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Implementation of projective measurements with linear optics and continuous photon counting
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We investigate the possibility of implementing a given projection measurement using linear optics and
arbitrarily fast feedforward based on the continuous detection of photons. In particular, we systematically
derive the so-called Dolinar scheme that achieves the minimume-error discrimination of binary coherent states.
Moreover, we show that the Dolinar-type approach can also be applied to projection measurements in the
regime of photonic-qubit signals. Our results demonstrate that for implementing a projection measurement with
linear optics, in principle, unit success probability may be approached even without the use of expensive
entangled auxiliary states, as they are needed in all kniowarjdeterministic linear-optics proposals.
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I. INTRODUCTION to linear opticqd 9], the cost of the extra entangled resources

The implementation of positive operator-valued measure§'2y e significantly reduce®,10. o
(POVMS) for photonic quantum state signals is important for 1 this paper, we address the following question: is it pos-
a variety of quantum-information protocols, in particular, f0rSlble to 'T"p'e.m?”t a given projection measurement in the
quantum-communication schemes such as quantum telepd#SymMptotic  limit_of infinitely ~many, —arbitrarily fast
tation [1], quantum-key distributioi2], and collective de- conditional-dynamics steps without using any entangled aux-
Coing h .ol o, Dok con, L sts o ey e rmedts doians
gﬁgﬁltu(r)lf?r?g rrggiﬁjcr?OpnroiﬁgzlnsmsgrlfeielIT/ Oi;/clz\l/lus dgog ggct)lj(e?:l finite either, but they will be arbitrarily weak. In other words,

! " “instead of using arbitrarily expensive auxiliary states of arbi-
tion onto superposition states or entangled states. In order Parily many photons and a finite number of finite measure-

implement s_uch measurements, normally a_non!inear interaGnants plus feedforwark¥], we employ infinitely many steps
tion of the signal state@escribed by a Hamiltonian at least of feedforward alone, based upon arbitrarily weak measure-
cubic in the optical mode operatof$]) is needed. At ments. In fact, a nice example for the latter approach was
present, however, these nonlinear processes are hard to re&lready given by Dolinaf11] in the field of quantum-
ize on the level of single photons. communication and -detection theory, namely, for the
One possibility for inducing a nonlinear element is to ex-minimum-error discrimination of binary coherent signals.
ploit the effective nonlinearity associated with a measure- As an extension of the conventional signal detection
ment. In particular, for photonic-qubit states, universal gatingheory, quantum-detection theory has been studied to give an
operations and hence any POVM for these states can be reptimal signal decision strategy for noncommutative quan-
alized asymptotically by using linear optics, photon count-tum signalg12]. It is motivated by fundamental interest, but
ing, highly entangled auxiliary states nfphotons, and con- it also aims at investigating ultimate performance of optical
ditional dynamicgfeedforward. Here, conditional dynamics communication systems where information is usually carried
means the successive application of linear transformations dpy coherent-state signals. Now, in this context, the simplest
the remaining modes conditioned upon the detection of &cenario would be a communication scheme that is based on
subset of modeg7]. In the special case of a projection mea- the discrimination of binary phase-shift keyed coherent sig-
surement, corresponding to the discrimination of an orthogonals{|a),|-a)} (in the following, simply called binary coher-
nal set of states, perfect distinguishability is achieved in theent signals The optimal POVM that discriminates these
asymptotic limit of largen. However, with current technol- nonorthogonal signal states with the minimum average error
ogy, it is hard to generate the entangled auxiliary states eves described by a projection onto the orthonormal basis con-
for modestn. More recent investigations, therefore, have fo-sisting of superposition states |afy and|-«). This scheme is
cused on the question whether one can implement a givesometimes called the Helstrom measuremégi. Kennedy
measurement, or more generally a set of universal quantufi3] first showed a simple physical model that achieves the
gates, via cheaper and/or finite resources. For example, year-optimal measurement: the binary signal is displaced to
applying the cluster-state model of quantum computdi@n {|2«),|0)} and then measured by a photodetector that dis-
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s5i(t) si(t) + Bn(t) Ho translate Dolinar’s original scheme from the time domain to
/ D A1 the spatial domain. In other words, infinitesimally fast feed-
<T> forward is replaced by an infinite use of spatial resources.
LO fut) Hi Second, we prove that there is no finite detection scheme
B1(4) that attains the Helstrom bound for the minimum-error dis-
| crimination of binary coherent states. Such a no-go statement

can be made by using a set of criteria for thectdiscrimi-

FIG. 1. The Dolinar receiver. The signg(t) and the local os- nation of .orthogonal sta_tes in.a projection measure VROt
cillator are combined at a highly transmissive beam splitter sucr;rhese criteria express in a SImpI.e way the requwement that
that the signal is displaced &t)+ 3,(t). The appropriate choice of the orthogonal states must remain orthogonal after a linear-

Ba(t) att’ is determined by the number of detected photons during®PticS transformation followed by the detection of a first
[0,t'). (For details, see the text. mode. For instance, in a Bell measurement for polarization-

encoded photonic qubits, this requirement can never be met

criminates whether the signal contains photons or not. Doliand hence the Bell measurement cannot be implemented
nar[11] (see alsd12]) extended the Kennedy scheme, dem-with linear optics including photon counting, finite steps of
onstrating that the perfect implementation of the Helstromeonditional dynamics, and arbitrary auxiliary photon states
measurement is possible by using linear optics, photonpzo_za_ Asymptotic scheme§7] are not included in this
counting, andnfini_tesimally fas_tfeedforward. Ot_her related approach. For the example of binary coherent states investi-
proposals on the implementation of theearjoptimal mea-  gateq here, finite feedforward means that the linear-optics
surement of binary coherent states were given in RefSyanstormation of the signal and auxiliary modes before the
[14_16_' o : . ) first detection step involves a nonzero mixing between the

A brief description of Dolinar’s original proposal is the gjgna| mode and the mode to be detected. Of course, in the
following [11]. As shown in Fig. 1, the coherent signal field .aqe of zero mixing, the orthogonality can be trivially pre-
§(t) (i=0,1 within the time intervall is displaced by one of ~ goryed. Here we will show how to accomplish the Helstrom
the two local oscillatorsLOs) Bo(t) andB,(t) and then inci-  measurement based on feedforward using infinitely weak de-
dent into a photodetector. The photodetector is assumed t@ctions.
have infinitesimal time resolution and the functigit) and A third aspect of our work is to demonstrate that the Do-
B1(t) are appropriately chosen to minimize the error prob-jinar approach can be applied not only to the Helstrom mea-
ability. The choice ofBy(t) or B,(t) at timet'(O<t'<T)  surement of binary coherent states, but also to other measure-
depends on whether the totally detected number of photongients. In particular, we apply the Dolinar approach to a
during[0,t") is even or odd. Therefore, once a signal photonprojection measurement in the regime of photonic-qubit sig-
triggers a detector click, the current LO immediately has tonals. For a particular example, for which any finite linear-
be switched to the other setting. After detecting the wholeoptics scheme must fail, we show that the Dolinar approach
signal, one can infer whether the signal ve&g&) or s;(t) by  succeeds.
looking at the parity of the number of detected photons. This Last but not least, our analysis of the Dolinar scheme in
scheme achieves the minimum-error probability after making/iew of the recent developments in linear-optics quantum-
an optimization of the likelihood ratio of the binary signal information processing demonstrates that by using infinitely
with optimal control theory[11,17). In the original paper many steps of feedforward instead of arbitrarily expensive
[11], the analysis was semiclassical and later a fullyentangled photon states, an asymptotically perfect efficiency
guantum-mechanical description was giviel8]. More re-  of a projection measurement is possible. Related to this, we
cently, the system performance in a realistic situation includnote that there is another proposal for an asymptotic linear-
ing delay of feedforward, finite bandwidth, and imperfectoptics implementation of a quantum measurement in which
detection has been investigatgld?,19. suboptimal unambiguous state discriminati@'SD) of N

Compared to previous work on the Dolinar scheme, ouisymmetric coherent states fdi=3 is achieved without ex-
contribution here contains basically four additional aspectspensive auxiliary resourc¢23]. For N=2, the optimal USD
First, we reconsider the derivation of a Dolinar-type mea-can be easily done nonasymptotically by using a 50-50
surement scheme. However, instead of focusing on the origbeamsplitter and photon counting4].
nal signals{|a),|-a)}, we simply consider the projection
measurement onto the bagj&y),|w,)} that corresponds to
the minimum-error discrimination of the signal states. We
can then ask whether one can discriminate the orthogonal In this section, we describe a linear-optics circuit in which
states{|wg), |wy)} via linear optics and infinitely weak detec- a sequence of arbitrarily weak measurements are asymptoti-
tions. In such a scheme, during the entire measurement, tlelly combined to a continuous measurement. In particular,
conditional states in every detection and feedforward stemgve discuss the linear-optics circuit that corresponds to the
must remain orthogonal. Using this constraint, the derivatiorDolinar receiver in the spatial domain. A fully quantum-
of the Dolinar protocol becomes simpler and more transparmechanical description of the Dolinar receiver was described
ent. Further, no complicated optimization procedures arén Ref.[18] by applying a continuous photon-counting mea-
needed. In order to discuss the Dolinar receiver in the consurement based on the quantum Markov process model
text of linear-optics quantum-information processing, we[25,26.

II. CONTINUOUS MEASUREMENT VIA LINEAR OPTICS
AND CONDITIONAL DISPLACEMENTS
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FIG. 2. Continuous photon counting with dis-
o = - p - — - placement operationga) Photodetection with a
D{gsin6) |D(’H1 Sme)l D{fzsin G)l '"" displacement operation. The beam splitter is pa-

rametrized byé. (b) A sequential photodetection
with displacement operations in the limit of small
? ? 6 (small reflectanceand a large number of mea-

photon surement steps.

counting — /

(@ (b) N2 =1

In the following, we describe the continuous measurement 1\ — NB( 2 cin A)RAB B
based on photon counting with a local oscillator by a se- [You =D(Bsin G)Ef (G)W‘L'\?'O ) X
quence of linear optics and photodetection. The equivalence = o71B? sin? 012b" 4 sin 6-bp" sin 6-ab" tan o
between a continuous photon-counting process and a se- e - o
quence of beam splitters and photodetectors was first pointed X gt alncosfgrbibincosfeabtand yAy 0By - (3)
out in Ref.[27]. A schematic of our measurement model is
shown in Fig. 2b). The scheme consists of a sequence Oiwhere we applled the Baker-Campbell-Hausd@Bi€H) for-
weak photodetection steps. In each measurement step, Rula and forBAB(6) an antinormally ordered decomposition
small fraction of the signal state is reflected by a beam splitformula such thag?@' b-3b") = g-ab" tan 6hn cos 6(a"a-bb)ga'd tan 0
ter and measured by a photodetector after a displacememhroughout, we use the notat|¢¢|’:>|o‘3) |y ©|08), etc.
operation[Fig. 2(@)]. The photodetector counts the photon  Equation(3) can be further simplified to
number of the signal. A .

After one measurement step, the output state conditioned |0 = €71AF P 012¢(psin o-a tan 0"
upon the number of detected photdas described by

% eaﬂ (sir? 0/cos¢9)e”“ aln cosﬁ|w>|08>_ (4)
A ABia, Here we applied again the BCH formula such that
,\gﬂt: TrB[(' ® Hk)Pout] , (l) —bB sin 0e abJr tana_e albT tan oeaﬁ sm2 0/cos€ bﬁ sme and we
Tragl (1% ® 1) phud usedb'b|0B)=h|0B)=0.

Let us assume that the photodetector detects at most one
photon. We will now consider the two possible outcomes,

i.e., poy IS projected orf[o or ﬁl. Since these projectors are
rank-1 operators, the conditional output for each operator can
be described by

where

p! .= DB(B sin 0)BAB(6)(ph @ |0B)(0B|)
X BM8(9)D™®(Bsin 0), 2 o MEpaM©T )

and py, is the input state. Trand Tig denote the trace whereM® is the Kraus operator for thiephoton detection
operations over the moda and the mode#\ and B, re-  event. When no photon is detected at the photodetector, the
spectively. BAB(¢) =exd #(a'b-ab")] and DB(a)=expab’  conditional output is given by

—a*f)) are the operators for the beam splitter and the dis-

placement of mod®, where{a,a'} and{b,b'} are the anni-
hilation and creation operators for modasand B, respec- Here we consideN successive operations of H§) with the
tively. Although photodetection is described by a set ofgisplacemend(s, sin 6) representing theth operation. For
projection operators in the Fock bagi,=|K)(k|}, we as- example, fotN=2, we have

sume that the parametéris sufficiently small such that the

probabilities of detecting more than two photons are negli- y; o)M(o ) = exp[— Z(|B4J? + | BV sir? 9}

gible. The complex numbeg in the displacement operator

will be appropriately determined later. As is well known, this sz P
Xexp{aﬁz :| p[ B* —In cosﬁ:|

M(O)|¢ > e -1812 sir? 012 aB (sir? 0/cosﬁ afan cos(9|$ > (6)

displacement operation can be realized using a beam splitter
B(6) and a local oscillator of amplitudg. For a pure state
INpU Pin = Yin)(Winl  Pour= Yo (Woud 1S given by xexga'aln cos 6][¢i). (7)
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. . . ata Ata
Here we inserted the identigr® 2" cosfga’aln cos? gng then

stan _ata . . .
used e?® 4ae %2 24=3e"%. For N successive operations, the

output is then given by
1 N
MM, -+ M i) = expl = 23 |3y siro
n=1

N
xexp[ aE B, cos —r— s;rif ]

xexga'aln cog 0| . (8)

Let us define the constant parameterN#* and take the

limit ¢#—0 andN—«. The displacement operations may

now be described in a continuous way via

N N L L
S g sit 0= 3 |afy — | alaor
n=1 n=1 0

N
S'n2 - 2 B (cod "N = 2,3 —nIJZN::l

N
> B,cos' 6
n=1
—>f di g (he2. (9)
0

Using these relations, we obtain the output state

L
M@W’h---M&°’|win>=ex{—% f dllﬁ(l)lz}
0
L
xexp[ée'-’zf dl B*(I)e"’Z]
0
><exp[——a’r ]|¢,n>

More generally, when no photon is detected from Lhh
detector to thd_;th detector, we obtain the output state

(10

) MOMO, - MOp MO KO0
Pout= ~ -
TR W3 MO FOT
éi -L ﬁméi -L
— Al 0 - A]‘;- 0 ’ (11)
TS - PinS L]
where
é_l_Lo: exp{ée('-l"-o)/zf di g (1) ‘”2}
Lo
Li—Lo.sn
xexp[— 12 0a’fa]. (12)

However, when a photon is detected at thle photodetector,

the conditional operation is described by

PHYSICAL REVIEW A 71, 022318(2005

M o) = eXp[— %IBLIZ Sir? e} (BLsinf—-atane)
. «SIMF o ata
xexp{a,BL " } exa'ain cosd]| ).
(13

Upon taking the limit¢?>— 0 and using the continuous rep-
resentation given in Eq9), all the exponential terms in Eq.
(13) approach unity. The output now becomes

. MERMPT 3t
Pout= @s O T35 3 (14)
Tr[ML pinM7T] T pind) ]

whereM”=6J, and

J =Bl -a (15)

Using these expressions, a continuous measurement based
on beam splitting, displacement operations, and photon
counting is described via the operator

SLn‘'-n—1'J'-n—1SLn—1"-n—2 o JLls-l_O'

This expression can also be obtained as a solution of the
master equation of the system and this kind of conditional
dynamics is called a quantum-jump process in terms of
quantum-statistics theof28]. Although analytical solutions
can be obtained in our case, it should be noted that when the
system has a complicated quantum jump, e.g., the measure-
ment has continuous outcome, one effective approach is the
stochastic unraveling of the master equation. One of the suc-
cessful applications of this approach is shown in R28].

In the next section, we will show how a given projective
measurement can be implemented via the apparatus dis-
cussed here. Finally, we note that whieris replaced by a
time parameteil, our formulation is equivalent to the con-
ventional time domain continuous measurement model in-
cluding displacement operatioh8].

(16)

Ill. PROJECTIVE MEASUREMENTS VIA CONTINUOUS
MEASUREMENT

Projective measurements represent an important special
case among the generalized measurements. In this section,
we show that the Dolinar receiver can be systematically de-
rived from an orthogonality condition, similar to that used
for analyzing the exact distinguishability of orthogonal states
in a projection measuremef0]. First, we will apply this
approach to the original Dolinar receiver, that is, the dis-
crimination of binary coherent states. In a further example,
we examine a binary projection measurement onto a
photonic-qubit basis, which otherwise cannot be imple-
mented with linear optics including photon counting, finite
steps of conditional dynamics, and arbitrary auxiliary photon
states.

Before discussing particular examples, we briefly summa-
rize our approach. The problem of implementing a complete
projection measuremefill;=|m;){ |} can be regarded as the
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problem of an exact discrimination of the orthogonal signaltwo parts, of which one refers to the signal mode and the
states| ;) [20]. In order to achieve an exact discrimination, other one to the auxiliary modes,

these signal states, when conditionally transformed via par-

tial measurements anq feedforyvard, must remain orthogonal €= 118 + byyCauxt V- (21)
after each step of the intermediate measurements. In our ap-

proach, these measurements are assumed to be arbitrarils e v;=Uj, is the complex entry of the unitary matrix
weak, asymptotically corresponding to a continuous meator gescribing the linear-optics mixing of the mogléo be
surement. Via the orthogonality constraint, we can infer theyetected with the signal mode 1. The mixing of mgdeith
input signal by counting the total number of detected photonghe auxiliary modes due to linear optics is described by the
Niot- In the limit of infinitely many photodetection steps, the 5pnihilation operatog,,,, whereb,,, is a real parameter. The
final state must be in a vacuum sta@ due to the energy  complex parametey enables us to include the possibility of
loss at each stef80]. Combining this fact with the condition phase-space displacements before the dete¢8@h Note
that the signals always remain mutually orthogonal, we knowhat without including displacements and for signal states
that every possible result of thié,-photon detection can be \yith a fixed number of photons, arbitrary auxiliary staliés
triggered only by one of the two signal states with nonzerocannot help to provide nontrivial solutions to the conditions
probability. Eventually, we can infer the input signal statejn gq. (20), if there are only trivial solutions without an extra

perfectly by countingNiq. state|A) [20]. For the projection ontd|wg),|w,)}, however,
the signal states have an unfixed photon number. Thus, using
A. Minimum-error discrimination of binary coherent states an auxiliary statefA) having unfixed number t020], or

employing a nonzero phase-space displacemeh0, may
indeed help.
After some algebra, for the first-order conditina 1 from

The minimum-error detection of the binary coherent
states|@),|-a)} is achieved via the projection operators cor-

responding to the orthogonal states Eqg. (20) using Eq.(21), we obtain
1-P P —
|w) = 1_K§|a>— \/l_eKzl— ay, (17) [ =iV1 - &% Im &, (22
where a# 0 is the complex amplitude given by the signal
log) = /1 Pe ) - /1‘ P2e|_ a), (18  states, the parameter|[(«|-a)| is also defined through the
- K - K

signal states, and I is the imaginary part of

where k=[(a|-a)| and .. A
1 o=rva (y+ <A|bau>pauxlA>)- (23
Pe==(1-V1-4? (19 o _
2 Sincex“<1 for «# 0, one can easily see that the only solu-
: - . ... tion to the condition in Eq(22) is trivial, »;=0. In other
T e, S gamol 1 words, ony i thre s no ming at all etueen ihe made
P P 9 be detected and the signal mode 1 is the orthogongityi-

equal. . L ,
) S ally) preserved. For any finite mixing between the mogles
Let us first prove that the projection onffay), i)} can- and 1, exact discrimination of the signal states is no longer

not be implemented using linear optics, finite steps of condiysgiple In our approach based upon continuous measure-
tional dynamics, and arbitrary auxiliary states. As for the

. ; ) ment, every single conditional-dynamics step is supposed to
detection mechanisms, we may restrict ourselves to photoBe arbitrarily weak, corresponding to the limit— 0. Thus

counting since homodyne detection with linear optics nevey, g limit, the orthogonality condition may be satisfied.

leads to non-Gaussian operation, as required for our projegy,yeyer, typically, such a scheme does not provide any in-
tion meafsurer?"nent. I\llow, using the C:c'.ted”a frc:r exlact g'scﬂm"formation about the input signal states. Yet in the following,
nation of orthogonal state20], one finds that already the e jemonstrate that by combining infinitely many arbitrarily

detection of a first output mode, after mixing the signal modg ey detections of the signal mode, corresponding to a con-
with the auxiliary modes, inevitably destroys the orthogonal-tinuous measurement of the signal mode, eventually perfect

ity. Defining an arbitrary auxiliary stat@) with arbitrarily state discrimination can be accomplished.
many modes, the necessary conditions for preserving the or- Suppose that the statés),|w,)} are sent into the con-

thogonality after such a first detectiéand hence for poten- tinuous measurement apparatus discussed in the preceding

tially enabling one to exactly discriminate the states via fur-__ .. . o
ther detections and conditional transformatjoase [20] iZICstIZr\]/.ol\f/vehzrs] no photon is counted durfiigL,), the sig

(Ao @New)|AY=0, On=0,1,2,.... (20
Here, the Oth ordetn=0) just corresponds to the orthogo- éL —olwo) = /1 _Pgedeﬂae_Ll/z)
nality of the signal states. The annihilation operataepre- ' 1-«
sents the first mode being detected after the linear-optics p
transformation. This output mode may be decomposed into -1/ 1 Sexd-B]-ae?), (29
- K
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Pe —Lq/2
1_KzeX|d[B]|a(:: )

-4/ 1 - Pzeex;{— Bl-ae™?), (25
- K

Ly
B= af dl g (he2.
0

S -olw) =

where

(26)

We note that these states are unnormalized. By calculating

the inner product between Eq24) and(25), we can find the
condition that these signals are orthogonal,

VP(1 -P){exdB+B"]+exd- (B+B)]} - {P.exdB
— B*]
+(1-Poexd- (B-B")Jlexd- 2|af?e™1]=0. (27)

From the orthogonality condition E§27) with Eq. (26), we
obtain the function for the displacement operation

qel2
V1-exd-4la2(1-€e)]

B) =+ (28)

By defining the two solutions in Eq28) as B.(1),B-(1),
respectively, we can derive the relations

Li+1 —\a\ze "1 - pLJ+1
expl a f di B, (1)e"? oy

V1-Pli
eXp|:a

where

. (29)

Lj+1 e—\a|ze_LJ+1 \ PLj+1
J di B-(he "’2} g =Y
L

j V/P_ej ’

Pe= %{1 —\1-exfi-4a(1-eM)]}. (31)

In the following, we choos@,(l) as a displacement func-

tion for [0,L;) [B_(I) leads to the same conclusignsnd
assume that a photon is detected atlthin detector. Equa-
tions (24), (25), (29), and(30), yield

/ vi- Ly/2 o Li/2
S-1‘0|(‘)0>oc\'l_pe \/1_—e|ae 1 >_\Pe /—|_ 12y,
(32)
—\ ’1 VP
-ol@2) = VPg /—|ae L2 1 =P =5 |- ae ),
’ e
(33

where unimportant global coefficients are omitted. As for the’B

states after detecting a photon, by using the relations

Ly oLyf2
BulLy) — ae™2= — 2Peae ., (34
V1-exd-4|a’(1-et)]

PHYSICAL REVIEW A 71, 022318(2005

2(1-Pg)ae™?
V1-exg-4oX1-et)]’

BiLy) + ae™2=

(35

we find
—r

\

1-
JLS_ O|w0>°<\1 Pe FPHW

/2>

VPLL
= (1-Pg)|- ae1?)
/P2

wPe

ae—L1/2>

—— P!
o 1 - Pe—2=]|
*V1-P?

1 — pl1
—V1-P _
-V Pe | Oe |_ ae Ll/2>!

/PY

(36)

and similarly,

PL
J,_S_ 0|w1)0<\P /—P|a L2)

e

\1_Pe —L,/2
-V1- Pe =5 |- ae™H1%).
VP

(37

Comparing them with Eqg32) and (33), we can easily see
that these states are still orthogonal to each other. Also, we
can derive the relations

" oA 1 2 \'P
L2y — = o4lal?(1-€ J+1)— 1/2
JLJ'+1S-J+1 LJ|ae " \/WM/ g )
(39
1 201 —erLi
_ Li/2y — = a-4al“(1-e i+
LJ+lS‘J+1 LJ| ae™ > 2
L.
V1-Pgitt
XTL?|— ae 2y (39)
VFe

for the measurement process with the displacement function
B:(1), and

o
1 V1 —Ph
LMSLl+l e Lif2y = 56‘4‘“‘2(1"e it e =—|ae™ti11?),
VPe
(40
Lj+
S |-aeet)= 1 daPa-etiy VP |- aeti+1?)
'-J+1 j+17L 2 V1-PL
e
(41)

for the measurement process with the displacement function
(1), where[PLi+i(1-PLi+t)]2=g el 1-eT00 /2,

From Eqgs(29), (30), (36), and(37), we can determine the
local oscillator function 8(I) for the next zero-photon-

counting procesSz_Ll. In our case, the orthogonality con-
dition requires using3_(l) for S_Z_Ll, as the output states
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gz_Llel§1_0|wi> (i=0,1) have similar structure as in Eqs. (i1=0,1), whereNy, is the total number of detected photons

(36) and (37), respectively, except that, is replaced byL,. (Niot=0,1, ... ) [32] and we will take an infinitely largé.
Eventually, one can preserve the orthogonality by switchingrhe final states are now derived with the help of Egs.
the sign of the displacement functigh(l) each time a pho- (38)—(41), and classified via the parity &, WhenNy, is
ton is detected. After applying many of these operations, th&ero or even, the output state for the injug) is given by

signals evolve as S__,_Nm\],_ S-Nm;'-Nm-l'"JL13-1—0|“’i>

Ntot

V/P_él V1- Pléz v1- Plé

L\ — ¢ 7 c 7 c [ -L/2
= _ J _ o J _ “1 — P o e
|w0> S‘ LNIOI LNtotS_Ntot LNtot_l LlS_l O|w0> N e\r'/l - Pg \/Plél \/1 - P:Ntot|a >
[[_pb o = o
—V1-P;t P;2 VP B —_— — _ 2 L2 1
- vPe /H)e n _ele \/ L: - a€ L/2> 1 -Pgyl-— Plé|ae L/2> - VPe\’/P_Ié|— ae L/2> =gl E_ i
VFe e Pe tot m=0 VIM:
(V1= Pe\1 = PL = VPo/PL)(ae )™ my, mis zero or even,
(\s"l _ Pe\”l _ Ple_ + \f’E\’/P_Ié)(ae_uz)m|m>, mis Odd,
2
a,|28—4\a|
=1 1\ 1—e_4|”“2+ |—e‘|—... 0
( V1 —e_4|”“2 | >
1
+(1+ - )ae 1) + TE(\/1 —gel g Pet )4 (42
\

where|m) is the m-photon number state and note tm@t: 1/2 and lim_,.. Pt:Pe. In the last line, the terms only up to the
order ofe™" are given. Similarly, for the inputw,), we obtain

~ ~ ~ A A =l a— _ 5 ./ol _
) = Sy, Sy gt ‘]L1s_1—0| wy) % \PeV1 = Pglae™?) = 1 - Po\Pg|- ae™?)

= gl 1 (VPey1-P5-1- PeV’E)(ae‘”Z)Wm% m s zero or even,
meo ml | (VPev1 = PL + V1 - PoyPL) (aeM2)Mm), mis odd,
2.-20f?
e
== M—e—L+ - ||oy + (e72el® + ) ae Ly ¥ - (43)
V1 —g el
[
where the last line also shows the terms up to the order of |w5> — |0y, (45)
e. From Egs.(42) and(43), we can check that these two
possible outputs are still orthogonal to each other and, even lwk) — 0, (46)

in the approximated form, the orthogonality is satisfied in . _
any order ofL. For example, the inner product betwelely) ~ and thus, if the number of the totally detected photpsis

and|w§> up to the order o™ is computed as |zero or even, we can unambiguously identify the input state
w0>.
2g2af? _ On the other hand, wheN,; is odd, the final states are
(wh|lwh) = =1 —e‘4“|2\|/a|=4|2e‘L<0|0> given by
1-e™¢
i lwg) — 0, (47)
+|affe e 1)1y = 0. (44)
|wh) —10), (49)

Then, upon taking the limit of — < and normalizing Eq.
(42), we know that|w5> approaches the vacuum state. Weand hence, in this case, we can unambiguously infer the in-
also find from Eq.(43) that the statéw}) converges td1).  put state|w,). Let us finally emphasize that our model may
However, sinceall the terms in Eq(43) decrease exponen- be also translated into the time domain by replacing the spa-
tially for large L, we know thaw}) does not occur at all in  tial parametet by the timet. Therefore, our approach pro-
the limit of L—o. Hence we have vides an alternative derivation of the original Dolinar re-
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ceiver. This approach is relatively simple, because it only 2 = (1+1-el1)|0)+e21 55
relies upon the preservation of the orthogonality of the sig- S‘l‘°|w°> (L+x 10) [, (55)
nals during the entire measurement process. R

Sdep=(1-\1-ejo)-et?1). (56

B. Photonic-qubit signals After detecting a photon dt,, the states become

In this subsection, we show that our measurement model
not only is applicable to coherent-state signals, but may also
be applied to other types of signals, for example, photon-
number qubits. As an example, let us consider the projection jL S_ _olwy) < (1++1 —e‘L1)|0> - e—L1/2|1>, (59)
measurement onto the basis, ;)=(]0)+|1))/+2, for which v
one can derive a no-go statement in terms of the criteria oRnd these are still orthogonal to each other.

Ref.[20]. Let us consider the next intervél,,L,), where we as-

As for the exact discrimination di 1), let us first briefly ~sume that the second photon is detectedatDefining the
discuss the no-go statement for any linear-optics scheml@cal oscillator functions, (1), we obtain
based on photon counting, finite steps of conditional dynam-
ics, anq arbitrary auxiliary states. Si_nce the sig_nal states have g_ N jL AS_ _o|wg) ( 1-{1-el1
an unfixed number of photons, using an auxiliary stée 2
with unfixed photon number or employing phase-space dis- L
placements may help to exactly discriminate the signal states + e—L1/2f dl lg*L N (I)e"’2)|0>
[20]. For the signal statels 1), the necessary conditions in Ly 20
any conditional-dynamics scheme becof26] reta?y, (59)

(Ao @N"e"wp|Ay=0, 0O n=0,1,2,.... (49

Here, we use the same definitions as in the preceding section. § | J| § _olw,) = (1 +1-el
By inserting the decomposition of E§21) into the first- 2

IS ~dogx(1-\1-et)0)+e?1),  (57)

ordern=1 condition, we obtain now L,
|vy2=2i Im 5, (50) - e_Lllszl di /3*|_2—L1(|)e_”2) |0)
where now Imé§ is the imaginary part of -e2?1y. (60)
8= 11(y +(AbauLandA). (51)  Now the orthogonality condition implies
Again, only the trivial solutiorv;=0 exists. Thus, there is no g (-Ly/2
linear-optics scheme based on a finite first detection step that Br,-,(1) =~ o (61)

achieves the exact discrimination fed, ;). Let us now see
how a continuous-measurement-based scheme leads to thire generally, the local oscillator function for the interval

perfect discrimination of the signal states. (Lj,Lj+1) is given by

The design for the measurement apparatus is the same as (L2
that of the preceding subsection. So we send the states B L ()=(- 1)1_' (Ly=0). (62
{lwg),|wy)} into the measurement apparatus. Let us assume L 2\1-¢" 0

that the first photon is detected at thgth detector and no . . .
photon is counted durinf0,L;). The outcoming signals are Using Eq.(62), the S'gAnal states after the WAhole detection
then given by process are described @-LN‘]LN,MSLNW-LNM-{ -JLlSLl_0|wi>
L (i=0,1), whereN,y is the total number of detected photons
S _o|wg) = (1 +f dl ﬁ*(l)e"’2)|o> +e71), (52) and(L—%,Nix=0,1,... ). WhenN is zero or even, the
! 0 final states are
L |wg) = (L +1 -e™)[0) + e™21)
S, -dop = (1 - f di B*(I)e"’2)|0> —eHED). (59) 1, s
0 =|2-Set-- |0)+e?1) —[0), (63

The orthogonality condition for Eq$52) and(53) implies an

appropriate local oscillator function fdfw),|w,)}, namely, by o (1 1 et “e D)0y - e 21y
L ‘
112 1
o=t —F—. 54 = Zel4 ... _ L2
Bu,-o()) i o (54) <2e + )|o> e21) - 0. (64)

When choosing the plus solution f@ (1), Egs.(52) and  These are still orthogonal to each other in any order.adn
(53 can be rewritten as the other hand, wheN, is odd, we have
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|w5> -0, (65) showed that not only the particular measurement associated
with the coherent-state signals treated in Dolinar’s original
|w&>_> 10). (66) proposal, but also other types of projection measurements,

can be implemented via continuous measurement and feed-
Eventually, one finds that it is possible to distinguisly)  forward. Significantly, in our approach, optimal measure-
and |w,) perfectly by checking the parity of the totally de- ment performance, i.e., the maximum measurement effi-
tected photon number. Let us finally mention that the projeceiency allowed by quantum mechanics, is achieved without
tion onto arbitrary orthogonal superpositions of the vacuunthe need of expensive entangled auxiliary resources. How-
state|0) and the single-photon stat®), ever, finite feedforward plus arbitrarily many auxiliary pho-
. tons must be replaced by arbitrarily fast feedforward based
|wo) = fol0) + f1€¥]1), (67) on arbitrarily Wegk mezasEJ/rements.y
) Although we considered only projection measurements of
lwy) = 1]0) = foe¥[1), (68)  a single-mode field in this paper, our methodology might be
applicable to more general scenarios as well, including gen-
eralized measurements or joint projective measurements for
more modes. While the possibility of a linear-optics imple-
IV. CONCLUSIONS mentation of such scenarios has been studied already
20,33, it remains an open question whether the approach
equivalent to the original Dolinar receiver for implementing ased on continuous measurement and feedforward allows
the minimum-error discrimination of binary coherent—statefor an optimal efficiency also in these more general schemes.

signals. This scheme corresponds to a spatial version of t%;e Finally, an important question is whether our scheme can

can be achieved in the same manner as described above.
In summary, we systematically derived a scheme which i

Dolinar receiver, based upon linear optics, photodetector used in a real, nec_essarily_finite, physical implementati_on.
continuous measurement, and feedforward. In our approac order to address this question, one would have to consider

as opposed to previous works, we focus on (gymptoti- a discrete analog of our scheme, including finite feedforward

cally) perfect implementation of a given projection measure—and Weqk, but finite, mgasurernents. One may then deterrn?ne
y)P b 9 bro) bounds in terms of suitable figures of merit, e.g., the mini-

ment. In order to derive the Dolinar-type scheme, we con- . "
sider the projection measurement that corresponds to tHaUM average error or the maximum success probability, for
minimum-error discrimination of binary coherent-state sig-g'ven feedforward resources.

nals. The derivation then relies on the constraint that, for
discriminating the orthogonal states of the measurement ba-
sis, the conditional states in each detection and feedforward The authors thank M. Ban for helpful discussions. This
step must remain orthogonal. This derivation method doesiork was supported by the DFG under the Emmy-Noether
not require complicated optimization procedures and is approgram, the EU FET network RAMBOQ, and the network
plicable to various kinds of projection measurements. Weof comptence QIP of the state of Bavaria.
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increases the probability amplitude for the vacyihe second

placement function in Eq28) is square integrabley,, does
not diverge even in the limit of — o.
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