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The Green function in the quantum defect theory provides an exact account for high-excited and continuum
electronic states. We modify it by taking into account the ground and low-excited states using their wave
functions calculatedab initio. As an application, we present a simple and efficient semianalytical method for
the calculation of atomic electric frequency-dependent scalar dipole polarizability, for both real and imaginary
frequencies. The polarizabilities calculated for some atomssLi, Na, K, Be, Mg, Ca, Si, P, S, O, Al, Ge, C, N,
F, He, Ne, Ar, Kr, and Xed are compared with existing methods of computational quantum chemistry and with
experiments; good accuracy of the proposed method is demonstrated.
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I. INTRODUCTION

The polarizabilities of atoms and molecules, which deter-
mine their interactions with other particles and external elec-
tric fields due to the induced electric-dipole moment, are
responsible for numerous effects in optics and spectroscopy.
For instance, in dc fields the quadratic Stark effectf1g is
determined by the static polarizability. Numerous effects
caused by the linear response of atoms and molecules to ac
fields, such as optical refractivity and Rayleigh and Raman
scatteringf2,3g, are determined by the dynamic polarizability
asvd wherev is the frequency of the optical field. The van
der Waals interactions of atoms are expressed in terms of
asivd of each atom by the Casimir-Polder formulaf4g. For
molecules, the dynamical polarizabilitystogether with its
asymmetryd determines a number of effects in strong ac
fields. For example, the dynamical quadratic Stark effect
leads to a change of the equilibrium geometry of a molecule
f5g as well as to molecular alignmentf6–8g.

So the calculation of static and frequency-dependent po-
larizabilities is important for the analysis of different prob-
lems in atomic and molecular physics. Though the static po-
larizability of the simplest hydrogen atom was calculated in
parabolic coordinates as early as in 1926f9g, calculations of
the dynamical polarizability are more complex since they
include summation over high-excited discrete and continuum
states. In a one-electron approximation this difficulty was
overcome by solving the inhomogeneous Schrödinger equa-
tion or by the use of the Coulomb Green functionsGFd.

For the hydrogen atom, in Ref.f10g a Laplace transfor-
mation was used to solve the inhomogeneous Schrödinger
equation analytically. The frequency-dependent polarizabil-
ity of the ground state of the hydrogen atom was calculated
by this method in Ref.f11g. For other atoms the application
of direct numerical integration of the inhomogeneous
Schrödinger equation to the calculation of dipole and quad-
rupole static polarizability and shielding factors was re-
viewed by Dalgarnof12g.

Some years later, analytic expressions for the frequency-
dependent polarizability of the hydrogen atom was obtained

in Ref. f13g using the Coulomb GF in momentum represen-
tation f14g and in the Refs.f15g using the coordinate repre-
sentation f16g. Relativistic effects in the frequency-
dependent polarizability of the hydrogen atom were taken
into account in Ref.f17g. Various aspects of the use of the
Coulomb GF in multiphoton calculations were reviewed in
Ref. f18g. More recent analytic results for the dynamical po-
larizabilities of hydrogenic states with arbitrary quantum
numbers are given in Ref.f19g.

The polarizability of atoms other than hydrogen can be
evaluated taking into account the transitions of a single “op-
tical” electron in a Coulomb-like potential of the atomic
core. The non-Coulomb effects of the core charge distribu-
tion can be accounted for by quantum defect theorysQDTd
f20,68g or by model potentialf21g. The GF formalism in the
QDT framework sQDGFd was elaborated on for atoms in
Ref. f22g. Its application to the calculation of the dynamical
polarizabilities of ground and low-excited states of alkali-
metal atoms showed good accordance with experimentf23g.
Similar results were obtained using the model potential ap-
proachf24g ssee alsof25g and references thereind.

The above formalism can be generalized to simplest mo-
lecular systems. For instance, the QDGF was developed for
molecular H2

+ ions f26g using spheroidal functions and for
polar Rydberg moleculesf27,28g using dipole-Coulomb an-
gular wave functions, which provide an exact account for the
dipole moment of the molecular coref29g.

Despite their analyticity and computational economyf30g,
QDT methods have scarcely been used in the calculation of
the polarizability even for the simplest molecules and atoms.
Due to their one-electronic nature, they have not managed to
provide an accuracy comparable with the accuracy of many-
electron methods used in modern computational chemistry
san exception is high-excited Rydberg statesf31g; for those,
the computational chemistry methods are extremely expen-
sived. These methods demonstrate good accuracy for simple
systemssfor example, a direct sum-over-states approach for
alkali-metal atomsf32g and random phase approximation for
closed-shell systemsf33gd. Various computational methods
for atomic and molecular polarizabilities are well reviewed
in numerous sourcesssee, for instance,f34,35gd.

The aim of the present work is to modify the GF method
to provide an effective account for the many-electron effects*Electronic address: zon@niif.vsu.ru
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and thus to enable simple calculations of atomic and molecu-
lar polarizabilitiessand other multiphoton process probabili-
tiesd for arbitrary sincluding the excitedd electronic states
with an accuracy comparable with that achieved in theoreti-
cal chemistry.

However, with the present rapid development of computer
hardware, the computational requirements of some high-
precision methods become now less problematic, so calcula-
tional simplicity is not the main aim of the present work. In
fact, using the advantages of QDTssuch as physical clarity,
exact correspondence between the calculated and the experi-
mental resonances, exact account of the highly excited and
continuum statesd we propose further development of the
single-channel QDT for multiphoton processes in complex
atoms with essentially non-one-electron spectrum structure.

Many-electron effects are most significant for the ground
and for some low-excited states, and simplesone-electrond
models are therefore least satisfactory for these states. So the
main idea of the proposed method is to use anab initio
description for these states through the corresponding oscil-
lator strengths instead of the oscillator strengths appearing in
the one-electron expression for the polarizability. As for the
high-excited and continuum statesswhich require the most
computational resources in theab initio calculationsd, their
addition to the polarizability is calculated using the simple
one-electron models, which, however, take into account the
many-electron structure of the ground-state wave function.
In other words, some low-excited statesstheir total number is
thereinafter denoted asNd in the GF eigenstate expansion are
numerically substituted by the states calculated usingab ini-
tio methods, and we refer to this substitution as a reduce-
adding procedure. Note that the reduced Coulomb GFswith-
out adding the ab initio termsd, which is needed for
stationary perturbation calculations, was found in Ref.f36g.

A brief outline of this work is as follows. In Sec. II we
develop the general QDGF formalism. Based on an analysis
of the inhomogeneous Whittaker equation in Sec. II A we
derive expressions for the QDGF for positivesSec. II Bd and
negativesSec. II Dd energies. The derivation uses a general
relationship between the quantum defect and scattering
phases which is proved in the Sec. II C. In the same subsec-
tion we introduce some analytic QD-related functions of
complex energy; these functions were not required for simple
se.g. alkali-liked atoms but they are important for atoms with
complex spectra and comprise the mathematical basis of the
proposed method. Section II E introduces the reduced-added
GF used for the calculations. The results of the calculation of
the dipole scalar polarizability for Li, Na, K, Be, Mg, Ca, Si,
P, S, O, Al, Ge, C, N, F, He, Ne, Ar, Kr, and Xe are presented
and discussed in Sec. III. Their comparison with the avail-
able experimental data andab initio calculations demon-
strates the efficiency of the proposed method.

Atomic units are used throughout the work.

II. GREEN FUNCTION IN QUANTUM DEFECT THEORY

One of the key principles of the QDT usage in atomic
physics is that the largest contribution to the dipole transition
matrix elements is given by distances far from the atomic

core where the effective one-electron potential of the optical
electron can be considered to have a Coulomb shape with a
residual ion chargeZ. In practice, it allows one to approxi-
mate the optical electron wave function using solutions of
the Schrödinger equation for the Coulomb potential. Knowl-
edge of the experimental atomic spectrum enables an ac-
count of the atomic core influence on the optical electron
and, effectively, for some collective effects.

The first QDT applications to atomic processes were cal-
culations of the bound-boundf37g and bound-freef38g tran-
sition matrix elements as well as calculations of the scatter-
ing phasesf39g. The problems discussed in the present work
are related to further development of the one-channel QDT
for atomic calculations. One of such development is con-
cerned with construction of the GF formalism in the QDT
frameworksQDGFd f22g. Its generalization to noninteger an-
gular momentum values, which arise in polar molecule
theory f29g, is given in Ref.f27,28g.

The QDGF developed in Ref.f22g proved to be useful in
calculations of multiphoton process probabilities in alkaline
atomsf23g, whose even ground states can be described by
QDT with satisfactory accuracy. However, application of
QDT for atoms with more than one electron in the outer shell
requires some improvement of the mathematical technique.
The same problem is relevant for the one-electron QDGF as
well, and the solution is given in this section.

A. General formalism

The one-electron GFGsE,r ,r 8d corresponding to the vir-
tual electron energyE satisfies the equation

H1

2
¹2 − Usrd +

Z

r
+ EJGsE,r,r8d = dsr − r8d, s1d

whereUsrd is the non-Coulomb part of the atomic potential.
For distances larger than the core radiusrc the potential is
considered to have a Coulomb shape:Usr . rcd=0.

Separating the radial and angular variables in

GsE,r,r8d = o
lm

glsE,r,r8dYlmsrdYlm
* sr8d, s2d

we obtain the equation for the radial QDGFglsE,r ,r8d:

H 1

2r2

d

dr
Sr2 d

dr
D −

lsl + 1d
2r2 − Usrd +

Z

r
+ EJglsE,r,r8d

=
1

rr 8
dsr − r8d. s3d

The general solution of the inhomogeneous equations3d
in the r . rc domain may be constructed as a combination of
fundamental solutions of the corresponding homogeneous
equation:

glsE,r,r8d = gl
CsE,r,r8d

+ A
n

Zrr8
Wn,l+1/2S2Zr

n
DWn,l+1/2S2Zr8

n
D , s4d
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gl
CsE,r,r8d =

n

Zrr8

Gsl + 1 −nd
Gs2l + 2d

3 Mn,l+1/2S2Zr,

n
DWn,l+1/2S2Zr.

n
D , s5d

wheren=Z/Î−2E is the so-called effective principal quan-
tum number,r.sr,d are the greatersleastd of r andr8 values,
andM andW are well-known Whittaker functionsf40g. The
first term in Fig. 4, which is a partial solution of the inho-
mogeneous equations3d, is a pure-Coulomb GFgl

CsE,r ,r8d
whereas the second term, which enters with anr-independent
coefficientA, is a solution of the homogeneous equation. Its
other solution containing a double product ofM functions
must not appear in the expression for the GF since the latter
should be regular atr ,r8→` for E,0. This can be easily
seen from the properties of the Whittaker functionsf40g:

Mn,l+1/2S2Zr

n
D = expsipndGs2l + 2d 3 FW−n,l+1/2s− 2Zr

n d
Gs1 + l − nd

− s− 1dl
Wn,l+1/2s− 2Zr

n d
Gs1 + l + nd

G ,

W±n,l+1/2S±
2Zr

n
D ,

r→+`
S±

2Zr

n
D±n

expS7
Zr

n
D . s6d

B. QDGF for E.0 and the phase shift

For E.0 the M and W functions are more convenienly
expressed in the following wayf40g:

W±n,l+1/2S±
2Zr

n
D ↔ s7 idl+1expSpZ

2k
7 islD

3 fFlsk,rd 7 iGlsk,rdg,

Mn,l+1/2S2Zr

n
D ↔ s− idl+1expS−

pZ

2k
+ islD

3
2Gs2l + 2d

Gsl + 1 − iZ/kd
Flsk,rd. s7d

Heresl =argGsl +1−iZ /kd, k=Î2E, and↔ sign corresponds
to the replacement

n ↔ iZ/k. s8d

The functionsFlsk,rd andGlsk,rd in Eqs.s7d are the regu-
lar and irregular Coulomb functionsf40g. Given the
asymptotic form of Whittaker functionss6d we can write the
asymptotics of these Coulomb functions:

Flsk,rdr → + ` , sinDlsrd,

Glsk,rdr→+` , cosDlsrd, s9d

where Dlsrd=kr+Z lns2krd /k−pl /2+sl. Then, taking into
account Eqs.s7d and s9d, one obtains, forE.0,

gl
CsE,r,r8dr,r8→+` ,

2 sinDlsr,d
krr8

expfiDlsr.dg. s10d

It can be shownf41g that the asymptotic expression for
QDGF s4d differs from that for the pure-Coulomb GFs10d
only by the phase shiftdlsEd due to the non-Coulomb poten-
tial term Usrd:

glsE,r,r8dr,r8→+` ,
2 sinfDlsr,d + dlg

krr8
expfisDlsr.d + dldg.

s11d

The parameterA can be determined from the correspon-
dence between the asymptotic representations of the QDGF
for E.0, Eq. s11d, and for E,0. Indeed, making the re-
placements8d in Eq. s4d and using Eq.s6d, one obtains

A = expf2isl + ipsn − ldgf1 − exps2idldg. s12d

Given expressions12d for A, we use Eq.s7d to express the
QDGF s4d for E.0 in the following form:

glsE,r,r8d =
2i expsidld

krr8
fFlsk,r,dcosdl + Glsk,r,dsindlg

3 fFlsk,r.d − iGlsk,r.dg. s13d

C. QD functions and phase relationship

Thus, for a complete definition of the QDGF it is neces-
sary to know the non-Coulomb parts of the scattering phases
dl and their analytic continuation onto theE.0 domain. To
determine these quantities we use a well-known relation of
scattering theory. Since the discrete spectrum points are the
poles of theSmatrix, one obtains, for the phase shift in those
points f42g,

cotsdl + sld − i = 0, whenE = Enl, s14d

whereEnl are the energy levels of the optical electron with-
out account for the fine structure,n and l being its principal
and orbital quantum number.

Rewriting Eq.s14d in the form

cotsdl + sld − i =
scotdl − idscotsl − id

cotdl + cotsl
= 0, s15d

one can easily see that the roots of Eq.s15d constitute two
subsets. The first subset

cotslsEnd − i = 0, En = − Z2/2n2, s16d

corresponds to a pure-Coulombshydrogenlike atomd spec-
trum and thus should not appear among theS-matrix poles,
while the second subset

cotdlsEnld = i s17d

does correspond to a real atom spectrum. The second sub-
script of the energy eigenvalue is absent in Eq.s16d due to
the l degeneracy of the pure-Coulomb spectrum.

SinceEnl→0 asn→`, it then follows from Picard’s great
theoremf43g that the pointE=0 is an essential singularity
point for the cotdlsEd function in the complexE plane. Let
us assume that theS matrix has no other poles except those
determined by formulas17d. Then the expression for cotdl

METHOD OF THE REDUCED-ADDED GREEN FUNCTION IN… PHYSICAL REVIEW A 71, 022505s2005d

022505-3



can be defined for all complexE values through the relation

cotdlsEd − i = − 2i expsipnd
sinpsml + nd

sinspmld
Plsnd
JlsEd

,

Plsnd = n2lFp
m=0

l−1

sm+ ml + ndsm+ 1 −ml − ndG−1

, s18d

wheren=Z/Î−2E andJlsEd is an entire function of energy.
Recall that an entire function cannot have singularities no-
where in the complex plane except infinity.

Let us define the quantum defectml entering Eq.s18d
through the relation

mlsEnld + nnl = n, s19d

wherennl=Z/Î−2Enl and n is an integer number satisfying
the nù l +1 condition. Then the fundamental conditions17d
is obviously valid for all discrete spectrum energiesEnl. To
eliminate the pure-Coulomb rootss16d, the functionJlsEd
should be defined atE=En in the following way:

JlsEnd = Plsnd, n ù l + 1. s20d

Indeed, forn=n taking into consideration Eq.s20d one
obtains from formulas18d that

cotdlsEnd = − i .

It is easy to see that forE=En the pure-Coulomb roots dis-
appear from the sets15d and therefore from the sets14d.

Since the functionJlsEd is defined on the countable set
En which has the accumulation pointE=0, then the relation
s20d defines the functionJlsEd unambiguously in the whole
complex energy planef43g.

Now we derive the relationship between the phase shifts
and quantum defects. Using

sinpsml + nd
sinspmld

= sinspndfcotspnd + cotspmldg

and assumingE→0 in Eq. s18d, which means sinspnd
→ 1

2i exps−ipnd, cotspnd→−i, Plsnd→ s−1dl at n→ i` and
JlsEnd→ s−1dl at n→`, one recovers the well-known
Seaton relationf20g

cotdlsEd = cotpmlsnd.

D. QDGF for E,0 and bound-state wave functions

Taking into account expressions18d for the phase shift,
Eq. s12d can be rewritten to yield

A =
Gsl + 1 −nd
Gsl + 1 +nd

sinpsml + ld
sinpsml + nd

JlsEd
Plsnd

. s21d

Substituting Eq.s21d into Eq. s4d the expression for
QDGF glsE,r ,r8d can be rewritten in the following final
form:

glsE,r,r8d =
n

Zrr8

Gsl + 1 −nd
Gsl + 1 +nd

Wn,l+1/2S2Zr.

n
D

3 FGsl + 1 +nd
Gs2l + 2d

Mn,l+1/2S2Zr,

n
D

+
sinpsml + ld
sinpsml + nd

JlsEd
Plsnd

Wn,l+1/2S2Zr,

n
DG .

s22d

Evidently, QDGFs22d has poles at theEnl points, which
correspond to the atomic spectrum energies; moreover, the
QDGF residues in these poles equal to the products of two
radial QDT wave functions:

Rnlsrd =
Z1/2

rnnl
FJlsEnld

Plsnnld
G1/2

Wnnl,l+1/2S2Zr

nnl
D

3 FGsl + 1 +nnldGsnnl − ldS1 +
]mlsnnld

]n
DG−1/2

.

s23d

The fJl /Plg1/2 factor in the bound-state wave functions
s23d makes their normalization different from that used nor-
mally in QDT f20,37g. This fact shows the fundamental role
played by the functionJlsEd in QDT together with themlsEd
function. This normalization can be important for a QDT
description of various effects in the interaction of atoms and
molecules with an external field—for instance, in tunneling
ionization f44–47g.

A typical behavior of the functions JlsEd and
PlsZ/Î−2Ed is shown in Figs. 1 and 2 for LisZ=1, l =1d and
Ar sZ=1, l =2d correspondingly. The functionsJlsEd and
PlsZ/Î−2Ed coincide whenE→0 as it should be according
to Eq.s7d. In fact, the small difference betweenPlsZ/Î−2Ed
and JsEd for the alkali-metal atomssand their significant
difference for rare-gas atomsd is responsible for the opinion
that a satisfactory QDT description could be performed only
for the atoms and ions with one electron over the closed
shells. The results belowsespecially for He atomd show that
the domain of applicability of QDT is essentially wider due
to the proposed reduce-adding procedure.

FIG. 1. TheJlsEd and PlsZ/Î−2Ed functions for Li sZ=1, l
=1d.
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E. Reduced-added GF and dynamic polarizability

Besides the definition through the differential equation
s1d, the GF can be expressed in the form of an expansion
over the one-electron Hamiltonian eigenfunctions:

GsE,r,r8do
l

o
nùnminsld

o
m

kr unlmknlmur8l
E − Enl

, s24d

which is equivalent to Eq.s2d with kr unlml;RnlsrdYlmsrd and

glsE,r,r8d = o
nùnminsld

RnlsrdRnlsr8d
E − Enl

, s25d

whereEnl are the energy levels of the optical electronswith-
out account for the fine structured.

Due to the Pauli principle, the summation in Eqs.s24d and
s25d starts from the principal quantum numbernminsld of the
lowest sin a well-definedl seriesd state of the optical elec-
tron and goes through a complete set of nonoccupied one-
electron states including the continuum spectrum. Taking in
mind that expressions22d contains this summation implicitly,
we subtract for eachl from the seriess25d the states with
principal quantum number satisfyingnminsldønønmaxsld.
These boundaries should be chosen so that the excluded
states were the firstN=olfnmaxsld−nminsld+1g excited states,
for which QDT gives the low-accurate wave functionsRnl.
Instead of them we addN analogous terms containing the
wave functionsRnl calculated usingab initio computational
methods. The resulting reduced-added GF

GsE,r,r8d = GsE,r,r8d

+ o
l

o
n=nminsld

nmaxsld RnlsrdRnlsr8d − RnlsrdRnlsr8d
E − Enl

3o
m

YlmsrdYlm
* srd8 s26d

will, on the one hand, contain an exact addition of the high-
excitedfn.nmaxsldg and continuum states, and on the other
hand, it will provide an account of the many-electron effects
through theab initio treatment of the low-excited states, for
which these effects are most significant.

The N value is chosen empirically to achieve
convergence—that is, a weak change of the calculated values
with increasingN. The analysis of the results below shows

TABLE I. Frequency-dependent polarizabilitiesa2ssvd of lithium, a3ssvd of sodium, anda4ssvd of
potassiumsa.u.d.

v sa.u.d 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

Lithium

N=0 168.40 169.31 172.09 176.93 184.20 194.48 208.73 228.56

N=1 164.20 165.08 167.79 172.52 179.60 189.62 203.51 222.84

QDT f23g 165.25 166.14 168.87 173.63 180.77 190.87 204.87 224.342

CI f56g 164.1 165.0 167.7 172.4 179.5 189.6 203.4 222.8

MCSCF f56g 164.91 165.80 168.53 173.29

TDMP2 f56g 165.01 165.90 168.63 173.38 180.52 190.61 204.61 224.09

TDROHF f56g 170.13 171.07 173.95 178.97 186.52 197.22 212.11 232.92

Experimentf57g 164s3d
Sodium

N=0 178.02 178.77 181.05 184.98 190.79 198.81 209.57 223.90

N=1 160.68 161.36 163.41 166.96 172.20 179.44 189.16 202.09

Experimentf62g 162.5s8d
Potassium

N=0 353.78 356.32 364.14 377.98 399.22 430.30

N=1 280.73 282.74 288.95 299.94 316.79 341.45

QDT f23g 310.80 313.01 319.83 331.90 350.41 377.49

TDMP2 f56g 285.23 286.71 291.18 298.59 308.58 319.49

TDROHF f56g 416.27 420.50 433.71 457.71 496.22 556.55

Experimentf57g 292.8s6.1d

FIG. 2. TheJlsEd and PlsZ/Î−2Ed functions for Ar sZ=1, l
=2d.
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that smallN values are sufficient as a rule. The asymptotical
convergence of the proposed algorithm is also evident: when
N→`, the whole discrete spectrum is completely taken into
account by theab initio methods. In principle, the continuum
can be considered in the same way; however, our results
below show that good agreement with experiment can be
achieved without such a consideration.

Thus, usingab initio calculations for a very few excited-
state wave functions, the above method gives an improved
reduced-added GF, with the help of which one can calculate
various multiphoton processes. As an application, we con-
sider the simplest example of such processes.

The frequency-dependent scalar polarizability of an atom
with knili

optical electrons in theunil il state is

anil i
svd =

knili

2l i + 1o
m

knil imuzGsEnili
+ v,r,r8dz8

+ zGsEnili
− v,r,r8dz8unil iml. s27d

We supposed for simplicity that the polarizability is deter-
mined only by the electron transition from the outerunil il
shell. It is the case for the comparatively low frequencies
which are considered here. For high frequencies, an account
of the transitions from inner electron shells may be required.
Note also that neither is a particular atomic termsallowed for
knili

electrons in theunil il stated specified in Eq.s27d nor its
multiplet structure taken into account. The results given in
the next section for atoms with two and more electrons in the
outer shell are in goods2%-3%d agreement with the data
reported for the ground atomic terms without their multiplet
structure resolved. To our knowledge, there are only a few
data available for polarizabilities of individual multiplet
componentsssee, e. g.,f48gd. In the QDT framework the
corresponding accuracy could be attained by an account of
the dependence of the energy levels and QD-related func-
tions m and J on the quantum numbers which characterize
the multiplet structuressee, for instance,f49gd.

III. RESULTS AND DISCUSSION

In this section we present the results for the polarizabil-
ities of some atomssLi, Na, K, Be, Mg, Ca, Si, P, S, O, Al,

Ge, C, N, F, He, Ne, Ar, Kr, Xed. The ab initio wave func-
tions were calculated using theGAUSSIAN98W quantum
chemistry programf50g. The wave functions of the initial
sgroundd kr unil iml=Rnil i

srdYlim
srd state were calculated in the

Hartree-FocksHFd approachf51,52g—restricted for rare-gas
and alkaline-earth–metal atoms and unrestricted for the
other. The excited-state wave functions were calculated using
a configuration interaction with single substitutionssCISd
f53g. The standard basis sets were used: 3-21G**f54g with
five-dimensionals5Dd polarized functions for xenon and
6-311+ +Gs3df ,3pdd f55g for the other atoms. In this
section N means the total number of subtracted excited
states withl satisfying the dipole and parity selection rules
ul i − l u=1.

A. Lithium, sodium, and potassium

The frequency-dependent polarizabilities of the alkali-
metal atoms in their ground statess2s for Li, 3s for Na, and
4s for Kd are compared in Table I with theab initio calcula-
tions performed in Ref.f56g by various methods time-
dependent restricted open-shell Hartree-FocksTDROHFd,
time-dependent second-order Møller-Plesset perturbation
sTDMP2d, CI, and multiconfiguration self-consistent field
sMCSCFd. Reasonable agreement with the time-dependent
ab initio calculations of the polarizability is achieved by sub-
stituting only onesN=1d excited states2p for Li, 3p for Na,
and 4p for K correspondinglyd. We also compare these re-
sults with those from the Ref.f23g, where the QDGF was

TABLE II. Frequency-dependent polarizabilitya2psvd of neon
sa.u.d.

v sa.u.d N=0 N=2 Ref. f59g Expt. f60g

0.0 1.915 2.725 2.673 2.669

0.1 1.923 2.746 2.701

0.2 1.950 2.814 2.794

0.3 1.997 2.939 2.974

0.4 2.080 3.148 3.311

0.5 2.316 3.533 4.089

0.6 11.773 8.430FIG. 3. Dynamic polarizability of He below the first resonance:
this work ssolid lined and Ref.f58g scirclesd.

FIG. 4. The same as Fig. 3 between the second and fourth
resonances.
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used with the ground state treated in the QDT model. Table I
therefore shows that QDT gives a good approximation for
alkali-metal atoms even without usingab initio data for the
ground-state wave functions.

B. Helium and neon

In Figs. 3 and 4 we compare our calculations for He with
those of the Ref.f58g which uses a variationally stable treat-
ment with a coupled-channes hyperspherical representation
of the wave functions and provides very close agreement
with experiment. Even without the reduce-adding procedure,
our calculations are in good agreementswithin 2%d with Ref.
f58g for He. Our analysis shows that use of moreab initio
excited statessNù1d results in a lower accuracy for helium.
This fact can be explained by the low accuracy given by the
ab initio methods we used for the excited states. We can
hardly achieve better accuracy without account of relativistic
effects.

In Table II we present our calculations of the dynamical
polarizability for the ground state of Ne. For the Ne polariz-

ability, adequate accuracy is attained by the substitution of
two excited states3s,3d; N=2d wave functions.

C. Beryllium, magnesium, and calcium

The frequency-dependent polarizabilities of alkaline-earth
atoms in their ground statess2s for Be, 3s for Mg, and 4s for
Cad are presented in Table III. Like the alkali-metal atoms
the polarizability calculations for Be, Ca, and Mg required
the use of the reduce-adding procedure. We substitute one
s2p; N=1d excited state for Be, twos3p,4p; N=2d excited
states for Mg, and ones4p; N=1d for Ca to achieve good
agreementswithin 2% for Be and 3% for static Mg and Cad
with reference and experimental data.

D. Silicon, phosphorus, and sulfur

The frequency-dependent polarizabilities of Si, P, and S in
their ground statesf3p2s3Pd, 3p3s4Sd, and 3p4s3Pd, respec-
tivelyg are presented in Table IV. Here we substituted one

TABLE III. Frequency-dependent polarizabilitiesa2ssvd of beryllium, a3ssvd of magnesium, anda4ssvd of calcium sa.u.d.

Beryllium Magnesium Calcium

v sa.u.d N=0 N=1 Ref. f61g N=0 N=2 Experimentf62g N=0 N=1 Experimentf62g

0.00 43.177 37.034 37.755 97.533 69.544 71.5s31d 231.406 162.113 168.7s135d
0.02 43.626 37.416 38.150 99.009 70.526 239.342 167.578

0.04 45.032 38.615 39.388 103.729 73.661 266.918 186.553

0.06 47.597 40.803 41.646 112.732 79.614 331.065 230.644

0.08 51.745 44.342 45.290 128.465 89.952 502.942 348.593

0.10 58.326 49.958 51.059 156.956 108.509 1596.16 1097.51

0.12 69.167 59.213 60.533 216.653 146.942

0.14 88.870 76.042 77.684 401.204 264.089

0.16 132.982 113.748 115.903

0.18 306.585 262.263 265.673

0.2 −674.340 −577.514 −571.442

0.22 −152.750 −131.327 −125.566

0.24 −89.300 −77.738 −66.761

TABLE IV. Frequency-dependent polarizabilitiesa3psvd of silicon, phosphorus, and sulfursa.u.d.

Silicon Phosphorus Sulfur

v sa.u.d N=0 N=1 Ref. f63g N=0 N=2 Ref. f63g N=0 Ref. f63g

0.00 33.096 37.317 38.39 21.888 25.014 25.03 18.474 18.78

0.02 33.308 37.581 38.61 21.943 25.101 25.11 18.513 18.82

0.04 33.971 38.408 39.31 22.114 25.366 25.33 18.632 18.93

0.06 35.162 39.902 40.55 22.406 25.827 25.73 18.836 19.13

0.08 37.051 42.292 42.49 22.835 26.517 26.31 19.136 19.42

0.10 39.979 46.044 45.40 23.425 27.490 27.10 19.551 19.81

0.12 44.722 52.231 49.91 24.216 28.839 28.17 20.110 20.31

0.14 53.481 63.930 57.61 25.270 30.724 29.58 20.868 20.95

0.16 76.465 95.521 75.06 26.703 33.444 31.46 21.927 21.77

0.18 1016.89 1303.59 299.6 28.741 37.624 34.08 23.513 22.82
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s4s;N=1d excited state for Si, twos4s,3d;N=2d excited
states for P, and for S there is no need in the reduce-adding
procedure. The static limits for polarizabilities of these atoms
are within 1% error reference data. The discrepancy between
our results and the data reported in Ref.f63g for the
frequency-dependent polarizability of Si and P increases
while the frequency reaches a first resonant value. The au-
thors of Ref.f63g note less accuracy of their polarizability
values near the resonances due to insufficient accuracy in the
resonance positions calculated. Given the fact that the QDGF
method uses exactsexperimentald resonance positions, we
consider our data on dynamical polarizabilities near the reso-
nances more reliable.

E. Oxygen

The frequency-dependent polarizability of the O atom in
its ground state, 2p4s3Pd, is presented in Table V. Here we
substituted twos3s,3d;N=2d excited states for O.

F. Aluminum, germanium, carbon, nitrogen, and fluorine

The frequency-dependent polarizabilities of Al, Ge, C, N,
and F in their ground statesf3ps2Pd for Al, 4p2s3Pd for Ge,
2p2s3Pd for C, 2p3s4Sd for N, and 2p5s2Pd for F, respectivelyg

are presented in Table VI. Here we substituted three
s4s,5s,3d;N=3d excited states for Al, threes4s,5s,4d;N
=3d excited states for Ge, ones3s;N=1d excited state for C,
three s3s,4s,3d;N=3d excited states for N, and three
s3s,4s,3d;N=3d excited states for F. The static polarizabil-
ities for these atoms were computed usingGAUSSIAN98W

quantum chemistry programssee footnoted and they are
within 2% error with present results.

G. Argon, krypton, and xenon

The frequency-dependent polarizabilities of Ar, Kr, and
Xe in their ground states are shown in Table VII. For Ar the
adequate accuracy is attained after the substitution of two
s4s 3d;N=2d first excited-state wave functions. For Kr and
Xe it is necessary to substitute four excited states
s5s,6s,4d,5d;N=4d and s6s,7s,5d,6d;N=4d correspond-
ingly.

We illustrate the convergence of the proposed method for
Ar in Fig. 5. It is evident that the proposed modification of
the QDGF via the reduce-adding procedure demonstrates its
increasing accuracy with an increase of the numberN of
substituted states. In this sense the accuracy of the proposed
methodswithout taking into consideration the relativistic ef-
fects which lead to a fine structure of the energy levelsd is
determined only by the accuracy ofab initio calculation of
wave functions or the corresponding oscillator strengths.

IV. CONCLUSIONS

The proposed modification of the one-electron Green
function method for the calculation of the dynamical polar-
izability consists in a so-called reduce-adding procedure, i.e.,
in the substitution of the ground- and some first excited-state
wave functions in the GF eigenfunction expansionsor corre-
sponding oscillator strengths in the expression for the polar-
izabilityd by their values obtained using nonempiricalsab
initiod calculations. This procedure provides an account of
the many-electron effects, which are significant in the low-
excited states. The account of the high-excited and con-
tinuum states is included in an analytical form, and this
simple treatment of the excited states is an advantage of the

TABLE V. Frequency-dependent polarizabilitya2psvd of oxy-
gen sa.u.d.

v sa.u.d N=0 N=2 Ref. f64g

0.00 6.146 5.389 5.337

0.04 6.152 5.392

0.08 6.175 5.395

0.10 6.195 5.396 5.392

0.14 6.264 5.403

0.16 6.320 5.415

0.20 6.504 5.472 5.583

0.24 6.872 5.616

0.26 7.192 5.754

0.30 8.5851 6.382 6.281

TABLE VI. Frequency-dependent polarizabilitiesa3psvd of aluminum, a4psvd of germanium, anda2psvd of carbon, nitrogen, and
fluorine sa.u.d.

Aluminum Germanium Carbon Nitrogen Fluorine

v sa.u.d N=0 N=3 N=0 N=3 N=0 N=1 N=0 N=3 N=0 N=2

0.00a 52.808a 40.169a 9.288a 6.724a 2.950a

0.00 74.919 53.663 30.657 39.986 7.257 9.447 5.012 6.141 1.704 2.949

0.02 78.808 57.039 30.822 40.207 7.274 9.475 5.018 6.150 1.704 2.951

0.04 88.462 65.009 31.333 40.888 7.325 9.562 5.037 6.177 1.704 2.957

0.06 100.640 73.761 32.243 42.095 7.414 9.713 5.068 6.222 1.704 2.967

0.08 117.199 83.537 33.663 43.961 7.543 9.935 5.113 6.288 1.705 2.981

0.10 160.201 110.205 35.828 46.753 7.721 10.244 5.173 6.375 1.705 3.000

aMP2sFULLd/6-31111Gs3df ,3pdd SCFsTIGHTd POLAR.
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proposed method in comparison with the mostab initio
methods.

In a simple semianalytic calculation of the polarizability
for the closed-shell atomssHe, Ne, Ar, Kr, Xed, the method
gives good accuracy comparable with the accuracy of com-
putational chemistry methods. For the open-shell atomssLi,
Na, Kd the method provides even better agreement with ex-
periment. For more complex systemssBe, Mg, Ca, Si, P, S,
O, Al, Ge, C, N, Fd the method provides reasonables2%-3%d
agreement with the available data.

Computational simplicity is not the main advantage of the
proposed method. We extend the single-channel QDT

method which was previously used for atoms with simple
hydrogenlike spectra. More complex spectral structures are
taken into account by an energy-dependent QD-related func-
tion JlsEd.

The accuracy of QDGF calculations depends strongly on
the accuracy of the available QD values, the latter being
determined by the quality of the experimental spectroscopy
data. In QDGF calculations, this dependence influences sig-
nificantly the procedure of extrapolation of themlsnd func-
tions using their values at thennl points s19d and also the
procedure of the reconstruction of theJlsEd functions by
their values at the Coulomb pointsEn, Eq. s20d. It turns out
that more accurate restoration ofJl functions is attained
when Jl is treated as a function of the effective principal
quantum numbern rather than a function of energy.

It is clear physically that for the polarizabilities of excited
states the proposed method should provide a higher accuracy.
In these cases the advantages of the GF method becomes
even more significant. We also suppose that this method can
be efficient for calculations of the nonlinear susceptibilities
of atoms. With some modifications this method can also be
spread to calculations of the linear and nonlinear suscepti-
bilities of molecules, including polar ones.
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TABLE VII. Frequency-dependent polarizabilitiesa3psvd of argon,a4psvd of krypton, anda5psvd of xenonsa.u.d.

v sa.u.d 0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Argon

N=0 14.039 14.252 14.401 14.897 15.695 16.964 19.131 23.676 42.811

N=1 11.715 11.849 11.941 12.244 12.713 13.417 14.515 16.508 23.017

N=2 10.666 10.775 10.851 11.097 11.476 12.042 12.924 14.552 20.358

Ref. f65g 10.62 10.68 10.88 11.22 11.75 12.56 13.80 15.94 20.98

Ref. f66g 10.76 10.83 11.02 11.38 11.93 12.76 14.04 16.25 21.49

Experimentf67g 11.08

Krypton

N=0 24.731 24.966 25.711 27.114 29.528 33.888 43.672 100.491

N=2 22.930 23.155 23.869 25.216 27.545 31.783 41.396 97.969

N=4 17.871 18.031 18.541 19.509 21.207 24.390 32.098 84.198

Experimentf67g 16.754

Xenon

N=0 42.899 43.447 45.223 48.728 55.431 71.223 204.155

N=2 33.177 33.573 34.858 37.419 42.440 55.053 180.527

N=4 27.785 28.091 29.088 31.091 35.096 45.648 160.724

Experimentf67g 27.292

FIG. 5. Convergence of the reduce-adding procedure for the
dynamic polarizability of Ar with the numberN=0, 1 sdashed linesd
andN=2 ssolid lined of the addedab initio states. The circles cor-
respond to Ref.f65g.

METHOD OF THE REDUCED-ADDED GREEN FUNCTION IN… PHYSICAL REVIEW A 71, 022505s2005d

022505-9



f1g C. H. Townes and A. L. Schawlow,Microwave Spectroscopy
sMcGraw-Hill, New York, 1955d.

f2g M. Born, Optik sSpringer, Berlin, 1932d.
f3g L. D. Barron,Molecular Light Scattering and Optical Activity

sCambridge University Press, Cambridge, England, 1982d.
f4g J. O. Hirschfelder, C. F. Curtis, and R. B. Bird,Molecular

Theory of Gases and LiquidssWiley, New York, 1954d.
f5g B. A. Zon, Chem. Phys. Lett.262, 744 s1996d.
f6g B. A. Zon and B. G. Katsnelson, Zh. Eksp. Teor. Fiz.69, 1166

s1975d fSov. Phys. JETP42, 595 s1976dg; B. A. Zon, Eur.
Phys. J. D8, 377 s2000d.

f7g H. Stapelfeldt and T. Seideman, Rev. Mod. Phys.75, 543
s2003d.

f8g J. H. Posthumus, Rep. Prog. Phys.67, 623 s2003d.
f9g I. Waller, Z. Phys.38, 635 s1926d.

f10g C. Schwartz and J. J. Tiemann, Ann. Phys.sN.Y.d 2, 178
s1959d.

f11g M. H. Mittelman and F. A. Wolf, Phys. Rev.128, 2686s1962d.
f12g A. Dalgarno, Adv. Phys.11, 281 s1962d.
f13g M. Gavrila, Phys. Rev.163, 147 s1967d.
f14g L. Hostler, J. Math. Phys.5, 1235s1964d; J. Schwinger,ibid.

5, 1606s1964d; V. G. Gorshkov, Zh. Eksp. Teor. Fiz.47, 352
s1964d fSov. Phys. JETP20, 234 s1965dg.

f15g L. P. Rapoport and B. A. Zon, Phys. Lett.26 A, 564s1968d; B.
A. Zon, N. L. Manakov, and L. P. Rapoport, Zh. Eksp. Teor.
Fiz. 55, 924 s1968d fSov. Phys. JETP28, 480 s1969dg.

f16g L. Hostler and R. H. Pratt, Phys. Rev. Lett.10, 469s1963d; L.
Hostler, J. Math. Phys.5, 591 s1964d.

f17g B. A. Zon, N. L. Manakov, and L. P. Rapoport, Yad. Fiz.15,
508 s1972d fSov. J. Nucl. Phys.15, 282 s1972dg.

f18g A. Maquet, V. Véniard, and T. A. Marian, J. Phys. B31, 3743
s1998d.

f19g A. A. Krylovetsky, N. L. Manakov, and S. I. Marmo, Zh.
Eksp. Teor. Fiz.119, 45 s2001d fJETP 92, 37 s2001dg.

f20g M. J. Seaton, Rep. Prog. Phys.46, 167 s1983d.
f21g G. Simons, J. Chem. Phys.55, 756 s1971d.
f22g B. A. Zon, N. L. Manakov, and L. P. Rapoport, Dokl. Akad.

Nauk BSSR 188, 560 s1969d fSov. Phys. Dokl. 14, 904
s1970dg.

f23g V. A. Davydkin, B. A. Zon, N. L. Manakov, and L. P. Rapo-
port, Zh. Eksp. Teor. Fiz.60, 124s1971d fSov. Phys. JETP33,
70 s1971dg.

f24g N. L. Manakov, V. D. Ovsiannikov, and L. P. Rapoport, Opt.
Spektrosk.38, 206 s1975d fOpt. Spectrosc.38, 115 s1975dg.

f25g G. Lamm and A. Szabo, J. Chem. Phys.72, 3354s1980d.
f26g V. A. Davydkin and L. P. Rapoport, J. Phys. B7, 1101s1974d.
f27g V. E. Chernov and B. A. Zon, J. Phys. B29, 4161s1996d.
f28g V. E. Chernov, N. L. Manakov, and A. F. Starace, Eur. Phys. J.

D 8, 347 s2000d.
f29g B. A. Zon, Zh. Eksp. Teor. Fiz.102, 36 s1992d fSov. Phys.

JETP 75, 19 s1992dg; J. K. G. Watson, Mol. Phys.81, 227
s1994d; B. A. Zon, Phys. Lett. A203, 373 s1995d.

f30g H. F. Hameka, J. Chem. Phys.47, 2728s1967d.
f31g P. G. Alcheev, V. E. Chernov, and B. A. Zon, J. Mol.

Spectrosc.211, 71 s2002d;P. G. Alcheev, R. J. Buenker, V. E.
Chernov, and B. A. Zon,ibid. 218, 190 s2003d.

f32g M. Marinescu, H. R. Sadeghpour, and A. Dalgarno, Phys. Rev.
A 49, 5103 s1994d; A. Derevianko, W. R. Johnson, M. S.
Safronova, and J. F. Babb, Phys. Rev. Lett.82, 3589s1999d.

f33g W. R. Johnson, D. Kolb, and K. N. Huang, At. Data Nucl. Data

Tables 28, 333 s1983d.
f34g S. P. A. Sauer,The Ab Initio Calculation of Molecular Prop-

erties, reprint of 2nd ed., textbook for the Proceedings of the
3rd MERCOSUR Institute Symposium on Molecular Physics
sUniversidad National del Nordeste, Corrientes, 2001d.

f35g J. Gauss, inModern Methods and Algorithms of Quantum
Chemistry, John von Neumann Institute of Computing, NIC
Series, 1, 509s2000d.

f36g L. Hostler, Phys. Rev.178, 126 s1969d.
f37g D. Bates and A. Damgaard, Philos. Trans. R. Soc. London, Ser.

A 242, 101 s1949d.
f38g F. Burgess and M. J. Seaton, Mon. Not. R. Astron. Soc.69,

121 s1960d.
f39g M. J. Seaton, Mon. Not. R. Astron. Soc.118, 504 s1958d.
f40g L. J. Slater,Confluent Hypergeometric FunctionssCambridge

University Press, Cambridge, England, 1960d.
f41g A. I. Baz’, Ya. B. Zeldovich, and A. M. Perelomov,Scattering,

Reactions and Decay in Nonrelativistic Quantum Mechanics
sIsrael Program for Scientific Translations, Jerusalem, 1969d.

f42g L. D. Landau and E. M. Lifshitz,Quantum Mechanics-
Nonrelativistic TheorysPergamon, Oxford, 1981d.

f43g S. G. Krantz,Handbook of Complex VariablessBirkhäuser,
Boston, 1999d.

f44g B. M. Smirnov and M. I. Chibisov, Zh. Eksp. Teor. Fiz.49,
841 s1965d fSov. Phys. JETP22, 585 s1966dg.

f45g A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, Zh. Eksp.
Teor. Fiz. 50, 1393s1966d fSov. Phys. JETP23, 924 s1966dg.

f46g M. V. Ammosov, N. B. Delone, and V. P. Krainov, Zh. Eksp.
Teor. Fiz. 91, 2008s1986d fSov. Phys. JETP64, 1191s1986dg.

f47g B. A. Zon, Zh. Eksp. Teor. Fiz.116, 410 s1999d fSov. Phys.
JETP 89, 219s1997dg; A. S. Kornev, E. B. Tulenko, and B. A.
Zon, Phys. Rev. A68, 043414s2003d; 69, 065401s2004d.

f48g T. Fleig and A. J. Sadlej, Phys. Rev. A65, 032506s2002d.
f49g V. A. Zilitis, Opt. Spektrosk.43, 1017s1977d fOpt. Spectrosc.

43, 603 s1977dg; W. R. Johnson and K. T. Cheng, J. Phys. B
12, 863 s1979d; V. A. Zilitis, Opt. Spektrosk.50, 419 s1981d
fOpt. Spectrosc.50, 227 s1981dg; I. B. Goldberg and R. H.
Pratt, J. Math. Phys.28, 1352s1987d; J. J. Chang, Phys. Rev.
A 48, 1769s1993d.

f50g Æ. Frisch and M. J. Frisch,Gaussian 98 User’s Reference
sGaussian, Inc., Pittsburgh, 1998d.

f51g C. C. J. Roothan, Rev. Mod. Phys.23, 69 s1951d.
f52g J. A. Pople and R. K. Nesbet, J. Chem. Phys.22, 571 s1954d.
f53g J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J.

Frisch, J. Phys. Chem.96, 135 s1992d.
f54g K. D. Dobbs and W. J. Hehre, J. Comput. Chem.8, 861

s1987d.
f55g M. J. S. Dewar and C. H. Reynolds, J. Comput. Chem.2, 140

s1986d.
f56g T. Kobayashi, K. Sasagane, and K. Yamaguchi, Int. J. Quan-

tum Chem.65, 665 s1997d.
f57g R. W. Molof, H. L. Schwartz, T. M. Miller, and B. Bederson,

Phys. Rev. A10, 1131s1974d.
f58g M. Masili and A. F. Starace, Phys. Rev. A68, 012508s2003d.
f59g H. Larsen, J. Olsen, C. Hattig, P. Jørgensen, O. Christiansen,

and J. Gauss, J. Chem. Phys.111, 1917s1999d.
f60g R. P. Saxon, J. Chem. Phys.59, 1539s1973d.
f61g J. Komasa, Phys. Rev. A65, 012506s2001d.
f62g T. M. Miller, Atomic and Molecular PolarizabilitiessCRC

Press, Boca Raton, FL, 1995d, Vol. 76, Chap. 10, pp 10–192.

CHERNOV et al. PHYSICAL REVIEW A 71, 022505s2005d

022505-10



f63g P. K. Mukherjee and K. Ohno, Phys. Rev. A40, 1753s1989d.
f64g H. P. Saha, Phys. Rev. A47, 2865s1993d.
f65g T. K. Ghosh, A. K. Das, M. Castro, S. Canuto, and P. K.

Mukherjee, Phys. Rev. A48, 2686s1993d.
f66g N. K. Rahman, A. Rizzo, and D. L. Yeager, Chem. Phys. Lett.

166, 565 s1990d.
f67g R. R. Teachout and R. T. Pack, At. Data3, 195 s1971d.
f68g Ch. Jungen,Molecular Applications of Quantum Defect

TheorysInstitute of Physics, Bristol, 1996d.

METHOD OF THE REDUCED-ADDED GREEN FUNCTION IN… PHYSICAL REVIEW A 71, 022505s2005d

022505-11


