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The angular correlations in the two-photon decay of hydrogenlike ions are studied within the framework of
second-order perturbation theory, based on Dirac’s equation. Particular attention has been paid to the effects
which arise from the highersnondipoled terms in the expansion of the electron-photon interaction. It is shown
that the photon-photon angular correlation function, which is found symmetric with respect to the angleu
=90° in the electric dipole approximation, becomes asymmetric because of the nondipole contributions, and
that this effect is enhanced as the nuclear chargeZ increases. Detailed computations on the photon-photon
angular distribution have been carried out for the 2s1/2→1s1/2 and 3d5/2→1s1/2 transitions in neutral hydrogen
sHd as well as for hydrogenlike xenonsXe53+d and uraniumsU91+d ions, and are compared with previous
nonrelativistic results by AufPhys. Rev. A14, 531 s1976dgd.

DOI: 10.1103/PhysRevA.71.022509 PACS numberssd: 31.30.Jv, 32.80.Wr

I. INTRODUCTION

Since the early days of quantum mechanics, the two-
photon transitions ofshydrogenliked atoms has been the sub-
ject of studies both in theoryf1–7g and experimentf8–10g.
While, however, most investigations in the past dealt with
the decay of neutral hydrogen and the low-Z ions, much of
today’s interest is focused also on thehigh-Z region in which
the two-photon transitions serve as a sensitive probe of rela-
tivistic as well as quantum electrodynamicalsQEDd effects
in strong electric fields. To explore and analyze these effects,
a large number of theoretical case studies have been carried
out in particular for the total decay rates and the photon
energy distributions, based on Dirac’s equationf5–7,11g.
Less attention, in contrast, has been paid previously to the
effects of relativity on the photon-photonangularcorrelation
functions. Using a nonrelativistic approach, a first step to-
wards such an angle-resolved analysis was performed by Au
f4g almost 30 years ago, who calculated the angular correla-
tions for the two-photon decay of the metastable 2s1/2 state in
heavy hydrogenlike ions. Apart from the leading electric-
dipole term, Au hereby incorporated also the higher multi-
poles in electron-photon interaction and included some semi-
relativistic adjustments in his final results. For the 2s1/2
→1s1/2 two-photon decay especially, these nondipole effects
were found to result in an asymmetrical shape of the photon
angular distribution as function of the angleu between the
emitted photons, and when compared with the more familiar
and symmetricselectric-dipoled form 1+cos2u f3,12g. A simi-
lar asymmetry in the photon-photon angular correlations
were obtained later also in therelativistic computations by
Mu and Crasemannf13g and Tonget al. f14g, respectively,
who studied the two-photon decay of aK-shell vacancy for
molybdenumsZ=42d and silver sZ=47d. But although the
nondipole effects gave rise again in these case studies to a
slight asymmetry in the angular correlation function, these

effects are usually small for most neutral, medium-Z ele-
ments and suppressed, in addition, by the screening of the
nuclear charge due to electron-electron interaction. Explor-
ing the photon-photon angular correlations along the hydro-
gen isoelectronic sequence, in fact, provides a unique test
bay for investigating the relativistic and nondipole effects in
simple atomic systems.

In this contribution, second-order perturbation theory is
applied to analyze the photon-photon angular correlation
function for the two-photon decay of hydrogenlike ions.
Starting from Dirac’s equation, emphasis has been placed on
the srelativisticd contraction of the wave functions as well as
the influence of the higher multipoles in the expansion of the
photon field. Most natural, these multipole effects beyond the
electric-dipole approximation are studied by means of a
smultipoled expansion of the two-photon transition amplitude
and lead to a whole series of different decay amplitudes,
shortly denoted byE1E1,E1M2,M1M1,E2M2,… , respec-
tively. Following the definition of the angle-differential emis-
sion rates in Sec. II A therefore we must first express the
second-order amplitude in terms of the Coulomb-Green’s-
function in Sec. II B before the standard multipole expansion
of the photon field can be appliedscf. Sec. II Cd. The com-
plete expansion of both the Green’s function and the photon
field are utilized later in Sec. III to calculate the photon-
photon correlation functions for the 2s1/2→1s1/2 and 3d5/2
→1s1/2 decay for neutral hydrogensHd as well as hydrogen-
like xenonsXe53+d and uraniumsU91+d ions. From the com-
parison of oursrelativisticd calculations with the nonrelativ-
istic results by Auf4g, we are able to extract the effects of
relativity and of the higher multipoles in the expansion of the
photon field as the nuclear chargeZ is increased. Although
both, the relativistic and nonrelativistic theory, predict a
similar shift, at leastqualitatively, for the photon-photon an-
gular correlation function owing to the nondipole contribu-
tions, the nonrelativistic approximation by Auf4g overesti-
mates the effects of the higher multipoles by more than 13%
for the hydrogenlike uranium U91+. Finally, a brief summary
is given in Sec. IV.*Electronic address: surz@physik.uni-kassel.de
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II. THEORY

A. Differential emission rate

Not much needs to be said here about the basicssecond-
orderd formalism for studying the two-photon transitions of
the hydrogenlike ions, which has been utilized elsewhere
within both, the nonrelativisticf3g and relativistic framework
f5,7g. Instead, we restrict ourselves to a short account on the
angle-angle correlation function for the emitted photons. For
angle-resolved studies, it is convenient to start from thehe-
licity representation of the photon field, i.e., to describe the
photons in terms of the wave vectorsk1,2 and their spin pro-
jection onto the direction of propagationl1,2= ±1. In such a
representation of the photon states, the wave vectorski
=ski ,ui ,fid , i =1, 2 define not only the direction of the emit-

ted photonsk̂i ;sui ,fid but also their energyEgi
="cki which

are related by

Ei − Ef = Eg1
+ Eg2

, s1d

to the total energiesEi andEf of the initial uni j il and the final
unf j fl sone-electrond states, respectively. Moreover, since the
conservation of energys1d permits only one of the photon
energies to be independent, thecompleteinformation on the
energy and angular distributions of the two decay photons
may be obtained simply from thestriple-differentiald cross
section

d3W

dE1dV1dV2
=

Eg1
Eg2

s2pd3c2

1

2j i + 1 o
mimfl1l2

uMfism f,mi,l1,l2du2,

s2d

which isdoubledifferential in the emission angles andsingle
differential in the energy of one of the photons. In Eq.s2d, in
addition, we have assumed that the excited ions are initially
unpolarized and that neither the polarization of the photons
l1,2 is observed nor that of the residual ionm f.

For any further analysis of the energy or angular distribu-
tion s2d of the emitted photons, we need to evaluate and
simplify the bound-bound transition amplitude
Mfism f ,mi ,l1,l2d which, in second-order perturbation
theory, is given byf5g

Mfism f,mi,l1,l2d

=Xn

kcnf j fmf
uaul1

* e−ik1·rucnlkcnuaul2

* e−ik2·rucni j imi
l

En − Ei + Eg2

+Xn

kcnf j fmf
uaul2

* e−ik2·rucnlkcnuaul1

* e−ik1·rucni j imi
l

En − Ei + Eg1

.

s3d

Here, the transition operatorauli
eiki·r describes thesrelativ-

isticd electron-photon interaction together with the unit vec-
tors uli

in order to denote the polarization of the individual
photons. As indicated in formulas3d, the summation over the
intermediate states runs over the complete one-particle spec-
trum scn ,End, including a summation over discrete part of
the spectrum as well as the integration over the continuum.

During the last decade, therelativistic form of the transition
amplitude s3d has been used widely for studying the two-
photon decay in high-Z hydrogenlike ionsf5,7g. In such a
relativistic description of the hydrogenlike ions, the initial
sone-electrond states cni j imi

srd=kr uni j imil and final states
cnf j fmf

srd=kr unf j fm fl are the analytically well-known solu-
tions of the Dirac Hamiltonian for a singly bound electron
f15g.

In practice, of course, thesummationover the complete
spectrum is difficult to be performed explicitly. Apart from a
limited summation over just a few intermediate states which
are near in energy therefore a number of alternative methods
have been proposed for calculating the second-order ampli-
tudes s3d. In the discrete-basis-setmethod, for instance, a
finite set of pseudostates is determined variationally and uti-
lized for carrying out the summationf6g. This method has
been widely used during the past years in order to explore
the two-photon decay of the metastable 2s1/2 state in heavy
hydrogenlike ionsf5,7g. An alternative approach is given, if
the transition amplitudes3d is first expressed by means of
Green’s functions, which help avoid the direct summation. In
the following section, we make use of this Green’s-function
method to evaluate the two-photon transition amplitudes3d.
For studying hydrogenlike ions, the great advantage of this
method is that the Coulomb-Green’s functions are known
analytically, both within the nonrelativistic as well as relativ-
istic theoryf16g.

B. Green’s-function approach

Following Morse and Feshbachf17g, we may introduce
the formal solution of the Green’s function for some Hamil-

tonianĤ, i.e., for the equationsĤ −EdGEsr ,r8d=dsr −r8d, by

GEsr,r8d =Xn

ucnsrdlkcnsr8du
En − E

, s4d

which includes a summationsintegrationd over the complete
spectrum of the Hamiltonian as discussed above. Using this
ansatz therefore we can replace the summation over the in-
termediate states in Eq.s3d and rewrite the two-photon tran-
sition amplitude in the form

Mfism f,mi,l1,l2d = kcnf j fmf
srduaul1

* e−ik1·rGEi−Eg2
sr,r8d

3aul2

* e−ik2·r8ucnikimi
sr8dl

+ kcnf j fmf
srduaul2

* e−ik2·rGEi−Eg1
sr,r8d

3aul1

* e−ik1·r8ucnikimi
sr8dl , s5d

including the integration over both,r and r8, respectively.
Although, from a mathematical viewpoint, this form is
equivalent to the second-order amplitudes3d ands5d appears
to be more convenient for the calculation of these amplitudes
if the Green’s functions4d is known. For the Dirac Hamil-
tonian and a pure Coulomb potential, i.e., for the hydrogen-
like ions, theradial-angular representation of thesrelativis-
ticd Coulomb-Green’s function is given byf16,18g
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GEsr,r8d =
1

rr 8
o
km
S gEk

LLsr,r8dVkmsr̂dVkm
† sr̂8d − igEk

LSsr,r8dVkmsr̂dV−km
† sr̂8d

igEk
SLsr,r8dV−kmsr̂dVkm

† sr̂8d gEk
SSsr,r8dV−kmsr̂dV−km

† sr̂8d
D , s6d

where Vkmsr̂d denote a Dirac spinorf15g, and where the
radial Green’s function is given in terms of the four compo-

nentsgEk
TT8sr ,r8d with T=L ,S referring to thelarge andsmall

components of the associatedsrelativisticd wave functions.
For the sake of brevity, here we will not display the radial

componentsgEk
TT8sr ,r8d explicitly but just recall that they can

be expressed in terms of thesspeciald Whittaker functions of
the first and second kindf16,18g. In the computations below,
we have used theGREENSlibrary f18g in order to obtain the
energy and angular distributions for the emitted photons.
This code was developed by us originally for studying the
cross sections and polarization phenomena in the two-photon
ionization of the hydrogenlike ionsf19g.

C. Multipole decomposition of the photon fields

Making use of Eq.s5d, the computation of the two-photon
amplitudes requires a six-dimensionalintegration overd3r
=r2dr sinududf andd3r8=r82dr8sinu8du8df8, respectively.
As usual in atomic physics, however, these integrals can be
further simplified by applying the techniques of Racah’s al-
gebra if all the operators are represented in terms of spherical
tensors and if theradial-angular representation of the wave
and Green’s functions are usedf18g. For the interaction of
electrons with the radiation field, the spherical tensor com-
ponents are obtained from a multipole expansion of the pho-
ton operatorf20g,

ul1,2
eik1,2·r = Î2po

L=1

`

o
M

iLfLg1/2sALM
smd + il1,2ALM

sed d

3DMl1,2

L sk̂1,2→ ẑd, s7d

wherefLg=s2L+1d and the standard notationALM
se,md is used

to denote the electric and magnetic multipole fields, respec-
tively. Each of these multipoles can be expressed in terms of
the spherical Bessel functionsjLskrd and the vector spherical
harmonicsTL,L

M of rank L as f20g

ALM
smd = jLskrdTL,L

M ,

ALM
sed = jL−1skrdÎ L + 1

2L + 1
TL,L−1

M − jL+1skrdÎ L

2L + 1
TL,L+1

M .

s8d

As seen from Eq.s7d, the angular dependence of the photon
emission results from the the Wignersrotationd matrices

DMl1,2

L sk̂1,2→ ẑd which transform the multipole fields with
the original quantization axis along the photon propagation
k1,2 into the fields with quantization axis along theẑ direc-
tion.

The proper choice of acommonquantization axissẑ axisd
is important for the evaluation of the angular integrals in the
transition amplitudes5d, cf. the discussion in Refs.f19,21g.
Since for the decay of unpolarizedsas well as unalignedd
hydrogenlike ions, there isno direction preferred for the
overall system, we adopted theẑ axis along the momentum

of the “first” photon:ẑi k̂1. Making use of the expressionss7d
and s8d for such a choice of the quantization axis, we can
rewrite the two-photon transition amplitudes5d as a sum over
the electric and magnetic multipole components,

Mfism f,mi,l1,l2d

= 2p o
L1L1

o
L2M2L2

i−L1−L2fL1,L2g1/2DM2l2

L* sk̂2djL1L1

l1* jL2L2

l2*

3fkcnf j fmf
srdua jL1

sk1rdTL1L1

l1* GEi−Eg2
sr,r8d

3a jL2
sk2r8dTL2L2

M2* ucnikimi
sr8dl

+ kcnf j fmf
srdua jL2

sk2rdTL2L2

M2* GEi−Eg1
sr,r8d

3a jL1
sk1r8dTL1L1

l1* ucnikimi
sr8dlg , s9d

where the coefficientsjLL
l are given byf19g

jLL
l =5

1 if L = L,

ilÎ L + 1

2L + 1
if L = L − 1,

− ilÎ L

2L + 1
if L = L + 1.6 s10d

As expected from expansions7d of the photon operator, the
transition amplitudes9d now contains ansinfinited summa-
tion over products of the different multipoles
E1E1,E1M2,M1M1,E2M2,…, which are characterized by
the combination of the summation indicesL ,L8 ,L ,L8 or,
equivalently, by the symmetry of the vector spherical har-
monics in the overall expansion. Each matrix element in the
summations9d still represents a six-dimensional integral over
r and r8, respectively, along with a summation over the
spinor components of the wave and Green’s functions. To
separate the radial part from the spin-angular parts of these
matrix elements, we further need to apply the radial-angular
representations6d of the Coulomb-Green’s functions together
with the knownstwo-componentd representation of the Dirac
wave functions in a Coulomb fieldf15g. After some algebra,
we then obtain for the transition amplitude

ANGULAR CORRELATIONS IN THE TWO-PHOTON… PHYSICAL REVIEW A 71, 022509s2005d

022509-3



Mfi
sm f,mi,l1,l2d = 2p o

L2M2

DM2l2

L2* sk̂2d o
L1L1L2

i−L1−L2fL1,L2g1/2jL1L1

l1* jL2L2

l2* o
kmTT8

PTPT8

3fUL1L2

TT8 sk f,k,ki ;k1,k2;Eg2
dkk fl f

T̄m fusTL1L1

l1* uklTmlkklT8musTL2L2

M2* ukil i
T8mil + UL2L1

TT8 sk f,k,ki ;k2,k1;Eg1
d

3kk fl f
T̄m fusTL2L2

M2* uklTmlkklT8musTL1L1

l1* ukil i
T8milg , s11d

where, again,T=L ,S is used to denote the large and small
components, for which factorPT is defined asPL=1 and

PS=−1, and whereT̄ refers to the conjugate ofT, i.e., T̄=L
for T=S and vice versa. Equations11d displays the general
form of the srelativisticd transition amplitude for the two-
photon excitation or decay of hydrogenlike ions. Theangu-
lar part of this amplitude is determined by the matrix ele-
ments of the rankL spherical tensorssTLL

M =fYL ^ sgL
M

which have been discussed previouslyf19,21g. In contrast to
the angular part which can be evaluated algebraically, how-
ever, theradial integrals,

UL1L2

TT8 sk f,k,ki ;k1,k2;Egd

=E gnfkf

T̄ srd jL1
sk1rdgEb+Egk

TT8 sr,r8d jL2
sk2r8dgniki

T8 sr8ddr dr8,

s12d

in Eq. s11d have to be computednumerically.To this end, we
first generate the individual components of thesradiald wave

functionsgni,fki,f

T srd and the Green’s functionsgEk
TT8sr ,r8d and

then carry out the two-dimensional integration overr andr8.
In the present work, all the required functions and radial
integrals were calculated by using theGreens libraryf18g.

III. RESULTS AND DISCUSSION

The two-photon transition amplitudes11d formally in-
cludes the summation over all the products of multipoles
E1E1,E1M1,E1E2,… . Although still infinite, the number
of allowedsi.e., nonzerod terms in the fourfold summation of
Eq. s11d is restricted to certain combinations of the indices
L1,L2, and L1,L2, respectively, owing to the parity and

angular-momentum selection rules as obtained from the an-
gular parts of the matrix elementsf21g. Here, we shall not
discuss these selection rules which follow very similar lines
as the one-photon transitions, if thesymmetryof the imagi-
nary intermediate states is taken into account. In practice,
there is usually one “leading” term in the expansion which
dominates the two-photon transitions for any given pair of
initial and final bound states. For example, the 2s1/2 level of
the hydrogenlike ions decays into the 1s1/2 ground state pri-
marily by the emission of two electric-dipolesE1E1d pho-
tons, while all the higher multipoles contribute with less than
0.5% to the total decay ratef5,7g. In contrast to the total
rates, a more significant effect of the higher multipoles
ssometimes called thenondipoleeffectsd, are expected for
the angular distributions of the emitted photons. For heavy
hydrogenlike ions, for instance, it was shown recently that
the magnetic-quadrupolesM2d contribution shifts the effec-
tive anisotropy parameters by up to 30%, when compared
with a pure electric-dipole approximationf22g.

In this contribution, we make use of Eqs.s2d and s11d in
order to explore the nondipole effects on the angular distri-
butions for the two-photon decay of hydrogenlike ions. This
first requires, or course, to define thegeometryunder which
the emission of the two photons is considered. As described
in Sec. II C, we adopt the quantization axissz axisd along the

momentum of the first photonk̂1, so that theangular corre-
lation between the two photons is characterized by thespo-
lard angleu2;u of the second-photon momentum with re-
spect to this axis. Apart from the angleu, the photon-photon
correlation function also depends on the energiesE1 andE2
of the photons. Instead of using thesesabsoluted energies,
however, it is often more convenient to characterize the pho-
ton energy distribution in term of the dimensionless variable
x=Eg1

/ sEg1
+Eg2

d=Eg1
/ sEi −Efd which gives the fraction of

FIG. 1. Photon-photon angular correlationss13d in the 2s1/2→1s1/2 two-photond decay of the hydrogenlike ions. Results are presented for
the exact relativistic theorys—d, nonrelativistic approximations---d by Au 4 as well as the relativistic electric dipoles--d approach for the
relative photon energyx=0.5.
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the energy as carried away by one of the two photonsf5g.
Using this variable, the angle- and energy-differential cross
sections2d can be written as

d2W

dxdcosu
sx,ud = 8p2sEi − Efd

d3W

dEg1
dV1dV2

, s13d

which is the most appropriate form for studying the photon-
photon angular correlations. In this expression, the factor
8p2 arises from the integration over the solid angledV1
=sinu1du1df1 of the first photon as well as the integration
over the aximuthal angledf2 of the second photon.

In Fig. 1, we display the photon-photon angular correla-
tion functions13d for the 2s1/2→1s1/2 stwo-photond decay of
neutral hydrogenH, hydrogenlike xenon Xe53+ and uranium
U91+ ions, taken at thesrelatived photon energyx=0.5. To
explore the nondipole effects in the angular correlation of the
two photons, computations were performed within both the
exact relativistic theoryssolid lined, which includes the sum-
mation over all multipole components in the amplitudes11d,
as well as the electric dipole approximationsdashed lined
obtained by restricting the summation toL=L8=1 and
L ,L8=0, 2, respectively. Figure 1 also shows the results by
Au f4g sshort-dashed lined who incorporated some of the
higher multipoles within his nonrelativistic approach. For
neutral hydrogen, the nonrelativistic and relativistic results
basically coincide and are well described by the angular dis-
tribution 1+cos2u f3,4g. That is, the angular correlation be-
tween the two photons is symmetric with respect to the angle
u=90° for the low-Z ions, a behavior which remains pre-
served along the isoelectronic sequence, if thesrelativisticd
dipole approximationsE1E1d is applied. In anexactcalcula-

tion, in contrast, the photon emission of the second electron
occurs predominantly into the backward directionsi.e., for
u.90°d if taken relative to the first photon. Therefore our
computations show that the nondipole terms in the electron-
photon interaction give rise to anasymmetricshift in the
photon-photon angular correlations which becomes larger as
the nuclear chargeZ is increased. Including the higher mul-
tipoles into the photon-photon correlation function, an asym-
metry is found both within the nonrelativistic and relativistic
theory. As seen from Table I, however, there are differences
in the size of the asymmetry which become pronounced, in
particular, for the parallelsu=90°d and back-to-backsu
=180°d photon emission, and if considered for high-Z ions.
For hydrogenlike uranium U91+ ions, for instance, the non-
relativistic calculation by Auf4g overestimates the effects of
the higher multipoles by more than 13% when compared
with the exact relativistic treatment.

In Fig. 1, the photon-photon angular correlations is calcu-
lated for the relative energyx=0.5 which refers to an equal
energy of the two photons:Eg1

=Eg2
. While an equal energy

sharing is the most likely one for the 2s1/2→1s1/2 decay of
hydrogenlike ionsf5,7g, photons with different energiesEg1
ÞEg2

have been observed in a number of experimentsf10g,
as long as the total energy remains conserved in Eq.s1d.
Therefore a series of computations have been carried out for
a number ofsrelatived energiesx. For example, Fig. 2 dis-
plays the energy dependence of the differential decay rate
s13d for hydrogenlike uranium U91+ ions and for the three
relative photon energiesx=0.1, 0.3, and 0.5, respectively. In
this figure, again, we present the results from our relativistic
exact and electric-dipole approximation as well as from the
nonrelativistic computations by Auf4g. As seen from Fig. 2,
the deviations of Au’s nonrelativistic approach increase for
small values ofx. Comparing the two relativistic approxima-
tions, in contrast, the effects of the higher multipoles are
largest for the emission of two photons with equal energy
si.e., for x=0.5d.

Until now, we always considered the 2s1/2→1s1/2 two-
photon decay of the hydrogenlike ions. Apart from this ex-
perimentally well established transition, a two-photon emis-
sion has been observed also for the 3d5/2→1s1/2 decay
f10,23g. Similar as for the 2s1/2 level, the 3d5/2 dominantly
decays along theE1E1 dipole-dipole mode. In the electric-
dipole approximation, we therefore expect an angular corre-
lation function of the form 1+b cos2u, which is symmetric

TABLE I. Intensity ratio dW/dxdcosu su
=180°d /dW/dxdcosu su=0°d for the 2s1/2→1s1/2 two-photon de-
cay in the hydrogenlike ions, taken at the relative photon energy
x=0.5. Results from the exact relativistic computations using Eq.
s11d are compared with the nonrelativistic approach by Auf4g and
the striviald electric dipole approximation 1+cos2u.

H Xe53+ U91+

Rel. exact 1.000 1.038 1.124

Nonrel. exact 1.000 1.079 1.281

Electric dipole 1.000 1.000 1.000

FIG. 2. Photon-photon angular correlationss13d in the 2s1/2→1s1/2 stwo-photond decay of the hydrogenlike uraniumU91+. The corre-
lation functions are shown for the three relative photon energiesx=0.1, 0.3, and 0.5. See Fig. 1 for further details.
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with respect to the angleu=90° and where the anisotropy
parameterb=1/13f14,24g, cf. Fig. 3. In contrast to the 2s1/2
decay, however, a much stronger effect arises here for the
3d5/2→1s1/2 transition because of the higher multipoles. For
the two-photon decay of the hydrogenlike uranium ions U91+,
for instance, the back-to-back photon emission is increased
by almost 20% if the higher multipoles are taken into ac-
count.

IV. SUMMARY AND OUTLOOK

In conclusion, theangular correlation functionsin the
two-photon decay of hydrogenlike ions have been studied
within the framework of second-order perturbation theory,
based on Dirac’s relativistic equation. Summation over the
intermediate ion states, which occur in this framework, has
been performed by means of therelativistic Coulomb-
Green’s functions. In addition, a complete expansion of the
radiation field in terms of its multipole components has been
made in order to incorporate the nondipole effects. Detailed
calculations are performed for the photon angular distribu-
tion as function of the angle between the photons for the
two-photon decay of the 2s1/2 and 3d5/2 levels and are shown
for the decay of neutral hydrogen as well as for hydrogenlike
Xe53+ and U91+ ions. As seen from the results obtainedfcf.
Fig. 1–3g, the photon-photon correlation functions are much
more sensitive to the contribution of the higher multipoles
than found for the total rates. The higher multipoles of the
radiation field typically result in an asymmetric shift of the

photon-photon correlation function which is enhanced as the
nuclear chargeZ increases.

Apart from the higher-multipole contributions, we have
also explored how therelativistic contractionof the elec-
tronic wave functions affects the angular correlations of the
emitted photons. From the comparison of oursrelativisticd
computations with thenonrelativistic results by Auf4g, we
found that the contraction of the wave functions towards the
nucleus often lowers the angular-differential and hence also
the total cross sections in the high-Z domain. Overall, there
is a partial cancellation between the relativistic and the non-
dipole terms in the two-photon amplitudes which decreases
slightly also the asymmetrical shift in the photon-photon an-
gular correlations.

In the present work, we have restricted our computations
on the two-photon transitions to thehydrogenlikeions. For
these ions, our results show that the Green’s function ap-
proach provide a reliable and efficient access to thessecond-
orderd amplitudes and hence also to various related proper-
ties such as the total decay rates, angular- and energy-
differential cross sections, and to several others. In the future
therefore we plan to extend this approach for studying the
two-photon decay of many-electron systems. A first case
study on thestwo-photond decay of a singleK-shell vacancy
in neutral heavy atoms is currently under way.
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