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Angular correlations in the two-photon decay of hydrogenlike ions: Relativistic
Green’s-function approach
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The angular correlations in the two-photon decay of hydrogenlike ions are studied within the framework of
second-order perturbation theory, based on Dirac’s equation. Particular attention has been paid to the effects
which arise from the higheginondipolg terms in the expansion of the electron-photon interaction. It is shown
that the photon-photon angular correlation function, which is found symmetric with respect to thedangle
=90° in the electric dipole approximation, becomes asymmetric because of the nondipole contributions, and
that this effect is enhanced as the nuclear ch&decreases. Detailed computations on the photon-photon
angular distribution have been carried out for tlsg2— 1s,,, and 3i5,,— 15y, transitions in neutral hydrogen
(H) as well as for hydrogenlike xenofXe®3*) and uranium(U%) ions, and are compared with previous
nonrelativistic results by AliPhys. Rev. A14, 531(1976)).
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I. INTRODUCTION effects are usually small for most neutral, medidnele-

Since the early days of quantum mechanics, the tWo['nents and suppressed, in addition, by the screening of the

hoton transitions ofhydrogenlik atoms has been the sub- nuclear charge due to electron-electron interaction. Explor-
p t of studies both 'yth 9 7 and . 8-10 ing the photon-photon angular correlations along the hydro-
JVeV(;fIO iu ies both in theorjl~7] an _exrr)]erlmenid— I]. gen isoelectronic sequence, in fact, provides a unique test

lle, however, most investigations In the past dealt wit bay for investigating the relativistic and nondipole effects in

the decay of neutral hydrogen and the |@wens, much of simple atomic systems
today’s interest is foc_u'sed also on thigh-Z region in which In this contribution, second-order perturbation theory is
the tyvo-photon transitions serve as a sensitive probe of relaaipplied to analyze the photon-photon angular correlation
tivistic as well as quantum electrodynami¢&ED) effects

) o function for the two-photon decay of hydrogenlike ions.
in strong electric fields. To explore and analyze these effect ' y yarog

| ber of th ical dies h b _?Aarting from Dirac’s equation, emphasis has been placed on
a large number of theoretical case studies have been carriggy e[ativistic) contraction of the wave functions as well as
out in particular for the total decay rates and the photo

L . . the influence of the higher multipoles in the expansion of the
energy d'St.”bUt.'onS’ based on Dirac’s .equatlk‘.ﬁa-?,l]]. hoton field. Most natural, these multipole effects beyond the
Less attention, in contrast, has been paid prewously to th lectric-dipole approximation are studied by means of a
effects of relativity on the photon-photamgularcorrelation , ,inole) expansion of the two-photon transition amplitude
functions. Using a nonrelativistic approach, a first step t02nd lead to a whole series of different decay amplitudes
wards such an angle-resolved analysis was performed by ortly denoted bE1EL, EIM2,M1M1,E2M2... , respec- '
[.4] almost 30 years ago, who calculated the angular C‘?rrelaﬁvely. Following the definition of the angle-differential emis-
tions for the two-photon decay of the metastaldg.state in

h hvd like | A f he lead: lectri sion rates in Sec. Il A therefore we must first express the
eavy hydrogenlike lons. Apart from the leading electric-go.onq order amplitude in terms of the Coulomb-Green’s-

dipole term, Au hereby incorporated also the higher multi-q,, i in Sec. 11'B before the standard multipole expansion
poles in electron-photon interaction and included some SeMist the photon field can be appliddf. Sec. Il Q. The com-
relativistic adjustments in his final results. For the;2 lete expansion of both the Green’s function and the photon
— 18y, two-photon decay especially, these nondipole effect ield are utilized later in Sec. Il to calculate the photon-
were found to result in an asymmetrical shape of the photo hoton correlation functions for thesg,— 1, and s,

angular distribution as function of the angﬁebetween the__ _.1s,,, decay for neutral hydrogefi) as well as hydrogen-
emitted photons, and when compared with the more famllla[ike xenon (Xe53*) and uranium(U%L*) ions. From the com-

and symmetricelectric-dipolg form 1 +cos¢[3,12]. A simi- arison of our(relativistic) calculations with the nonrelativ-

lar asymmetry in the photon-photon angular correlation stic results by Au[4], we are able to extract the effects of

were obtained later also in thelativistic computations by L : . . :
: relativity and of the higher multipoles in the expansion of the
Mu and Crasemanfil3] and Tonget al. [14], respectively, photon field as the nuclear chargeis increased. Although

who studied the two-photon decay okashell vacancy for both, the relativistic and nonrelativistic theor i
— ; Z ; y, predict a
molybdenum(Z=42) and silver(Z=47). But although the similar shift, at leastjualitatively, for the photon-photon an-

nqndlpole effects gave rise again in the?‘e case ;tud|es tog%lar correlation function owing to the nondipole contribu-
slight asymmetry in the angular correlation function, thesetions, the nonrelativistic approximation by Ad] overesti-

mates the effects of the higher multipoles by more than 13%
for the hydrogenlike uranium U*. Finally, a brief summary
*Electronic address: surz@physik.uni-kassel.de is given in Sec. IV.
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Il. THEORY During the last decade, threlativistic form of the transition
amplitude (3) has been used widely for studying the two-
photon decay in higl# hydrogenlike iong5,7]. In such a
Not much needs to be said here about the bessicond- relativistic description of the hydrogenlike ions, the initial
ordep formalism for studying the two-photon transitions of (one-electron states ’pniji#i(r):<r|niji/“«i> and final states
the hydrogenlike ions, which has been utilized elsewherq;ﬁnj 4 (N=(r|nejgug) are the analytically well-known solu-
within both, the nonrelativistif3] and relativistic framework iois'of the Dirac Hamiltonian for a singly bound electron
[5,7]. Instead, we restrict ourselves to a short account on th
angle-angle correlation function for the emitted photons. For ”'1 practice, of course, theummationover the complete
angle-resolved studies, it is convenient to start fromttee  gpecirum is difficult to be performed explicitly. Apart from a
licity representation of the photon field, i.e., to describe thgimited summation over just a few intermediate states which
photons in terms of the wave vectdes, and their spin pro-  gre near in energy therefore a number of alternative methods
jection onto the direction of propagatian ;=+1. In sucha  haye heen proposed for calculating the second-order ampli-
representation of the photon states, the wave vedtrs ,qes(3). In the discrete-basis-semethod, for instance, a
=(ki, 61, ¢1), i=1, 2 define not only the direction of the emit- finite set of pseudostates is determined variationally and uti-
ted photons;=(6;, ¢;) but also their energfz,, =fick which  lized for carrying out the summatiof6]. This method has
are related by been widely used during the past years in order to explore
the two-photon decay of the metastabkg,2state in heavy
E-E=E,+E,, 1) hydrogenlike iong5,7]. An alternative approach is given, if
the transition amplitudé3) is first expressed by means of
Green'’s functions, which help avoid the direct summation. In
the following section, we make use of this Green’s-function
method to evaluate the two-photon transition amplit(@e
gor studying hydrogenlike ions, the great advantage of this
method is that the Coulomb-Green’s functions are known
analytically, both within the nonrelativistic as well as relativ-
istic theory[16].

A. Differential emission rate

to the total energiek; andE; of the initial |n;j;) and the final
Inj;) (one-electropstates, respectively. Moreover, since the
conservation of energyl) permits only one of the photon
energies to be independent, tbempleteinformation on the
energy and angular distributions of the two decay photon
may be obtained simply from thériple-differentia) cross
section

dE.dQ.dQ, (2 3.2 2, +1 |Mfi(Mf1Miv)\11)\2)|2: B. Green’s-function approach
108210327 i

MitN N
e Following Morse and Feshbadi7], we may introduce

2) the formal solution of the Green’s function for some Hamil-
which isdoubledifferential in the emission angles asihgle tonianI:L i.e., for the equatim(ﬂ:l —E)Gg(r,r')=48(r-r’), by
differential in the energy of one of the photons. In E2), in
addition, we have assumed that the excited ions are initially (DX
unpolarized and that neither the polarization of the photons Ge(r,r') = j:v—, (4)
N1, is observed nor that of the residual ipan. E,-E

_ For any further analysis of the energy or angular distribu~,ich includes a summatiofintegration over the complete
tion }2) of tue emitted photons, we need to evalua;ge aNGpectrum of the Hamiltonian as discussed above. Using this
simplify ~ the  bound-bound  transition  amplitude gnqat; therefore we can replace the summation over the in-
Mii(us, i, M1, Nz) - which, in - second-order  perturbation (o megiate states in E3) and rewrite the two-photon tran-

theory, is given by[5] sition amplitude in the form
Mfi(lu’fiMi;)\ly)\Z) - - Mfi(Mf’Mi')\l’)\z) = <¢nfjfl‘vf(r)|auile_ikl.rGEi—Eyz(r!r,)
i <lr//nfjf,u,f|au)\1e I 1r|¢v><l//v|au}\ze I 2r|lzbnijip.i> 5 ikor! ,
=4y E,-E+E,, Xau, g M“i"iﬂi(r )>
* il * il a * —ik2-r !
i (P @ty €72 ) op @ty €7V gy, + (U (1) i, &7 Ge g (111)
+ . * it ! ,
14 EV— Ei + Ey1 Xau)\le thy |d/ni'<il‘i(r )>! (5)

e . : . :

N , . ) including the integration over both, and r’, respectively.
Here, the transition operataru, €' describes thérelativ-  Although, from a mathematical viewpoint, this form is
istic) electron-photon interaction together with the unit vec-equivalent to the second-order amplitu@ and (5) appears
torsu, in order to denote the polarization of the individual to be more convenient for the calculation of these amplitudes
photons. As indicated in formul@), the summation over the if the Green’s function(4) is known. For the Dirac Hamil-
intermediate states runs over the complete one-particle spetsnian and a pure Coulomb potential, i.e., for the hydrogen-
trum (¢,,E,), including a summation over discrete part of like ions, theradial-angular representation of théelativis-
the spectrum as well as the integration over the continuuntic) Coulomb-Green'’s function is given Hy6,18
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oo G D) —igE ) QP QL ()
Ge(rr)=— 2| SLyp v ot (5 SS/ ot s ) (6)
rr KM IgEK(r'r )Q—Km(r)QKm(r ) gEK(r’r )Q—Km(r)ﬂ—xm(r )
[
where Q,(f) denote a Dirac spinof15], and where the The proper choice of aommonguantization axi€z axis)

radial Green’s function is given in terms of the four compo- is important for the evaluation of the angular integrals in the
nentngI’(r,r’) with T=L,Sreferring to thearge andsmall  transition amplitudd5), cf. the dl_scussmn in Ref$19_,211.
components of the associatéelativistio wave functions. Since for the decay of unpolarizeds well as unaligned

For the sake of brevity, here we will not display the radial"ydrogenlike ions, there isio direction preferred for the
™, o . overall system, we adopted tizeaxis along the momentum
componentgg, (r,r’) explicitly but just recall that they can

be expressed in terms of titgpecia) Whittaker functions of  Of the “first’ photon:zllk,. Making use of the expressiofi#)

the first and second kind.6,18. In the computations below, &nd (8) for such a choice of the quantization axis, we can
we have used thereenslibrary [18] in order to obtain the ~eWrite the two-photon transition amplitud® as a sum over

energy and angular distributions for the emitted photonsth® electric and magnetic multipole components,

This code was developed by us originally for studying the
cross sections and polarization phenomena in the two-photon M ( ANy)
ionization of the hydrogenlike iong9]. filtke fis Ao A2

=27 2 i_Ll_Lz[LlyLz]llszA*Z)\z(kz)§Lf;xl§|_§j\2

C. Multipole decomposition of the photon fields LiAs LaM2A,

: N ’
Making use of Eq(5), the computation of the two-photon X[anifuf(r”alAl(klr)TLiAlGEi—Eyz(r’r )
amplitudes requires a stimensionalintegration overdsr TV ,
=r2dr sin 6déd¢ andd®’ =r’?dr’sin 6’d#’d¢’, respectively. Xt (Ko VLAY (1))

As usual in atomic physics, however, these integrals can be + _ (ko) TM2 /
further simplified by applying the techniques of Racah’s al- (g1 ], (Ker) '-2"2GEi‘En(r’r )
gebra if all the operators are represented in terms of spherical S air (k) TM r 9
tensors and if theadial-angular representation of the wave alAl( i) LA (/f”i"i"i( )>]’ ©
and Green's functions are usgti8]. For the interaction of

electrons with the radiation field, the spherical tensor com- Y .
ponents are obtained from a multipole expansion of the phoWhere the coefficients, are given by{19]

ton operatoif20],

.
| = 1 it A=L,
Uy, €12 =272 D iHLIVHA +ing A) L+1 .

' L=1 M \ iny/——  ifA=L-1,

L - A &\ =9 2L+1 (10)
XDy, (k12— 2), (7) L
' —iNy/—— ifFA=L+1.
where[L]=(2L+1) and the standard notatio%"” is used L 2L+1

to denote the electric and magnetic multipole fields, respec-

tively. Each of these multipoles can be expressed in terms of :

the spherical Bessel functiofgkr) and the vector spherical ~S €xpected from expansidd) of the photon operator, the

harmonicsT, of rank L as[20] transition amplitudg9) now contains ar(infinite) summa-
LA

tion over products of the different multipoles
Al =i (k0T E1E1,EIM2,M1M1,E2M2,., which are characterized by
the combination of the summation indicésL’,A,A" or,
L+1 L equi\_/ale_ntly, by the symmetry of the vector sphericall har-
A8, =j_a(kr) mT[’fL_l— Jrea(kr) ETMLH- monics in the overall expansion. Each matrix element in the
summation(9) still represents a six-dimensional integral over
(8) r and r’, respectively, along with a summation over the
spinor components of the wave and Green’s functions. To
As seen from Eq(7), the angular d(_apenden(_:e of the _phOtonseparate the radial part from the spin-angular parts of these
emission resAults from the the Wignérotation matrices 4y elements, we further need to apply the radial-angular
Dk/l)\lvz(kl,z_’z) which transform the multipole fields with representatiol6) of the Coulomb-Green’s functions together
the original quantization axis along the photon propagatiorwith the known(two-componentrepresentation of the Dirac
ky » into the fields with quantization axis along tkelirec-  wave functions in a Coulomb field.5]. After some algebra,
tion. we then obtain for the transition amplitude
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Mfi(,U«f,Mi'M,)\z)=27TE Dknz;z(kz) DI R [PAPY L
LoM; L1AgA,

™ . . ? Aq*
<[ UTT ok kot B ) T 0 TR

_IMi>],

? Mo* ’ Nq* T
(il Tl TS | T (d "l o T2, [

where, againT=L,S s used to denote the large and small
components, for which factoP" is defined asP-=1 and

PS=-1, and wher€eT refers to the conjugate df, i.e., T=L

for T=S and vice versa. Equatiofil) displays the general
form of the (relativistic) transition amplitude for the two-
photon excitation or decay of hydrogenlike ions. Tdregu-
lar part of this amplitude is determined by the matrix ele-
ments of the rankL spherical tensorssTY\ =[Y,® o]
which have been discussed previousl®,21]. In contrast to

A*
L1A15LoA,
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Ao*

2 PTPT’
kmTT

‘ My | T T : .
I Tkl T ] O'TLZ%X2|Ki|i )+ UAZAl(Kf, K, ki Ko, K E

71)

11

angular-momentum selection rules as obtained from the an-
gular parts of the matrix elemenf&1]. Here, we shall not
discuss these selection rules which follow very similar lines
as the one-photon transitions, if tsgmmetryof the imagi-
nary intermediate states is taken into account. In practice,
there is usually one “leading” term in the expansion which
dominates the two-photon transitions for any given pair of
initial and final bound states. For example, trsg,2level of

the hydrogenlike ions decays into ths; 4 ground state pri-
marily by the emission of two electric-dipol&1E1 pho-

the angular part which can be evaluated algebraically, howgong “while all the higher multipoles contribute with less than

ever, theradial integrals,

UX‘[‘L\Z(Kﬁ K, K ; klykz; E'y)

= f O (Dia (KaNGE e (1.1, (Kol )G (F)dIr dIr
(12)

in Eq. (11) have to be computedumerically.To this end, we
first generate the individual components of thedia) wave
functionsgIi « (1) and the Green's functiongL! (r,r’) and
then carry out the two-dimensional integration ovemndr’.

0.5% to the total decay rat,7]. In contrast to the total
rates, a more significant effect of the higher multipoles
(sometimes called theondipole effecty, are expected for
the angular distributions of the emitted photons. For heavy
hydrogenlike ions, for instance, it was shown recently that
the magnetic-quadrupoléM2) contribution shifts the effec-
tive anisotropy parameters by up to 30%, when compared
with a pure electric-dipole approximatidaz2)].

In this contribution, we make use of Eq®) and(11) in
order to explore the nondipole effects on the angular distri-
butions for the two-photon decay of hydrogenlike ions. This
first requires, or course, to define tgeometryunder which

In the present work, all the required functions and radialthe emission of the two photons is considered. As described

integrals were calculated by using tbeeens library[18].

IIl. RESULTS AND DISCUSSION

The two-photon transition amplitudéll) formally in-

in Sec. Il C, we adopt the quantization axisaxis) along the

momentum of the first photoky, so that theangular corre-
lation between the two photons is characterized by (fhe
lar) angle 6,= 6 of the second-photon momentum with re-
spect to this axis. Apart from the anghethe photon-photon

cludes the summation over all the products of multipolescorrelation function also depends on the ener@ieand E,

E1E1,E1M1,E1EZ2,. . Although still infinite, the number
of allowed(i.e., nonzerpterms in the fourfold summation of

of the photons. Instead of using the&bsolute energies,
however, it is often more convenient to characterize the pho-

Eq. (11) is restricted to certain combinations of the indiceston energy distribution in term of the dimensionless variable

Li,L,, and Aq, A, respectively, owing to the parity and

.1)

0

X:Evll(E71+ EYZ):Eyll(Ei—Ef) which gives the fraction of

S

L BOx10) T T 2.0x10"

1.5x10"

6.0x10”

1.ox10"

Photon-photon correlations (;

qox10° | Y

12
5.0%10 — T
12
4.0x10

12
3.0x10

0 60 120
Angle 0 (deg)

180 0

60
Angle 6 (deg)

120 180 0

60
Angle 6 (deg)

120

FIG. 1. Photon-photon angular correlatidi$) in the 2;,,— 1s;,» two-photon decay of the hydrogenlike ions. Results are presented for

the exact relativistic theory—), nonrelativistic approximatiofr--) by
relative photon energy=0.5.

Au 4 as well as the relativistic electric dipale) approach for the
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TABLE l. Intensity ratio dW/dxdcosé (6  tion, in contrast, the photon emission of the second electron
=180°)/dW/dxdcos6 (6=0°) for the Z5,,— 1s,, two-photon de-  occurs predominantly into the backward directigr., for
cay in the hydrogenlike ions, taken at the relative photon energy> 90°) if taken relative to the first photon. Therefore our
x=0.5. Results from the exact relativistic computations using Eqcomputations show that the nondipole terms in the electron-
(11) are compared with the nonrelativistic approach by[Aland photon interaction give rise to amsymmetricshift in the

the (trivial) electric dipole approximation 1+ ct photon-photon angular correlations which becomes larger as
car o1r the nuclear chargg is increased. Including the higher mul-
H Xe U tipoles into the photon-photon correlation function, an asym-
Rel exact 1.000 1.038 1124 metry is found both within the nonrelativistic and re!atlwstlc
theory. As seen from Table I, however, there are differences
Nonrel. exact 1.000 1.079 1.281 . . . -
o in the size of the asymmetry which become pronounced, in
Electric dipole 1.000 1.000 1.000

particular, for the parallel#=90°) and back-to-back(#
=180°) photon emission, and if considered for highens.
For hydrogenlike uranium ¥* ions, for instance, the non-
relativistic calculation by AU4] overestimates the effects of
he higher multipoles by more than 13% when compared
with the exact relativistic treatment.

d? g3 In Fig. 1, the photon-photon angular correlations is calcu-
d—(X, 0)=8m*(Ei—-E)——————, (13 J|ated for the relative energy=0.5 which refers to an equal

xdcosé dEyldﬂldQZ A !

energy of the two photonEVl—EYZ. While an equal energy

which is the most appropriate form for studying the photon-sharing is the most likely one for thesi2,— 1s,,, decay of
photon angular correlations. In this expression, the factohydrogenlike iong5,7], photons with different energies,,
8x? arises from the integration over the solid angle, # E,, have been observed in a number of experimgh,
=sin #,d0,d¢, of the first photon as well as the integration as long as the total energy remains conserved in (Eg.
over the aximuthal angld¢, of the second photon. Therefore a series of computations have been carried out for
In Fig. 1, we display the photon-photon angular correla-a number of(relative) energiesx. For example, Fig. 2 dis-
tion function(13) for the %,,,— 1s,,» (two-photor) decay of  plays the energy dependence of the differential decay rate
neutral hydrogem, hydrogenlike xenon X&* and uranium  (13) for hydrogenlike uranium €* ions and for the three
U®* ions, taken at thdrelative photon energyx=0.5. To  relative photon energies=0.1, 0.3, and 0.5, respectively. In
explore the nondipole effects in the angular correlation of thehis figure, again, we present the results from our relativistic
two photons, computations were performed within both theexact and electric-dipole approximation as well as from the
exact relativistic theorysolid line), which includes the sum- nonrelativistic computations by Aut]. As seen from Fig. 2,
mation over all multipole components in the amplitudé), the deviations of Au’s nonrelativistic approach increase for
as well as the electric dipole approximatiddashed ling  small values ok. Comparing the two relativistic approxima-
obtained by restricting the summation to=L'=1 and tions, in contrast, the effects of the higher multipoles are
A,A"=0, 2, respectively. Figure 1 also shows the results byargest for the emission of two photons with equal energy
Au [4] (short-dashed linewho incorporated some of the (i.e., forx=0.5).
higher multipoles within his nonrelativistic approach. For  Until now, we always considered thes;2— 1s,,, two-
neutral hydrogen, the nonrelativistic and relativistic resultsphoton decay of the hydrogenlike ions. Apart from this ex-
basically coincide and are well described by the angular disperimentally well established transition, a two-photon emis-
tribution 1+co$6 [3,4]. That is, the angular correlation be- sion has been observed also for thds,3—1s,, decay
tween the two photons is symmetric with respect to the angl€10,23. Similar as for the &, level, the 3ls;, dominantly
0=90° for the lowZ ions, a behavior which remains pre- decays along th&1E1 dipole-dipole mode. In the electric-
served along the isoelectronic sequence, if (fedativistio  dipole approximation, we therefore expect an angular corre-
dipole approximatiofE1EY) is applied. In arexactcalcula- lation function of the form 18 cos6, which is symmetric

the energy as carried away by one of the two phofdis
Using this variable, the angle- and energy-differential cros
section(2) can be written as

x=0.1 x=03 . x=05
L o T T T T 50100 T T
2.0x10' ., 26 = 1s _ 4.0x10 . - .

4.0x10"

1.5x10" 3.0x10"

3.0x10"”

1.0x10"

12
2.0x10
1 | 1 | 1

0 60 120 180 0 60 120 180 0 50 100 150
Angle 6 (deg) Angle 6 (deg) Angle 6 (deg)

Photon-photon correlations (s'l)

FIG. 2. Photon-photon angular correlatiofi$) in the %,,,— 1s,,, (two-photon decay of the hydrogenlike uraniul®*. The corre-
lation functions are shown for the three relative photon energies 1, 0.3, and 0.5. See Fig. 1 for further details.
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- x=0.1 x=05
= 13 12

'z 2.0x10 T T T 2.5x10

P =~ =]

2 - {1 40xi0”

'._“Q

L 13 =

§ 1Lo<0T [ 3d— 1s 2.0x10"

g B v 1 32x0” - i i
IS]

g—' 13 B N

I o1za0” n 1.5x10"2 = .
é 1 | 1 | 1 2.4)(1012 1 | L | [ i | 1 | |

G 0 60 120 180 0 60 120 180 0 60 120 180
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FIG. 3. Photon-photon angular correlatioid$) in the 3ds;,— 1s;,, (two-photon decay of the hydrogenlike uraniul®'*. The corre-
lation functions are shown for the three relative photon energies 1, 0.3, and 0.5. See Fig. 1 for further details.

with respect to the anglé=90° and where the anisotropy photon-photon correlation function which is enhanced as the
parameteB=1/13[14,24, cf. Fig. 3. In contrast to thes;,  nuclear charg& increases.

decay, however, a much stronger effect arises here for the Apart from the higher-multipole contributions, we have
3ds,,— 1s;, transition because of the higher multipoles. Foralso explored how theelativistic contractionof the elec-

the two-photon decay of the hydrogenlike uranium iof$"J  tronic wave functions affects the angular correlations of the
for instance, the back-to-back photon emission is increasedmitted photons. From the comparison of dtelativistic)

by almost 20% if the higher multipoles are taken into ac-computations with thenonrelativisticresults by Au[4], we
count. found that the contraction of the wave functions towards the
nucleus often lowers the angular-differential and hence also
the total cross sections in the highdomain. Overall, there

is a partial cancellation between the relativistic and the non-
In conclusion, theangular correlation functionsn the  dipole terms in the two-photon amplitudes which decreases

two-photon decay of hydrogenlike ions have been studie@lightly also the asymmetrical shift in the photon-photon an-
within the framework of second-order perturbation theory,gular correlations.

based on Dirac’s relativistic equation. Summation over the In the present work, we have restricted our computations
intermediate ion states, which occur in this framework, ha®n the two-photon transitions to thgydrogenlikeions. For
been performed by means of thelativistic Coulomb- these ions, our results show that the Green’s function ap-
Green’s functions. In addition, a complete expansion of theProach provide a reliable and efficient access to(teeond-
radiation field in terms of its multipole components has beerPrde) amplitudes and hence also to various related proper-
made in order to incorporate the nondipole effects. Detailedi€S such as the total decay rates, angular- and energy-
calculations are performed for the photon angu'ar distribu.d|fferent|a| Cross SeCt|0nS, a.nd tO Several OtherS. In the future
tion as function of the angle between the photons for thdherefore we plan to extend this approach for studying the
two-photon decay of thesg,, and 31, levels and are shown two-photon decay of many-electron systems. A first case
for the decay of neutral hydrogen as well as for hydrogenlikestudy on the(two-photon decay of a singl&-shell vacancy
Xe53* and 1" jons. As seen from the results obtaingd.  in neutral heavy atoms is currently under way.

Fig. 1-3, the photon-photon correlation functions are much
more sensitive to the contribution of the higher multipoles
than found for the total rates. The higher multipoles of the This work has been supported by the BMBF and the GSI
radiation field typically result in an asymmetric shift of the under the project KS-FRT.

IV. SUMMARY AND OUTLOOK
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