measurements are shown as circles and the
the laser interaction region. Magnetic shielding was used it}

. . o . . I h dicti based on the indirect spin orbit mddg|

this region to eliminate motional fields due to the Earth’s nes arft © predic IOon_S ased on the indirect spin orbit g
g S L . ; with a;=124.30 andx,=1828.

magnetic field. Still significant electric fields build up due to

the charging of nominally conducting surfaces. Stark effects

from these electric fields cause frequency shifts in the tranP0iNtS show the splittings of the=6 and 7 levels im=9
sitions and Stark mixing of adjacent levels, which begin to@nd 10 measured in this study. The dashed lines show the

allow forbiddenAL =0 or 2 transitions. Stark-shift rates can theoretical predictions using the model of the indirect spin-

be calculated for each of the upper states from approximat@'Pit splittings presented earligt8]. The model shows very
knowledge of the dipole polarizability. Also, observations of 900d agreement with the measurements#7 levels, across

normally forbiddenAL=0 or 2 transitions, such as thel & Wide range oh. The agreement is poorer in the=6 lev-

=2 transition shown in Fig. 2, can be used to estimate th&'S: €specially at high. We believe this is due to the poorer
strength of ambient stray fields. The ratio of forbidden to€onvergence of the adiabatic expansion, which is assumed in
allowed transition amplitudes is assumed to be proportionaf€ving the indirect spin orbit modg18] in theL=6 levels.

to the square of the wave function admixture, which in turn! NiS is closely related to the comparison between measured
can be related to the ambient stray field by theory of the-=6 fine-structure intervals and the effective potential
Stark effec{8]. The estimated fields ranged from 0.05 V/cm Model, discussed in more detail below. The apparently good
t0 0.17 V/cm. The Stark shifts produced by fields of this size29réement between the spin splitting model and highea-

are not large. They are most significant for the transitionSUrements in.=5 levels is, we believe, fortuitous, since the
where the upper state is=30, and in this case, corrections convergence of the adiabatic expansion is even worse in
as large as 0.0005 cthwere applied. The error bar for each these levels. This is confirmed by the increasingly poor
transition was expanded by half the applied Stark-shift cor@dreement with measurements in lowei==5 levels. These

rection, and these errors are included in the last two column$hoWw the influence of strong quadrupole mixing with the
of Table 1. 5d4f level which occurs near thesB0h level [21]. Table Il

lists the new splittings measured here along with the pre-
dicted splittings obtained from the indirect spin-orbit model.
Il ANALYSIS

A. Spin splittings ) .
B. Fine-structure intervals

The transitions originating ih=6 andL=7 states exhibit
a spin splitting which is much larger than the Dirac spin-orbit The level of agreement between the observed and pre-
splitting, whose magnitude might be expected to approxidicted spin splittings is sufficient so that the interval between
mate the spin splitting in these states. Similar splittings werehe centers of gravity of the spin doublets can be accurately
observed in the previous study by Gallagleeral. [17] and  deduced with the use of this theory. The two observed tran-
were recently attributed to an “indirect spin-orbit” effect due sition energies are transitions between corresponding levels
to admixtures of excited® andD states into the nominally in the two states, either betwe&r=L +1/2 states or between
S-state ion cor¢18]. The new observations here significantly K=L-1/2 states, where is the total angular momentum
extend the data pattern of observed barium spin splittingsexclusive of Rydberg-electron spin. According to the indirect
Figure 3 illustrates that pattern. The square points are thepin-orbit model, the state with high& has the higher en-
ratios of the previously observed splittings in<t8=<23, ergy and the splitting im; is much smaller than the splitting
L=5, 6, and 7 level§17], normalized to the naive Dirac in n, . Therefore the higher transition energy, comes from
spin-orbit splittinggd 18]. The triangular points show the later the states witiK=L—-1/2, and arexpression for the interval
measurements of Vassenal.in L=5 levels[21]. The round between the center of gravity of the two spin doublets is
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TABLE Ill. The difference of the observed frequency to the tion. Much of the early work on this question originated from
purely hydrogenic transitions is given in column&Eg, listed for  workers interested in electron scattering, where similar ques-
each measured transitions in column 3, is the interval between thgons appear. It is not obvious priori that any potential can
centers of gravity of each doublet minus the hydrogenic energy. Thee found whose expectation value will accurately describe a
splitting AEgy, is the observed splitting of the measured transition.yige range of Rydberg fine structures. Nevertheless, much
The final column gives the predictions of the indirect spin-orbit ,ore elaborate forms of this effective potential have been
theory for the measured transitions. advanced over the years, including both higher-order adia-
batic terms and several different forms of corrections for
nonadiabatic effects in the interactip®5,26. The study of
Rydberg fine structure in the helium atom played an impor-
9-17K  1.90073) tant r_ol_e in these developments _both_because_of its relative
simplicity and because of the availability of precise measure-

9- hyd AEgg AEgpn  AEgpi predicted
nL-n’L’ (em™ (ecm™ (em™ (ecm™

OK-20L é'zijﬁ; 191123  0.02213) 0.0262 ments[27,28. _Thg most significant progress in helium, as
' measured by its impact on the general problem of Rydberg
0.87834) 0.87623) 0.00433) 0.0050 fine structure, is certainly the systematic development of the
10I-30K  1.53883) effective potential model by Drachmdf9-32. In a series
1.55993) 1.54852) 0.02112) 0.0230 of papers, Drachman showed rigorously that it was possible
10K-30L 0.69974) to formulate the helium fine-structure energies in terms of an
0.70314) 0.70133) 0.00343) 0.0047 effective potential containing increasing negative powers of

r, and for this particularly simple core ion, he calculated the
coefficients analytically for terms up 0% His approach
(L + Dhv_+Lho, AEqpi(Ny) was quite formal, using the Feshbach projection operators to
cg. = 2L+ 1) TaLrneL+3) (4)  systematize the calculation. Ultimately, the utility of this ap-
proach is limited by the convergence of the asymptotic series
This expression eliminates dependence on the calculated spi@presented by the effective potential, but the convergence
splitting in the(n, ,L) state, and the dependence on the splitimproves as the angular momentum of the Rydberg state in-
ting in the (ny,L+1) state,AE,{ny), is smaller than the creases. For heliu_m_ Rydberg states witk 7 this approach
experimental error bars in all cases and so is essentially ne§ives higher precision than even the most precise calcula-
ligible. Table Il lists AEgg, the inferred interval between the tions by more traditional method83]. A similar effective

centers of gravity of each doublet, less the hydrogenic enPotential approach has been described by Laughlin in appli-
ergy, for each measured transition. cation to the Rydberg states of Ca, where the core ion is also

an S state. This applies ideas very similar to Drachman’s
treatment of helium to the more general case, expanding on
earlier ideas, which incorporate nonadiabatic corrections in
The hope of extracting ion properties from fine-structuregther ways34].
measurements in high- nonpenetrating Rydberg states rests  For the present purposes, it is not sufficient to simply cite
on the relative simplicity of their fine structure and the pos-these previous theoretical works since, as will be seen, they
sibility to characterize that structure precisely with a smallare not entirely adequate to describe our experimental mea-
number of parameters which represent properties of the freq rements. In order to develop some insight into the possible
ion core. These ideas are not n¢@2-24, but they have reasons for this failure, it is helpful to present a less rigorous
been developed with increasing rigor as more precise experheuristic treatment of the effective potential model. The start-
mental studies, and especially studies in Rydberg states @g point for this model is the assumption of a zeroth-order
higherL, have appeared. The key idea is that, in many casegjescription of the system in which the core ion and the Ry-
there exists an “effective potential” whose expectation valugjperg electron are completely independent. We take the

over the Rydberg-electron wave function gives the finejamijltonian for the system to be given in atomic units by
structure energy of any particular Rydberg state. The leading

AE

C. Comparison with theory

term in this potential foS-state ion cores is just the familiar H=Hy+V,
adiabatic dipole polarization energy,
N-1 /212 N-1 -9
la _ (Ipil Z> 1 [IAf® Q
Volr) == =— 4 -+, 5 Ho= I LD = P =Ly
el =3 r4 ® =1\ 2 T/ T 2 Iy

where «, is the core ion’s dipole polarizability andis the

radial coordinate of the Rydberg electron. This form would N-1 1 (N-1 N1 e g
be expected to correctly describe the leading correction to oy £+ (IN-D) LI K

the hydrogenic energy for a Rydberg electron moving very V= 21 =2 2 e1C(Q)C (), (6)
slowly and very far from the ion core. Of course, neither of

these conditions is truly valid, and so many authors havevhereZ is the nuclear chargéy is the total number of elec-
considered how this simple idea could be modified to protrons, andQ=Z-N+1 is the charge of the core ion. Clearly,
vide a more realistic description of the electron core interacH, describes the desired independent systems: the free core

rin N i=1 k=1 'n
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ion and the hydrogenic Rydberg electron. Two important as- [glr3nile =212
sumptions are embedded in this formulati¢h) The Ryd- > W
berg electron, th&lth electron, is assumed to be distinguish- ne cor
able from the core electrons. This is the justification for the

asymmetric treatment of théth electron in the Hamiltonian.  gre the adiabatic dipole and quadrupole polarizabilities of the
(2) There is assumed to be no penetration of the core wavgpre jon. The square brackets above stand for radial inte-
function by the Rydberg electron. This justifies dropping thegrals. In this limit, the Rydberg fine-structure energies are
scalar term in the interactiovi Less essential, perhaps, is the jndeed the expectation value of an effective potential.
assumption of a nonrelativistic Hamiltonian for the core ion.  The nonadiabatic corrections to this picture have been
However, it is convenient for this heuristic discussion. Forgeajt with in a number of ways by different authors, but the
simplicity, the electron spin is neglected in this discussion. approach of Drachman amounts to substituting the second
With this starting point, the energy of Rydberg states canerm of Eq.(8) into the expression foEl? and using the
be developed through perturbation theory. The zeroth-ordegroperties of hydrogenic radial functions and integration by

wave functions are just producys of core eigenfunctionspartS to express the result from the first two terms as
(ne,1.) and Rydberg-electron functiofis, 1), coupled to form

total angular momentunh. For present purposes, we will

assume that the core ion ground state ha9, and so the B2l A= l(al<r_4>nl —6B(r By + o) — l(a2<r_6>nl
total angular momenturh is equal to the angular momentum 2 2

of the Rydberg electron, For simplicity, we will denote the
core ground state dg). In zeroth order, of course, all Ryd-
berg states of the sam®e are degenerate with this Hamil-
tonian. Note that the first-order perturbatiorMivanishes for

S-state core ions because of the assumption of nonpenetra-

2
@=g (10

=158 B+ o), 11

where

tion. Clearly this limits the applicability of this approach to 1« [gr|nll.=1]?
high-L Rydberg states. The first nonzero contribution to the B1= 1—22 W
fine structure, then, comes from the second-order perturba- ne cor

tion in V,
s (@, (n,1);LIVI(nG,10), (n',17); L))
o, [Ec(ntle) = Ec(@)] +[E() - EM)]

n'l’

E(g,nl:L) = - 1 < [dr?ngle= 21
(gana ) 32:2_02+C

n (AECOTEJZ

C

(12

(7 In this approach, the nonadiabatic corrections appear as
This expression can be further expanded in two other waydiigher inverse powers af in the effective potential. Again
First, the multipole expansion of the perturbatigrdivides  the coefficients of the potential depend on only a few param-
El2l into separate contributions from each multipole order.ters, which are relatively simple properties of the free ion
Second, the energy denominator in each term can be fogore. So the concept of an effective potential, independent of

ma||y expanded in terms of the ratio of Rydberg to corehn andl, survives with this method. The influence of all POs-
energy differences, the “adiabatic expansion,” sible core excited states is also naturally included with this

) approach. However, the method relies upon the convergence
1 - 1 AEgy + (ABryd” _ . of the adiabatic expansidieq. (8)], which may be question-
[AECOFE+ AERyd] AEcore (AECOI‘92 (AECOI‘9)3

able when the core ion has low-lying excited states.

8 Incorporation of higher-order terms in perturbation theory,
(8) . ; : . .
higher-multipole terms inV, and successive terms in the
adiabatic expansion generates numerous additional terms in
the expression above, all of which can be expressed in terms
of a radial expectation value of a higher inverse power of the

AEcore: E(ncllc’) - E(g),

AEgyq=E(n") —E(n).
Substituting only the first term of this expansion irf#?!
leads to the adiabatic polarization energies

1 1 _
Ed == Sanr - Sar Ot (9)

where the brackets stand for radial expectation values in th

Rydberg radial coordinate and

2 o= 1
1= ’
3 n/ (AECOUP)

C

Rydberg radial coordinate. Of course, the utility of this for-
mal expansion depends on the rapid convergence of the con-
tributions from successive terms. The rate of convergence
depends on the quantum numbers of the particular Rydberg
state under study and especially on the angular momentum of
that state, since this determines the inner turning point of the
radial wave function. In practice, for any finite value lof
Even if all the coefficients are known as in helium, succes-
sive terms begin to increase at some point, limiting the pre-
cision with which the fine-structure energy can be predicted.
For the present purposes, the effective potential may be rep-
resented, to sufficient precision, by the first three terms,
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TABLE V. The relativistic(AE,) and second-ordér\E2]) contributions to each measured transition are
shown in columns 2 and 3, respectiveME®" is the measured intervalErg corrected for the relativistic
effects and second-order energies. The corrected interval is normalizad 1 in column 5, and the
calculated ratioA({r~8)/A{r™%) for each transition is also given.

AE AE2 Y=

nL-n’L’ (cm™h (cm™h (! AES"I A{r - 4) Ar—6)/Alr—4)

91-17K 0.0005 0.0207 1.89@8) 62.03@10) 1.3888*10°

9K-20L 0.0003 0.0035 0.8723) 61.92121) 6.1596*10*

9L-20M 0.0002 0.0007 0.4213) 62.02644) 2.6645*10*

10I1-30K 0.0004 0.0170 1.5312) 62.1728) 1.4761*10°

10K-30L 0.0003 0.0030 0.6988) 61.95227) 7.0577*10*

10L-30M 0.0002 0.0006 0.3462) 62.00572) 3.4754*10*

10M-30N 0.0002 0.0001 0.1826) 62.174171) 1.6442*10*

a1l (a—-6B8)1 Ag such a plot of the scaled intervals.
Veri(r) =ToAT T 5, pte (13 In order to determine the core polarizabilities from the
measured transitions the data was fit to the following:

The term proportional to~8 is added as a stand-in for pos- AE®T =A +A6A(r‘6> +A Ar®) (14)
sible higher order terms, but most of our interest will be in A T TRAGT T TRAGY

the first two terms.

Two refinements must be made to this analysis before w
can accurately treat the data. The first of these is especial
significant when the dipole polarizability is large, as in the

case of Ba. The most significant portion of the fourth-order parameters which will consistently fit all the data, including

perturbation inV is found to be equivalent to the action of both the 9-17K and the 10-30K intervals. Reqardiess of
V.ir, applied in second order in the space of Rydberg levels - "€y

This “second-order polarization energy” is simply a functionthis’ the best choice of the intercefyf and the initial slope
of a4,n, andL in the case where the scale of the fine struc-A6 appears to be tightly constrained by the data pattern. This
1. can be illustrated by excluding one or the otimérn’K in-

;u;eligattiz]lchslz;{zrg?cl)); t?“e;irggg]d gi%ér?g?] ;t h?(fxig"?:tg tervals from the fit, resulting in the two smooth curves shown
plicitly ' PP in Fig. 4. The resulting values of, and Ag are virtually

+ _ i H _
knowledge ofa, for Ba', the second-order polar|zat|on €N identical in the two fits. The precise form of the curvature
ergy can be calculated for each state of interest and sub;

tracted from the observed intervals to obtain a result that canOes not appear to be critical either, since when these two fits
be compared directly to the expectation valueVaf, The are repeated including a term proportionalrid instead of

second refinement is accounting for the small relativistic

The A, parameter represents half the dipole polarizabifgy,
epresents 1/2v,—6p;), andAg allows for the possibility of
dontributions from higher terms. One obvious problem oc-
curs in carrying out this fit. There is no choice of the three

contribution to the measured intervals, coming from the

well-known “p*’ correction to the Rydberg-electron kinetic 62.3
energy. These corrections are listed for each transition in

Table IV. The fourth column lists the corrected fine structure A 62.2
intervals. These represent the difference of the fine structure "'-‘.,
energy of the lower state and the upper state, after subtract- < 62.1 1
ing the calculated contribution from relativistic effects and w

the second-order polarization energy. If the effective poten- < 62.0 ¢
tial model describes the Rydberg fine structure accurately,

these numbers should be equal to the difference of the ex- 61.9 1
pectation value ol/.; in the two states. In order to check -~
this, the difference of hydrogenic radial expectation values in 0.0000 0.0005 0.0010 0.0015

each pair of states can be computed, using the analytic ex-
pressions for the radial expectation val(i@§], corrected for
_f'n'te core ion mass. The rough varlz_itlon of the measured FIG. 4. The measured fine-structure intervals corrected for rela-
intervals can be removed by normalizing each measuremeqistic and second-order energy effects as described in the text and
to the difference in the expectation value rof in the WO normalized toA(r) are plotted versus\(r-®/A(r. The solid
states,A(r™*). This produces values that are approximatelyjines indicate the fit to the data from the effective potential model
constant, which would be expected to vary approximatelyexcluding one or the other of the rightmost points, which corre-
linearly when plotted versu&(r=/A(r™%. Figure 4 shows spond to exciting thel9and 10 states.

A<t /A s
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the term proportional ta~8, neither the intercept nor the
e S o . . 64
initial slope is significantly altered. Taking into consideration
the fitted values oA, andAg in all four of these fits, the best 62
values are found to be i
0
A, = 62.17887), 1°
< 58
Ag=-828260). o
56
The dipole polarizability determined in this way is <
a; = 2A, = 124.3617)a]. (15) 4
N ' 4
In order to extract a value for the quadrupole polarizabil- 52
ity from Ag, we first need to determing;. To a very rough 0:000. ‘0,004 0.002 0/003 [.004 0,005 0.006

approximation this can be estimated by assuming that the
dipole polarizability comes entirely from the lowest excited
core state whose excitation enet@y097 455 a.u.is known. FIG. 5. The solid points less than 0.002 on thaxis and the

If this were the case, the value ef found above and Eqs. o solid lines are taken from Fig. 4, while the solid points above
(10) and(12) would imply that3,=645 a.u.. This is an up- 0.002 are the results from the previous study by Gallagher and
per limit to the actual value since all other excitedstates  co-workerg17]. Each of these points is scaled and plotted as in Fig.
have larger excitation energies. For a more accurate estima- Clearly, neither of the Fig. 4 fits is an adequate fit of all the data.
tion, the &-6p matrix element calculated by Dzule al.  The open points and the dashed line illustrate the quality of the fit to
[15] can be used to find the lowest state contribution to thehe modified potential model represented by E2) of the text.
dipole polarizability. This turns out to contribute about 96% The term proportional téy, in Eq. (20) is not a smooth function of

of the total. Based on this information and the valueagf the x axis in this figure. Therefore to illustrate the fit we have
obtained above, an improved estimate @f is obtained subtracted from the data points the fitted contribution of this term,
which should be adequate for the present purposes. We talading to the open points. These are then compared with the
/31:58320)38: attaching a conservative estimate of error. Asdashed line, Whigh represents the best fit to 6), but again with

a result, the adiabatic quadrupole polarizability of Bade-  the term proportional té, excluded.

termined to be suggest they may be marginally significant for thi-nl
a, = 2Ag + 6B, = 18425334y, (16)  intervals measured by Gallagher al.[17]. Therefore those
data are also corrected for these contributions, shown sepa-
The lack of complete agreement between the measuredtely in Table V. Similar corrections are insignificant for
intervals and the fit to Eq(14) is still a cause for some higherl intervals. The resulting corrected intervals are
concern. It appears to indicate that the effective potentiacaled and plotted along with the new data as solid points in
model fails, even for states with=6. The situation appears Fig. 5. Also shown in Fig. 5 by solid lines are the extrapo-
even worse when previous measurementslefiK and nH lated fit functions from Fig. 4. Not only do these functions
-nl intervals inn=18-21[17] are included in the picture, as fail to intersect or even closely approach the older data, but it
in Fig. 5. In this previous study a singtes state is prepared is apparent that no choice of the parame#&ysAg, and Ag
by a series of laser excitations and then excited to the finatould ever fit all the data, since a function of this form must
state by single and multiphoton microwave transitions. Twomonotonically change its slope. Thus, inclusion of the older
values are reported for each transition as a result of the spidata confirms that, while the effective potential model ap-
splitting mentioned earlier. These give the positions of thepears adequate for states witk= 7, it fails to describe mea-
two members of the spin doublet with respect to the originakurements of states with<6.
nG state. The indirect spin orbit theofl8] gives a suffi- The complete pattern of data shown in Fig. 5 is in clear
ciently accurate description of the splittings that we can coneontrast to the expectations based on the effective potential
fidently state that the higher-energy state is the state witimodel. It was for this reason that we presented the heuristic
K=L+1/2. This information allows us to take a proper explanation of the assumptions underlying the model. The
weighted average of the two level positions in the doublet tdbasic multipole expansion of the interaction seems secure.
determine the center of gravity for eaoh level, still with  Certainly the weakest link in the assumptions is the use of
respect to the singlaG level. Then the difference between the “adiabatic expansiofEq. (8)] to formally express nona-
these values for states with differebts can be taken to diabatic corrections to each multipole order of the second-
determine theAL=1 intervals listed in column 2 of Table V order energy as successively higher inverse powers Difie
asAE. As in the treatment of the new data discussed above;onvergence of this expansion and of the potential derived
corrections were made to these measurements to account filtom it depends of the relative size of the core and Rydberg
relativistic effects and second-order energy corrections, andnergy differences. The dipole polarization energy is prob-
these are listed in Table V. Core penetration is not expectedbly not a problem in this respect, since the excitation energy
to be significant for states with=5, for which the inner of the lowestP state of the core is about 2.6 eV. The quad-
turning point of radial motion is 1&. Calculated estimates rupole polarization energy, however, appears quite problem-
of penetration corrections for bariunH andnl states37] atic since the lowesb state of the corg5D) is only about

A <r®s> / A <ris>
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TABLE V. Barium fine-structure intervals as determined by previous measurements ¢l RefColumn
2 gives the interval between the center of gravity of the two fine-structure levels listed in column 1, computed
with the use of the indirect spin-orbit model. Relativistic, second-order energy, and core penetration contri-
butions are listed and the resulting corrected energy interval is givale®¥ in column 5. The normalized
interval is listed in column 6 and with the calculated rati¢=6)/A(r=* in column 7.

Wtd. ave.AE  AE, AE[  AEpenetration AE®"

nL-n’L’ (MHz) (MHz) (MHz) (MHz) (MHz)  AEST/A(r-4) A{r—6)/A{r—4)
18H-18  10910.7 09 6205 17.9 10271.4  52.594 0.005 251
19H-191 9330.2 07 5297 15.5 8784.3 52.581 0.005 278
20H-20L 8011.2 0.6 4557 13.4 7541.5 52.58p 0.005 301
21H-21 6944.7 05 3948 11.7 6537.7 52.6@8 0.005 321
181-18K 4876.9 06  86.6 0.3 4789.4  63.82B) 0.002 546
191-19K 4174.4 05 741 0.3 40995  64.437) 0.002 565
201-20K 3593.5 04 639 0.2 35200  64.129) 0.002 581
211-21K 3114.9 04 554 0.2 3058.9  64.196) 0.002 595

0.6 eV above the ground state, and this is comparable to the Oncekg is computed in this way, it can be compared with
energy differences between intermediate Rydberg states. Thiee approximate form that would be obtained by retaining
convergence of the adiabatic expansion of the quadrupolenly the first two terms of the adiabatic expansion of the
second-order energy therefore, which is assumed to obtaiquadrupole polarization energy, again including only the 5
the effective potential, may be questionable. Fortunately, it izore excitation:
not difficult to check this point directly. The portion of the g
quadrupole second-order energy due solely to the lodest kgpproxz 1 _i“ >nL.
state, the 8 state, can be isolated and directly compared with Esq— Ees ("™ %nL
the approximat_ion Qerived b)_/ retaining only the fi_rst tWO 1his comparison is shown in Fig. 6 for=10 Ba Rydberg
terms _of the _adlabatlc expansion. The first part of this calcu-States with 6L <9. In this case, the approximate form ap-
lation IS precisely the route fqllowed by Gall_aghﬂral.[l?]. pears to be a reasonable first approximation of the nonadia-
They introduced the correction facti, which relates the batic correction only fol.=9. For states with. =7 the first

entire quadrupole second-order energy, due to this Slnglec'orrection is at least much smaller than 1, suggesting that the

core excitation, as series may converge and eventually approximate the full re-
sult. However, forl.=6 the first correction term is nearly as

(20)

1 -
EZ(6%S12.n: Lsa ony =~ SkaaS(r O, (17)

1.4
where 1.2 1
2[69r?(5d]? 1.0 1 \N——.—ﬁ
ag: ——[ rilsd] (18) o _o-""
5 E5d - EGS K> 08 1 ;/'
is the part of the adiabatic quadrupole polarizability due ex- 051 //
clusively to the ® state of the B&ion and 0.4 o/
- 0.2
ko= 3(Esq ~ o) 5 6 7 8 9 10
2(4L2 - 1)(2L + 3)(nL|r;°nL) L(n=10)
’ -3
x|eL-nL+nL+2> [n'l +2|r57nl]? FIG. 6. The nonadiabatic correction factdeg calculated for
. Esan — Egen n=10 barium Rydberg levels are shown by the solid points. The
" approximate valuegP"** determined from the first two terms of
2(L2 +L)(2L+1) 2 [n'] |r£3|nl]2 the adiabatic expansiditg. (20)] are shown as open points. In both
+

cases, the difference dd, from one represents the nonadiabatic

correction. Clearly, the accuracy of the approximate method in-

2|r§3|n|]2] creases withL, and inclusion of subsequent terms in the adiabatic
(19

3 n' E5dn’ - E65n

+(2L+3)(L2-1)D, [nl— expansion would be expected to improve the agreement further.
o Esan ~ Eesn However, forL=6, since the first correction ikg***is almost as
large as 1 it seems unlikely that this approach to describing the
We note that while Eq(19) agrees with Ref[17] it differs  nonadiabatic corrections can succeed for barium Rydberg states
by a factor of 5 from that given in Ref38]. with L<6.
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large as the leading term, making the convergence unlikely. TABLE VI. Values of core parameters derived from the fits of

This indicates that the reason for the failure of the effectiveFigs. 4 and 5 and previous determinationsagfand a, from Ref.

potential model in Fig. 5 is likely the inappropriate adiabatic[17]-

expansion of the second-order quadrupole energy.
If indeed this is the reason for the discordant data patteruantity Fig. 4 fit Fig. 5 fit Previous expt.

of Fig. 5, it may also suggest a better way to treat the data. s

There is no reason to doubt the convergence of the adiabatff:l(ag) 124.3617) 124.3015 125.51.0

expansion for whatever part of the quadrupole second-ordéfg(ag) 1842533 2463361 2054100

energy is due to highdd states of B4 which are at least 5.6 @2(2) 182888)

eV above the ground statérlhis is easily confirmed by re-

peating the test of Fig. 6 after artificially expanding thet 5 o ) ) _
excitation energy.It should be possible, therefore, to write a €nergy is still described by an effective potential model and

modified potential, whose expectation value should give th&an be fit consistently in this way to extract core parameters.
Rydberg fine-structure energy as As in the fit of Fig. 4, we also repeated the fit of Fig. 5 data

using a term proportional to™’, instead of proportional to

a1l (ay—-6Bp) 1 ag 1 r-8and found little effect on the fitted values &f andAg. In
VolNiL) = TodT o 8 E[kQ(nL) - 1]r_6 both of these fits, to avoid giving excessive weight to the
older data, which appeared internally inconsistent, the uncer-
+ A_g . (21) tainties for that data were arbitrarily expanded by a factor of

7. It was still necessary to expand the fitted parameter errors
slightly to account for the excess scatter in the fit. For best fit

In this expressiong,, 81, anda, have their usual definitions,
L ~ ) .~ values ofA,,Ag, andA,, we quote the average of the results
and the term proportional toky—1) describes the entire found in the two types of fit

nonadiabatic contribution to the part of the quadrupole

second-order energy due to the &ate. As indicated, since A,=62.15274),
Ko is a function ofn andL, this is no longer a true effective

potential. Nevertheless, since it avoids the convergence dif- Ag=-518170),
ficulties discussed above, it might give a better account of

the data pattern. In order to test this, we fit the data to a Ay =91444).

function of the form . . .
The fitted values ofA, and Ag are consistent with the

AECOT A(rT8) Al(kg = 1)(r™®) A(r 8 values obtained from the fits of Fig. 4. The fitted valueAgf
A =Agt AﬁA(r“‘) +A A + A implies a value f_o_rag, the 5 state contribution to the quad-
(22) rupole polarizability,
a9 =2A,=182§89). (23

The third term requires independent calculation of
factors for each level studied. The Appendix tabulates théur conclusions about the parameters characterizing the Ba
values calculated for each of the levels of this study andore, as derived from the separate fits of Fig. 4 and 5, are
describes the method used to calculate them, which differs iMery similar. They are summarized in Table VI.
some respects from that used in the study of Gallaghet. The previous measurements @f and a, are also shown
[17]. in Table VI. Comparison of our results with these measure-

All of the data shown in Fig. 5 can be fit with ER2), ~ ments[17] is complicated by the different methods of data
and this confirms our hypothesis that the failure of the effecanalysis. The previous study fit their measurements by as-
tive potential model is due to the low-lyingiState. In order ~Suming that
to illustrate this fit in Fig. 5, the contribution of the term 1 1
proportional toA, was subtracted from each point to obtain B2 = = “kgan(r™)ni = “koaar O, (24)

. N 2 2

the open circle points in Fig. 5. Then a dashed curve corre-
sponding to the remaining three terms in the fit function waswvhere the factorsky and kg are introduced to account for
added to show the quality of the fit. This appears to give enonadiabatic corrections to the fine-structure energies. In
very satisfactory resolution of the difficulty initially pre- both the dipole and quadrupole cases, these factors were cal-
sented by Fig. 5. Our conclusion is that the nonadiabaticulated under the simplifying assumption that only one core
corrections to the quadrupole polarization energies for statesxcited state contributes to the polarizability. That is, only
with L=<6 are very large and dominated by the contributionsthe lowestp state contributes tey; and only the lowest
of the lowest core-excited state, the 8 state. The excitation state contributes te,. In the case ofy;, we now believe that
energy of this state is so small that the adiabatic expansionhe lowestp state contributes about 96% of the total dipole
used to derive the form of the effective potential, fails badly.polarizability. The calculated nonadiabatic correction factors
However, it is possible to treat the part of the quadrupolek, are also close to 1, meaning that the nonadiabatic correc-
polarization energy coming from thedState independently tions are small[17]. The nonadiabatic corrections to the
and to calculate a nonadiabatic correction fastgfor each  small portion of the dipole polarization energy coming from
Rydberg level studied. The remainder of the fine-structurénigher p states are certainly much smaller than the correc-
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TABLE VII. Calculated values of the core parameters measured in this work. Cohunmalativistic
many-body perturbation theorfe,), Dirac Hartree-Fockay,) [39]. Column B: model potential[40,41].
ColumnsC, D, E: Coulomb approximatioficited in Ref.[42]); columnF, Hartree-Slatefcited in Ref.[42]).

Quantity A B C D E F
al(ag) 124 135 117.1 118.7 122.6 144.1
az(ag) 4240 4301 2245.1 2370.0 2589 3102.7
ad(ag)° 3268 2076

tions to the dominant portion. Still, the error incurred by IV. CONCLUSION

assuming that the calculat&g applies to the entire polariza- A factor of 6 increase in recision of the dipole polariz-
tion energy is not large, approximately 0.2%. Therefore it isabilit of Ba* has been achigved through an Op ticaﬁ) RESIS
not surprising that we find good agreement with the previ- Y g P

ously reported value ok, in spite of the different methods ?;ltjzg\)//e()f 2;22;;?032;1 ulsoe(? atgu(Tesgi(:)t:aert%eStgrgees.sﬁﬂc?:;re
of analysis. Comparison with the previously reported value P ; .
orks for states of very high angular momentum, but in the

of a5, is not as satisfactory. In this case the assumption thal’ . :
the correction factoks, calculated by including only the case of barium begins to break down fox 7 states because

owestd state, can be assumed to apply 1o the entre quadl B NI P28 SRR PAC A RO RO SRR TR B
rupole polarization energy is more seriously in error. This isf

partly due to the fact that the lowedtstate contributes a me-structture ??ﬁsuremegts of lth's yvork W'.th dolder dmetao_l
smaller fraction of the total quadrupole polarization energytsuremeP S a? th IS pr:_)ce ufretha S0 gl(\j/es aln n TP‘?” ;Ft e
[74(1)% by our estimatg but also due to the fact that the ermination of the poor lon of the quadrupole polarizabiiity
nonadiabatic corrections are much larger. Consequently, th%u‘.a tothe d state, a. .GOOd agreement with a recent theo-
previous result underestimates,; our result is 1.20L5) ret'|cal calculation Oofoz1 is found, but agreement with calcu-
times larger. The large nonadiabatic corrections to the quad‘:’t[IonS ofa, anda; is rather poor.

rupole polarization energies play a dominant role in the data

pattern, as illustrated in Fig. 5. For this reason, it is not

surprising that the previous result is closer to our estimate of ACKNOWLEDGMENTS

0 H H . . .
a;, the portion ofa, due exclusively to the & state, for This work was supported by the Chemical Sciences, Geo-
which the nonadiabatic corrections are large. sciences, and Biosciences Division of the Office of Basic

Table VII collects preViOUS theoretical calculations of the Energy ScienceS, Office of Science, U.S. Department of En-

core polarizabilities measured here. Fey, the calculated ergy. We thank Samuel Cohen for helpful comments.
values range from 117 to 144. The result of Porsev and Der-

evianko, columnA, using the relativistic many-body theory

method is in excellent agreement with our measured result. APPENDIX
This method is expected to provide the most accurate theo-
retical description of the Baion. Unfortunately, it is not In order to obtain the most accurate valuekgfpossible

possible to compare with this calculation at the level of prefor use in the analysis of the data in this study, several im-
cision of the experiment because of the limited number oforovements over the steps used in referdd@were under-
digits in the reported theoretical result. Agreement with cal-taken.

culations obtained with other methods is less satisfactory. (1) Since the 8 state is actually split into two fine-
Comparison with theoretical calculations®f and ag are far  structure states, the definition kf was expanded to include
less clear-cut. The results of Porsev and Derevianko, columthis core fine-structure splitting. Including the core spin also
A, who in this case report results with the Dirac-Hartree-means that there are twoL Rydberg levels withK=L
Fock method 39], overestimate both properties by about a+1/2 andK=L-1/2,with somewhat different second-order
factor of 2, although the ratio of the two values is predictedquadrupole energies. To compare with experimental data, we
correctly. The disagreement between experiment and theoigomputed the weighted average of these two energies. Re-
for af is particularly disturbing because of the importance oftaining the definition ok, as

this particular matrix element in interpreting the proposed 1

parity violation measurements in Bal1]. Agreement with EE<2=]2(6231/2,H|:L)gdagﬁ{;gef - Zkoadr O, (A1)
some of the other calculations is somewhat better. For ex- 2

ample, the calculation of Cohen, colun) shows better
agreement foag, but still apparently overestimates. Other
calculations show better agreement &g but do not report 2 (6slr75d)?
a separate value fng. We hope to improve the precision of @ E(E)——E
this measurement and obtain a more decisive test of theoret- sdleg. s
ical calculations by extending our study to highetevels  but including the 8 fine-structure energy in the perturbation
using microwave methods. denominators, we find

where

5= : (A2)
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TABLE VIII. Calculated ky values using the Dalgarno-Lewis method and including the fine-structure
energies of the B&D states. The results forh states were modified to account for a quantum defect of 0.05
in the 54f and S5f states. The quoted values correspond to a weighted average of the values computed
separately for th& =L+1/2 states.

H | K L M N
9 1.482 0.968 0.957
10 1.225 0.986 0.959 0.968
17 1.059
18 -0.658 1.652 1.065
19 -0.612 1.686 1.070
20 -0.573 1.718 1.074 0.989 0.973
21 -0.540 1.747 1.077
30 1.097 0.998 0.979 0.975

3[(Esg)eg ~ Esl 2( < 1+ 27Nl [n'l[r3%|ni}? [n'l = 2|r5%nl}?
ko= SaZ- DL+ LD | 5L B o Bo O By oEen "y -
( )( )(n |r2 |n > n’ 5dg/on’ 6sn n/ —5dgon’ 6sn n 5dgon’ 6sn
3 n'l + 2|r;3nl]? n'lr53nI]? n’l = 2|r53nlT?
2 f+2[ |2|]+f02[ |2|] +f_2[ |2|] , (A3)
) n' E5d5,2n’ — Eésn n' E5d5,2n’ — Eésn n’ E5d5,2n’ — Eesn
[
where crete and continuum levels. This implicitly assumes that all
the intermediate Rydberg levels are hydrogenic.
f,=2L-1)(L+1)(L+2), (3) For the &nhstates alone, where the perturbations by

the 5d4f and Z5f are significant, we included a quantum
) defect for these states only, using a value of 0.05, as indi-
_ 2 cated in a spectroscopic study [@f4].
fo= (§>(L tL(@L+D), With these steps, we obtained tkg values shown in
Table VIII for the states relevant to this study. Since our
calculation necessarily evaluated the contributionskgp
_ 5 2 from intermediate Rydberg levels with =1-2 I, andl +2, it
fo=@L+3)(L"- L)<§)' was possible to note that the most significant variatioRpf
with L and thus the most significant effect on the fine-
(2) To evaluate the sums occurring in the definitions ofstructure intervals was found in the =1-2 channel. Thus,
ko, we used the Dalgarno-Lewis methd3] so that our for example, the nonadiabatic effects on the fine structure of
calculation consistently includes contributions from both dis-6snhlevels were mostly due tod®'f states.
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