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Method of the reduced-added Green function in the calculation of atomic polarizabilities
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The Green function in the quantum defect theory provides an exact account for high-excited and continuum
electronic states. We modify it by taking into account the ground and low-excited states using their wave
functions calculatea@b initio. As an application, we present a simple and efficient semianalytical method for
the calculation of atomic electric frequency-dependent scalar dipole polarizability, for both real and imaginary
frequencies. The polarizabilities calculated for some atdmsNa, K, Be, Mg, Ca, Si, P, S, O, Al, Ge, C, N,

F, He, Ne, Ar, Kr, and Xgare compared with existing methods of computational quantum chemistry and with
experiments; good accuracy of the proposed method is demonstrated.
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I. INTRODUCTION in Ref.[13] using the Coulomb GF in momentum represen-

The polarizabilities of atoms and molecules, which deter{&tion [14] and in the Refs[15] using the coordinate repre-
sentation [16]. Relativistic effects in the frequency-

mine their interactions with other particles and external elec e
tric fields due to the induced electric-dipole moment, aredePendent polarizability of the hydrogen atom were taken
to account in Ref[17]. Various aspects of the use of the

responsible for numerous effects in optics and spectroscop@ . . . ; ;
oulomb GF in multiphoton calculations were reviewed in

For instance, in dc fields the quadratic Stark effgtt is . :
determined by the static polarizability. Numerous effectsR€f-[18]. More recent analytic results for the dynamical po-

caused by the linear response of atoms and molecules to 4 1zabilities of hydrogenic states with arbitrary quantum
fields, such as optical refractivity and Rayleigh and RamafiUmbers are given in Reff19].

scattering 2,3], are determined by the dynamic polarizability 1" Polarizability of atoms other than hydrogen can be
a(w) wherew is the frequency of the optical field. The van evaluated taking into account the transitions of a single “op-

der Waals interactions of atoms are expressed in terms ¢c@” €lectron in a Coulomb-like potential of the atomic
a(iw) of each atom by the Casimir-Polder form#i. For core. The non-Coulomb effects of the core charge distribu-

molecules, the dynamical polarizabilitfogether with its tion can be accounted for by quantum defect the@®T)

. . 20,68 or by model potentigl21]. The GF formalism in the
a_symmetry determines a number of effects in strong aCEQDTS%Irame)\/Nork(QDpGF) W?iI[S glaborated on for atoms in

Ref. [22]. Its application to the calculation of the dynamical
. Gi)olarizabilities of ground and low-excited states of alkali-
[5] as well as to molecular alignmefi—8]. metal atoms showed good accordance with experif2sit
So the calculation of static and frequency-dependent pogjmilar results were obtained using the model potential ap-
larizabilities is important for the analysis of different prob- hroach[24] (see alsd25] and references thergin
lems in atomic and molecular physics. Though the static po- The above formalism can be generalized to simplest mo-
larizability of the simplest hydrogen atom was calculated injecular systems. For instance, the QDGF was developed for
parabolic coordinates as early as in 199§ calculations of  molecular H ions [26] using spheroidal functions and for
the dynamical polarizability are more complex since theypolar Rydberg moleculef27,28 using dipole-Coulomb an-
include summation over high-excited discrete and continuungylar wave functions, which provide an exact account for the
states. In a one-electron approximation this difficulty wasdipole moment of the molecular cof29].
overcome by solving the inhomogeneous Schrédinger equa- pespite their analyticity and computational econdiag],
tion or by the use of the Coulomb Green functi@®F). QDT methods have scarcely been used in the calculation of
For the hydrogen atom, in Ref10] a Laplace transfor-  the polarizability even for the simplest molecules and atoms.
mation was used to solve the inhomogeneous Schrodinggsye to their one-electronic nature, they have not managed to
equation analytically. The frequency-dependent polarizabilprovide an accuracy comparable with the accuracy of many-
ity of the ground state of the hydrogen atom was calculate@|ectron methods used in modern computational chemistry
by this method in Ref[ll] For other atoms the application (an exception is high_excited Rydberg Stﬂ@gl, for those,
of direct numerical integration of the inhomogeneousthe computational chemistry methods are extremely expen-
Schrodinger equation to the calculation of dipole and quadsijve). These methods demonstrate good accuracy for simple
rupole static polarizability and shielding factors was re-gystemgfor example, a direct sum-over-states approach for
viewed by Dalgarng12]. . alkali-metal atom$32] and random phase approximation for
Some years later, analytic expressions for the frequencyciosed-shell systemg33]). Various computational methods
dependent polarizability of the hydrogen atom was obtainegor atomic and molecular polarizabilities are well reviewed
in numerous sourcesee, for instancg 34,35).
The aim of the present work is to modify the GF method
*Electronic address: zon@niif.vsu.ru to provide an effective account for the many-electron effects
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and thus to enable simple calculations of atomic and molecuzore where the effective one-electron potential of the optical
lar polarizabilities(and other multiphoton process probabili- electron can be considered to have a Coulomb shape with a
ties) for arbitrary (including the excitell electronic states residual ion charge€. In practice, it allows one to approxi-
with an accuracy comparable with that achieved in theoretimate the optical electron wave function using solutions of
cal chemistry. the Schrodinger equation for the Coulomb potential. Knowl-

However, with the present rapid development of computeedge of the experimental atomic spectrum enables an ac-
hardware, the computational requirements of some higheount of the atomic core influence on the optical electron
precision methods become now less problematic, so calculand, effectively, for some collective effects.
tional simplicity is not the main aim of the present work. In  The first QDT applications to atomic processes were cal-
fact, using the advantages of Q3uch as physical clarity, culations of the bound-bouri®7] and bound-fre¢38] tran-
exact correspondence between the calculated and the expesition matrix elements as well as calculations of the scatter-
mental resonances, exact account of the highly excited andg phase$39]. The problems discussed in the present work
continuum stateéswe propose further development of the are related to further development of the one-channel QDT
single-channel QDT for multiphoton processes in complexfor atomic calculations. One of such development is con-
atoms with essentially non-one-electron spectrum structurecerned with construction of the GF formalism in the QDT

Many-electron effects are most significant for the groundframework(QDGBP [22]. Its generalization to noninteger an-
and for some low-excited states, and simf@d@e-electrop  gular momentum values, which arise in polar molecule
models are therefore least satisfactory for these states. So thieeory[29], is given in Ref[27,28.
main idea of the proposed method is to useaminitio The QDGF developed in Reff22] proved to be useful in
description for these states through the corresponding oscitalculations of multiphoton process probabilities in alkaline
lator strengths instead of the oscillator strengths appearing iatoms[23], whose even ground states can be described by
the one-electron expression for the polarizability. As for theQDT with satisfactory accuracy. However, application of
high-excited and continuum statéshich require the most QDT for atoms with more than one electron in the outer shell
computational resources in thab initio calculationg, their  requires some improvement of the mathematical technique.
addition to the polarizability is calculated using the simpleThe same problem is relevant for the one-electron QDGF as
one-electron models, which, however, take into account thevell, and the solution is given in this section.
many-electron structure of the ground-state wave function.
In other words, some low-excited statéiseir total number is
thereinafter denoted &¢) in the GF eigenstate expansion are
numerically substituted by the states calculated usimni- The one-electron GB(E,r,r') corresponding to the vir-
tio methods, and we refer to this substitution as a reducetual electron energ satisfies the equation
adding procedure. Note that the reduced Coulomb(\@th-
out adding theab initio term9, which is needed for
stationary perturbation calculations, was found in R&€].

A brief outline of this work is as follows. In Sec. Il we
develop the general QDGF formalism. Based on an analysiwhereU(r) is the non-Coulomb part of the atomic potential.
of the inhomogeneous Whittaker equation in Sec. Il A weFor distances larger than the core radiyghe potential is
derive expressions for the QDGF for positifiec. Il B and  considered to have a Coulomb shapkér >r.)=0.
negative(Sec. Il D energies. The derivation uses a general Separating the radial and angular variables in
relationship between the quantum defect and scattering
phases which is proved in the Sec. Il C. In the same subsec- G(E,r,r') =2 g(E " )Yim(NYm(r'), (2)
tion we introduce some analytic QD-related functions of Im
complex energy; these functions were not required for simple
(e.g. alkali-like atoms but they are important for atoms with we obtain the equation for the radial QDGRE,r,r’):
complex spectra and comprise the mathematical basis of the
proposed method. Section Il E introduces the reduced-added 1df,d) I(0+1 Z ,

GF used for the calculations. The results of the calculation of | 2r2dr\" dr/ ~  2r2 uir) + o E(a(Err)

the dipole scalar polarizability for Li, Na, K, Be, Mg, Ca, Si,

P, S, O, Al Ge, C, N, F, He, Ne, Ar, Kr, and Xe are presented - i&(r -r'). (3)
and discussed in Sec. lll. Their comparison with the avail- rr’

able experimental data anab initio calculations demon-
strates the efficiency of the proposed method.

Atomic units are used throughout the work.

A. General formalism

{%vz— u(r) + % + E}G(E,r,r’) =or-r’), (1)

The general solution of the inhomogeneous equat®)n
in ther >r. domain may be constructed as a combination of
fundamental solutions of the corresponding homogeneous
equation:
IIl. GREEN FUNCTION IN QUANTUM DEFECT THEORY

- . _ G(Er,r)=grEr,r)
One of the key principles of the QDT usage in atomic ,
physics is that the largest contribution to the dipole transition AW (@) <ZZF ) 4)
matrix elements is given by distances far from the atomic Zrr! 2 vl+1/2 ’
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v T'l+1-v)

Zrr' T'(21+2)

27r 27r
X M v,|+1/2( - = )WV,|+1/2( T>> , (5

where v=Z2/y-2E is the so-called effective principal quan-
tum numbery~.(r.) are the greatefleas) of r andr’ values,
andM andW are well-known Whittaker functiong}Q]. The

gC(Er,r') =

first term in Fig. 4, which is a partial solution of the inho-

mogeneous equatiof8), is a pure-Coulomb GI@,C(E,r,r’)
whereas the second term, which enters with-amlependent
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It can be showr{41] that the asymptotic expression for
QDGEF (4) differs from that for the pure-Coulomb G@EDO)
only by the phase shiffi(E) due to the non-Coulomb poten-
tial term U(r):

N w expli(A/(r=) + 8)].

11

The parameteA can be determined from the correspon-
dence between the asymptotic representations of the QDGF
for E>0, Eq. (11), and for E<O0. Indeed, making the re-

g|(E1r1r’)r,r’~>+w

coefficientA, is a solution of the homogeneous equation. Itsplacement8) in Eq. (4) and using Eq(6), one obtains

other solution containing a double product Mf functions

must not appear in the expression for the GF since the latter

should be regular at,r’ — o for E<0. This can be easily
seen from the properties of the Whittaker functi¢As]:

2Zr\ W, 10— )
MV’|+1/2< . ) = EX[iHTV)F(Zl + 2) X |: F(l - V)

o |WV,|+1/2(_ 2_3") :|
=1 Ta+l+m |

1+1+v)

( ZZr> ( 2Zr>iv p(_Zr)
Wil 2= ~ (2] expg +—].
14 r—+o0o 14 14

B. QDGF for E>0 and the phase shift

For E>0 the M and W functions are more convenienly
expressed in the following way0]:

2Zr el wZ _ .
Wiy 12| 2= | < (%) expl —— F oy
’ v 2k

X [Fi(kr) FiG/(kr)],

27r 141 mZ .
MV,|+1/27 —(—i)"ex ‘Z“(ﬂ

2I'(21 +2)
T(+1-iz/k)

Hereoy=ard (I+1-iZ/k), k= V2E, and sign corresponds
to the replacement

(6)

Fi(k,r). )

v izZIk. (8

The functiong=|(k,r) andG,(k,r) in Egs.(7) are the regu-
lar and irregular Coulomb functiong40]. Given the
asymptotic form of Whittaker function®) we can write the
asymptotics of these Coulomb functions:

Fi(k,r)r — +o ~sinA(r),

Gi(K,M)r— 400 ~ COSA((F), 9

where A((r)=kr+ZIn(2kr)/k—al/2+0,. Then, taking into
account Eqgs(7) and(9), one obtains, foE>0,

2 sinA(r.)

OB, g —as ~ o SPlA()]. (10

A=exd2io+im(v-1)][1-exd2i8)]. (12

Given expressiofi12) for A, we use Eq(7) to express the
QDGF (4) for E>0 in the following form:

2i expif)
Err)=——"
G(Er.r) krr'

X [F|(k,r>) - iGl(klr>)]'

[Fi(k,ro)cosé + Gi(krro)sin ]

(13

C. QD functions and phase relationship

Thus, for a complete definition of the QDGF it is neces-
sary to know the non-Coulomb parts of the scattering phases
& and their analytic continuation onto tlie>0 domain. To
determine these quantities we use a well-known relation of
scattering theory. Since the discrete spectrum points are the
poles of theS matrix, one obtains, for the phase shift in those
points[42],

cot(§+a))—-i=0, whenE=E,, (14

whereE,, are the energy levels of the optical electron with-
out account for the fine structure,and| being its principal
and orbital quantum number.

Rewriting Eqg.(14) in the form

. (cotg —i)(cotay—i) _
cotd +ay) ~i = cot 8 + cot o =0,

(15

one can easily see that the roots of Ebp) constitute two
subsets. The first subset

cota|(Ey) -i=0, E,=-2Z%2n? (16)

corresponds to a pure-Coulonthydrogenlike atorm spec-
trum and thus should not appear among $matrix poles,
while the second subset

cot§(E,) =i (17

does correspond to a real atom spectrum. The second
script of the energy eigenvalue is absent in Ef) due to
thel degeneracy of the pure-Coulomb spectrum.
SinceE,,— 0 asn— «, it then follows from Picard’s great
theorem[43] that the pointE=0 is an essential singularity
point for the cot§(E) function in the complexE plane. Let
us assume that th® matrix has no other poles except those
determined by formuldl17). Then the expression for cét

sub-
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can be defined for all comple values through the relation

sin (g + v) I1;(v)

cot§(E) —i=-2i exp(imv) sinma) (B’
I-1 -1

M) =2 [T (m+w+v)(m+1--»)| , (19
m=0

wherev=Z/\-2E and E,(E) is an entire function of energy.

Recall that an entire function cannot have singularities no-

where in the complex plane except infinity.
Let us define the quantum defegi entering Eq.(18)
through the relation

m(En) + v =n, (19

where v, =Z/\-2E,, andn is an integer number satisfying
the n=1+1 condition. Then the fundamental conditi¢Lv)

is obviously valid for all discrete spectrum energieg. To
eliminate the pure-Coulomb rootd6), the functionZ,(E)
should be defined &=E, in the following way:

Ei(En) =1L(n), (20)

Indeed, forv=n taking into consideration Eq20) one
obtains from formulg18) that

n=1+1.

cot§(E,) =-i.

It is easy to see that fdE=E, the pure-Coulomb roots dis-
appear from the sdfl5) and therefore from the s¢t4).

Since the functiorg(E) is defined on the countable set

E,, which has the accumulation poi&t=0, then the relation
(20) defines the functiorE,(E) unambiguously in the whole
complex energy plang43].

Now we derive the relationship between the phase shifts

and quantum defects. Using

sina(u + v)

sin(mu) =sin(mv)[cot(7v) + cot( mu)]

and assuminge—0 in Eq. (18), which means sifrv)
— 3i exp(-imv), cotlmv) ——i, I)(v) - (-1)" at v—i= and
E/(E)—(-1)' at n—o, one recovers the well-known
Seaton relatioh20]

cot §(E) = cotmuy(v).

D. QDGF for E<0 and bound-state wave functions

Taking into account expressiaii8) for the phase shift,
Eq. (12) can be rewritten to yield

_ I +1-v) sina(w +1) E/(E)
T+ 1+ sina(y +v) O(y)

(21)

Substituting Eq.(21) into Eqg. (4) the expression for
QDGF g/(E,r,r’) can be rewritten in the following final
form:
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FIG. 1. TheE,(E) and I1,(Z/\~2E) functions for Li (Z=1, |
=1).

v T(+1-v) (22r>>
Ey 1 ! :_—WV + -
a(E,r,r") Zr T+ L4 p) Vnai2 ™)

rfi+1+v) 27r
X [—My,|+1/2(T<>

2l +2)
, Sinw(u +1) El(E>WVm< 2%)}
(22)

sina(w +v) I1(v)

Evidently, QDGF(22) has poles at th&,, points, which
correspond to the atomic spectrum energies; moreover, the
QDGEF residues in these poles equal to the products of two
radial QDT wave functions:

_z'? E|(En|)]”2 ( @)
Rai(r) = v { (v W, 4172 "
-12
X [F(l + 1+ (vy = I)(l +W)} _

(23)

The [E,/11,]*? factor in the bound-state wave functions
(23) makes their normalization different from that used nor-
mally in QDT [20,37]. This fact shows the fundamental role
played by the functior®,(E) in QDT together with thew(E)
function. This normalization can be important for a QDT
description of various effects in the interaction of atoms and
molecules with an external field—for instance, in tunneling
ionization[44—-47).

A typical behavior of the functionsZ,(E) and
I1,(Z/\-2E) is shown in Figs. 1 and 2 for Liz=1,1=1) and
Ar (Z=1, 1=2) correspondingly. The functiong(E) and
I1,(Z/y-2E) coincide whenE— 0 as it should be according
to Eq. (7). In fact, the small difference betweéh(Z/\-2E)
and Z(E) for the alkali-metal atomgand their significant
difference for rare-gas atomis responsible for the opinion
that a satisfactory QDT description could be performed only
for the atoms and ions with one electron over the closed
shells. The results belovespecially for He atomshow that
the domain of applicability of QDT is essentially wider due
to the proposed reduce-adding procedure.
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60 Due to the Pauli principle, the summation in E@&4) and
a0l (25) starts from the principal quantum numbgg; (1) of the
lowest (in a well-defined! serieg state of the optical elec-
20| tron and goes through a complete set of nonoccupied one-
electron states including the continuum spectrum. Taking in
oF mind that expressiof22) contains this summation implicitly,
we subtract for each from the serieq25) the states with
-20 principal quantum number satisfying,,(1) <n<n.{1).
wl These boundaries should be chosen so that the excluded
B states were the firdl==,[Nyad1) —Nmin(l) + 1] excited states,
for which QDT gives the low-accurate wave functioRg.
-06 -05 -04 -03 -02 -0l 0 Instead of them we addll analogous terms containing the
E(au.) wave functionsRk,, calculated usin@b initio computational

FIG. 2. TheE|(E) and H|(Z/\e’——2IE) functions for Ar(Z=1, | methods. The resulting reduced-added GF

=2). GE,rr")=G(E,r,r")
E'. Reduced-ad'd(?(? GF and dynamic p(.)larizability . Mmax(1) RN Ry(r") = Ry (NRy(r")
Besides the definition through the differential equation +> > E-E
(1), the GF can be expressed in the form of an expansion I n=nmin(l) nl
over the one-electron Hamiltonian eigenfunctions: x> Y|m(r)YTm(f)' (26)
) (r|nim{nim|r") m
GENMY X X——-—— (4 _ N .
I n=ng) m E-En will, on the one hand, contain an exact addition of the high-

excited[n>ny(1)] and continuum states, and on the other

which is equivalent to Eq(2) with {r[nlm) = Ry() Yim(r) and hand, it will provide an account of the many-electron effects

L Ry(NRu(r") through theab initio treatment of the low-excited states, for
a(Err')= >2 E-E, ' (25 which these effects are most significant.
=i " The N value is chosen empirically to achieve

whereE,, are the energy levels of the optical electf@rith-  convergence—that is, a weak change of the calculated values
out account for the fine structyre with increasingN. The analysis of the results below shows

TABLE |. Frequency-dependent polarizabilitiesw) of lithium, asdw) of sodium, andasqw) of
potassium(a.u).

w (a.u) 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
Lithium

N=0 168.40 169.31 172.09 176.93 184.20 194.48 208.73 228.56
N=1 164.20 165.08 167.79 17252 179.60 189.62 203.51 222.84
QDT [23] 165.25 166.14 168.87 173.63 180.77 190.87 204.87 224.342
ClI [56] 164.1 165.0 167.7 172.4 179.5 189.6 203.4 222.8
MCSCF[56] 164.91 165.80 168.53 173.29

TDMP2 [56] 165.01 165.90 168.63 173.38 180.52 190.61 204.61 224.09
TDROHF[56] 170.13 171.07 17395 178.97 186.52 197.22 212.11 232.92
Experiment{57]  164(3)

Sodium

N=0 178.02 178.77 181.05 184.98 190.79 198.81 209.57 223.90
N=1 160.68 161.36 163.41 166.96 172.20 179.44 189.16 202.09
Experiment{62] 162.58)

Potassium

N=0 353.78 356.32 364.14 377.98 399.22 430.30

N=1 280.73 282.74 288.95 299.94 316.79 341.45

QDT [23] 310.80 313.01 319.83 331.90 350.41 377.49

TDMP2 [56] 285.23 286.71 291.18 298.59 308.58 319.49

TDROHF[56] 416.27 420.50 433.71 457.71 496.22 556.55

Experimen{57] 292.86.1)
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that smalIN values are sufficient as a rule. The asymptotical 30
convergence of the proposed algorithm is also evident: when 20
N— oo, the whole discrete spectrum is completely taken into
account by thab initio methods. In principle, the continuum . 10
can be considered in the same way; however, our results 3
below show that good agreement with experiment can be
achieved without such a consideration. -10
Thus, usingab initio calculations for a very few excited-

state wave functions, the above method gives an improved -20
reduced-added GF, with the help of which one can calculate ~30

o) (a.u.)
(=]

various multiphoton processes. As an application, we con- 079 081 0.83 085 087 0.89
sider the simplest example of such processes. ® (au)
The frequency-dependent scalar polarizability of an atom
with knili optical electrons in thénl;) state is FIG. 4. The same as Fig. 3 between the second and fourth
K resonances.
n:l.
(@) = === (0 imZG(Eyy + 0,1,1)Z'

2+ 17 Ge, C, N, F, He, Ne, Ar, Kr, Xe The ab initio wave func-
o tions were calculated using theAussiAN98W quantum
+2G(Epy, — o,1,1)Z'[lim). (27)  chemistry progranf50]. The wave functions of the initial
o i (ground {r|ml;my=R,,, (1Y, (r) state were calculated in the
W f I hat th I I - iy " im )
e supposed for simplicity that the polarizability is deter Hartree-Fock HF) approacH51,52—restricted for rare-gas

mined only by the electron transition from the outejl;) ) :
shell. It is the case for the comparatively low frequenciesand alkaline-earth-metal atoms and unrestricted for the

which are considered here. For high frequencies, an accouﬂfher' The excited-state wave functions were calculated using

of the transitions from inner electron shells may be requiredasgorjlf;]gur?t'og n;tri)rac_non tW'th single ds.u?l)asztgutlo(ﬁl_ﬁ:
Note also that neither is a particular atomic tdatiowed for [53]. The standard basis sets were used: 3-21{5#] wi

knili electrons in thenjl;) state specified in Eq(27) nor its five-dimensional (5D) polarized functions for xenon and

multiplet structure taken into account. The results given in6_311++q3df’3pd) [55] for the other atoms. In this

the next section for atoms with two and more electrons in thé5 ?;ttéznv{/\ilthrlse?tri]ssfy}rr:e tthoéa(lji ncljg]g?]rd Ofar?fbtsrgzt;?one):ﬁigesd
outer shell are in good2%-3% agreement with the data 9 P parity

reported for the ground atomic terms without their multiplet“i_”:l'
structure resolved. To our knowledge, there are only a few . ) _
data available for polarizabilities of individual multiplet A. Lithium, sodium, and potassium

components(see, €. g.[48]). In the QDT framework the The frequency-dependent polarizabilities of the alkali-
corresponding accuracy could be attained by an account gfietal atoms in their ground statés for Li, 3s for Na, and
the dependence of the energy levels and QD-related funis for K) are compared in Table | with theb initio calcula-
tions x and E on the quantum numbers which characterizetigns performed in Ref[56] by various methods time-

the multiplet structurésee, for instancd49]). dependent restricted open-shell Hartree-FGEOROHP),
time-dependent second-order Mgller-Plesset perturbation
ll. RESULTS AND DISCUSSION (TDMP2), ClI, and multiconfiguration self-consistent field

(MCSCR. Reasonable agreement with the time-dependent
ab initio calculations of the polarizability is achieved by sub-
stituting only one(N=1) excited staté2p for Li, 3p for Na,

and 4 for K correspondingly. We also compare these re-

In this section we present the results for the polarizabil
ities of some atoméLi, Na, K, Be, Mg, Ca, Si, P, S, O, Al

8 .
sults with those from the Ref23], where the QDGF was
7
6 TABLE II. Frequency-dependent polarizability,(w) of neon
~5¢f (a.u).
3
&
g“ i o (@.u) N=0 N=2 Ref.[59]  Expt.[60]
3
) 0.0 1.915 2.725 2.673 2.669
>— - - & 0.1 1.923 2.746 2.701
1p 0.2 1.950 2.814 2.794
0.3 1.997 2.939 2.974
0 01 02 03 04 05 06 07
o (an) 0.4 2.080  3.148 3.311
0.5 2.316 3.533 4.089
FIG. 3. Dynamic polarizability of He below the first resonance: 0.6 11.773 8.430

this work (solid line) and Ref.[58] (circles.
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TABLE lll. Frequency-dependent polarizabilities{w) of beryllium, az{w) of magnesium, and,{ ) of calcium(a.u).

Beryllium Magnesium Calcium
w (a.u) N=0 N=1 Ref.[61] N=0 N=2 Experimen{62] N=0 N=1 Experimen{62]
0.00 43.177 37.034 37.755 97.533 69.544 @A1b 231.406 162.113 168(¥35
0.02 43.626 37.416 38.150 99.009 70.526 239.342  167.578
0.04 45.032 38.615 39.388 103.729  73.661 266.918  186.553
0.06 47.597 40.803 41.646 112.732  79.614 331.065 230.644
0.08 51.745 44.342 45.290 128.465  89.952 502.942  348.593
0.10 58.326 49.958 51.059 156.956  108.509 1596.16  1097.51
0.12 69.167 59.213 60.533 216.653  146.942
0.14 88.870 76.042 77.684 401.204  264.089

0.16 132.982 113.748 115.903
0.18 306.585 262.263 265.673

0.2 -674.340 -577.514 -571.442
0.22 -152.750 -131.327 -125.566
0.24 —89.300 =77.738 -66.761

used with the ground state treated in the QDT model. Table &bility, adequate accuracy is attained by the substitution of
therefore shows that QDT gives a good approximation fotwo excited staté3s, 3d; N=2) wave functions.
alkali-metal atoms even without usiralp initio data for the

ground-state wave functions. . . .
C. Beryllium, magnesium, and calcium

B. Helium and neon The frequency-dependent polarizabilities of alkaline-earth

In Figs. 3 and 4 we compare our calculations for He withatoms in their ground stat¢2s for Be, 3 for Mg, and 4 for
those of the Refl58] which uses a variationally stable treat- Ca) are presented in Table Ill. Like the alkali-metal atoms
ment with a coupled-channes hyperspherical representatidhe polarizability calculations for Be, Ca, and Mg required
of the wave functions and provides very close agreemerihe use of the reduce-adding procedure. We substitute one
with experiment. Even without the reduce-adding procedure(2p; N=1) excited state for Be, tw@3p,4p; N=2) excited
our calculations are in good agreeménithin 2%) with Ref.  states for Mg, and onép; N=1) for Ca to achieve good
[58] for He. Our analysis shows that use of mate initio ~ agreementwithin 2% for Be and 3% for static Mg and Ca
excited state$N=1) results in a lower accuracy for helium. with reference and experimental data.

This fact can be explained by the low accuracy given by the
ab initio methods we used for the excited states. We can
hardly achieve better accuracy without account of relativistic
effects. The frequency-dependent polarizabilities of Si, P, and S in

In Table 1l we present our calculations of the dynamicaltheir ground state3p?(*P), 3p%(*s), and 3*(®P), respec-

polarizability for the ground state of Ne. For the Ne polariz-tively] are presented in Table 1V. Here we substituted one

D. Silicon, phosphorus, and sulfur

TABLE IV. Frequency-dependent polarizabilities,(w) of silicon, phosphorus, and sulfia.u).

Silicon Phosphorus Sulfur
o (au) N=0 N=1 Ref.[63] N=0 N=2 Ref.[63] N=0 Ref.[63]
0.00 33.096 37.317 38.39 21.888  25.014 25.03 18.474 18.78
0.02 33.308 37.581 38.61 21,943  25.101 2511 18.513 18.82
0.04 33.971 38.408 39.31 22.114  25.366 25.33 18.632 18.93
0.06 35.162 39.902 40.55 22.406  25.827 25.73 18.836 19.13
0.08 37.051 42.292 42.49 22.835  26.517 26.31 19.136 19.42
0.10 39.979 46.044 45.40 23.425  27.490 27.10 19.551 19.81
0.12 44.722 52.231 49.91 24216  28.839 28.17 20.110 20.31
0.14 53.481 63.930 57.61 25.270  30.724 29.58 20.868 20.95
0.16 76.465 95.521 75.06 26.703  33.444 31.46 21.927 21.77
0.18 1016.89  1303.59 299.6 28.741  37.624 34.08 23.513 22.82
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TABLE V. Frequency-dependent polarizability,y(w) of oxy- are presented in Table VI. Here we substituted three

gen(a.u). (4s,5s,3d;N=3) excited states for Al, threé4s,5s,4d;N
=3) excited states for Ge, or&s;N=1) excited state for C,
w (a.u) N=0 N=2 Ref.[64] three (3s,4s,3d;N=3) excited states for N, and three
0.00 6.146 5389 5337 _(:_33,43,3d; N=3) excited states for F. The s_tatic polarizabil-
ities for these atoms were computed usiBgUSSIANI8W
0.04 6.152 5.392 .
0.08 6.175 5 395 guantum chemistry progranisee footnotg and they are
' ' ' within 2% error with present results.
0.10 6.195 5.396 5.392
0.14 6.264 5.403
0.16 6.320 5.415 G. Argon, krypton, and xenon
0.20 6.504 5.472 5.583 The frequency-dependent polarizabilities of Ar, Kr, and
0.24 6.872 5.616 Xe in their ground states are shown in Table VII. For Ar the
0.26 7.192 5.754 adequate accuracy is attained after the substitution of two
0.30 8.5851 6.382 6.281 (4s 3d;N=2) first excited-state wave functions. For Kr and

Xe it is necessary to substitute four excited states
(5s,6s,4d,5d;N=4) and (6s, 7s,5d,6d;N=4) correspond-
(4s;N=1) excited state for Si, twd4s,3d;N=2) excited ingly.

states for P, and for S there is no need in the reduce-adding We illustrate the convergence of the proposed method for
procedure. The static limits for polarizabilities of these atomd™ in Fig. 5. It is evident that the proposed modification of
are within 1% error reference data. The discrepancy betweelf® QDGF via the reduce-adding procedure demonstrates its
our results and the data reported in R§83] for the  increasing accuracy W|.th an increase of the numieof
frequency-dependent polarizability of Si and P increase§ubstituted states. In this sense the accuracy of the proposed
while the frequency reaches a first resonant value. The adbethod(without taking into consideration the relativistic ef-
thors of Ref.[63] note less accuracy of their polarizability fécts which lead to a fine structure of the energy levels
values near the resonances due to insufficient accuracy in ttfetermined only by the accuracy ab initio calculation of
resonance positions calculated. Given the fact that the QDGWave functions or the corresponding oscillator strengths.
method uses exadexperimentdl resonance positions, we

consider our data on dynamical polarizabilities near the reso-

nances more reliable. IV. CONCLUSIONS

The proposed modification of the one-electron Green
E. Oxygen func.ti_on method _for the calculation of the.dynamical polgr-
o _ izability consists in a so-called reduce-adding procedure, i.e.,
__The frequency-dependent polarizability of the O atom inj, the substitution of the ground- and some first excited-state
its ground state, @'(°P), is presented in Table V. Here we \yaye functions in the GF eigenfunction expansioncorre-
substituted twd3s, 3d;N=2) excited states for O. sponding oscillator strengths in the expression for the polar-
izability) by their values obtained using nonempiri¢ab
initio) calculations. This procedure provides an account of
the many-electron effects, which are significant in the low-
The frequency-dependent polarizabilities of Al, Ge, C, N,excited states. The account of the high-excited and con-
and F in their ground statd8p(’P) for Al, 4p?(°P) for Ge,  tinuum states is included in an analytical form, and this
2p?(3P) for C, 2p%(*9) for N, and 2°(P) for F, respectively  simple treatment of the excited states is an advantage of the

F. Aluminum, germanium, carbon, nitrogen, and fluorine

TABLE VI. Frequency-dependent polarizabilitieg,(w) of aluminum, au(w) of germanium, andy,,(w) of carbon, nitrogen, and
fluorine (a.u).

Aluminum Germanium Carbon Nitrogen Fluorine
o (au) N=0 N=3 N=0 N=3 N=0 N=1 N=0 N=3 N=0 N=2
0.0¢" 52.808 40.169 9.288 6.724 2.95C
0.00 74.919 53.663 30.657 39.986 7.257  9.447 5.012 6.141 1.704 2.949
0.02 78.808 57.039 30.822 40.207 7.274 9.475 5.018 6.150 1.704 2.951
0.04 88.462 65.009 31.333 40.888 7.325 9.562 5.037 6.177 1.704 2.957
0.06 100.640 73.761 32.243 42.095 7.414 9.713 5.068 6.222 1.704 2.967
0.08 117.199 83.537 33.663 43.961 7.543 9.935 5.113 6.288 1.705 2.981
0.10 160.201 110.205 35.828 46.753 7.721  10.244 5.173 6.375 1.705 3.000

3MP2(FULL)/6-311+ +G(3df, 3pd) SCRTIGHT) POLAR.
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TABLE VII. Frequency-dependent polarizabilitiegy(w) of argon,asy(w) of krypton, andasy(w) of xenon(a.u).

w (a.u) 0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Argon

N=0 14.039 14.252 14.401 14.897 15.695 16.964 19.131 23.676 42.811
N=1 11.715 11.849 11.941 12.244 12.713 13.417 14.515 16.508 23.017
N=2 10.666 10.775 10.851 11.097 11.476 12.042 12.924 14.552 20.358
Ref. [65] 10.62 10.68 10.88 11.22 11.75 12.56 13.80 15.94 20.98
Ref. [66] 10.76 10.83 11.02 11.38 11.93 12.76 14.04 16.25 21.49
Experiment{67] 11.08

Krypton

N=0 24.731 24.966 25.711 27.114 29.528 33.888 43.672 100.491

N=2 22.930 23.155 23.869 25.216 27.545 31.783 41.396 97.969

N=4 17.871 18.031 18.541 19.509 21.207 24.390 32.098 84.198
Experiment67] 16.754

Xenon

N=0 42.899 43.447 45.223 48.728 55.431 71.223 204.155

N=2 33.177 33.573 34.858 37.419 42.440 55.053 180.527

N=4 27.785 28.091 29.088 31.091 35.096 45.648 160.724

Experiment{67] 27.292

proposed method in comparison with the madt initio  method which was previously used for atoms with simple
methods. hydrogenlike spectra. More complex spectral structures are
In a simple semianalytic calculation of the polarizability taken into account by an energy-dependent QD-related func-
for the closed-shell atomdie, Ne, Ar, Kr, X, the method tion E,(E).
gives good accuracy comparable with the accuracy of com- The accuracy of QDGF calculations depends strongly on
putational chemistry methods. For the open-shell atdms the accuracy of the available QD values, the latter being
Na, K) the method provides even better agreement with exdetermined by the quality of the experimental spectroscopy
periment. For more complex systerf®e, Mg, Ca, Si, P, S, dg'ta. In QDGF calculations, this depgndence influences sig-
0, Al, Ge, C, N, B the method provides reasonak86-3% nificantly the procedure of extrapolation of the(v) func-
agreement with the available data. tions using their values at the, points (19 and also the
Computational simplicity is not the main advantage of theProcedure of the reconstruction of th&(E) functions by

proposed method. We extend the single-channel QDfheir values at the Coulomb poink, Eq. (20). It turns out
that more accurate restoration & functions is attained

when E, is treated as a function of the effective principal
quantum numbep rather than a function of energy.

It is clear physically that for the polarizabilities of excited
states the proposed method should provide a higher accuracy.
In these cases the advantages of the GF method becomes
even more significant. We also suppose that this method can
be efficient for calculations of the nonlinear susceptibilities
of atoms. With some modifications this method can also be
spread to calculations of the linear and nonlinear suscepti-
bilities of molecules, including polar ones.

30

o) (a.u)
&
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