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We investigate the possibility of implementing a given projection measurement using linear optics and
arbitrarily fast feedforward based on the continuous detection of photons. In particular, we systematically
derive the so-called Dolinar scheme that achieves the minimum-error discrimination of binary coherent states.
Moreover, we show that the Dolinar-type approach can also be applied to projection measurements in the
regime of photonic-qubit signals. Our results demonstrate that for implementing a projection measurement with
linear optics, in principle, unit success probability may be approached even without the use of expensive
entangled auxiliary states, as they are needed in all knownsnear-ddeterministic linear-optics proposals.
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I. INTRODUCTION

The implementation of positive operator-valued measures
sPOVMsd for photonic quantum state signals is important for
a variety of quantum-information protocols, in particular, for
quantum-communication schemes such as quantum telepor-
tation f1g, quantum-key distributionf2g, and collective de-
coding in quantum-channel codingf3–5g. Unlike conven-
tional optical detection technologies, POVMs for optical
quantum-information protocols generally include a projec-
tion onto superposition states or entangled states. In order to
implement such measurements, normally a nonlinear interac-
tion of the signal statessdescribed by a Hamiltonian at least
cubic in the optical mode operatorsf6gd is needed. At
present, however, these nonlinear processes are hard to real-
ize on the level of single photons.

One possibility for inducing a nonlinear element is to ex-
ploit the effective nonlinearity associated with a measure-
ment. In particular, for photonic-qubit states, universal gating
operations and hence any POVM for these states can be re-
alized asymptotically by using linear optics, photon count-
ing, highly entangled auxiliary states ofn photons, and con-
ditional dynamicssfeedforwardd. Here, conditional dynamics
means the successive application of linear transformations on
the remaining modes conditioned upon the detection of a
subset of modesf7g. In the special case of a projection mea-
surement, corresponding to the discrimination of an orthogo-
nal set of states, perfect distinguishability is achieved in the
asymptotic limit of largen. However, with current technol-
ogy, it is hard to generate the entangled auxiliary states even
for modestn. More recent investigations, therefore, have fo-
cused on the question whether one can implement a given
measurement, or more generally a set of universal quantum
gates, via cheaper and/or finite resources. For example, by
applying the cluster-state model of quantum computationf8g

to linear opticsf9g, the cost of the extra entangled resources
may be significantly reducedf9,10g.

In this paper, we address the following question: is it pos-
sible to implement a given projection measurement in the
asymptotic limit of infinitely many, arbitrarily fast
conditional-dynamics steps without using any entangled aux-
iliary states at all? Thereby, the intermediate detections upon
which the conditional dynamics relies are not supposed to be
finite either, but they will be arbitrarily weak. In other words,
instead of using arbitrarily expensive auxiliary states of arbi-
trarily many photons and a finite number of finite measure-
ments plus feedforwardf7g, we employ infinitely many steps
of feedforward alone, based upon arbitrarily weak measure-
ments. In fact, a nice example for the latter approach was
already given by Dolinarf11g in the field of quantum-
communication and -detection theory, namely, for the
minimum-error discrimination of binary coherent signals.

As an extension of the conventional signal detection
theory, quantum-detection theory has been studied to give an
optimal signal decision strategy for noncommutative quan-
tum signalsf12g. It is motivated by fundamental interest, but
it also aims at investigating ultimate performance of optical
communication systems where information is usually carried
by coherent-state signals. Now, in this context, the simplest
scenario would be a communication scheme that is based on
the discrimination of binary phase-shift keyed coherent sig-
nalshual , u−alj sin the following, simply called binary coher-
ent signalsd. The optimal POVM that discriminates these
nonorthogonal signal states with the minimum average error
is described by a projection onto the orthonormal basis con-
sisting of superposition states ofual andu−al. This scheme is
sometimes called the Helstrom measurementf12g. Kennedy
f13g first showed a simple physical model that achieves the
near-optimal measurement: the binary signal is displaced to
hu2al , u0lj and then measured by a photodetector that dis-
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criminates whether the signal contains photons or not. Doli-
nar f11g ssee alsof12gd extended the Kennedy scheme, dem-
onstrating that the perfect implementation of the Helstrom
measurement is possible by using linear optics, photon
counting, andinfinitesimally fastfeedforward. Other related
proposals on the implementation of thesnear-doptimal mea-
surement of binary coherent states were given in Refs.
f14–16g.

A brief description of Dolinar’s original proposal is the
following f11g. As shown in Fig. 1, the coherent signal field
sistd si =0,1d within the time intervalT is displaced by one of
the two local oscillatorssLOsd b0std andb1std and then inci-
dent into a photodetector. The photodetector is assumed to
have infinitesimal time resolution and the functionsb0std and
b1std are appropriately chosen to minimize the error prob-
ability. The choice ofb0std or b1std at time t8s0ø t8,Td
depends on whether the totally detected number of photons
during f0,t8d is even or odd. Therefore, once a signal photon
triggers a detector click, the current LO immediately has to
be switched to the other setting. After detecting the whole
signal, one can infer whether the signal wass0std or s1std by
looking at the parity of the number of detected photons. This
scheme achieves the minimum-error probability after making
an optimization of the likelihood ratio of the binary signal
with optimal control theoryf11,17g. In the original paper
f11g, the analysis was semiclassical and later a fully
quantum-mechanical description was givenf18g. More re-
cently, the system performance in a realistic situation includ-
ing delay of feedforward, finite bandwidth, and imperfect
detection has been investigatedf17,19g.

Compared to previous work on the Dolinar scheme, our
contribution here contains basically four additional aspects.
First, we reconsider the derivation of a Dolinar-type mea-
surement scheme. However, instead of focusing on the origi-
nal signalshual , u−alj, we simply consider the projection
measurement onto the basishuv0l , uv1lj that corresponds to
the minimum-error discrimination of the signal states. We
can then ask whether one can discriminate the orthogonal
stateshuv0l , uv1lj via linear optics and infinitely weak detec-
tions. In such a scheme, during the entire measurement, the
conditional states in every detection and feedforward step
must remain orthogonal. Using this constraint, the derivation
of the Dolinar protocol becomes simpler and more transpar-
ent. Further, no complicated optimization procedures are
needed. In order to discuss the Dolinar receiver in the con-
text of linear-optics quantum-information processing, we

translate Dolinar’s original scheme from the time domain to
the spatial domain. In other words, infinitesimally fast feed-
forward is replaced by an infinite use of spatial resources.

Second, we prove that there is no finite detection scheme
that attains the Helstrom bound for the minimum-error dis-
crimination of binary coherent states. Such a no-go statement
can be made by using a set of criteria for theexactdiscrimi-
nation of orthogonal states in a projection measurementf20g.
These criteria express in a simple way the requirement that
the orthogonal states must remain orthogonal after a linear-
optics transformation followed by the detection of a first
mode. For instance, in a Bell measurement for polarization-
encoded photonic qubits, this requirement can never be met
and hence the Bell measurement cannot be implemented
with linear optics including photon counting, finite steps of
conditional dynamics, and arbitrary auxiliary photon states
f20–22g. Asymptotic schemesf7g are not included in this
approach. For the example of binary coherent states investi-
gated here, finite feedforward means that the linear-optics
transformation of the signal and auxiliary modes before the
first detection step involves a nonzero mixing between the
signal mode and the mode to be detected. Of course, in the
case of zero mixing, the orthogonality can be trivially pre-
served. Here we will show how to accomplish the Helstrom
measurement based on feedforward using infinitely weak de-
tections.

A third aspect of our work is to demonstrate that the Do-
linar approach can be applied not only to the Helstrom mea-
surement of binary coherent states, but also to other measure-
ments. In particular, we apply the Dolinar approach to a
projection measurement in the regime of photonic-qubit sig-
nals. For a particular example, for which any finite linear-
optics scheme must fail, we show that the Dolinar approach
succeeds.

Last but not least, our analysis of the Dolinar scheme in
view of the recent developments in linear-optics quantum-
information processing demonstrates that by using infinitely
many steps of feedforward instead of arbitrarily expensive
entangled photon states, an asymptotically perfect efficiency
of a projection measurement is possible. Related to this, we
note that there is another proposal for an asymptotic linear-
optics implementation of a quantum measurement in which
suboptimal unambiguous state discriminationsUSDd of N
symmetric coherent states forNù3 is achieved without ex-
pensive auxiliary resourcesf23g. For N=2, the optimal USD
can be easily done nonasymptotically by using a 50-50
beamsplitter and photon countingf24g.

II. CONTINUOUS MEASUREMENT VIA LINEAR OPTICS
AND CONDITIONAL DISPLACEMENTS

In this section, we describe a linear-optics circuit in which
a sequence of arbitrarily weak measurements are asymptoti-
cally combined to a continuous measurement. In particular,
we discuss the linear-optics circuit that corresponds to the
Dolinar receiver in the spatial domain. A fully quantum-
mechanical description of the Dolinar receiver was described
in Ref. f18g by applying a continuous photon-counting mea-
surement based on the quantum Markov process model
f25,26g.

FIG. 1. The Dolinar receiver. The signalsistd and the local os-
cillator are combined at a highly transmissive beam splitter such
that the signal is displaced tosistd+bnstd. The appropriate choice of
bnstd at t8 is determined by the number of detected photons during
f0,t8d. sFor details, see the text.d
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In the following, we describe the continuous measurement
based on photon counting with a local oscillator by a se-
quence of linear optics and photodetection. The equivalence
between a continuous photon-counting process and a se-
quence of beam splitters and photodetectors was first pointed
out in Ref. f27g. A schematic of our measurement model is
shown in Fig. 2sbd. The scheme consists of a sequence of
weak photodetection steps. In each measurement step, a
small fraction of the signal state is reflected by a beam split-
ter and measured by a photodetector after a displacement
operationfFig. 2sadg. The photodetector counts the photon
number of the signal.

After one measurement step, the output state conditioned
upon the number of detected photonsk is described by

r̂out
skd =

TrBfsÎA
^ P̂k

Bdr̂out8 g

TrA,BfsÎA
^ P̂k

Bdr̂out8 g
, s1d

where

r̂out8 = D̂Bsb sinudB̂ABsudsr̂in
A

^ u0Blk0Bud

3 B̂†ABsudD̂†Bsb sinud, s2d

and r̂in is the input state. TrA and TrA,B denote the trace
operations over the modeA and the modesA and B, re-

spectively. B̂ABsfd=expffsâ†b̂− âb̂†dg and D̂Bsad=expsab̂†

−a* b̂d are the operators for the beam splitter and the dis-

placement of modeB, wherehâ,â†j andhb̂,b̂†j are the anni-
hilation and creation operators for modesA and B, respec-
tively. Although photodetection is described by a set of

projection operators in the Fock basishP̂k= uklkkuj, we as-
sume that the parameteru is sufficiently small such that the
probabilities of detecting more than two photons are negli-
gible. The complex numberb in the displacement operator
will be appropriately determined later. As is well known, this
displacement operation can be realized using a beam splitter

B̂sud and a local oscillator of amplitudeb. For a pure state
input r̂in= ucinlkcinu , r̂out8 = ucout8 lkcout8 u is given by

ucout8 l = D̂Bsb sinudB̂ABsuducin
Alu0Bl

= e−ubu2 sin2 u/2eb̂†b sin ue−b̂b* sin ue−âb̂† tan u

3 eâ†â ln cosue−b̂†b̂ ln cosueâ†b̂ tan uucin
Alu0Bl, s3d

where we applied the Baker-Campbell-HausdorffsBCHd for-

mula and forB̂ABsud an antinormally ordered decomposition

formula such thateusâ†b̂−âb̂†d=e−âb̂† tan ueln cosusâ†â−b̂†b̂deâ†b̂ tan u.
Throughout, we use the notationucin

Alu0Bl;ucin
Al ^ u0Bl, etc.

Equations3d can be further simplified to

ucout8 l = e−ubu2 sin2 u/2esbsin u−â tan udb̂†

3 eâb* ssin2 u/cosudeâ†â ln cosuucin
Alu0Bl. s4d

Here we applied again the BCH formula such that

e−b̂b* sin ue−âb̂† tan u=e−âb̂† tan ueâb* ssin2 u/cosude−b̂b* sin u, and we

usedb̂†b̂u0Bl= b̂u0Bl=0.
Let us assume that the photodetector detects at most one

photon. We will now consider the two possible outcomes,

i.e., r̂out8 is projected onP̂0 or P̂1. Since these projectors are
rank-1 operators, the conditional output for each operator can
be described by

r̂out
skd =

M̂skdr̂inM̂skd†

TrAfM̂skdr̂inM̂skd†g
sk = 0,1d, s5d

whereM̂skd is the Kraus operator for thek-photon detection
event. When no photon is detected at the photodetector, the
conditional output is given by

M̂s0ducinl = e−ubu2 sin2 u/2eâb* ssin2 u/cosudeâ†â ln cosuucinl. s6d

Here we considerN successive operations of Eq.s6d with the

displacementD̂sbn sinud representing thenth operation. For
example, forN=2, we have

M̂2
s0dM̂1

s0ducinl = expF−
1

2
sub1u2 + ub2u2dsin2 uG

3expFâb2
* sin2 u

cosu
GexpFâb1

* sin2 u

cosu
e−ln cosuG

3expfâ†â ln cos2 ugucinl. s7d

FIG. 2. Continuous photon counting with dis-
placement operations.sad Photodetection with a
displacement operation. The beam splitter is pa-
rametrized byu. sbd A sequential photodetection
with displacement operations in the limit of small
u ssmall reflectanced and a large number of mea-
surement steps.
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Here we inserted the identitye−â†â ln cosueâ†â ln cosu and then
used efâ†ââe−fâ†â= âe−f. For N successive operations, the
output is then given by

M̂N
s0dM̂N−1

s0d
¯ M̂1

s0ducinl = expF−
1

2o
n=1

N

ubnu2sin2uG
3expFâo

n=1

N

bn
* cosn u

sin2 u

cosN+1 u
G

3expfâ†â ln cosN ugucinl. s8d

Let us define the constant parameterL=Nu2 and take the
limit u2→0 and N→`. The displacement operations may
now be described in a continuous way via

o
n=1

N

ubnu2 sin2 u < o
n=1

N

ubnu2
L

N
→ E

0

L

dlubsldu2,

o
n=1

N

bn
* cosn u

sin2 u

cosu
< o

n=1

N

bn
*scosN udn/Nu2 = o

n=1

N

bn
*e−nL/2N L

N

→ E
0

L

dl b*slde−l/2. s9d

Using these relations, we obtain the output state

M̂N
s0dM̂N−1

s0d
¯ M̂1

s0ducinl = expF−
1

2
E

0

L

dlubsldu2G
3expFâeL/2E

0

L

dl b*slde−l/2G
3expF−

L

2
â†âGucinl. s10d

More generally, when no photon is detected from theL0th
detector to theL1th detector, we obtain the output state

r̂out =
M̂L1

s0dM̂L1−1
s0d

¯ M̂L0

s0dr̂inM̂L0

s0d†
¯ M̂L1−1

s0d† M̂L1

s0d†

TrfM̂L1

s0dM̂L1−1
s0d

¯ M̂L0

s0dr̂inM̂L0

s0d†
¯ M̂L1−1

s0d† M̂L1

s0d†g

=
ŜL1−L0

r̂inŜL1−L0

†

TrfŜL1−L0
r̂inŜL1−L0

† g
, s11d

where

ŜL1−L0
= expFâesL1−L0d/2E

L0

L1

dl b*slde−l/2G
3expF−

L1 − L0

2
â†âG . s12d

However, when a photon is detected at theLth photodetector,
the conditional operation is described by

M̂L
s1ducinl = expF−

1

2
ubLu2 sin2 uGsbL sinu − â tanud

3expFâbL
* sin2 u

cosu
Gexpfâ†â ln cosugucinl.

s13d

Upon taking the limitu2→0 and using the continuous rep-
resentation given in Eq.s9d, all the exponential terms in Eq.
s13d approach unity. The output now becomes

r̂out =
M̂L

s1dr̂inM̂L
s1d†

TrfM̂L
s1dr̂inM̂L

s1d†g
=

ĴLr̂inĴL
†

TrfĴLr̂inĴL
†g

, s14d

whereM̂L
s1d=uĴL and

ĴL = bsLd − â. s15d

Using these expressions, a continuous measurement based
on beam splitting, displacement operations, and photon
counting is described via the operator

ŜLn−Ln−1
ĴLn−1

ŜLn−1−Ln−2
¯ ĴL1

ŜL1−0. s16d

This expression can also be obtained as a solution of the
master equation of the system and this kind of conditional
dynamics is called a quantum-jump process in terms of
quantum-statistics theoryf28g. Although analytical solutions
can be obtained in our case, it should be noted that when the
system has a complicated quantum jump, e.g., the measure-
ment has continuous outcome, one effective approach is the
stochastic unraveling of the master equation. One of the suc-
cessful applications of this approach is shown in Ref.f29g.

In the next section, we will show how a given projective
measurement can be implemented via the apparatus dis-
cussed here. Finally, we note that whenL is replaced by a
time parameterT, our formulation is equivalent to the con-
ventional time domain continuous measurement model in-
cluding displacement operationsf18g.

III. PROJECTIVE MEASUREMENTS VIA CONTINUOUS
MEASUREMENT

Projective measurements represent an important special
case among the generalized measurements. In this section,
we show that the Dolinar receiver can be systematically de-
rived from an orthogonality condition, similar to that used
for analyzing the exact distinguishability of orthogonal states
in a projection measurementf20g. First, we will apply this
approach to the original Dolinar receiver, that is, the dis-
crimination of binary coherent states. In a further example,
we examine a binary projection measurement onto a
photonic-qubit basis, which otherwise cannot be imple-
mented with linear optics including photon counting, finite
steps of conditional dynamics, and arbitrary auxiliary photon
states.

Before discussing particular examples, we briefly summa-
rize our approach. The problem of implementing a complete
projection measurementhPi = upilkpiuj can be regarded as the
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problem of an exact discrimination of the orthogonal signal
statesupil f20g. In order to achieve an exact discrimination,
these signal states, when conditionally transformed via par-
tial measurements and feedforward, must remain orthogonal
after each step of the intermediate measurements. In our ap-
proach, these measurements are assumed to be arbitrarily
weak, asymptotically corresponding to a continuous mea-
surement. Via the orthogonality constraint, we can infer the
input signal by counting the total number of detected photons
Ntot. In the limit of infinitely many photodetection steps, the
final state must be in a vacuum stateu0l due to the energy
loss at each stepf30g. Combining this fact with the condition
that the signals always remain mutually orthogonal, we know
that every possible result of theNtot-photon detection can be
triggered only by one of the two signal states with nonzero
probability. Eventually, we can infer the input signal state
perfectly by countingNtot.

A. Minimum-error discrimination of binary coherent states

The minimum-error detection of the binary coherent
stateshual , u−alj is achieved via the projection operators cor-
responding to the orthogonal states

uv0l =Î1 − Pe

1 − k2 ual −Î Pe

1 − k2u− al, s17d

uv1l =Î Pe

1 − k2ual −Î1 − Pe

1 − k2 u− al, s18d

wherek= zka u−alz and

Pe =
1

2
s1 −Î1 − k2d s19d

is the minimum-error probability. For the sake of simplicity,
we assume that thea priori probabilities for the signals are
equal.

Let us first prove that the projection ontohuv0l , uv1lj can-
not be implemented using linear optics, finite steps of condi-
tional dynamics, and arbitrary auxiliary states. As for the
detection mechanisms, we may restrict ourselves to photon
counting since homodyne detection with linear optics never
leads to non-Gaussian operation, as required for our projec-
tion measurement. Now, using the criteria for exact discrimi-
nation of orthogonal statesf20g, one finds that already the
detection of a first output mode, after mixing the signal mode
with the auxiliary modes, inevitably destroys the orthogonal-
ity. Defining an arbitrary auxiliary stateuAl with arbitrarily
many modes, the necessary conditions for preserving the or-
thogonality after such a first detectionsand hence for poten-
tially enabling one to exactly discriminate the states via fur-
ther detections and conditional transformationsd are f20g

kAukv0usĉ†dnĉnuv1luAl = 0, ∀ n = 0,1,2, . . . . s20d

Here, the 0th ordersn=0d just corresponds to the orthogo-
nality of the signal states. The annihilation operatorĉ repre-
sents the first mode being detected after the linear-optics
transformation. This output mode may be decomposed into

two parts, of which one refers to the signal mode and the
other one to the auxiliary modes,

ĉ = n1â1 + bauxĉaux+ g. s21d

Here,n1;Uj1 is the complex entry of the unitary matrixU
for describing the linear-optics mixing of the modej to be
detected with the signal mode 1. The mixing of modej with
the auxiliary modes due to linear optics is described by the
annihilation operatorĉaux, wherebaux is a real parameter. The
complex parameterg enables us to include the possibility of
phase-space displacements before the detectionf31g. Note
that without including displacements and for signal states
with a fixed number of photons, arbitrary auxiliary statesuAl
cannot help to provide nontrivial solutions to the conditions
in Eq. s20d, if there are only trivial solutions without an extra
stateuAl f20g. For the projection ontohuv0l , uv1lj, however,
the signal states have an unfixed photon number. Thus, using
an auxiliary stateuAl having unfixed number toof20g, or
employing a nonzero phase-space displacementgÞ0, may
indeed help.

After some algebra, for the first-order conditionn=1 from
Eq. s20d using Eq.s21d, we obtain

un1u2uau2 = iÎ1 − k2 Im d, s22d

where aÞ0 is the complex amplitude given by the signal
states, the parameterk= zka u−alz is also defined through the
signal states, and Imd is the imaginary part of

d ; n1
*a*sg + kAubauxĉauxuAld. s23d

Sincek2,1 for aÞ0, one can easily see that the only solu-
tion to the condition in Eq.s22d is trivial, n1=0. In other
words, only if there is no mixing at all between the modej to
be detected and the signal mode 1 is the orthogonalitystrivi-
allyd preserved. For any finite mixing between the modesj
and 1, exact discrimination of the signal states is no longer
possible. In our approach based upon continuous measure-
ment, every single conditional-dynamics step is supposed to
be arbitrarily weak, corresponding to the limitn1→0. Thus,
in this limit, the orthogonality condition may be satisfied.
However, typically, such a scheme does not provide any in-
formation about the input signal states. Yet in the following,
we demonstrate that by combining infinitely many arbitrarily
weak detections of the signal mode, corresponding to a con-
tinuous measurement of the signal mode, eventually perfect
state discrimination can be accomplished.

Suppose that the stateshuv0l , uv1lj are sent into the con-
tinuous measurement apparatus discussed in the preceding
section. When no photon is counted duringf0,L1d, the sig-
nals evolve as

ŜL1−0uv0l =Î1 − Pe

1 − k2expfBguae−L1/2l

−Î Pe

1 − k2expf− Bgu− ae−L1/2l, s24d
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ŜL1−0uv1l =Î Pe

1 − k2expfBguae−L1/2l

−Î1 − Pe

1 − k2expf− Bgu− ae−L1/2l, s25d

where

B = aE
0

L1

dl b*slde−l/2. s26d

We note that these states are unnormalized. By calculating
the inner product between Eqs.s24d ands25d, we can find the
condition that these signals are orthogonal,

ÎPes1 − PedhexpfB + B*g + expf− sB + B*dgj − hPe expfB

− B*g

+ s1 − Pedexpf− sB − B*dgjexpf− 2uau2e−L1g = 0. s27d

From the orthogonality condition Eq.s27d with Eq. s26d, we
obtain the function for the displacement operation

bsld = ±
ae−l/2

Î1 − expf− 4uau2s1 − e−ldg
. s28d

By defining the two solutions in Eq.s28d as b+sld ,b−sld,
respectively, we can derive the relations

expFaE
Lj

Lj+1

dl b+slde−l/2G =
e−uau2e−Lj+1

e−uau2e−Lj

Î1 − Pe
Lj+1

Î1 − Pe
Lj

, s29d

expFaE
Lj

Lj+1

dl b−slde−l/2G =
e−uau2e−Lj+1

e−uau2e−Lj

ÎPe
Lj+1

ÎPe
Lj

, s30d

where

Pe
L =

1

2
h1 −Î1 − expf− 4uau2s1 − e−Ldgj. s31d

In the following, we chooseb+sld as a displacement func-
tion for f0,L1d fb−sld leads to the same conclusionsg and
assume that a photon is detected at theL1th detector. Equa-
tions s24d, s25d, s29d, ands30d, yield

ŜL1−0uv0l ~ Î1 − Pe

Î1 − Pe
L1

Î1 − Pe
0

uae−L1/2l − ÎPe

ÎPe
L1

ÎPe
0

u− ae−L1/2l,

s32d

ŜL1−0uv1l ~ ÎPe

Î1 − Pe
L1

Î1 − Pe
0

uae−L1/2l − Î1 − Pe

ÎPe
L1

ÎPe
0

u− ae−L1/2l,

s33d

where unimportant global coefficients are omitted. As for the
states after detecting a photon, by using the relations

b+sL1d − ae−L1/2 =
2Pe

L1ae−L1/2

Î1 − expf− 4uau2s1 − e−L1dg
, s34d

b+sL1d + ae−L1/2 =
2s1 − Pe

L1dae−L1/2

Î1 − expf− 4uau2s1 − e−L1dg
, s35d

we find

ĴL1
ŜL1−0uv0l ~ Î1 − Pe

Î1 − Pe
L1

Î1 − Pe
0

Pe
L1uae−L1/2l

− ÎPe

ÎPe
L1

ÎPe
0

s1 − Pe
L1du− ae−L1/2l

~ Î1 − Pe

ÎPe
L1

Î1 − Pe
0
uae−L1/2l

− ÎPe

Î1 − Pe
L1

ÎPe
0

u− ae−L1/2l, s36d

and similarly,

ĴL1
ŜL1−0uv1l ~ ÎPe

ÎPe
L1

Î1 − Pe
0
uae−L1/2l

− Î1 − Pe

Î1 − Pe
L1

ÎPe
0

u− ae−L1/2l. s37d

Comparing them with Eqs.s32d and s33d, we can easily see
that these states are still orthogonal to each other. Also, we
can derive the relations

ĴLj+1
ŜLj+1−Lj

uae−Lj/2l =
1

2
e−4uau2s1−e−Lj+1d

ÎPe
Lj+1

Î1 − Pe
Lj

uae−Lj+1/2l,

s38d

ĴLj+1
ŜLj+1−Lj

u− ae−Lj/2l =
1

2
e−4uau2s1−e−Lj+1d

3
Î1 − Pe

Lj+1

ÎPe
Lj

u− ae−Lj+1/2l s39d

for the measurement process with the displacement function
b+sld, and

ĴLj+1
ŜLj+1−Lj

uae−Lj/2l =
1

2
e−4uau2s1−e−Lj+1d

Î1 − Pe
Lj+1

ÎPe
Lj

uae−Lj+1/2l,

s40d

ĴLj+1
ŜLj+1−Lj

u− ae−Ljl =
1

2
e−4uau2s1−e−Lj+1d

ÎPe
Lj+1

Î1 − Pe
Lj

u− ae−Lj+1/2l

s41d

for the measurement process with the displacement function
b−sld, wherefPe

Lj+1s1−Pe
Lj+1dg1/2=e−4uau2s1−e−Lj+1d /2.

From Eqs.s29d, s30d, s36d, ands37d, we can determine the
local oscillator function bsld for the next zero-photon-

counting processŜL2−L1
. In our case, the orthogonality con-

dition requires usingb−sld for ŜL2−L1
, as the output states
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ŜL2−L1
ĴL1

ŜL1−0uvil si =0,1d have similar structure as in Eqs.
s36d and s37d, respectively, except thatL1 is replaced byL2.
Eventually, one can preserve the orthogonality by switching
the sign of the displacement functionb±sld each time a pho-
ton is detected. After applying many of these operations, the

signals evolve as ŜL−LNtot
ĴLNtot

ŜLNtot
−LNtot−1

¯ ĴL1
ŜL1−0uvil

si =0,1d, whereNtot is the total number of detected photons
sNtot=0,1, . . . ,̀ d f32g and we will take an infinitely largeL.
The final states are now derived with the help of Eqs.
s38d–s41d, and classified via the parity ofNtot. WhenNtot is
zero or even, the output state for the inputuv0l is given by

uv0
Ll = ŜL−LNtot

ĴLNtot
ŜLNtot

−LNtot−1
¯ ĴL1

ŜL1−0uv0l ~ Î1 − Pe

ÎPe
L1

Î1 − Pe
0

Î1 − Pe
L2

ÎPe
L1

¯

Î1 − Pe
L

Î1 − Pe
LNtot

uae−L/2l

− ÎPe

Î1 − Pe
L1

ÎPe
0

ÎPe
L2

Î1 − Pe
L1

¯

ÎPe
L

ÎPe
LNtot

u− ae−L/2l ~ Î1 − Pe
Î1 − Pe

Luae−L/2l − ÎPe
ÎPe

Lu− ae−L/2l = e−uau2e−L/2o
m=0

`
1

Îm!

3 HsÎ1 − Pe
Î1 − Pe

L − ÎPe
ÎPe

Ldsae−L/2dmuml, m is zero or even,

sÎ1 − Pe
Î1 − Pe

L + ÎPe
ÎPe

Ldsae−L/2dmuml, m is odd,
J

= SÎ1 − e−4uau2 +
uau2e−4uau2

Î1 − e−4uau2
e−L

¯ Du0l

+ s1 + ¯ dae−L/2u1l +
1
Î2

sÎ1 − e−4uau2 + ¯ da2e−Lu2l + ¯ , s42d

whereuml is them-photon number state and note thatPe
0=1/2 and limL→` Pe

L=Pe. In the last line, the terms only up to the
order ofe−L are given. Similarly, for the inputuv1l, we obtain

uv1
Ll = ŜL−LNtot

ĴLNtot
ŜLNtot

−LNtot−1
¯ ĴL1

ŜL1−0uv1l ~ ÎPe
Î1 − Pe

Luae−L/2l − Î1 − Pe
ÎPe

Lu− ae−L/2l

= e−uau2e−L/2o
m=0

`
1

Îm!
3 HsÎPe

Î1 − Pe
L − Î1 − Pe

ÎPe
Ldsae−L/2dmuml, m is zero or even,

sÎPe
Î1 − Pe

L + Î1 − Pe
ÎPe

Ldsae−L/2dmuml, m is odd,
J

= S−
uau2e−2uau2

Î1 − e−4uau2
e−L + ¯ Du0l + se−2uau2 + ¯ dae−L/2u1l + ¯ , s43d

where the last line also shows the terms up to the order of
e−L. From Eqs.s42d and s43d, we can check that these two
possible outputs are still orthogonal to each other and, even
in the approximated form, the orthogonality is satisfied in
any order ofL. For example, the inner product betweenuv0

Ll
and uv1

Ll up to the order ofe−L is computed as

kv0
Luv1

Ll < − Î1 − e−4uau2 uau2e−2uau2

Î1 − e−4uau2
e−Lk0u0l

+ uau2e−2uau2e−Lk1u1l = 0. s44d

Then, upon taking the limit ofL→` and normalizing Eq.
s42d, we know thatuv0

Ll approaches the vacuum state. We
also find from Eq.s43d that the stateuv1

Ll converges tou1l.
However, sinceall the terms in Eq.s43d decrease exponen-
tially for large L, we know thatuv1

Ll does not occur at all in
the limit of L→`. Hence we have

uv0
Ll → u0l, s45d

uv1
Ll → 0, s46d

and thus, if the number of the totally detected photonsNtot is
zero or even, we can unambiguously identify the input state
uv0l.

On the other hand, whenNtot is odd, the final states are
given by

uv0
Ll → 0, s47d

uv1
Ll → u0l, s48d

and hence, in this case, we can unambiguously infer the in-
put stateuv1l. Let us finally emphasize that our model may
be also translated into the time domain by replacing the spa-
tial parameterl by the timet. Therefore, our approach pro-
vides an alternative derivation of the original Dolinar re-
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ceiver. This approach is relatively simple, because it only
relies upon the preservation of the orthogonality of the sig-
nals during the entire measurement process.

B. Photonic-qubit signals

In this subsection, we show that our measurement model
not only is applicable to coherent-state signals, but may also
be applied to other types of signals, for example, photon-
number qubits. As an example, let us consider the projection
measurement onto the basisuv0,1l=su0l± u1ld /Î2, for which
one can derive a no-go statement in terms of the criteria of
Ref. f20g.

As for the exact discrimination ofuv0,1l, let us first briefly
discuss the no-go statement for any linear-optics scheme
based on photon counting, finite steps of conditional dynam-
ics, and arbitrary auxiliary states. Since the signal states have
an unfixed number of photons, using an auxiliary stateuAl
with unfixed photon number or employing phase-space dis-
placements may help to exactly discriminate the signal states
f20g. For the signal statesuv0,1l, the necessary conditions in
any conditional-dynamics scheme becomef20g

kAukv0usĉ†dnĉnuv1luAl = 0, ∀ n = 0,1,2, . . . . s49d

Here, we use the same definitions as in the preceding section.
By inserting the decomposition of Eq.s21d into the first-
ordern=1 condition, we obtain now

un1u2 = 2i Im d, s50d

where now Imd is the imaginary part of

d ; n1sg* + kAubauxĉaux
† uAld. s51d

Again, only the trivial solutionn1=0 exists. Thus, there is no
linear-optics scheme based on a finite first detection step that
achieves the exact discrimination ofuv0,1l. Let us now see
how a continuous-measurement-based scheme leads to the
perfect discrimination of the signal states.

The design for the measurement apparatus is the same as
that of the preceding subsection. So we send the states
huv0l , uv1lj into the measurement apparatus. Let us assume
that the first photon is detected at theL1th detector and no
photon is counted duringf0,L1d. The outcoming signals are
then given by

ŜL1−0uv0l = S1 +E
0

L1

dl b*slde−l/2Du0l + e−L1/2u1l, s52d

ŜL1−0uv1l = S1 −E
0

L1

dl b*slde−l/2Du0l − e−L1/2u1l. s53d

The orthogonality condition for Eqs.s52d ands53d implies an
appropriate local oscillator function forhuv0l , uv1lj, namely,

bL1−0sld = ±
e−l/2

2Î1 − e−l
. s54d

When choosing the plus solution forbL1−0sld, Eqs.s52d and
s53d can be rewritten as

ŜL1−0uv0l = s1 +Î1 − e−L1du0l + e−L1/2u1l, s55d

ŜL1−0uv1l = s1 −Î1 − e−L1du0l − e−L1/2u1l. s56d

After detecting a photon atL1, the states become

ĴL1
ŜL1−0uv0l ~ s1 −Î1 − e−L1du0l + e−L1/2u1l, s57d

ĴL1
ŜL1−0uv1l ~ s1 +Î1 − e−L1du0l − e−L1/2u1l, s58d

and these are still orthogonal to each other.
Let us consider the next intervalsL1,L2d, where we as-

sume that the second photon is detected atL2. Defining the
local oscillator functionbL2−L1

sld, we obtain

ŜL2−L1
ĴL1

ŜL1−0uv0l ~ S1 −Î1 − e−L1

+ e−L1/2E
L1

L2

dl bL2−L1

* slde−l/2Du0l

+ e−L2/2u1l, s59d

ŜL2−L1
ĴL1

ŜL1−0uv1l ~ S1 +Î1 − e−L1

− e−L1/2E
L1

L2

dl bL2−L1

* slde−l/2Du0l

− e−L2/2u1l. s60d

Now the orthogonality condition implies

bL2−L1
sld = −

e−sl−L1d/2

2Î1 − e−l
. s61d

More generally, the local oscillator function for the interval
sLj ,Lj+1d is given by

bLj+1−Lj
sld = s− 1d j e−sl−Ljd/2

2Î1 − e−l
sL0 = 0d. s62d

Using Eq.s62d, the signal states after the whole detection

process are described byŜL−LN
ĴLNtot

ŜLNtot
−LNtot−1

¯ ĴL1
ŜL1−0uvil

si =0,1d, whereNtot is the total number of detected photons
andsL→` ,Ntot=0,1, . . . ,̀ d. WhenNtot is zero or even, the
final states are

uv0
Ll ~ s1 +Î1 − e−Ldu0l + e−L/2u1l

= S2 −
1

2
e−L − ¯ Du0l + e−L/2u1l → u0l, s63d

uv1
Ll ~ s1 −Î1 − e−Ldu0l − e−L/2u1l

= S1

2
e−L + ¯ Du0l − e−L/2u1l → 0. s64d

These are still orthogonal to each other in any order ofL. On
the other hand, whenNtot is odd, we have
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uv0
Ll → 0, s65d

uv1
Ll → u0l. s66d

Eventually, one finds that it is possible to distinguishuv0l
and uv1l perfectly by checking the parity of the totally de-
tected photon number. Let us finally mention that the projec-
tion onto arbitrary orthogonal superpositions of the vacuum
stateu0l and the single-photon stateu1l,

uv0l = f0u0l + f1e
iwu1l, s67d

uv1l = f1u0l − f0e
iwu1l, s68d

can be achieved in the same manner as described above.

IV. CONCLUSIONS

In summary, we systematically derived a scheme which is
equivalent to the original Dolinar receiver for implementing
the minimum-error discrimination of binary coherent-state
signals. This scheme corresponds to a spatial version of the
Dolinar receiver, based upon linear optics, photodetectors,
continuous measurement, and feedforward. In our approach,
as opposed to previous works, we focus on thesasymptoti-
callyd perfect implementation of a given projection measure-
ment. In order to derive the Dolinar-type scheme, we con-
sider the projection measurement that corresponds to the
minimum-error discrimination of binary coherent-state sig-
nals. The derivation then relies on the constraint that, for
discriminating the orthogonal states of the measurement ba-
sis, the conditional states in each detection and feedforward
step must remain orthogonal. This derivation method does
not require complicated optimization procedures and is ap-
plicable to various kinds of projection measurements. We

showed that not only the particular measurement associated
with the coherent-state signals treated in Dolinar’s original
proposal, but also other types of projection measurements,
can be implemented via continuous measurement and feed-
forward. Significantly, in our approach, optimal measure-
ment performance, i.e., the maximum measurement effi-
ciency allowed by quantum mechanics, is achieved without
the need of expensive entangled auxiliary resources. How-
ever, finite feedforward plus arbitrarily many auxiliary pho-
tons must be replaced by arbitrarily fast feedforward based
on arbitrarily weak measurements.

Although we considered only projection measurements of
a single-mode field in this paper, our methodology might be
applicable to more general scenarios as well, including gen-
eralized measurements or joint projective measurements for
more modes. While the possibility of a linear-optics imple-
mentation of such scenarios has been studied already
f20,33g, it remains an open question whether the approach
based on continuous measurement and feedforward allows
for an optimal efficiency also in these more general schemes.

Finally, an important question is whether our scheme can
be used in a real, necessarily finite, physical implementation.
In order to address this question, one would have to consider
a discrete analog of our scheme, including finite feedforward
and weak, but finite, measurements. One may then determine
bounds in terms of suitable figures of merit, e.g., the mini-
mum average error or the maximum success probability, for
given feedforward resources.
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