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We consider a model of quantum computation in which the set of elementary operations is limited to
Clifford unitaries, the creation of the stateu0l, and qubit measurement in the computational basis. In addition,
we allow the creation of a one-qubit ancilla in a mixed stater, which should be regarded as a parameter of the
model. Our goal is to determine for whichr universal quantum computationsUQCd can be efficiently simu-
lated. To answer this question, we construct purification protocols that consume several copies ofr and
produce a single output qubit with higher polarization. The protocols allow one to increase the polarization
only along certain “magic” directions. If the polarization ofr along a magic direction exceeds a threshold value
sabout 65%d, the purification asymptotically yields a pure state, which we call a magic state. We show that the
Clifford group operations combined with magic states preparation are sufficient for UQC. The connection of
our results with the Gottesman-Knill theorem is discussed.
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I. INTRODUCTION AND SUMMARY

The theory of fault-tolerant quantum computation defines
an important number called the error threshold. If the physi-
cal error rate is less than the threshold valued, it is possible
to stabilize computation by transforming the quantum circuit
into a fault-tolerant form where errors can be detected and
eliminated. However, if the error rate is above the threshold,
then errors begin to accumulate, which results in rapid deco-
herence and renders the output of the computation useless.
The actual value ofd depends on the error correction scheme
and the error model. Unfortunately, this number seems to be
rather small for all known schemes. Estimates vary from
10−6 ssee Ref.f1gd to 10−4 ssee Refs.f2–4gd, which is hardly
achievable with the present technology.

In principle, one can envision a situation in which qubits
do not decohere, and a subset of the elementary gates is
realizedexactlydue to special properties of the physical sys-
tem. This scenario could be realized experimentally using
spin, electron, or other many-body systems with topologi-
cally ordered ground states. Excitations in two-dimensional
topologically ordered systems are anyons—quasiparticles
with unusual statistics described by nontrivial representa-
tions of the braid group. If we have sufficient control of
anyons, i.e., are able to move them around each other, fuse
them, and distinguish between different particle types, then
we can realize some set of unitary operators and measure-
ments exactly. This set may or may not be computationally
universal. While the universality can be achieved with suffi-
ciently nontrivial types of anyonsf5–8g, more realistic sys-
tems offer only decoherence protection and an incomplete set
of topological gates.sSee Refs.f9,10g about non-Abelian
anyons in quantum Hall systems and Refs.f11,12g about
topological orders in Josephson junction arrays.d Neverthe-
less, universal computation is possible if we introduce some

additional operationsse.g., measurements by Aharonov-
Bohm interferencef13g or some gates that are not related to
topology at alld. Of course, these nontopological operations
cannot be implemented exactly and thus are prone to errors.

In this situation, the threshold error rated may become
significantly larger than the values given above because we
need to correct only errors of certain special type and we
introduce a smaller amount of error in the correction stage.
The main purpose of the present paper is to illustrate this
statement by a particular computational model.

The model is built upon theClifford group—the group of
unitary operators that map the group of Pauli operators to
itself under conjugation. The set of elementary operations is
divided into two parts:O=OidealøOfaulty. Operations from
Oideal are assumed to be perfect. We list these operations
below:

sid prepare a qubit in the stateu0l;
sii d apply unitary operators from the Clifford group;
siii d measure an eigenvalue of a Pauli operatorssx,sy,

or szd on any qubit.
Here we mean nondestructive projective measurement.

We also assume that no errors occur between the operations.
It is well known that these operations are not sufficient for

universal quantum computationsUQCd sunless a quantum
computer can be efficiently simulated on a classical com-
puterd. More specifically, the Gottesman-Knill theorem states
that by operations fromOideal one can only obtain quantum
states of a very special form calledstabilizer states. Such a
state can be specified as an intersection of eigenspaces of
pairwise commuting Pauli operators, which are referred to as
stabilizers. Using the stabilizer formalism, one can easily
simulate the evolution of the state and the statistics of mea-
surements on a classical probabilistic computerssee Ref.
f14g or a textbookf15g for more detailsd.

The setOfaulty describes faulty operations. In our model, it
consists of just one operation: prepare an ancillary qubit in a
mixed stater. The stater should be regarded as a parameter
of the model. From the physical point of view,r is mixed
due to imperfections of the preparation proceduresentangle-
ment of the ancilla with the environment, thermal fluctua-
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tions, etc.d. An essential requirement is that by preparingn
qubits we obtain the stater^n, i.e., all ancillary qubits are
independent. The independence assumption is similar to the
uncorrelated errors model in the standard fault-tolerant com-
putation theory.

Our motivation for including all Clifford group gates into
Oideal relies mostly on the recent progress in the fault-tolerant
implementation of such gates. For instance, using a concat-
enated stabilizer code with good error correcting properties
to encode each qubit and applying gates transversallysso that
errors do not propagate inside code blocksd one can imple-
ment Clifford gates with an arbitrary high precision, see Ref.
f16g. However, these nearly perfect gates act onencoded
qubits. To establish a correspondence with our model, one
needs to prepare anencodedancilla in the stater. It can be
done using the schemes for fault-tolerant encoding of an ar-
bitrary knownone-qubit state described by Knill in Ref.f17g.
In the more recent paperf18g Knill constructed a scheme of
fault-tolerant quantum computation which combinessid the
teleported computing and error correction technique by Got-
tesman and Chuangf19g; sii d the method of purification of
CSS states by Dür and Briegelf20g; andsiii d the magic states
distillation algorithms described in the present paper. As was
argued in Ref.f18g, this scheme is likely to yield a much
higher value for the thresholdd sit may be up to 1%d.

Unfortunately, ideal implementation of the Clifford group
cannot be currently achieved in any realistic physical system
with a topological order. What universality classes of anyons
allow one to implement all Clifford group gatessbut do not
allow one to simulate UQCd is an interesting open problem.

To fully utilize the potential of our model, we allowadap-
tive computation. It means that a description of an operation
to be performed at stept may be a function of all measure-
ment outcomes at steps 1,… ,t−1. sFor even greater gener-
ality, the dependence may be probabilistic. This assumption
does not actually strengthen the model since tossing a fair
coin can be simulated usingOideald At this point, we need to
be careful because the proper choice of operations should not
only be defined mathematically—it should be computed by
someefficient algorithm. In all protocols described below,
the algorithms will actually be very simple.sLet us point out
that dropping the computational complexity restriction still
leaves a nontrivial problem: can we prepare an arbitrary mul-
tiqubit pure state with any given fidelity using only opera-
tions from the basisO?d

The main question that we address in this paper is as
follows: For which density matricesr can one efficiently
simulate universal quantum computation by adaptive compu-
tation in the basisO?

It will be convenient to use the Bloch sphere representa-
tion of one-qubit states:

r = 1
2sI + rxs

x + rys
y + rzs

zd.

The vectorsrx,ry,rzd will be referred to as thepolarization
vectorof r. Let us first consider the subset of states satisfy-
ing

urxu + uryu + urzu ø 1.

This inequality says that the vectorsrx,ry,rzd lies inside the
octahedronO with verticess±1, 0, 0d, s0, ±1, 0d, s0, 0, ±1d,

see Fig. 1. The six vertices ofO represent the six eigenstates
of the Pauli operatorssx,sy, andsz. We can prepare these
states by operations fromOideal only. Sincer is a convex
linear combinationsprobabilistic mixtured of these states, we
can preparer by operations fromOideal and by tossing a coin
with suitable weights. Thus we can rephrase the Gottesman-
Knill theorem in the following way.

Theorem 1. Suppose the polarization vectorsrx,ry,rzd of
the stater belongs to the convex hull ofs±1, 0, 0d, s0, ±1, 0d,
s0, 0, ±1d. Then any adaptive computation in the basisO can
be efficiently simulated on a classical probabilistic computer.

This observation leads naturally to the following question:
is it true that UQC can be efficiently simulated wheneverr
lies in the exterior of the octahedronO? In an attempt to
provide at least a partial answer, we prove the universality
for a large set of states. Specifically, we construct two par-
ticular schemes of UQC simulation based on a method which
we call magic states distillation. Let us start by defining the
magic states.

Definition 1. Consider pure statesuHl , uTlPC2 such that

uTlkTu =
1

2FI +
1
Î3

ssx + sy + szdG ,

and

uHlkHu =
1

2FI +
1
Î2

ssx + szdG .

The images ofuTl and uHl under the action of one-qubit
Clifford operators are called magic states ofT type andH
type, respectively.

fThis notation is chosen sinceuHl anduTl are eigenvectors
of certain Clifford group operators: the Hadamard gateH and
the operator usually denotedT, see Eq.s7d.g Denote the one-
qubit Clifford group byC1. Overall, there are 8 magic states
of T type, hUuTl ,UPC1j sup to a phased and 12 states ofH
type,hUuHl ,UPC1j, see Fig. 1. Clearly, the polarization vec-
tors of magic states are in one-to-one correspondence with
rotational symmetry axes of the octahedronO sH-type states
correspond to 180° rotations andT-type states correspond to
120° rotationsd. The role of magic states in our construction
is twofold. First, adaptive computation in the basisOideal
together with the preparation of magic statessof either typed
allows one to simulate UQCssee Sec. IIId. Second, by adap-

FIG. 1. Left: the Bloch sphere and the octahedronO. Right: the
octahedronO projected on thex−y plane. The magic states corre-
spond to the intersections of the symmetry axes ofO with the Bloch
sphere. The empty and filled circles representT-type andH-type
magic states, respectively.
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tive computation in the basisOideal one can “purify” imper-
fect magic states. It is a rather surprising coincidence that
one and the same state can comprise both of these properties,
and that is the reason why we call them magic states.

More exactly, a magic state distillation procedure yields
one copy of a magic stateswith any desired fidelityd from
several copies of the stater, provided that the initial fidelity
betweenr and the magic state to be distilled is large enough.
In the course of distillation, we use only operations from the
set Oideal. By constructing two particular distillation
schemes, forT-type andH-type magic states, respectively,
we prove the following theorems.

Theorem 2. Let FTsrd be the maximum fidelity betweenr
and aT-type magic state, i.e.,

FTsrd = max
UPC1

ÎkTuU†rUuTl.

Adaptive computation in the basisO=Oidealø hrj allows one
to simulate universal quantum computation whenever

FTsrd . FT = F1

2
S1 +Î3

7
DG1/2

< 0.910.

Theorem 3. Let FHsrd be the maximum fidelity betweenr
and anH-type magic state,

FHsrd = max
UPC1

ÎkHuU†rUuHl.

Adaptive computation in the basisO=Oidealø hrj allows one
to simulate universal quantum computation whenever

FHsrd . FH < 0.927.

The quantitiesFT andFH have the meaning of threshold
fidelity since our distillation schemes increase the polariza-
tion of r, converging to a magic state as long as the inequali-
ties FTsrd.FT or FHsrd.FH are fulfilled. If they are not
fulfilled, the process converges to the maximally mixed state.
The conditions stated in the theorems can also be understood
in terms of the polarization vectorsrx,ry,rzd. Indeed, let us
associate a “magic direction” with each of the magic states.
Then Theorems 2 and 3 say that the distillation is possible if
there is aT direction such that the projection of the vector
srx,ry,rzd onto thatT direction exceeds the threshold value
of 2FT

2−1<0.655, or if the projection on some of theH
directions is greater than 2FH

2 −1<0.718.
Let us remark that, although the proposed distillation

schemes are probably not optimal, the threshold fidelitiesFT
andFH cannot be improved significantly. Indeed, it is easy to
check that the octahedronO corresponding to probabilistic
mixtures of stabilizer states can be defined as

O = hr:FTsrd ø FT
* j,

where

FT
* = F1

2
S1 +Î1

3
DG1/2

< 0.888.

It means thatFT
* is a lower bound on the threshold fidelityFT

for any protocol distillingT-type magic states. Thus any po-
tential improvement to Theorem 2 may only decreaseFT

from 0.910 down toFT
* =0.888. From a practical perspective,

the difference between these two numbers is not important.
On the other hand, such an improvement would be of

great theoretical interest. Indeed, if Theorem 2 withFT re-
placed byFT

* is true, it would imply that the Gottesman-Knill
theorem provides necessary and sufficient conditions for the
classical simulation, and that a transition from classical to
universal quantum behavior occurs at the boundary of the
octahedronO. This kind of transition has been discussed in
context of a general error modelf21g. Our model is simpler,
which gives hope for sharper results.

By the same argument, one can show that the quantity

FH
* =

def

max
rPO

ÎkHuruHl = F1

2
S1 +Î1

2
DG1/2

< 0.924

is a lower bound on the threshold fidelityFH for any protocol
distilling H-type magic states.

A similar approach to UQC simulation was suggested in
Ref. f22g, where Clifford group operations were used to dis-
till the entangled three-qubit stateu000l+ u001l+ u010l
+ u100l, which is necessary for the realization of the Toffoli
gate.

The rest of the paper is organized as follows. Section II
contains some well-known facts about the Clifford group and
stabilizer formalism, which will be used throughout the pa-
per. In Sec. III we prove that magic states together with
operations fromOideal are sufficient for UQC. In Sec. IV
ideal magic are substituted by faulty ones and the error rate
that our simulation algorithm can tolerate is estimated. In
Sec. V we describe a distillation protocol forT-type magic
states. This protocol is based on the well-known five-qubit
quantum code. In Sec. VI a distillation protocol forH-type
magic states is constructed. It is based on a certain CSS
stabilizer code that encodes one qubit into 15 and admits a
nontrivial automorphismf23g. Specifically, the bitwise appli-
cation of a certainnon-Cliffordunitary operator preserves the
code subspace and effects the same operator on the encoded
qubit. We conclude with a brief summary and a discussion of
open problems.

II. CLIFFORD GROUP, STABILIZERS, AND SYNDROME
MEASUREMENTS

Let Cn denote then-qubit Clifford group. Recall that it is a
finite subgroup of Us2nd generated by the Hadamard gateH
sapplied to any qubitd, the phase-shift gateK sapplied to any
qubitd, and the controlled-not gateLssxd swhich may be ap-
plied to any pair qubitsd,

H =
1
Î2

S1 1

1 − 1
D, K = S1 0

0 i
D, Lssxd = S I 0

0 sxD .

s1d

The Pauli operatorssx,sy,sz belong toC1, for instance,sz

=K2 andsx=HK2H. ThePauli group Psnd,Cn is generated
by the Pauli operators acting onn qubits. It is knownf24g
that the Clifford groupCn augmented by scalar unitary op-
eratorseiwI coincides with the normalizer ofPsnd in the uni-
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tary group Us2nd. Hermitian elements of the Pauli group are
of particular importance for quantum error correction theory;
they are referred to asstabilizers. These are operators of the
form

±sa1 ^ ¯ ^ san, a j P h0,x,y,zj,

where s0= I. Let us denote bySsnd the set of alln-qubit
stabilizers:

Ssnd = hSP Psnd : S† = Sj.

For any two stabilizersS1,S2 we haveS1S2= ±S2S1 and S1
2

=S2
2= I. It is known that for any set of pairwise commuting

stabilizersS1,… ,SkPSsnd there exists a unitary operatorV
PCn such that

VSjV
† = szf jg, j = 1,…,k,

whereszf jg denotes the operatorsz applied to thej th qubit,
e.g.,szf1g=sz^ I ^ ¯ ^ I.

These properties of the Clifford group allow us to intro-
duce a very useful computational procedure which can be
realized by operations fromOideal. Specifically, we can per-
form a joint nondestructive eigenvalue measurement for any
set of pairwise commuting stabilizersS1,… ,SkPSsnd. The
outcome of such a measurement is a sequence of eigenvalues
l=sl1,… ,lkd, l j = ±1, which is usually called asyndrome.
For any given outcome, the quantum state is acted upon by
the projector

Pl = p
j=1

k
1

2
sI + l jSjd.

Now, let us consider a computation that begins with an
arbitrary state and consists of operations fromOideal. It is
clear that we can defer all Clifford operations until the very
end if we replace the Pauli measurements by general syn-
drome measurements. Thus the most general transformation
that can be realized byOideal is anadaptive syndrome mea-
surement, meaning that the choice of the stabilizerSj to be
measured next depends on the previously measured values of
l1,… ,l j−1. In general, this dependence may involve coin
tossing. Without loss of generality one can assume thatSj
commutes with all previously measured stabilizers
S1,… ,Sj−1 sfor all possible values ofl1,… ,l j−1 and coin
tossing outcomesd. Adaptive syndrome measurement has
been used in Ref.f25g to distill entangled states of a bipartite
system by local operations.

III. UNIVERSAL QUANTUM COMPUTATION WITH
MAGIC STATES

In this section, we show that operations fromOideal are
sufficient for universal quantum computation if a supply of
ideal magic states is also available. First, consider a one-
qubit state

uAul = 2−1/2su0l + eiuu1ld s2d

and suppose thatu is not a multiple ofp /2. We now describe
a procedure that implements the phase shift gate

Lseiud = S1 0

0 eiu D
by consuming several copies ofuAul and using only opera-
tions fromOideal.

Let ucl=au0l+bu1l be the unknown initial state which
should be acted on byLseiud. Prepare the stateuC0l= ucl
^ uAul and measure the stabilizerS1=sz^ sz. Note that both
outcomes of this measurement appear with probability 1/2.
If the outcome is “+1”, we are left with the state

uC1
+l = sau0,0l + beiuu1,1ld.

In the case of “−1” outcome, the resulting state is

uC1
−l = saeiuu0,1l + bu1,0ld.

Let us apply the gateLssxdf1,2g sthe first qubit is the control
oned. The above two states are mapped to

uC2
+l = Lssxdf1,2guC1

+l = sau0l + beiuu1ld ^ u0l,

uC2
−l = Lssxdf1,2guC1

−l = saeiuu0l + bu1ld ^ u1l.

Now the second qubit can be discarded, and we are left with
the stateau0l+be±iuu1l, depending upon the measured eigen-
value. Thus the net effect of this circuit is the application of
a unitary operator that is chosen randomly betweenLseiud
andLse−iud sand we know which of the two possibilities has
occurredd.

Applying the circuit repeatedly, we effect the transforma-
tions Lseip1ud, Lseip2ud,… for some integersp1,p2,… which
obey the random-walk statistics. It is well known that such a
random walk visits each integer with the probability 1. It
means that sooner or later we will getpk=1 and thus realize
the desired operatorLseiud. The probability that we will need
more thanN steps to succeed can be estimated ascN−1/2 for
some constantc.0. Note also that ifu is a rational multiple
of 2p, we actually have a random walk on a cyclic groupZq.
In this case, the probability that we will need more thanN
steps decreases exponentially withN.

The magic stateuHl can be explicitly written in the stan-
dard basis as

uHl = cosSp

8
Du0l + sinSp

8
Du1l. s3d

Note thatHKuHl=eip/8uA−p/4l. So if we are able to prepare
the stateuHl, we can realize the operatorLse−ip/4d. It does
not belong to the Clifford group. Moreover, the subgroup of
Us2d generated byLse−ip/4d andC1 is dense in Us2d. 1 Thus
the operators fromC1 andC2 together withLse−ip/4d consti-
tute a universal basis for quantum computation.

The magic stateuTl can be explicitly written in the stan-
dard basis:

1Recall that the action of the Clifford groupC1 on the set of
operators ±sx, ±sy, ±sz coincides with the action of rotational sym-
metry group of a cube on the set of unit vectors ±ex, ±ey, ±ez,
respectively.
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uTl = cosbu0l + eisp/4dsinbu1l, coss2bd =
1
Î3

. s4d

Let us prepare an initial stateuC0l= uTl ^ uTl and measure the
stabilizer S1=sz^ sz. The outcome +1 appears with prob-
ability p+=cos4b+sin4b=2/3. If theoutcome is −1, we dis-
card the reduced state and try again, using a fresh pair of
magic states.sOn average, we need three copies of theuTl
state to get the outcome +1.d The reduced state correspond-
ing to the outcome +1 is

uC1l = cosgu0,0l + i singu1,1l, g =
p

12
.

Let us apply the gateLssxdf1,2g and discard the second
qubit. We arrive at the state

uC2l = cosgu0l + i singu1l.

Next apply the Hadamard gateH:

uC3l = HuC2l = 2−1/2eigsu0l + e−2igu1ld = uA−p/6l.

We can use this state as described above to realize the op-
erator Lse−ip/6d. It is easy to check that Clifford operators
together withLse−ip/6d constitute a universal set of unitary
gates.

Thus we have proved that the sets of operations
Oidealø huHlj and Oidealø huTlj are sufficient for universal
quantum computation.

IV. ERROR ANALYSIS

To establish a connection between the simulation algo-
rithms described in Sec. III and the universality theorems
stated in the introduction we have to substituteideal magic
states byfaulty ones. Before doing that let us discuss the
ideal case in more detail. Suppose that a quantum circuit to
be simulated uses a gate basis in which the only non-Clifford
gate is the phase shiftLse−ip/4d or Lse−ip/6d. One can apply
the algorithm of Sec. III to simulate each non-Clifford gate
independently. To avoid fluctuations in the number of magic
states consumed at each round, let us set a limit ofK magic
states per round, whereK is a parameter to be chosen later.
As was pointed out in Sec. III, the probability for some par-
ticular simulation round to “run out of budget” scales as
exps−aKd for some constanta.0. If at least one simulation
round runs out of budget, we declare a failure and the whole
simulation must be aborted. Denote the total number of non-
Clifford gates in the circuit byL. The probabilitypa for the
whole simulation to be aborted can be estimated as

pa , 1 − f1 − exps− aKdgL , L exps− aKd ! 1,

provided thatL exps−aKd!1. We will assume

K * a−1ln L,

so the abort probability can be neglected.
Each time the algorithm requests an ideal magic state, it

actually receives a slightly nonideal one. Such nearly perfect
magic states must be prepared using the distillation methods

described in Secs. V and VI. Let us estimate an affordable
error rateeout for distilled magic states. Since there areL
non-Clifford gates in the circuit, one can tolerate an error
rate of the order 1/L in implementation of these gates.2 Each
non-Clifford gate requiresK, ln L magic states. Thus the
whole simulation is reliable enough if one chooses

eout , 1/sL ln Ld. s5d

What are the resources needed to distill one copy of a
magic state with the error rateeout? To be more specific, let
us talk aboutH-type states. It will be shown in Sec. VI that
the numbern of raw sundistilledd ancillas needed to distill
one copy of theuHl magic state with an error rate not ex-
ceedingeout scales as

n , flns1/eoutdgg, g = log315< 2.5,

see Eq.s39d. Taking eout from Eq. s5d, one gets

n , sln Ldg.

Since the whole simulation requiresKL,L ln L copies of
the distilleduHl state, we need

N , Lsln Ldg+1

raw ancillas overall.
Summarizing, the simulation theorems stated in the intro-

duction follow from the following resultssthe last one will
be proved laterd:

sid the circuits described in Sec. III allow one to simulate
UQC with the sets of operationsOidealø huHlj and
Oidealø huTlj;

sii d these circuits work reliably enough if the statesuHl
and uTl are slightly noisy, provided that the error rate does
not exceedeout,1/sL ln Ld;

siii d a magic state having an error rateeout can be pre-
pared from copies of the raw ancillary stater using the dis-
tillation schemes provided thatFTsrd.FT or FHsrd.FH.
The distillation requires resources that are polynomial in
ln L.

V. DISTILLATION OF T-TYPE MAGIC STATES

Suppose we are givenn copies of a stater, and our goal
is to distill one copy of the magic stateuTl. The polarization
vector of r can be brought into the positive octant of the
Bloch space by a Clifford group operator, so we can assume
that

rx,ry,rz ù 0.

In this case, the fidelity betweenr and uTl is the largest one
among allT-type magic states, i.e.,

FTsrd = ÎkTuruTl.

A related quantity,

2This fault tolerance does not require any redundancy in the
implementation of the circuitse.g., the use of concatenated codesd.
It is achived automatically because in the worst case the error prob-
ability accumulates linearly in the number of gates. In our model
only non-Clifford gates are faulty.
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e = 1 − kTuruTl =
1

2F1 −
1
Î3

srx + ry + rzdG ,

will be called theinitial error probability. By definition, 0
øeø1/2.

The output of the distillation algorithm will be some one-
qubit mixed staterout. To quantify the proximity betweenrout
and uTl, let us define afinal error probability:

eout = 1 − kTuroutuTl.

It will be certain function ofn ande. The asymptotic behav-
ior of this function for n→` reveals the existence of a
threshold error probability,

e0 =
1

2
S1 −Î3

7
D < 0.173,

such that fore,e0 the functioneoutsn,ed converges to zero.
We will see that for smalle,

eoutsn,ed , s5ednj
, j = 1/log2 30< 0.2. s6d

On the other hand, ife.e0, the output state converges to the
maximally mixed state, i.e., limn→`eoutsn,ed=1/2.

Before coming to a detailed description of the distillation
algorithm, let us outline the basic ideas involved in its con-
struction. The algorithm recursively iterates an elementary
distillation subroutine that transforms five copies of an im-
perfect magic state into one copy having a smaller error
probability. This elementary subroutine involves a syndrome
measurement for certain commuting stabilizersS1,S2,S3,S4
PSs5d. If the measured syndromesl1,l2,l3,l4d is non-
trivial sl j =−1 for somejd, the distillation attempt fails and
the reduced state is discarded. If the measured syndrome is
trivial sl j =1 for all jd, the distillation attempt is successful.
Applying a decoding transformationsa certain Clifford op-
eratord to the reduced state, we transform it to a single-qubit
state. This qubit is the output of the subroutine.

Our construction is similar to concatenated codes used in
many fault-tolerant quantum computation techniques, but it
differs from them in two respects. First, we do not need to
correcterrors—it suffices only todetectthem. Once an error
has been detected, we simply discard the reduced state, since
it does not contain any valuable information. This allows us
to achieve higher threshold error probability. Second, we do
not use quantum codes in the way for which they were origi-
nally designed: in our scheme, the syndrome is measured on
a product state.

The stateuTl is an eigenstate for the unitary operator

T = eip/4KH =
eip/4

Î2
S1 1

i − i
D P C1. s7d

Note thatT acts on the Pauli operators as follows:3

TsxT† = sz, TszT† = sy, TsyT† = sx. s8d

We will denote its eigenstates byuT0l and uT1l, so that

TuT0l = e+ip/3uT0l, TuT1l = e−ip/3uT1l,

uT0,1lkT0,1u =
1

2FI ±
1
Î3

ssx + sy + szdG .

Note that uT0l =
def

uTl and uT1l=syHuT0l are T-type magic
states.

Let us apply a dephasing transformation,

Dshd =
1

3
sh + ThT† + T†hTd, s9d

to each copy of the stater. The transformationD can be
realized by applying one of the operatorsI ,T,T−1 chosen
with probability 1/3 each. Since

DsuT0lkT1ud = DsuT1lkT0ud = 0,

we have

Dsrd = s1 − eduT0lkT0u + euT1lkT1u. s10d

We will assume that the dephasing transformation is applied
at the very first step of the distillation, sor has the forms10d.
Thus the initial state for the elementary distillation subrou-
tine is

rin = r^5 = o
xPh0,1j5

euxus1 − ed5−uxuuTxlkTxu, s11d

wherex=sx1,… ,x5d is a binary string,uxu is the number of
1’s in x, and

uTxl =
def

uTx1
l ^ ¯ ^ uTx5

l.

The stabilizersS1,… ,S4 to be measured on the staterin
correspond to the famous five-qubit code, see Refs.f26,27g.
They are defined as follows:

S1 = sx
^ sz

^ sz
^ sx

^ I ,

S2 = I ^ sx
^ sz

^ sz
^ sx,

S3 = sx
^ I ^ sx

^ sz
^ sz,

S4 = sz
^ sx

^ I ^ sx
^ sz. s12d

This code has a cyclic symmetry, which becomes explicit if
we introduce an auxiliary stabilizer,S5=S1S2S3S4=sz^ sz

^ sx ^ I ^ sx. Let L be the two-dimensional code subspace
specified by the conditionsSjuCl= uCl, j =1,…, 4, andP be
the orthogonal projector ontoL:

P =
1

16pj=1

4

sI + Sjd. s13d

It was pointed out in Ref.f16g that the operators

X̂ = ssxd^5, Ŷ = ssyd^5, Ẑ = sszd^5,

and

3The operator denoted byT in Ref. f16g does not coincide with
our T. They are related by the substitutionT→e−ip/4T† though.
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T̂ = sTd^5 s14d

commute withP, thus preserving the code subspace. More-

over, X̂,Ŷ,Ẑ obey the same algebraic relations as one-qubit

Pauli operators, e.g.,X̂Ŷ= iẐ. Let us choose a basis inL such

that X̂,Ŷ, and Ẑ become logical Pauli operatorssx,sy, and

sz, respectively. How does the operatorT̂ act in this basis?
From Eq.s8d we immediately get

T̂X̂T̂† = Ẑ, T̂ẐT̂† = Ŷ, T̂ŶT̂† = X̂.

ThereforeT̂ coincides with the logical operatorT up to an
overall phase factor. This factor is fixed by the condition that
the logicalT has eigenvaluese±isp/3d.

Let us find the eigenvectors ofT̂ that belong toL. Con-
sider two particular states fromL, namely

uT1
Ll = Î6PuT00000l, anduT0

Ll = Î6PuT11111l.

In the Appendix we show that

kT00000uPuT00000l = kT11111uPuT11111l =
1

6
, s15d

so that the statesuT0
Ll and uT1

Ll are normalized. Taking into

account thatfT̂,Pg=0 and that

T̂uTxl = eisp/3ds5−2uxuduTxl for all x P h0,1j5, s16d

we get

T̂uT1
Ll = Î6T̂PuT00000l = Î6PT̂uT00000l = e−ip/3uT1

Ll.

Analogously, one can check that

T̂uT0
Ll = e+ip/3uT0

Ll.

It follows that T̂ is exactly the logical operatorT, including
the overall phase, anduT0

Ll anduT1
Ll are the logical statesuT0l

and uT1l sup to some phase factors, which are not important
for usd. Therefore we have

uT0,1
L lkT0,1

L u = P
1

2FI ±
1
Î3

sX̂ + Ŷ + ẐdG . s17d

Now we are in a position to describe the syndrome mea-
surement performed on the staterin. The unnormalized re-
duced state corresponding to the trivial syndrome is as fol-
lows:

rs = PrinP = o
xPh0,1j5

euxus1 − ed5−uxuPuTxlkTxuP, s18d

see Eq.s11d. The probability for the trivial syndrome to be
observed is

ps = Tr rs.

Note that the statePuTxl is an eigenvector ofT̂ for any x

P h0,1j5. But we know that the restriction ofT̂ on L has
eigenvaluese±ip/3. At the same time, Eq.s16d implies that

T̂PuTxl = − PuTxl

wheneveruxu=1 or uxu=4. This eigenvalue equation is not a
contradiction only if

PuTxl = 0 for uxu = 1,4.

This equality can be interpreted as an error correction prop-
erty. Indeed, the initial staterin is a mixture of the desired
stateuT00000l and unwanted statesuTxl with uxu.0. We can
interpret the number of “1” components inx as a number of
errors. Once the trivial syndrome has been measured, we can
be sure that either no errors or at least two errors have oc-
curred. Such error correction, however, is not directly related
to the minimal distance of the code.

It follows from Eq. s16d that for uxu=2, 3 one has

T̂PuTxl=e±ip/3PuTxl, so thatPuTxl must be proportional to
one of the statesuT0

Ll, uT1
Ll. Our observations can be summa-

rized as follows:

PuTxl =5
6−1/2uT1

Ll, if uxu = 0,

0, if uxu = 1,

axuT0
Ll, if uxu = 2,

bxuT1
Ll, if uxu = 3,

0, if uxu = 4,

6−1/2uT0
Ll, if uxu = 5.

6 s19d

Here the coefficientsax,bx depend uponx in some way. The
output states18d can now be written as

rs = F1

6
e5 + e2s1 − ed3 o

x:uxu=2

uaxu2GuT0
LlkT0

Lu

+ F1

6
s1 − ed5 + e3s1 − ed2 o

x:uxu=3

ubxu2GuT1
LlkT1

Lu. s20d

To exclude the unknown coefficientsax andbx, we can use
the identity

uT0
LlkT0

Lu + uT1
LlkT1

Lu = P = o
xPh0,1j5

PuTxlkTxuP.

Substituting Eq.s19d into this identity, we get

o
x:uxu=2

uaxu2 = o
x:uxu=3

ubxu2 =
5

6
.

So the final expression for the output staters is as follows:

rs = F e5 + 5e2s1 − ed3

6
GuT0

LlkT0
Lu + F s1 − ed5 + 5e3s1 − ed2

6
G

3uT1
LlkT1

Lu. s21d

Accordingly, the probability to observe the trivial syndrome
is

ps =
e5 + 5e2s1 − ed3 + 5e3s1 − ed2 + s1 − ed5

6
. s22d

A decoding transformaion for the five-qubit code is a uni-
tary operatorVPC5 such that
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VL = C2
^ u0,0,0,0l.

In other words,V maps the stabilizersSj, j =2, 3, 4, 5 to

szf jg. The logical operatorsX̂,Ŷ,Ẑ are mapped to the Pauli
operatorssx,sy,sz acting on the first qubit. From Eq.s17d
we infer that

VuT0,1
L l = uT0,1l ^ u0,0,0,0l

smaybe up to some phased. The decoding should be followed
by an additional operatorA=syHPC1, which swaps the
statesuT0l and uT1l snote that for smalle the staters is close
to uT1

Ll, while our goal is to distilluT0ld. After that we get a
normalized output state

rout = s1 − eoutduT0lkT0u + eoutuT1lkT1u,

where

eout =
t5 + 5t2

1 + 5t2 + 5t3 + t5
, t =

e

1 − e
. s23d

The plot of the functioneoutsed is shown on Fig. 2. It
indicates that the equationeoutsed=e has only one nontrivial
solution,e=e0<0.173. The exact value is

e0 =
1

2
S1 −Î3

7
D .

If e,e0, we can recursively iterate the elementary distilla-
tion subroutine to produce as good an approximation to the

stateuT0l as we wish. On the other hand, ife.e0, the distil-
lation subroutine increases the error probability and itera-
tions converge to the maximally mixed state. Thuse0 is a
threshold error probability for our scheme. The correspond-
ing threshold polarization is 1−2e0=Î3/7<0.655. For a suf-
ficiently small e, one can use the approximationeoutsed
<5e2.

The probabilityps=pssed to measure the trivial syndrome
decreases monotonically from 1/6 fore=0 to 1/16 for e
=1/2, seeFig. 2. In the asymptotic regime wheree is small,
we can use the approximationps<pss0d=1/6.

Now the construction of the whole distillation scheme is
straightforward. We start fromn@1 copies of the stater
=s1−eduT0lkT0u+euT1lkT1u. Let us split these states into
groups containing five states each and apply the elementary
distillation subroutine described above to each group inde-
pendently. In some of these groups the distillation attempt
fails, and the outputs of such groups must be discarded. The
average number of “successful” groups is obviouslypssed
3sn/5d<n/30 if e is small. Neglecting the fluctuations of
this quantity, we can say that our scheme provides a constant
yield r=1/30 of output states that are characterized by the
error probabilityeoutsed<5e2. Therefore we can obtainr2n
states witheout<53e4, r3n states witheout<57e8, and so on.
We have created a hierarchy of states withn states on the
first level and four or fewer states on the last level. Letk be
the number of levels in this hierarchy andeout the error prob-
ability characterizing the states on the last level. Up to small
fluctuations, the numbersn,k,eout, ande are related by the
following obvious equations:

eout <
1
5s5ed2k

, rkn < 1. s24d

Their solution yields Eq.s6d.

VI. DISTILLATION OF H-TYPE MAGIC STATES

A distillation scheme forH-type magic states also works
by recursive iteration of a certain elementary distillation sub-
routine based on a syndrome measurement for a suitable sta-
bilizer code. Let us start with introducing some relevant cod-
ing theory constructions, which reveal an unusual symmetry
of this code and explain why it is particularly useful for
H-type magic states distillation.

Let F2
n be then-dimensional binary linear space andA be

a one-qubit operator such thatA2= I. With any binary vector
u=su1,… ,undPF2

n we associate then-qubit operator

Asud = Au1 ^ Au2 ^ ¯ ^ Aun.

Let su,vd=oi=1
n uivi mod 2 denote the standard binary inner

product. IfL#F2
n is a linear subspace, we denote byL' the

set of vectors which are orthogonal toL. The Hamming
weight of a binary vectoru is denoted byuuu. Finally, u·v
PF2

n designates the bitwise product ofu and v, i.e., su·vdi

=uivi.
A systematic way of constructing stabilizer codes was

suggested by Calderbank, Shor, and Steane, see Refs.
f28,29g. Codes that can be described in this way will be
referred to asstandard CSS codes. In addition, we consider

FIG. 2. The final error probabilityeout and the probabilityps to
measure the trivial syndrome as functions of the initial error prob-
ability e for the T-type states distillation.
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their images under an arbitrary unitary transformationV
PUs2d applied to every qubit. Such “rotated” codes will be
calledCSS codes.

Definition 2.Consider a pair of one-qubit Hermitian op-
eratorsA,B such that

A2 = B2 = I, AB= − BA,

and a pair of binary vector spacesLA,LB#F2
n, such that

su,vd = 0 for all u P LA,v P LB.

A quantum code CSSsA,LA;B,LBd is a decomposition

sC2d^n = %
mPLA

*

%
hPLB

*

Hsm,hd, s25d

where the subspaceHsm ,hd is defined by the conditions

AsuduCl = s− 1dmsuduCl, BsvduCl = s− 1dhsvduCl

for all uPLA andvPLB. The linear functionalsm andh are
referred to asA syndrome andB syndrome, respectively. The
subspaceHs0,0d corresponding to the trivial syndromesm
=h=0 is called the code subspace.

The subspacesHsm ,hd are well defined since the opera-
tors Asud andBsvd commute for anyuPLA andvPLB:

AsudBsvd = s− 1dsu,vdBsvdAsud = BsvdAsud.

The number of logical qubits in a CSS code is

k = log2fdim Hs0,0dg = n − dim LA − dim LB.

Logical operators preserving the subspacesHsm ,hd can be
chosen as

hAsud : u P LB
'/LAj and hBsvd : v P LA

'/LBj.

sBy definition, LA#LB
' and LB#LA

', so the factor spaces
are well defined.d In the case whereA and B are Pauli op-
erators, we get a standard CSS code. Generally,A=VszV†

and B=VsxV† for some unitary operatorVPSUs2d, so an
arbitrary CSS code can be mapped to a standard one by a
suitable bitwise rotation. By a syndrome measurement for a
CSS code we mean a projective measurement associated
with the decompositions25d.

Consider a CSS code such that some of the operators
Asud, Bsvd do not belong to the Pauli groupPsnd. Let us pose
this question: can one perform a syndrome measurement for
this code by operations fromOideal only? It may seem that
the answer is no, because by definition ofOideal one cannot
measure an eigenvalue of an operator unless it belongs to the
Pauli group. Surprisingly, this naive answer is wrong. In-
deed, imagine that we have measured part of the operators
Asud, Bsvd snamely, those that belong to the Pauli groupd.
Now we may restrict the remaining operators to the subspace
corresponding to the obtained measurement outcomes. It
may happen that the restriction of some unmeasured operator
Asud, which does not belong to the Pauli group, coincides

with the restriction of some other operatorÃsũdP Psnd. If

this is the case, we can safely measureÃsũd instead ofAsud.
The 15-qubit code that we use for the distillation is actually
the simpleststo our knowledged CSS code exhibiting this

strange behavior. We now come to an explicit description of
this code.

Consider a functionf of four Boolean variables. Denote
by ffgPF2

15 the table of all values off exceptfs0000d. The
table is considered as a binary vector, i.e.,

ffg = „fs0001d, fs0010d, fs0011d,…, fs1111d….

Let L1 be the set of all vectorsffg, wheref is a linear func-
tion satisfyingfs0d=0. In other words,L1 is the linear sub-
space spanned by the four vectorsfxjg, j =1, 2, 3, 4swherexj

is an indicator function for thej th input bitd:

L1 = linear spansfx1g,fx2g,fx3g,fx4gd.

Let alsoL2 be the set of all vectorsffg, where f is a poly-
nomial of degree at most 2 satisfyingfs0d=0. In other words,
L2 is the linear subspace spanned by the four vectorsfxjg and
the six vectorsfxixjg:

L2 = linear spansfx1g,fx2g,fx3g,fx4g,fx1x2g,fx1x3g,

fx1x4g,fx2x3g,fx2x4g,fx3x4gd. s26d

The definition ofL1 andL2 resembles the definition of punc-
tured Reed-Muller codes of order 1 and 2, respectively, see
Ref. f30g. Note also thatL1 is the dual space for the 15-bit
Hamming code. The relevant properties of the subspacesL j
are stated in the following lemma.

Lemma 1.
s1d For anyuPL1 one hasuuu;0smod 8d.
s2d For anyvPL2 one hasuvu;0smod 2d.
s3d Let f1g be the unit vectors1, 1,…, 1, 1d. Then L1

'

=L2 % f1g andL2
'=L1 % f1g.

s4d For any vectorsu,vPL1 one hasuu·vu;0smod 4d.
s5d For any vectorsuPL1 and vPL2

' one hasuu·vu
;0smod 4d.

Proof.
s1d Any linear function f on F2

4 satisfying fs0d=0 takes
value 1 exactly eight timessif f Þ0d or zero timessif f =0d.

s2d All basis vectors ofL2 have weight equal to 8sthe
vectors fxigd or 4 sthe vectorsfxixjgd. By linearity, all ele-
ments ofL2 have even weight.

s3d One can easily check that all basis vectors ofL1 are
orthogonal to all basis vectors ofL2, thereforeL1#L2

',
L2#L1

'. Besides, we have already proved thatf1gPL1
' and

f1gPL2
'. Now the statement follows from dimension count-

ing, since dimL1=4 and dimL2=10.
s4d Without loss of generality we may assume thatuÞ0

andvÞ0. If u=v, the statement has been already proved, see
property 1. If uÞv, then u=ffg, v=fgg for some linearly
independent linear functionsf andg. We can introduce new
coordinatessy1,y2,y3,y4d on F2

4 such thaty1= fsxd and y2

=gsxd. Now uu·vu= ufy1y2gu=4.
s5d Let uPL1 andvPL2

'. SinceL2
'=L1 % f1g, there are

two possibilities:vPL1 andv=f1g+w for somewPL1. The
first case has been already considered. In the second case we
have
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uu ·vu = o
j=1

15

ujs1 − wjd = uuu − uu ·wu.

It follows from properties 1 and 4 thatuu·vu;0smod 4d. h

Now consider the one-qubit Hermitian operator

A =
1
Î2

ssx + syd = S 0 e−isp/4d

e+isp/4d 0
D = e−1sp/4dKsx,

whereK is the phase shift gate, see Eq.s1d. By definition,A
belongs to the Clifford groupC1. One can easily check that
A2= I andAsz=−szA, so the code CSSssz,L2;A,L1d is well
defined. We claim that its code subspace coincides with the
code subspace of a certain stabilizer code.

Lemma 2.Consider the decomposition

sC2d^15 = %
mPL2

*

%
hPL1

*

Hsm,hd,

associated with the code CSSssz,L2;A,L1d and the decom-
position

sC2d^15 = %
mPL2

*

%
hPL1

*

Gsm,hd,

associated with the stabilizer code CSSssz,L2;sx,L1d. For
any syndromehPL1

* one has

Hs0,hd = Gs0,hd.

Moreover, for anymPL2
* there exists somewPF2

15 such that
for any hPL1

*

Hsm,hd = AswdGs0,hd. s27d

This Lemma provides a strategy to measure a syndrome
of the code CSSssz,L2;A,L1d by operations fromOideal.
Specifically, we measurem si.e., thesz part of the syndromed
first, computew=wsmd, apply Aswd†, measureh using the
stabilizerssxsfxjgd, and applyAswd.

Proof of the lemma. Consider an auxiliary subspace,

H = %
hPL1

*

Hs0,hd = %
hPL1

*

Gs0,hd,

corresponding to the trivialsz syndrome for both CSS codes.
Each stateuClPHs0d can be represented as

uCl = o
vPL2

'

cvuvl,

where cv are some complex amplitudes anduvl
= uv1,… ,v15l are vectors of the standard basis. Let us show
that

AsuduCl = sxsuduCl for any uCl P H, u P L1.

To this end, we representA assxeip/4K†. For anyuPL1 and
vPL2

' we have

Asuduvl = sxsudeisp/4duuu−isp/2duu·vuuvl = sxsuduvl,

becauseuuu;0smod 8d and uu·vu;0smod 4d ssee Lemma 1,
parts 1 and 5d.

Since for anyuPL1 the operatorsAsud andsxsud act on
H in the same way, their eigenspaces must coincide, i.e.,
Hs0,hd=Gs0,hd for any hPL1

* .
Let us now consider the subspaceHsm ,hd for arbitrary

mPL2
* , hPL1

* . By definition, m is a linear functional on
L2#F2

15; we can extend it to a linear functional onF2
15, i.e.,

represent it in the formmsvd=sw,vd for somewPF2
15. Then

for any uClPHsm ,hd, vPL2, anduPL1 we have

szsvdAswd†uCl = s− 1dsw,vdAswd†szsvduCl = Aswd†uCl,

AsudAswd†uCl = Aswd†AsuduCl = s− 1dhsvdAswd†uCl

sassz andA anticommuted, henceAswd†uClPHs0,hd. Thus

Hsm,hd = AswdHs0,hd = AswdGs0,hd.

h
Lemma 2 is closely related to an interesting property of

the stabilizer code CSSssz,L2;sx,L1d, namely the existence
of a non-Clifford automorphismf23g. Consider a one-qubit
unitary operatorW such that

WszW† = sz andWsxW† = A.

It is defined up to an overall phase and obviously does not
belong to the Clifford groupC1. However, the bitwise appli-
cation ofW, i.e., the operatorW^15, preserves the code sub-
spaceGs0,0d. Indeed,W^15Gs0,0d corresponds to the trivial
syndrome of the code

CSSsWszW†,L2;WsxW†,L1d = CSSssz,L2;A,L1d.

ThusW^15Gs0,0d=Hs0,0d. But Hs0,0d=Gs0,0d due to the
lemma.

Now we are in a position to describe the distillation
scheme and to estimate its threshold and yield. Suppose we
are given 15 copies of the stater, and our goal is to distill
one copy of anH-type magic state. We will actually distill
the state,

uA0l =
1
Î2

su0l + ei4
p
u1ld = ei8

p
HK†uHl.

Note thatuA0l is an eigenstate of the operatorA; specifically,
AuA0l= uA0l. Let us also introduce the state

uA1l = szuA0l,

which satisfiesAuA1l=−uA1l. Since the Clifford groupC1 acts
transitively on the set ofH-type magic states, we can assume
that the fidelity betweenr and uA0l is the maximum one
among allH-type magic states, so that
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FHsrd = ÎkA0uruA0l.

As in Sec. V we define the initial error probability

e = 1 − fFHsrdg2 = kA1uruA1l.

Applying the dephasing transformation

Dshd =
1

2
sh + AhA†d

to each copy ofr, we can guarantee thatr is diagonal in the
hA0,A1j basis, i.e.,

r = Dsrd = s1 − eduA0lkA0u + euA1lkA1u.

SinceAPC1, the dephasing transformation can be realized
by operations fromOideal. Thus our initial state is

rin = r^15 = o
uPF2

15

euuus1 − ed15−uuuuAulkAuu, s28d

whereuAul= uAu0
l ^ ¯ ^ uAu15

l.
According to the remark following the formulation of

Lemma 2, we can measure the syndromesm ,hd of the code
CSSssz,L2;A,L1d by operations fromOideal only. Let us fol-
low this scheme, omitting the very last step. So, we begin
with the staterin, measurem, compute w=wsmd, apply
Aswd†, and measureh. We consider the distillation attempt
successful ifh=0. The measured value ofm is not important
at this stage. In fact, for anymPL2

* the unnormalized post-
measurement state is

rs = PAswd†rinAswdP = PrinP.

In this equationP is the projector onto the code subspace
Hs0,0d=Gs0,0d, i.e., P=PzPA for

Pz =
1

uL2u o
vPL2

szsvd, PA =
1

uL1u o
uPL1

Asud. s29d

Let us compute the staters=PrinP. Since

AsuduAwl = s− 1dsu,wduAwl, szsvduAwl = uAw+vl,

one can easily see thatPAuAwl= uAwl if wPL1
', otherwise

PAuAwl=0. On the other hand,PzuAwl does not vanish and
depends only on the coset ofL2 that containsw. There are
only two such cosets inL1

' sbecauseL1
'=L2 % f1g, see

Lemma 1d, and the corresponding projected states are

uA0
Ll = ÎuL2uPzuA0¯0l =

1

ÎuL2u
o

vPL2

uAvl,

uA1
Ll = ÎuL2uPzuA1¯1l =

1

ÎuL2u
o

vPL2

uAv+f1gl. s30d

The statesuA0,1
L l form an orthonormal basis of the code sub-

space. The projections ofuAwl for wPL1
' onto the code sub-

space are given by these formulas:

PuAwl =
1

ÎuL2u
uA0

Ll if w P L2,

PuAwl =
1

ÎuL2u
uA1

Ll if w P L2 + f1g.

Now the unnormalized final staters=PrinP can be ex-
panded as

rs
1

uL2u o
vPL2

s1 − ed15−uvueuvuuA0
LlkA0

Lu

3+
1

uL2u o
vPL2

e15−uvus1 − eduvuuA1
LlkA1

Lu.

The distillation succeeds with probability

ps = uL2uTr rs = o
vPL1

'

e15−uvus1 − eduvu.

sThe factoruL2u reflects the number of possible values ofm,
which all give rise to the same staters.d

To complete the distillation procedure, we need to apply a
decoding transformation that would map the two-
dimensional subspaceHs0,0d, sC2d^15 onto the Hilbert
space of one qubit. Recall thatHs0,0d=Gs0,0d is the code
subspace of the stabilizer code CSSssz,L2;sx,L1d. Its logi-
cal Pauli operators can be chosen as

X̂ = ssxd^15, Ŷ = ssyd^15, Ẑ = − sszd^15.

It is easy to see thatX̂,Ŷ,Ẑ obey the correct algebraic rela-
tions and preserve the code subspace. The decoding can be

realized as a Clifford operatorVPC15 that mapsX̂,Ŷ,Ẑ to
the Pauli operatorssx,sy,sz acting on the first qubit.sThe
remaining 14 qubits become unentangled with the first one,
so we can safely disregard them.d Let us show that the logi-
cal stateuA0

Ll is transformed intouA0l sup to some phased. For

this, it suffices to check thatkA0
LuX̂uA0

Ll=kA0usxuA0l,
kA0

LuŶuA0
Ll=kA0usyuA0l, and kA0

LuẐuA0
Ll=kA0uszuA0l. Verifying

these identities becomes a straightforward task if we repre-
sentuA0

Ll in the standard basis:

uA0
Ll = uL2u1/22−15/2 o

uPL2
'

eisp/4duuuuul

= 2−5/2 o
uPL1

suul + e−isp/4duu + f1gld.

To summarize, the distillation subroutine consists of the

following steps.
s1d Measure eigenvalues of the Pauli operatorsszsfxjgd,

szsfxjxkgd sfor j ,k=1,2,3,4d. The outcomes determine thesz

syndrome,mPL2
* .

s2d Find w=wsmdPF2
15 such thatsw,vd=msvd for any v

PL2.
s3d Apply the correcting operatorAswd†.
s4d Measure eigenvalues of the operatorssxsfxjgd. The

outcomes determine theA syndrome,hPL1
* .

s5d Declare failure ifhÞ0, otherwise proceed to the next
step.

s6d Apply the decoding transformation, which takes the
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code subspace to the Hilbert space of one qubit.

The subroutine succeeds with probability

ps = o
vPL1

'

e15−uvus1 − eduvu. s31d

In the case of success, it produces the normalized output
state

rout = s1 − eoutduA0lkA0u + eoutuA1lkA1u s32d

characterized by the error probability

eout = ps
−1 o

vPL2

e15−uvus1 − eduvu. s33d

The sums in Eqs.s31d and s33d are special forms of so-
called weight enumerators. Theweight enumeratorof a sub-
spaceL#F2

n is a homogeneous polynomial of degreen in
two variables, namely

WLsx,yd = o
uPL

xn−uuuyuuu.

In this notation,

ps = WL1
'se,1 −ed, eout =

WL2
se,1 −ed

WL1
'se,1 −ed

.

The MacWilliams identityf30g relates the weight enumerator
of L to that ofL':

WLsx,yd =
1

uL'u
WL'sx + y,x − yd.

Applying this identity and taking into account thatL2
'=L1

% f1g and thatuuu;0smod 2d for anyuPL1 ssee Lemma 1d,
we get

ps =
1

16
WL1

s1,1 − 2ed, eout =
1

2S1 −
WL1

s1 − 2e,1d

WL1
s1,1 − 2edD .

s34d

The weight enumerator of the subspaceL1 is particularly
simple:

WL1
sx,yd = x15 + 15x7y8.

Substituting this expression into Eq.s34d, we arrive at the
following formulas:

ps =
1 + 15s1 − 2ed8

16
, s35d

eout =
1 − 15s1 − 2ed7 + 15s1 − 2ed8 − s1 − 2ed15

2f1 + 15s1 − 2ed8g
. s36d

The functioneoutsed is plotted in Fig. 3. Solving the equation
eoutsed=e numerically, we find the threshold error probabil-
ity:

e0 < 0.141. s37d

Let us examine the asymptotic properties of this scheme.
For small e the distillation subroutine succeeds with prob-
ability close to 1, therefore the yield is close to 1/15. The
output error probability is

eout < 35e3. s38d

Now suppose that the subroutine is applied recursively. From
n copies of the stater with a givene, we distill one copy of
the magic stateuA0l with the final error probability

eoutsn,ed <
1

Î35
sÎ35ed3k

, 15k < n,

wherek is the number of recursion levelsshere we neglect
the fluctuations in the number of successful distillation at-
temptsd. Solving these equation, we obtain the relation

eoutsn,ed , sÎ35ednj
, j = 1/log315< 0.4. s39d

It characterizes the efficiency of the distillation scheme.

VII. CONCLUSION AND SOME OPEN PROBLEMS

We have studied a simplified model of fault-tolerant quan-
tum computation in which operations from the Clifford
group are realized exactly, whereas decoherence occurs only
during the preparation of nontrivial ancillary states. The
model is fully characterized by a one-qubit density matrixr
describing these states. It is shown that a good strategy for
simulating universal quantum computation in this model is
“magic states distillation.” By constructing two particular
distillation schemes we find a threshold polarization ofr
above which the simulation is possible.

The most exciting open problem is to understand the com-
putational power of the model in the region of parameters
1, urxu+ uryu+ urzuø3/Î7 swhich corresponds toFT

* ,FTsrd
øFT, see Sec. Id. In this region, the distillation scheme based
on the five-quit code does not work, while the Gottesman-
Knill theorem does not yet allow the classical simulation.
One possibility is that a transition from classical to universal
quantum behavior occurs on the octahedron boundary,urxu
+ uryu+ urzu=1.

FIG. 3. The final error probabilityeoutsed for the H-type states
distillation.
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To prove the existence of such a transition, one it suffices
to construct aT-type states distillation scheme having the
threshold fidelityFT

* . A systematic way of constructing such
schemes is to replace the five-qubit by aGFs4d-linear stabi-
lizer code. A nice property of these codes is that the bitwise
application of the operatorT preserves the code subspace and
acts on the encoded qubit asT, see Ref.f31g for more details.
One can check that the error-correcting effect described in
Sec. V takes place for an arbitrary GFs4d-linear stabilizer
code, provided that the number of qubits isn=6k−1 for any
integer k. Unfortunately, numerical simulations we per-
formed for some codes withn=11 andn=17 indicate that
the threshold fidelity increases as the number of qubits in-
creases. So it may well be the case that the five-qubit code is
the best GFs4d-linear code as far as the distillation is con-
cerned.

From the experimental point of view, an exciting open
problem is to design a physical system in which reliable
storage of quantum information and its processing by Clif-
ford group operations is possible. Since our simulation
scheme tolerates strong decoherence on the ancilla prepara-
tion stage, such a system would be a good candidate for a
practical quantum computer.
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APPENDIX

The purpose of this section is to prove Eq.s15d. Let us
introduce this notation:

uT̂0l = uT00000l and uT̂1l = uT11111l.

Consider the setS+s5d,Ss5d consisting of all possible tensor
products of the Pauli operatorssx,sy,sz on five qubits

sclearly, uS+s5du=45= uSs5du /2 since elements ofSs5d may
have a plus or minus signd. For eachgPS+s5d let ugu
P f0,5g be the number of qubits on whichg acts nontrivially
se.g., usx ^ sx ^ sy ^ I ^ I u=3d. We have

uT̂0lkT̂0u =
1

25 o
gPS+s5d

S 1
Î3

Dugu

g.

Now let us expand the formulas13d for the projectorP.
Denote byG, Ps5d the Abelian group generated by the sta-
bilizers S1,S2,S3,S4. It consists of 16 elements. Repeatedly

conjugating the stabilizerS1 by the operatorT̂=T^5, we get
three elements ofG:

S1 = sx
^ sz

^ sz
^ sx

^ I ,

S1S3S4 = sz
^ sy

^ sy
^ sz

^ I ,

S3S4 = sy
^ sx

^ sx
^ sy

^ I .

Due to the cyclic symmetry mentioned in Sec. V, the 15
cyclic permutations of these elements also belong toG; to-
gether with the identity operator they exhaust the groupG.
ThusG,S+s5d, and we have

P =
1

16 o
hPG

h.

Taking into account that Trsghd=25dg,h for any g,hPS+s5d,
we get

kT̂0uPuT̂0l =
1

29 o
hPG

o
gPS+s5d

3−ugu/2Trsghd =
1

16 o
gPG

3−ugu/2 =
1

6
.

Similar calculations show thatkT̂1uPuT̂1l= 1
6.
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