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Universal quantum computation with ideal Clifford gates and noisy ancillas
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We consider a model of quantum computation in which the set of elementary operations is limited to
Clifford unitaries, the creation of the std@®, and qubit measurement in the computational basis. In addition,
we allow the creation of a one-qubit ancilla in a mixed sgaterhich should be regarded as a parameter of the
model. Our goal is to determine for whighuniversal quantum computatiqdQC) can be efficiently simu-
lated. To answer this question, we construct purification protocols that consume several copiesdf
produce a single output qubit with higher polarization. The protocols allow one to increase the polarization
only along certain “magic” directions. If the polarizationmélong a magic direction exceeds a threshold value
(about 65%, the purification asymptotically yields a pure state, which we call a magic state. We show that the
Clifford group operations combined with magic states preparation are sufficient for UQC. The connection of
our results with the Gottesman-Knill theorem is discussed.
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I. INTRODUCTION AND SUMMARY additional operations(e.g., measurements by Aharonov-
) ~ Bohm interferencé¢13] or some gates that are not related to
The theory of fault-tolerant quantum computation definesopology at all. Of course, these nontopological operations
an important number called the error threshold. If the physitannot be implemented exactly and thus are prone to errors.
cal error rate is less than the threshold vadé is possible In this situation, the threshold error ratemay become
to stabilize computation by transforming the quantum circuitsignificantly larger than the values given above because we
into a fault-tolerant form where errors can be detected andgieed to correct only errors of certain special type and we
eliminated. However, if the error rate is above the thresholdintroduce a smaller amount of error in the correction stage.
then errors begin to accumulate, which results in rapid decofhe main purpose of the present paper is to illustrate this
herence and renders the output of the computation uselessfatement by a particular computational model.
The actual value of depends on the error correction scheme  The model is built upon th€lifford group—the group of
and the error model. Unfortunately, this number seems to benitary operators that map the group of Pauli operators to
rather small for all known schemes. Estimates vary fromitSelf under conjugation. The set of elementary operations is
10°® (see Ref[1]) to 10°* (see Refs[2—4]), which is hardly divided into two partsiO=0jgeaU Otauity- Operations from.
achievable with the present technology. Oigeas are assumed to be perfect. We list these operations
In principle, one can envision a situation in which qubits belqw: o ]
do not decohere, and a subset of the elementary gates is I). Prepare a qubit in the stale); . _
realizedexactlydue to special properties of the physical sys- E!!.)) apply unitary operatorls frorp thg Clllfford gét%%p'y
tem. This scenario could be realized experimentally usin%ro'ﬂ) Ol:(‘a’;sure an eigenvaiue ot a Faull operawr, o,
. - . y qubit.
spin, electron, or other many-body systems with topologi-

0 ; : . Here we mean nondestructive projective measurement.
cally ordered ground states. Excitations in two-dimensiona{y,q 454 assume that no errors occur between the operations.

to_pologlcally orde_re_d systems are anyon_s_—qua5|part|cles It is well known that these operations are not sufficient for
with unusual statistics described by nontrivial representay, . ersal quantum computatiofyQC) (unless a quantum
tions of _the braid bﬁ’rOUp' If Wehhave sufﬁglent r(]:on';]rol cf)f computer can be efficiently simulated on a classical com-
anyons, I.€., areé avble to move t €m around eac other, tu te). More specifically, the Gottesman-Knill theorem states
them, and d_lstlngwsh between _dlfferent particle types, the hat by operations fron®,s..; one can only obtain quantum

we can realize some set of unitary operators and measurgsaias of 4 very special form callatabilizer statesSuch a
Ytate can be specified as an intersection of eigenspaces of
“pairwise commuting Pauli operators, which are referred to as

ff lv decoh . dani I stabilizers Using the stabilizer formalism, one can easily
tems offer only decoherence protection and an incomplete Sgfy,jate the evolution of the state and the statistics of mea-

of topological gates(See Refs[9,10] about non-Abelian g\ oments on a classical probabilistic computeze Ref.
anyons in quantum Hall systems anc_j Refs1,12 about [14] or a textbooK 15] for more details
topological orders in Josephson junction arrpy¢everthe- The sety,1 describes faulty operations. In our model, it

less, universal computation is possible if we introduce some <icic of just one operation: prepare an ancillary qubit in a

mixed statep. The statep should be regarded as a parameter

of the model. From the physical point of view,is mixed
*Email address: serg@cs.caltech.edu due to imperfections of the preparation proced@atangle-
"Email address: kitaev@igi.caltech.edu ment of the ancilla with the environment, thermal fluctua-

universal. While the universality can be achieved with suffi
ciently nontrivial types of anyongs—8], more realistic sys-
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implementation of such gates. For instance, using a concat- II
enated stabilizer code with good error correcting properties

to encode each qubit and applying gates transverésdiyhat FIG. 1. Left: the Bloch sphere and the octahed@rRight: the
errors do not propagate inside code blgckee can imple-  octahedrorO projected on thec—y plane. The magic states corre-
ment Clifford gates with an arbitrary high precision, see Refspond to the intersections of the symmetry axe® efith the Bloch

[16]. However, these nearly perfect gates actestoded sphere. The empty and filled circles represrype andH-type
qubits. To establish a correspondence with our model, onfagic states, respectively.

needs to prepare ancodedancilla in the state. It can be
done using the schemes for fault-tolerant encoding of an ar- . . . o
bitrary knownone-qubit state described by Knill in REL7]. see Fig. 1. The six vertlce;s of represent the six eigenstates
In the more recent papéi8] Knill constructed a scheme of of the Pauli oper_ators*,a , and o We can prepare these
fault-tolerant quantum computation which combir(@sthe ~ States by operations fromge, Only. Sincep is a convex
teleported computing and error correction technique by Gotlinéar combinatior{probabilistic mixturg of these states, we
tesman and Chuand.9J; (i) the method of purification of Can prepare by operations fron©;qe, and by tossing a coin
CSS states by Diir and Bried@l0]; and(iii ) the magic states with suitable weights. Thus we can rephrase the Gottesman-
distillation algorithms described in the present paper. As wa&nill theorem in the following way.
argued in Ref[18], this scheme is likely to yield a much ~ Theorem 1Suppose the polarization vectgs, p,p,) of
higher value for the threshold (it may be up to 1% the statep belongs to the convex hull ¢t1, 0, 0, (0, £1, 0,
Unfortunately, ideal implementation of the Clifford group (0, 0, £1). Then any adaptive computation in the baSisan
cannot be currently achieved in any realistic physical systenbe efficiently simulated on a classical probabilistic computer.
with a topological order. What universality classes of anyons This observation leads naturally to the following question:
allow one to implement all Clifford group gatébut do not  is it true that UQC can be efficiently simulated wheneper
allow one to simulate UQLis an interesting open problem. lies in the exterior of the octahedrdd? In an attempt to
To fully utilize the potential of our model, we alloadap-  provide at least a partial answer, we prove the universality
tive computation. It means that a description of an operatiodfor a large set of states. Specifically, we construct two par-
to be performed at stepmay be a function of all measure- ticular schemes of UQC simulation based on a method which
ment outcomes at steps.L,t—1. (For even greater gener- we call magic states distillationLet us start by defining the
ality, the dependence may be probabilistic. This assumptiomagic states.
does not actually strengthen the model since tossing a fair Definition 1 Consider pure statéb),|T)  C? such that
coin can be simulated using;yc,) At this point, we need to 1 1
be careful because the proper choice of operations should not IT(T| = _{| +=(c"+ oY+ UZ)] '
only be defined mathematically—it should be computed by 2 V3
some efficient algorithm In all protocols described below, d
the algorithms will actually be very simplé.et us point out

tions, etc). An essential requirement is that by preparimg
gubits we obtain the statg®", i.e., all ancillary qubits are
independent. The independence assumption is similar to the
uncorrelated errors model in the standard fault-tolerant com-
putation theory.

Our motivation for including all Clifford group gates into
Oiqealrelies mostly on the recent progress in the fault-tolerant

that dropping the computational complexity restriction still 1 1

leaves a nontrivial problem: can we prepare an arbitrary mul- [H)(H| = E{' + TE(UX+ 01)} :

tiqubit pure state with any given fidelity using only opera- v

tions from the basig)?) The images ofiT) and |[H) under the action of one-qubit

The main question that we address in this paper is a€lifford operators are called magic statesTotype andH
follows: For which density matricep can one efficiently type, respectively.
simulate universal quantum computation by adaptive compu- [This notation is chosen sin¢) and|T) are eigenvectors

tation in the basi€? of certain Clifford group operators: the Hadamard datend
It will be convenient to use the Bloch sphere representathe operator usually denotdd see Eq(7).] Denote the one-
tion of one-qubit states: qubit Clifford group byC;. Overall, there are 8 magic states

_1 y of T type,{U|T),U e C,} (up to a phaseand 12 states dfl
p= o+ o+ pyo+ p7). type,{U|H),U e C,}, see Fig. 1. Clearly, the polarization vec-
The vector(py, py, p,) Will be referred to as th@olarization  tors of magic states are in one-to-one correspondence with
vectorof p. Let us first consider the subset of states satisfyrotational symmetry axes of the octahed@r{H-type states
ing correspond to 180° rotations afetype states correspond to

ol + o] + 0] < 1. ;20° rotation; The role'of magic stat.es i_n our construction

y z is twofold. First, adaptive computation in the bagke,

This inequality says that the vect@y,, py,p,) lies inside the together with the preparation of magic stateteither type
octahedrorO with vertices(x1, 0, 0, (0, £1, 0, (0, 0, 1), allows one to simulate UQGee Sec. I)l. Second, by adap-
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tive computation in the basi®;ye, ONe can “purify” imper-
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from 0.910 down td:fr=0.888. From a practical perspective,

fect magic states. It is a rather surprising coincidence thathe difference between these two numbers is not important.
one and the same state can comprise both of these properties,On the other hand, such an improvement would be of

and that is the reason why we call them magic states.

great theoretical interest. Indeed, if Theorem 2 withre-

More exactly, a magic state distillation procedure yieldsplaced byF is true, it would imply that the Gottesman-Knill

one copy of a magic stat@vith any desired fidelity from
several copies of the stage provided that the initial fidelity

theorem provides necessary and sufficient conditions for the
classical simulation, and that a transition from classical to

betweerp and the magic state to be distilled is large enoughuniversal quantum behavior occurs at the boundary of the
In the course of distillation, we use only operations from theoctahedronO. This kind of transition has been discussed in

set Ojgear By constructing two particular distillation

context of a general error moded1]. Our model is simpler,

schemes, foiT-type andH-type magic states, respectively, which gives hope for sharper results.

we prove the following theorems.
Theorem 2Let F(p) be the maximum fidelity between
and aT-type magic state, i.e.,

Fr(p) = max(T|UTpU|T).
Ue(Cq

Adaptive computation in the basi3=0j4.,U {p} allows one
to simulate universal quantum computation whenever

1 3 1/2
Fr(p) > Fr= 5(1+\/;) ~0.910.

Theorem 3Let Fy(p) be the maximum fidelity between
and anH-type magic state,

Fu(p) = maxy/(H|UTpU|H).
UeCq
Adaptive computation in the basi3= ;44U {p} allows one

to simulate universal quantum computation whenever
Fu(p) > Fy = 0.927.

By the same argument, one can show that the quantity

def '} 1) ]2
Ff_i:maxyr’<H|p|H>= —(1+ \/j> ~ 0.924
peO 2 2

is a lower bound on the threshold fideliy, for any protocol
distilling H-type magic states.

A similar approach to UQC simulation was suggested in
Ref.[22], where Clifford group operations were used to dis-
till the entangled three-qubit stat¢000)+|001)+|010
+|100, which is necessary for the realization of the Toffoli
gate.

The rest of the paper is organized as follows. Section Il
contains some well-known facts about the Clifford group and
stabilizer formalism, which will be used throughout the pa-
per. In Sec. Ill we prove that magic states together with
operations fromQO;4ey are sufficient for UQC. In Sec. IV
ideal magic are substituted by faulty ones and the error rate
that our simulation algorithm can tolerate is estimated. In
Sec. V we describe a distillation protocol fdrtype magic
states. This protocol is based on the well-known five-qubit

The quantitiestr and Fy have the meaning of threshold quantum code. In Sec. VI a distillation protocol fertype
fidelity since our distillation schemes increase the polarizamagic states is constructed. It is based on a certain CSS
tion of p, converging to a magic state as long as the inequalistabilizer code that encodes one qubit into 15 and admits a

ties F(p) >F1 or Fy(p) >Fy are fulfilled. If they are not

nontrivial automorphisni23]. Specifically, the bitwise appli-

fulfilled, the process converges to the maximally mixed statecation of a certaimon-Clifford unitary operator preserves the
The conditions stated in the theorems can also be understo@dde subspace and effects the same operator on the encoded

in terms of the polarization vectdpy, p,,p,). Indeed, let us

qubit. We conclude with a brief summary and a discussion of

associate a “magic direction” with each of the magic statesopen problems.
Then Theorems 2 and 3 say that the distillation is possible if

there is aT direction such that the projection of the vector

(px:py,p,) onto thatT direction exceeds the threshold value II. CLIFFORD GROUP, STABILIZERS, AND SYNDROME

of 2F$—1xo.655, or if the projection on some of thé
directions is greater thanF2,—1~0.718.

Let us remark that, although the proposed distillation

schemes are probably not optimal, the threshold fidelRies

andFy cannot be improved significantly. Indeed, it is easy to

check that the octahedrad corresponding to probabilistic
mixtures of stabilizer states can be defined as

O ={p:F(p) < F3},

. 1 1 12
Fr= > 1+ 3 ~ 0.888.

It means thaF7 is a lower bound on the threshold fidelif

where

MEASUREMENTS

Let C,, denote then-qubit Clifford group. Recall that it is a
finite subgroup of W2") generated by the Hadamard gate
(applied to any qubjt the phase-shift gaté (applied to any
qubit), and the controlled-not gat&(c*) (which may be ap-
plied to any pair qubits

33 el (s )
“2\1 -1) T \o i) ()_ooX'

1)

The Pauli operators™, o, 0” belong toC,, for instance o
=K? and c*=HK?H. The Pauli group Rn) CC, is generated
by the Pauli operators acting anqubits. It is known[24]

for any protocol distillingT-type magic states. Thus any po- that the Clifford groupC,, augmented by scalar unitary op-

tential improvement to Theorem 2 may only decre&ge

eratorse?l coincides with the normalizer d®(n) in the uni-
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tary group U2"). Hermitian elements of the Pauli group are . 10
of particular importance for quantum error correction theory; A9 = (0 e‘”)
they are referred to astabilizers These are operators of the
form by consuming several copies {#%,) and using only opera-
o " tions from Ojgeat
tot@ - @0 a4 e {0Xy.2, Let |¢)=al0)+b|1) be the unknown initial state which
where 0°=1. Let us denote byS(n) the set of alln-qubit ~ Should be acted on by\(€). Prepare the statglo)=|¢)
stabilizers: ®|A, and measure the stabiliz€{=0?® 0% Note that both
outcomes of this measurement appear with probability 1/2.
Sn={SePn : S'=5. If the outcome is “+1”, we are left with the state
For any two stabilizers;,S, we haveS;S,=+S,S; andﬁ W) = (al0,0) + bei“’|1,1)).

:ﬁzl. It is known that for any set of pairwise commuting
stabilizersS;,...,S,e S(n) there exists a unitary operatdt  In the case of “~1” outcome, the resulting state is

e C, such that ) ‘
WD) =(a€’0,1) +b|1,0).
V§VI=ojl, j=1,..k . N
Let us apply the gatd (¢)[1, 2] (the first qubit is the control

where?j] denotes the operater applied to thejth qubit,  gng. The above two states are mapped to
e.g.,dl]l=c*®l® - ®l.

These properties of the Clifford group allow us to intro- [W3) = A(0)[1,2]|¥7) = (a]0) + be?|1)) ® |0,
duce a very useful computational procedure which can be
realized by operations fror®;4e,. Specifically, we can per- [W5) = A(0)[1,2]|W]) = (ad?|0) + b|1)) ® |1).

form a joint nondestructive eigenvalue measurement for any
set of pairwise commuting stabilize, ...,S.e S(n). The  Now the second qubit can be discarded, and we are left with
outcome of such a measurement is a sequence of eigenvalué€ statea|0) +be”'?1), depending upon the measured eigen-
A=Ay N, \j=+1, which is usually called ayndrome value. Thus the net effect of this circuit is the application of
For any given outcome, the quantum state is acted upon b unitary operator that is chosen randomly betwade'”)
the projector andA(e? (and we know which of the two possibilities has
occurred.
m =11 }(I AS) Applying the circuit repeatedly, we effect the transforma-
AT 212 iS)- tions A(eP19), A(€P2?),... for some integer®,,p,,... which
obey the random-walk statistics. It is well known that such a
Now, let us consider a computation that begins with anrandom walk visits each integer with the probability 1. It
arbitrary state and consists of operations fréfgeq; It is  means that sooner or later we will ggt=1 and thus realize
clear that we can defer all Clifford operations until the verythe desired operatok(e'?). The probability that we will need
end if we replace the Pauli measurements by general symnore thanN steps to succeed can be estimated g2 for
drome measurements. Thus the most general transformatiggme constant> 0. Note also that i§ is a rational multiple
that can be realized bf)iqe, is anadaptive syndrome mea- of 277, we actually have a random walk on a cyclic gréip
surementmeaning that the choice of the stabilizgrto be  |n this case, the probability that we will need more tHdn
measured next depends on the previously measured values§ibps decreases exponentially with
N1, ...,Nj-1. In general, this dependence may involve coin  The magic statéH) can be explicitly written in the stan-
tossing. Without loss of generality one can assume 8at dard basis as
commutes with all previously measured stabilizers
S,...,S_; (for all possible values oh4,...,\;_; and coin _ T N
tossing% outcomes Adaptive syndrome meésurement has [H)= COE<§)|O> * S'n<§>|1>' (3)
been used in Ref25] to distill entangled states of a bipartite _
system by local operations. Note thatHK|H)=€™8/A__,,). So if we are able to prepare
the statelH), we can realize the operatdr(e”™*). It does
not belong to the Clifford group. Moreover, the subgroup of
I1l. UNIVERSAL QUANTUM COMPUTATION WITH U(2) generated by\(e“”"‘) andC; is dense in (). 1 Thus
MAGIC STATES the operators frong¢; andC, together withA(e7'™4) consti-

In this section, we show that operations frafly., are  tute a universal basis for quantum computation.
sufficient for universal quantum computation if a supply of ~The magic statgT) can be explicitly written in the stan-
ideal magic states is also available. First, consider a onedard basis:
qubit state

k

INE 2—1/2(|0> +eie|1>) (2) 'Recall that the action of the Clifford grou@, on the set of
operators #*, oY, £¢* coincides with the action of rotational sym-
and suppose thdtis not a multiple ofrr/2. We now describe  metry group of a cube on the set of unit vectors, ++e,, +e,,
a procedure that implements the phase shift gate respectively.
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B ) 1 described in Secs. V and VI. Let us estimate an affordable
[T) = cosp|0) + €™ sin p|1), cog2p) NS (4 error ratee,, for distilled magic states. Since there ake
v non-Clifford gates in the circuit, one can tolerate an error
Let us prepare an initial staf@,)=|T) ® |T) and measure the rate of the order 1/ in implementation of these gatéEach
stabilizer S;=0*® ¢ The outcome +1 appears with prob- non-Clifford gate requires ~In L magic states. Thus the
ability p,=cogp+sint3=2/3. If theoutcome is —1, we dis- whole simulation is reliable enough if one chooses
card the reduced state and try again, using a fresh pair of e~ 1ALINL) 5)
magic states(On average, we need three copies of e out '
state to get the outcome 4 1IThe reduced state correspond- What are the resources needed to distill one copy of a

ing to the outcome +1 is magic state with the error ratg,? To be more specific, let
us talk abouH-type states. It will be shown in Sec. VI that

|¥,)=c0s90,0) +isiny|1,1), y= T the numbem of raw (undistilled ancillas needed to distill
12 one copy of thgH) magic state with an error rate not ex-

Let us apply the gateé\(c®)[1,2] and discard the second ceedinge,,, scales as

qubit. We arrive at the state n~[In(1/e,]?, y=logsl5= 2.5,
|W,) = cosy|0) +i siny|1). see Eq(39). Taking ¢, from Eq. (5), one gets
Next apply the Hadamard gaké: n~(InL)”.
|W4) = H[W,) = 2712%67(|0) + e 27|1) = |A_e). Since the whole simulation requirdeL~L In L copies of
the distilled|H) state, we need

We can use this state as described above to realize the op-

erator A(e7 ), It is easy to check that Clifford operators

together withA(e™'™®) constitute a universal set of unitary raw ancillas overall.
gates. Summarizing, the simulation theorems stated in the intro-

Thus we have proved that the sets of operationguction follow from the following resultsthe last one will
OigeaU{[H)} and OjgeaU{|T)} are sufficient for universal pe proved later

N~ L(In L)t

quantum computation. (i) the circuits described in Sec. Il allow one to simulate
UQC with the sets of operationg);44U{|H)} and
OideaIU {|T>},

IV. ERROR ANALYSIS (i) these circuits work reliably enough if the stafet

To establish a connection between the simulation algo2nd |T) are slightly noisy, provided that the error rate does
rithms described in Sec. Il and the universality theoremg0t €xceede,~1/(LInL);
stated in the introduction we have to substitideal magic (i) a magic state having an error ragg, can be pre-
states byfaulty ones. Before doing that let us discuss thePared from copies of the raw ancillary stateising the dis-
ideal case in more detail. Suppose that a quantum circuit téllation schemes provided the(p) >Fr or Fy(p)>Fy.
be simulated uses a gate basis in which the only non-Clifford he distillation requires resources that are polynomial in
gate is the phase shift(e?™*) or A(e7™®). One can apply InL.
the algorithm of Sec. Ill to simulate each non-Clifford gate
independently. To avoid fluctuations in the number of magic
states consumed at each round, let us set a limit ofagic Suppose we are givemcopies of a state, and our goal
states per round, whet€ is a parameter to be chosen later. is to distill one copy of the magic staf€). The polarization
As was pointed out in Sec. Ill, the probability for some par-vector of p can be brought into the positive octant of the
ticular simulation round to “run out of budget” scales asBloch space by a Clifford group operator, so we can assume
exp(—aK) for some constant> 0. If at least one simulation that
round runs out of budget, we declare a failure and the whole prsporpy =0
simulation must be aborted. Denote the total number of non- ebyrzT
Clifford gates in the circuit by.. The probabilityp, for the  In this case, the fidelity betwegnand|T) is the largest one

V. DISTILLATION OF T-TYPE MAGIC STATES

whole simulation to be aborted can be estimated as among allT-type magic states, i.e.,
pa~ 1 -[1 - exg- aK)]" ~ L exp(- aK) <1, F1(p) = \(TllT).
provided that. exp(—aK) < 1. We will assume A related quantity,
K=alnL,

’This fault tolerance does not require any redundancy in the
so the abort probability can be neglected. implementation of the circuife.g., the use of concatenated codes
Each time the algorithm requests an ideal magic state, if is achived automatically because in the worst case the error prob-
actually receives a slightly nonideal one. Such nearly perfecibility accumulates linearly in the number of gates. In our model
magic states must be prepared using the distillation methodsnly non-Clifford gates are faulty.
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1 1
e=1—(T|p|T)= —{1 __r_(Px+Py+Pz):|-
2|7 3

will be called theinitial error probability. By definition, 0
<e<1/2.

The output of the distillation algorithm will be some one-

qubit mixed statey,, To quantify the proximity betweepy,,
and|T), let us define dinal error probability:

€ou=1- <T|PoutJT>-

It will be certain function ofn ande. The asymptotic behav-
ior of this function forn—oo reveals the existence of a

threshold error probability

PHYSICAL REVIEW A 71, 022316(2005

T T =€"Ty, T[T =¢e""3Ty,

1 1
|T01><T01|:_ Ii?(O’X'FO'y"'O'Z) .
) ) 2 NE

def
Note that|Ty)=|T) and |T;)=0c”H|Ty) are T-type magic
states.
Let us apply a dephasing transformation,

1
D(ﬂ)=§(n+T71TT+TT77T), 9

to each copy of the state. The transformatiorD can be
realized by applying one of the operatdrsT,T™! chosen
with probability 1/3 each. Since

1 3
o=3|1-1/7) =073,

such that fore< g, the functione,,{(n, €) converges to zero.
We will see that for smalk,

D(|ToXT4)) = D(|ToXTo) =0,
we have

eouln.€) ~ (50", £=1/log, 30~ 0.2. (6) D(p) = (1 - €)[ToX(To| + el T XT4. (10

On the other hand, i€> ¢;, the output state converges to the We will assume that the dephasing transformation is applied

maximally mixed state, i.e., lip, €N, €)=1/2. at the very first step of the distillation, gchas the forn(10).
Before coming to a detailed description of the distillation Thus the initial state for the elementary distillation subrou-

algorithm, let us outline the basic ideas involved in its con-tine is

struction. The algorithm recursively iterates an elementary

distillation subroutine that transforms five copies of an im- Pin=p

perfect magic state into one copy having a smaller error

probability. This elementary subroutine involves a syndrom

measurement for certain commuting stabiliz&sS,,S;, S,

e S5). If the measured syndrom@\i,\»,\3,\4) iS non-

trivial (\j=—1 for somej), the distillation attempt fails and def

the reduced state is discarded. If the measured syndrome is To= |Tx1> ® -

trivial (\j=1 for all j), the distillation attempt is successful. The stabilizersS, .S, to be measured on the staig

Applying a decoding transformatiofa certain Clifford op- , X
erato) to the reduced state, we transform it to a single-qubitcl_?]r;)elszfrzngetf?n;hde;:Toﬁﬁvfs'\_/e'qum code, see Ref,27.

state. This qubit is the output of the subroutine.

Our construction is similar to concatenated codes used in S=0*®?® Q@ eI,
many fault-tolerant quantum computation techniques, but it
differs from them in two respects. First, we do not need to
correcterrors—it suffices only taletectthem. Once an error
has been detected, we simply discard the reduced state, since
it does not contain any valuable information. This allows us
to achieve higher threshold error probability. Second, we do
not use quantum codes in the way for which they were origi-
nally designed: in our scheme, the syndrome is measured
a product state.

The statgT) is an eigenstate for the unitary operator

E E‘Xl(l - 6)5_‘XI|TX><TX|:
xe{0,1}°

11

Svherex=(xy, ...,%s) is a binary string/x| is the number of
1's in x, and

C® |Tx5>-

S=1® ' ® *® 0*® 7,
S$=0"®1® d® d*® 7,

$=07Q Q1 ® *® o

Oﬂﬂs code has a cyclic symmetry, which becomes explicit if
we introduce an auxiliary stabilize6=S,S5,5:S,=0*® ¢*
®c*®l®d*. Let L be the two-dimensional code subspace

12

o emf1 1 specified by the condition§|¥)=|¥), j=1,..., 4, andII be
T=€7KH = ﬁ(l _ i) € (. (7) " the orthogonal projector ont6:

Note thatT acts on the Pauli operators as follows:
ToT =0%, T T =¢¥, TodT' =0 (8)

We will denote its eigenstates Y,) and|T,), so that

1 4
Hzl_ejl:[l(' +S). (13

It was pointed out in Ref16] that the operators
X= (@)%, Y=(o), Z=(0)

*The operator denoted by in Ref. [16] does not coincide with

our T. They are related by the substitutin—e T though. and
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T=(T)* (14 THT,) =~ T1[Ty
commute withIl, thus preserving the code subspace. Morewhenever|x|=1 or |x|=4. This eigenvalue equation is not a
over, X,Y,Z obey the same algebraic relations as one-qubi€ontradiction only if
Pauli operators, e.gXY=iZ. Let us choose a basis ihsuch |T,) =0 for |x =1,4.

N = ) . y
that X, Y, a.ndZ become logical Pauli gperaForﬁﬁ.a ' an.d This equality can be interpreted as an error correction prop-
o’, respectively. How does the operafbract in this basis? erty. Indeed, the initial statp,, is a mixture of the desired

From Eq.(8) we immediately get state|Togoo9 and unwanted statdd,) with |[x|>0. We can
D S S interpret the number of “1” components xas a number of
TXT =2, TZT'=Y, TYT' =X errors. Once the trivial syndrome has been measured, we can

be sure that either no errors or at least two errors have oc-
curred. Such error correction, however, is not directly related
tto the minimal distance of the code.

It follows from Eq. (16) that for |[x|=2, 3 one has
TII|T,)=€""3[1|T,), so thatII|T,) must be proportional to
one of the stateEI’b), Tb. Our observations can be summa-

ThereforeT coincides with the logical operatdr up to an
overall phase factor. This factor is fixed by the condition tha
the logicalT has eigenvalueg® (™3

Let us find the eigenvectors df that belong toL. Con-
sider two particular states fromi, namely

IT5 = V611 Tooo00. and|Tg) = V6L Ty3119. fized as follows:
SUZTLy Iy =
In the Appendix we show that 64Ty, if [x/=0,
1 0, if|x]=1,
(Tooood T Tooooo = (T111140|T11112 = 5 (15) ajTs), if [x =2,
M= pimhy, if =3 (19
so that the state§§) and |T;) are normalized. Taking into Ox lif’|x| 4 '
account thatT,IT]=0 and that ' L
fT,11] L6-1/2|T(L)>, if [x| =5.
T[Ty =™ 20T) forall x e {0,1°,  (16)  Here the coefficients,, b, depend upom in some way. The
we get output statg18) can now be written as
. . _ . . 1
T|T) = V6TII|Togo00 = VEIIT| Tooo00 =€ ™3 T1). ps= {665 +é(1-e° X |ax|2] ToX(Tl
x:|x|=2

Analogously, one can check that 1
+ [5<1—e>5+e3<1—e>2 > |bx|2}|T&><T&|. (20

x:|x|=3

T = T,

It follows that T is exactly the logical operatdF, including ~ To exclude the unknown coefficien&g andb,, we can use
the overall phase, arld) and|T}) are the logical statg¥,)  the identity

and|T,) (up to some phase factors, which are not important Lo Lol

for us). Therefore we have [ToXTol +[Tox(TH =T1= X TITXTIL

xe{0,11°
TS (Th 4 = H%[I + %(5(+ §(+2)]_ (17)  Substituting Eq(19) into this identity, we get
\!
5
Now we are in a position to describe the syndrome mea- > la?= > |by?= 6
surement performed on the staig. The unnormalized re- xxi=2 x[x=3

duced state corresponding to the trivial syndrome is as folSq the final expression for the output statds as follows:
lows:

€+54(1-€3| |, | (L-e°+5e(1-¢)?
_ _ (1 _ 5 ps= [ ToX(Tol +
ps=Tlppll= X (1~ M T XTI, (18 6 6
{0, 1°

i, }. . - X|TIX(Tl. (21)
see Eq.(l}). The probability for the trivial syndrome to be Accordingly, the probability to observe the trivial syndrome
observed is is

Ps=Tr ps. b= €+564(1-€3+563(1-e)?+(1L-¢)° 22)

Note that the statél|T,) is an eigenvector off for any x ° 6 '
€{0,1}°. But we know that the restriction of on £ has A decoding transformaion for the five-qubit code is a uni-

eigenvalues*' ™3, At the same time, Eq.16) implies that tary operatolV e Cs such that
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0.5

state|Ty) as we wish. On the other hand,éf> €,, the distil-
lation subroutine increases the error probability and itera-
tions converge to the maximally mixed state. Thaysis a
threshold error probability for our scheme. The correspond-
ing threshold polarization is 1-€g=+v3/7~0.655. For a suf-
ficiently small ¢, one can use the approximatiose)
~5¢,

The probabilityps=ps(€) to measure the trivial syndrome
decreases monotonically from 1/6 fe=0 to 1/16 fore
=1/2, sedrig. 2. In the asymptotic regime wheeds small,
we can use the approximatign~ ps(0)=1/6.

Now the construction of the whole distillation scheme is
straightforward. We start froom>1 copies of the state
02 : : : : =(1-¢)|To)XTo|+ € T1(T4|. Let us split these states into
groups containing five states each and apply the elementary
distillation subroutine described above to each group inde-
pendently. In some of these groups the distillation attempt
fails, and the outputs of such groups must be discarded. The
average number of “successful” groups is obviouglye)
X(n/5)=n/30 if € is small. Neglecting the fluctuations of
this quantity, we can say that our scheme provides a constant
yield r=1/30 of output states that are characterized by the
error probability e,,(€) =~ 5€%. Therefore we can obtairfn
states withe,,,~ 53¢*, rn states withe,,~5’€% and so on.

. . . ‘ We have created a hierarchy of states witlstates on the
0 01 02 03 04 0.5 first level and four or fewer states on the last level. kéte

FIG. 2. The final error probabilitg,, and the probabilipsto ~ the number of levels in this hierarchy aggl,; the error prob-
measure the trivial syndrome as functions of the initial error prob-ability characterizing the states on the last level. Up to small
ability e for the T-type states distillation. fluctuations, the numbens,k, €, and e are related by the
following obvious equations:

04

031

0.2t

0.1}

0.05

0

—(2
VL=(?®0,0,0,0. o~ 1507, r*n=1. (24)

In other words,V maps the stabilizer§, j=2, 3, 4, 5 to
oqj]. The logical operatorX,Y,Z are mapped to the Pauli

operatorse™, oY, 0% acting on the first qubit. From Eq17)
we infer that

Their solution yields Eq(6).

VI. DISTILLATION OF H-TYPE MAGIC STATES

Loy — A distillation scheme foH-type magic states also works
VITe.»=[To) ©10,0,0,0 by recursive iteration of a certain elementary distillation sub-
(maybe up to some phasé&he decoding should be followed routine based on a syndrome measurement for a suitable sta-
by an additional operatoA=0¢YH e C;, which swaps the bilizer code. Let us start with introducing some relevant cod-
stategTy) and|T;) (note that for smalk the statepg is close  ing theory constructions, which reveal an unusual symmetry
to |T5), while our goal is to distil| To)). After that we get a  of this code and explain why it is particularly useful for

normalized output state H-type magic states distillation.
Let '] be then-dimensional binary linear space aAde
Pout= (1 = €ou) ToXTol + €oud To(T4l, a one-qubit operator such that=1. With any binary vector
where u=(uy,...,u,) € I'J we associate tha-qubit operator
5+ 5t2 € AU) =A@ A2® -+ @ A,
€out= T oo 3 & 1= : (23 . _
1+5t°+5t°+t l-¢ Let (u,v)==,uv; mod 2 denote the standard binary inner

product. If £ C ) is a linear subspace, we denote £y the
set of vectors which are orthogonal . The Hamming
weight of a binary vectou is denoted byu|. Finally, u-v
e '] designates the bitwise product ofandv, i.e., (u-v);

The plot of the functioney,(€) is shown on Fig. 2. It
indicates that the equatiof, (€)= € has only one nontrivial
solution, e=e,=~0.173. The exact value is

1 3 =Ui;.
€= 5(1 - \/;) A systematic way of constructing stabilizer codes was
suggested by Calderbank, Shor, and Steane, see Refs.
If e<ey, we can recursively iterate the elementary distilla-[28,29. Codes that can be described in this way will be
tion subroutine to produce as good an approximation to theeferred to astandard CSS codef addition, we consider
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their images under an arbitrary unitary transformatddn strange behavior. We now come to an explicit description of
e U(2) applied to every qubit. Such “rotated” codes will be this code.

calledCSS codes Consider a functiorf of four Boolean variables. Denote
Definition 2.Consider a pair of one-qubit Hermitian op- by [f] e F%S the table of all values of exceptf(0000. The
eratorsA,B such that table is considered as a binary vector, i.e.,

A’=B’=1, AB=-BA, [f] = (f(000D, (0010, (0017, ..., f(1111).

and a pair of binary vector spac&s, LgC I, such that
Let £, be the set of all vectorld], wheref is a linear func-

(Up)=0forallue Lav € L. tion satisfyingf(0)=0. In other words/;, is the linear sub-

A quantum code CS8.,L,;B, L) is a decomposition space spanned by the four vectfxg, j=1, 2, 3, 4wherex;
is an indicator function for thgth input bit:
(=D D riun, (25)
uen TSk L =linear spaflx],[Xz],[Xa],[Xs]) -

where the subspack(u, 7) is defined by the conditions
Let also L, be the set of all vectorgf], wheref is a poly-

— u — v
AWNT) = (= D), BE)IW) = (= )™W) nomial of degree at most 2 satisfyifigD) =0. In other words,
for all u e £, andv e L. The linear functionalg. and are L is the linear subspace spanned by the four ve¢igisand
referred to a®\ syndrome and@ syndrome, respectively. The the six vectorgxx;]:
subspaceH(0,0) corresponding to the trivial syndromes

=7=0 is called the code subspace. L, = linear spaf{x,],[X2],[%3],[Xa],[X1%o], [ X1X3],
The subspaces((u, ) are well defined since the opera-
tors A(u) and B(v) commute for anyu e £, andv e Lg: [XaXal, [XaXs], [XoXal, [XaXaD) - (26)
A(U)B(v) = (- 1)“V)B(v)A(u) = B(v)A(U). The definition of£, and£, resembles the definition of punc-

tured Reed-Muller codes of order 1 and 2, respectively, see

The number of logical qubits in a CSS code is Ref.[30]. Note also that’; is the dual space for the 15-bit

k=log,[dimH(0,0)]=n-dim L, - dim Lg. Hamming code. The relevant properties of the subspéges
) . are stated in the following lemma.
Logical operators preserving the subspagég:, ) can be Lemma 1.
chosen as (1) For anyue £; one hagu|=0(mod 8.
{AW) : ue Lg/Ly) and {B) : v e LAILE). (2) For anyv < £, one hasp|=0(mod 2.

(3) Let [1] be the unit vector(1, 1,.., 1, 1). Then L]

(By definition, LoC Lg and LgC Ly, so the factor spaces =£,@[1] andL; =L, ®[1].
are well defined.In the case wheré andB are Pauli op- (4) For any vectorsl,v € £; one hagu-v|=0(mod 4.
erators, we get a standard CSS code. Generatyo?V' (5) For any vectorsue £, and v e L5 one has|u-v|
and B=Va*V' for some unitary operatov e SU(2), so an =0(mod 4.
arbitrary CSS code can be mapped to a standard one by a proof.
suitable bitwise rotation. By a syndrome measurement for a (1) Any linear functionf on JF‘Z‘- satisfying f(0)=0 takes
CSS code we mean a projective measurement associatggjue 1 exactly eight timeéf f+ 0) or zero timeg(if f=0).
with the decompositiori25). (2) All basis vectors of£, have weight equal to 8the

Consider a CSS code such that some of the operatokgectors[x]) or 4 (the vectors[xx;]). By linearity, all ele-
A(u), B(v) do not belong to the Pauli grou(n). Let us pose  ments of£, have even weight.
this question: can one perform a syndrome measurement for (3) One can easily check that all basis vectorsCgfare
this code by operations fromjge ONly? It may seem that orthogonal to all basis vectors of,, therefore £;C L3,
the answer is no, because by definition®fe, one cannot £, £ Besides, we have already proved tfilte £; and
measure an eigenvalue of an operator unless it belongs to ttpf] e £4. Now the statement follows from dimension count-
Pauli group. Surprisingly, this naive answer is wrong. '”'ing, since dimZ,=4 and dimZ,=10.
deed, imagine that we have measured part of the operators (4) Without loss of generality we may assume that 0
A(U), B(v) (namely, those that belong to the Pauli group 4nq, 0. If u=y, the statement has been already proved, see
Now we may restrict the ren_1aining operators to the SUbSpaCﬁroperty 1. Ifu#v, thenu=[f], v=[g] for some linearly
ay happen that the resticion of Somé Lnmeasured aperaty oCdent inear functorsandg. We can ntroduce nelw

' ) Lo ordinates(ys,Y,,Ys,Y4) on F5 such thaty,=f(x) andy,

A{u), which d.oels not belong to the PauILgroup, c0|nC|des=g(X)_ Now |u-o|=|[y1y,]| = 4.
with the restriction of some other oPeratAfTJ) e P(n). If (5 Letue £, andv € £5. SinceL; =L, ®[1], there are
this is the case, we can safely measii(@) instead ofA(u).  two possibilitiesv e £, andv=[1]+w for somew e £,. The
The 15-qubit code that we use for the distillation is actuallyfirst case has been already considered. In the second case we
the simplest(to our knowledge CSS code exhibiting this have
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15 Since for anyu e £, the operator#\(u) and ¢*(u) act on
u-v|=> (1 —wp) = |ul = [u-w]. H in the same way, their eigenspaces must coincide, i.e.,
=1 H(0,7)=G(0,n) for any ne L;.
It follows from properties 1 and 4 thati-v|=0(mod 4. [ Let us now consider the subspaéw,7) for arbitrary
Now consider the one-qubit Hermitian operator me Ly me Ly, By definition, u is a linear functional on

L,C 3% we can extend it to a linear functional @8>, i.e.,
represent it in the fornu(v)=(w,v) for somew e ]F% . Then
for any |¥) e H(u, ), v e L5, andu e £, we have

1 0 e—i(ﬂ'/4)

A= \"’_E(UX-'- oY) = <e+i(7-r/4) 0 ) =e 1Ko,
whereK is the phase shift gate, see Ef)). By definition,A
belongs to the Clifford groug;. One can easily check that
A2=] andAc?=-d?A, so the code CS8?,L,;A, L) is well
defined. We claim that its code subspace coincides with the
code subspace of a certain stabilizer code.

Lemma 2 Consider the decomposition

(5= D D nun.

()AW)W) = (- DIAW) 0% (v)[W) = Aw) | W),

AWAW)T[T) = Aw)TAW) W) = (- 1) ™AW) T ¥)

(aso? and A anticommutg henceA(w)'|W) e H(0, 7). Thus

o (e, 1) = AW)H(0,7) = AWG(0,7).
associated with the code C&8S,L,;A,L;) and the decom-
position O
(C2)®15= P P Gl m) Lemma 2 is closely related to an interesting property of
pec, mec, T the stabilizer code C38&%,L,;d*,L,), namely the existence

of a non-Clifford automorphisn23]. Consider a one-qubit

associated with the stabilizer code G85L,; 0%, L,). For unitary operatolV such that

any syndromey E*l one has
H(0,7)=G(0,7). Wo?W' = oZ andWo*W' = A,

Moreover, for anyu e £, there exists some e I'3° such that

for any UEﬁi It is defined up to an overall phase and obviously does not

belong to the Clifford grougg;. However, the bitwise appli-
H(p, 7) = AW)G(0, 7). (27)  cation ofW, i.e., the operatoW*'>, preserves the code sub-

spaceG(0,0). Indeed W®13G(0,0) corresponds to the trivial
This Lemma provides a strategy to measure a syndromgyndrome of the code

of the code CS&~*, L,;A,L,) by operations fromO;yea
Specifically, we measure (i.e., thes” part of the syndrome
first, computew=w(w), apply A(w)’, measurey using the
stabilizersa™([x;]), and applyA(w).
Proof of the lemmaConsider an auxiliary subspace, ;rhUSVV®l5g(0,0):H(0,0)- But 7(0,0=G(0,0) due to the
emma.

CSSWPW', £,:WW', £,) = CSS 6%, LA, L).

H= @ H(0,7) = @ G(0,7n), Now we are in a position to describe the distillation
nec) ner scheme and to estimate its threshold and yield. Suppose we
corresponding to the triviat* syndrome for both CSS codes. @ré given 15 copies of the state and our goal is to distill
Each staté¥) e H(0) can be represented as one copy of arH-type magic state. We will actually distill
the state,
W)= > clu),
UEL%

1 - .
A = —=(|0) + €4[1)) = €sHKT[H).
where ¢, are some complex amplitudes andv) V2
=|v4,...,v15 are vectors of the standard basis. Let us show
that Note that|/Ay) is an eigenstate of the operatly specifically,

AWIW) = HW[W) for any [W) € H, U e Ly, AlAg)=|Ay). Let us also introduce the state

To this end, we represetas o*e ™*K". For anyu e £, and IA) = 4AY,
ve Ly we have

A(U)[v) = oX(U)d I EIu] 5y = X)), which satisfiesA|A;)=—|A;). Since the Clifford groug; acts
transitively on the set dfi-type magic states, we can assume
becausdu|=0(mod 8 and|u-v|=0(mod 4 (see Lemma 1, that the fidelity betweerp and |A;) is the maximum one
parts 1 and b among allH-type magic states, so that
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R
= 1 .
As in Sec. V we define the initial error probability VIZ|
e=1-[Fu(p)]?=(Alp|A). Now the unnormalized final statps=IIp;, [T can be ex-
panded as

Applying the dephasing transformation
> (1-Plerl|agiay

1
D(n)zz(n+A77AT) IEZIUEL2
1

to each copy op, we can guarantee thatis diagonal in the X+ ) > €I - gATAY.
{Ag,A} basis, i.e., Lolyez,

p=D(p) = (1 - &)|ANAY + ANA. The distillation succeeds with probability
Since A e C;, the dephasing transformation can be realized Ps=|LoTrps= 2 5Pl -l
by operations fromO;qe, Thus our initial state is velf

pin = p2L8= 2 e\u\(l _ 6)15_‘”||Au><Au|, (29) (The factor.|£2| reflects the number of possible valuesiof

uel3® which all give rise to the same stgig)
To complete the distillation procedure, we need to apply a

where|A,)=|A, W& ® 1A, g decoding transformation that would map the two-

According to the remark following the formulation of dimensional subspacé((0,0)C (C?®® onto the Hilbert
Lemma 2, we can measure the syndrofne) of the code space of one qubit. Recall thai(0,0)=G(0,0) is the code
CSS%, Ly; A, Lq) by operations fron0;44 0nly. Let us fol-  subspace of the stabilizer code G8SL,; 0%, L,). Its logi-
low this scheme, omitting the very last step. So, we begircal Pauli operators can be chosen as
with the statep;,, measureu, compute w=w(w), apply - - -

Aw)*, and measure;. We consider the distillation attempt X= (09, Y=(a"), Z=-(c)".
successful ifp=0. The measured value pfis not important
at this stage. In fact, for any e L’; the unnormalized post-
measurement state is

It is easy to see thax,v,Z obey the correct algebraic rela-
tions and preserve the code subspace. The decoding can be
realized as a Clifford operator e C5 that mapsX,Y,Z to
= HAW) " pin AW)TT =TT p;,I1. the Pauli operators™,¢”, o acting on the first qubit(The
; : . : remaining 14 qubits become unentangled with the first one,
;Q(Bhlg) Sgtggtl(()))nl'ilels lflhzenp;_([)jeg?r onto the code SUIOSpaceso we can safely disregard therhet us show that the logi-
' B ZA cal statgA5) is transformed intdAg) (up to some phageFor

this, it suffices to check that(A5X|AL)=(Adc*Ay),
I1,= ov), 11 A 29 . .
\ﬁzluezﬁz . lﬁlluezcl w29 (AEIYIAG) = (Aol a¥|Ag), and (A5 ZIAG)=(Agl?|Aq). Verifying

these identities becomes a straightforward task if we repre-

Let us compute the stajg=I1Ip;,I1. Since sent|A('3> in the standard basis:

A(U)|AW) =(- 1)(U,w)|AW>, OZ(U)|AW> = |Aw+v>y |AI5> — |£2|1/22—15/2 E ei(vr/4)|u||u>
one can easily see that,A,)=|A,) if we L1, otherwise ueLd
ITp/A,)=0. On the other hand],]A,) does not vanish and e )
depends only on the coset @} that containsv. There are =223 (juy+e "™ |u+[1])).
only two such cosets inC; (becausel; =L,®[1], see uely
Lemma 1, and the corresponding projected states are To summarize, the distillation subroutine consists of the
IASY = [ £,|T1 A o) = 2 A, following steps.
\| ol ver, (1) Measure eigenvalues of the Pauli operatef§x;]),
d“([xx]) (for j,k=1,2,3,4. The outcomes determine tloé
syndrome u e E
AL = LT A1) = \’|£2| % A (30) (2) Find w= w(,u) e F3° such that(w,v)=u(v) for anyv
vere S Ez.
The stategA5 ;) form an orthonormal basis of the code sub-  (3) Apply the correcting operatoi(w)".
space. The projections &) for we £; onto the code sub-  (4) Measure eigenvalues of the operater§[x]). The
space are given by these formulas: outcomes determine th& syndrome,n e El
(5) Declare failure ifp+# 0, otherwise proceed to the next
1A, = if we L, step.
1A = ’@|A0> =2 (6) Apply the decoding transformation, which takes the

022316-11



S. BRAVYI AND A. KITAEV

code subspace to the Hilbert space of one qubit.

The subroutine succeeds with probability

ps= 2 €1 -gPl.

1
vely

(31

In the case of success, it produces the normalized output

state
Pout= (1= Eout)|AO><AO| + 6outJA1><Al| (32
characterized by the error probability
cou=Ps' 2 €519 (33

vely

The sums in Eqs(31) and(33) are special forms of so-
called weight enumerators. Theeight enumeratoof a sub-
spaceL C ') is a homogeneous polynomial of degneén
two variables, namely

W, (x,y) = > xP iyl

uel
In this notation,
W, (6,1 -¢)
Ps=Weile,l-€), €u= m

The MacWilliams identityf 30] relates the weight enumerator
of £ to that of £+:

1
WX +y,x-y).

WL(X:y) = |£J_|

Applying this identity and taking into account thét =£,
@®[1] and thatju|=0(mod 2 for anyu e £, (see Lemma Ji

we get
1,
€out= 2 .

(34)

The weight enumerator of the subspa€e is particularly
simple:

W, (1-261)
W, (1,1-2)

ps= 1 We, (1,1~ 20)

W, (x,y) = x'0+ 15¢"y®.

Substituting this expression into E¢34), we arrive at the
following formulas:

_1+151-2¢)?8
Ps= 16 ; (35)
1-151-2¢)" +151-2¢)8 - (1-2¢)*°
€out— . (36)

2[1+151 - 2¢)8]

The functione,{€) is plotted in Fig. 3. Solving the equation
€ut €)= € numerically, we find the threshold error probabil-
ity:

€~ 0.141. (37)
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FIG. 3. The final error probabilitg,(€) for the H-type states

distillation.

0.5

Let us examine the asymptotic properties of this scheme.
For small e the distillation subroutine succeeds with prob-
ability close to 1, therefore the yield is close to 1/15. The
output error probability is

€out= 35€°. (39)
Now suppose that the subroutine is applied recursively. From
n copies of the statp with a givene, we distill one copy of
the magic stat@¢A,) with the final error probability

1 [
"3—5‘(v35e>3k, 15=n,
J

GOUt(na 6) =~
wherek is the number of recursion levelbere we neglect
the fluctuations in the number of successful distillation at-
tempts. Solving these equation, we obtain the relation

eouln,€) ~ (\V350™, £=1/log15~0.4. (39

It characterizes the efficiency of the distillation scheme.

VII. CONCLUSION AND SOME OPEN PROBLEMS

We have studied a simplified model of fault-tolerant quan-
tum computation in which operations from the Clifford
group are realized exactly, whereas decoherence occurs only
during the preparation of nontrivial ancillary states. The
model is fully characterized by a one-qubit density matrix
describing these states. It is shown that a good strategy for
simulating universal quantum computation in this model is
“magic states distillation.” By constructing two particular
distillation schemes we find a threshold polarization pof
above which the simulation is possible.

The most exciting open problem is to understand the com-
putational power of the model in the region of parameters
1<|px|+|py|+|pz|<3/\s’7 (which corresponds &< F(p)
<F, see Sec.)| In this region, the distillation scheme based
on the five-quit code does not work, while the Gottesman-
Knill theorem does not yet allow the classical simulation.
One possibility is that a transition from classical to universal
quantum behavior occurs on the octahedron boundayy,

+|py|+]p]=1.
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To prove the existence of such a transition, one it sufficegclearly, |S,(5)|=4°=|S(5)|/2 since elements of(5) may
to construct aT-type states distillation scheme having thehave a plus or minus sign For eachge S,(5) let |g
threshold fldel|tyFT A systematic way of constructing such <[0,5] be the number of qubits on whighacts nontrivially
schemes is to replace the five-qubit bys&(4)-linear stabi- (e.g.|c*®*@¥®1®1|=3). We have
lizer code. A nice property of these codes is that the bitwise

application of the operatdr preserves the code subspace and .. 1 1\ld
acts on the encoded qubit ssee Ref[31] for more details. [ ToX(Tol = 5 > —5 g
One can check that the error-correcting effect described in 955 \ V

Sec. V takes place for an arbitrary @linear stabilizer .
code, provided that the number of qubitsis6k—1 for any EOW Ietbus exFEJaSndhthiljolr_mulal@ for the pr?jlethOLH'
integer k. Unfortunately, numerical simulations we per- D€Note byGC P(S) the Abelian group generated by the sta-

formed for some codes with=11 andn=17 indicate that PiliZ€rs $1,5,,S;,S,. It consists of 16 elements. Repeatedly
the threshold fidelity increases as the number of qubits inconjugating the stabilize®, by the operatoff =T#5, we get
creases. So it may well be the case that the five-qubit code tbree elements o&:

the best GH)-linear code as far as the distillation is con-

cerned. S =® R I,

From the experimental point of view, an exciting open
problem is to design a physical system in which reliable
storage of quantum information and its processing by Clif-
ford group operations is possible. Since our simulation

SSS =R ® R,

scheme tolerates strong decoherence on the ancilla prepara- $S =R FR I,
tion stage, such a system would be a good candidate for a
practical quantum computer. Due to the cyclic symmetry mentioned in Sec. V, the 15

cyclic permutations of these elements also belon@jdo-

gether with the identity operator they exhaust the gr@up
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been supported in part by the National Science Foundation

under Grant No. EIA-0086038. 16h§G h.

ACKNOWLEDGMENTS

APPENDIX o
Taking into account that Tgh) =26, for any g,h e S,(5),
The purpose of this section is to prove E(5). Let us e get

introduce this notation:

- - ~ A 1 B
[ To> = Tooooo @nd|Ty) = |T11119- (Tl Tg) = > > > 3ldETr(gh) = E 32 ==
heG geS,(5) geG
Consider the se$,(5) C S(5) consisting of all possible tensor R R
products of the Pauli operators*,d¥,0” on five qubits Similar calculations show thaﬂ'l|H|T1):%.
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