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In several recent papers on entanglement in relativistic quantum systems and relativistic Bell’s inequalities,
relativistic Bell-type two-particle states have been constructed in analogy to nonrelativistic states. These con-
structions do not have the form suggested by relativistic invariance of the dynamics. Two relativistic formu-
lations of Bell-type states are shown for massive particles, one using the standard Wigner spin basis and one
using the helicity basis. The construction hinges on the use of Clebsch-Gordan coefficients of the Poincaré
group to reduce the direct product of two unitary irreducible representationssUIRsd into a direct sum of UIRs.

DOI: 10.1103/PhysRevA.71.022312 PACS numberssd: 03.67.Mn, 03.65.Ud, 11.80.Et

I. INTRODUCTION

Relativistic quantum-information theory is a field of
growing interestssee the reviewf1gd. Tracing back to Bell’s
famous reimagining of the Einstein-Podolosky-RosensEPRd
paradox, a standard system of interest is two particles with
spins entangled due to their production in decay or scatter-
ing. Various authors have considered the entanglement of
two relativistic particlesf2–11g. In this paper, we present a
general scheme for constructing relativistic entangled bases
that respects the Poincaré invariance of the dynamics that
produces the entanglement.

In analogy to the nonrelativistic casef12g, the authors of
f2,3,5,6,8,10,11g consider a basis for “EPR states” or “Bell-
type states” for two relativistic spin-1/2 particles with the
form of one or more of the following states:

uc00l =
1
Î2

sup1,↑l ^ up2,↑l + up1,↓l ^ up2,↓ld,

uc01l =
1
Î2

sup1,↑l ^ up2,↓l + up1,↓l ^ up2,↑ld,

uc10l =
1
Î2

sup1,↑l ^ up2,↑l − up1,↓l ^ up2,↓ld,

uc11l =
1
Î2

sup1,↑l ^ up2,↓l − up1,↓l ^ up2,↑ld, s1d

where the three-momentum is considered in the center-of-
masssc.m.d framep1=−p2. Since in the nonrelativistic case,
the spin degrees of freedom and momentum degrees of free-
dom are independent, states likes1d are useful in the analysis
of dynamically entangled states far from the scattering or
decay region because the interaction will be diagonal in total
intrinsic spins. Then the first three states form a basis for the
s=1 triplet subspace in the c.m. frame and the last one cor-
responds to thes=0 singlet c.m. subspace. Even though the
statess1d are not eigenstates of the total angular momentum,
their transformation properties under rotations are still
straightforwardssee belowd.

However, in the relativistic case the separation of the an-
gular momentum of a particle between orbital and spin is
frame dependent and the value of the spin component de-
pends on the momentum of the particle. In other words,
Poincaré covariant dynamics require the dynamics to be di-
agonal in the total c.m. energy squareds and the total angu-
lar momentumj f13g. Interactions are diagonal inj , and so
any particular scattering or decay channel will be in a partial
wave specified byj . Therefore, the basis vectors of the par-
tial waves are an alternate choice of bases for relativistic
entangled states that has a closer connection to the physical
dynamics that cause the entanglement.

Several of these authors give meaning toup1, ↑ l in Eq. s1d
as an element of the nonunitary spinor representations of the
Poincaré group. Others work withup1, ↑ l as anssingular,
non-normalizabled element of a unitary irreducible represen-

tation sUIRd of the restricted Poincaré groupP̃+
↑. In this pa-

per, we will work with UIRs of P̃+
↑. Then the process of

reducing direct product states like Eq.s1d to partial waves is
carried out by finding the Clebsch-Gordan coefficients

sCGCsd for P̃+
↑. In general, direct products of UIRs are re-

ducible, a common example being the direct product of two
UIRs Hs j1d and Hs j2d of the rotation group being decom-
posed into a direct sum of UIRs:

Hs j1d ^ Hs j2d = %
j=u j1−j2u

j1+j2
Hs jd j1j2

, s2d

where Hs jd j1j2
is labeled by the invariants of the original

UIRs. The CGCs for the rotation group then show how to
expand direct product vectors in terms of direct sum vectors,
and vice versa. Although more complicated for the noncom-

pact groupP̃+
↑, similar decompositions are possible. The ba-

sis vectors for the UIRs in the direct sum spaces, reexpressed
using the CGCs, form a natural basis for describing entangle-
ment produced by Poincaré invariant dynamics.

In what follows, the necessary details of single-particle
UIRs will be briefly reviewed. Then an overview of Clebsch-

Gordan coefficients and the reduction problem forP̃+
↑ will be

given, followed by the explicit form of the CGCs using spin-
orbit coupling in the Wigner spin basis and using helicity
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coupling in the helicty basis. As an example, the last section
will explicitly show the two basis vectors corresponding to
the center-of-mass frame of aj =0 composition, and the 12
center-of-mass frame basis vectors of the four direct sum
UIRs with j =1.

II. ONE-PARTICLE RELATIVISTIC STATES

The results in this section are well known and trace back
to Wigner’s seminal workf14g on classifying the unitary
irreducible representations of the Poincaré group. We review
these results briefly to clarify notation, to focus on the defi-
nition of the spin-component operator, and to correct mis-
taken assumptions made inf4–6,11g.

Here we work exclusively with the proper, orthochronous,

quantum-mechanicalsi.e., projectived Poincaré groupP̃+
↑

which is isomorphic to the semidirect product SLs2,Cd+R4.
We will denote these elements assa ,ad, wherea[SLs2,Cd
anda[R4. The group multiplication law is

sa8,a8dsa,ad = „a8a,a8 + Lsa8da…, s3d

where Lsad[SOs1,3d is a well-known two-to-one homo-
morphismf15g. The subset SUs2d,SLs2,Cd corresponds to
the rotation subgroup of transformations;a[R4 is the trans-
lation subgroup.

Representations ofP̃+
↑ are constructed using the method of

induced representations, first carried out by Wignerf14g and
generalized by Mackeyf16g. The technique relies on build-

ing the representation for the full groupP̃+
↑ from representa-

tions of a subgroup, for massive representations typically
chosen to beH=SUs2d3R4 ssee f13,15,17g for detailsd.
Here we consider only positive energy representations.

The unitary representation ofP̃+
↑ is the direct sum of uni-

tary irreducible representations on which the Casimir invari-
ants of the Poincaré algebra act as multiples of the identity.
The two invariant operators are identified as the mass
squaredM2=PmPm and the negative square of the Pauli-
Lubanski vectorW2=−wmwm, where the four-vectorw is

wm = sP ·J,HJ − P 3 K d s4d

andPm=sH ,Pd. We will consider UIRs with positive definite
mass labeled bys=m2 and intrinsic spinj such that for all
vectors in the representation spacef[Fss , jd,

M2f = sf andW2f = s js j + 1df. s5d

The representation spaceFss , jd is typically endowed with a
topology given by the scalar product norm and is therefore
the Hilbert spaceHss , jd. Since we wish to use the non-
normalizable basis vectors of momentum, technically we
must work with a dense subspaceFss , jd,Hss , jd with a
stronger topology that allows for the nuclear spectral theo-
rem and the continuity of the Poincaré algebrasfor the gen-
eral details of rigged Hilbert spaces or Gel’fand triplets, see
f18g; for details relevant to the Poincaré algebra seef19gd.
Since we are dealing with group representationssas opposed
to, for example, semigroup representationsd this will have no
practical effect on the calculations other than giving the

eigenstates of continuous observables a proper mathematical
definition.

Within a particular UIR, a complete set of commuting
operatorssCSCOd is chosen of the form

hM2,W2,P,S3sPdj,

where the operatorS3sPd is a function of the generators of
the Poincaré group and is constructed as

SmsPd = Îs−1U„asPd…wmU−1
„asPd… = Îs−1L„asPd…m

n wn.

s6d

The operator U(asPd) fand its 434 representation
L(asPd)m

n g is an operator associated with a particular “boost”
elementaspd. SincefPm ,wng=0, P can be replaced with its
eigenvaluep whenS3sPd acts on a momentum eigenvector.
The Poincaré group elementaspd has the property that it
boosts the four-momentum in the rest framepR=sm,0d to
final momentump, i.e.,

L„aspd…pR = p. s7d

The choice ofaspd is not unique. Foru[SUs2d, the group
elementaspdu also satisfies Eq.s7d. The four-momentum
hyperboloidp2=s is isomorphic to the left coset spaceQ
=SLs2,Cd /SUs2d and the particular left cosetQspd=haspdj
contains all elements that satisfy Eq.s7d.

Specifying which representative elementaspd of Qspd to
use in Eq.s6d gives different physical meanings for the spin
componentf20,21g. Choosingaspd to be,spd, defined as

,spd = Ssmpm

m
D1/2

=
m̂+ smpm

h2mfm+ Esspdgj−1/2 s8d

fwhere sm=s12,sd, m=Îs, m̂=m12, p=(Esspd ,p), Esspd
=Îs+p2, andp2=p2g means thatL(,spd)=Lspd is the stan-
dard, rotation-free boost used inf3–6,10g. Then we call
SisPd=SisPd, and physically it is theith spin component in
the particle rest frame.

The choice for CSCOhM2,W2,P,S3sPdj leads to the
Wigner three-momentum spin basis for the expansion of the
representation spaceFss , jd. If f[Fss , jd are chosen to be
elements of the Schwartz space of “well-behaved” functions
of the momentum, then improper eigenvectorsupxfs jgl, or
Dirac eigenkets, of this CSCO are elements ofF3ss , jd, the
linear topological dual ofFss , jd, and have the following
properties:

M2upxfs jgl = supxfs jgl,

W2upxfs jgl = s js j + 1dupxfs jgl,

Pupxfs jgl = p upxfs jgl,

S3sPdupxfs jgl = xupxfs jgl. s9d

Another choice for the representative element of the coset
Qspd is hspd=rspd, spzd, where pz=(Esspd ,0 ,0 ,p) and
rspd[SUs2d is the rotation that takes the three-axis into the
direction ofp:
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rspd = e−ifs3/2e−ius2/2, s10d

where p =pssinu cosf ,sinu sinf ,cosud and si are Pauli
matrices. Then the spin operator is transformed into the he-
licity operator:

S3sPd = HsPd =
J ·P

uPu
. s11d

The CSCO hM2,W2,P,HsPdj leads to the helicity basis
uplfs jgl, with the only difference that

HsPduplfs jgl = luplfs jgl. s12d

An advantage of the helicity basis is thathspd is well defined
even for massless particles whereas,spd is not.

One can convert between the helicity basis and the
Wigner spin basis using

upxfs jgl = o
l

Dlx
j (r−1spd)uplfs jgl, s13d

whereDj is the s2j +1dth-dimensional representation of the
quantum-mechanical rotationr[SUs2d. Other bases are
possible, such as the front-form basissseef21g for a review
of this matterd, but this work will focus on the Wigner spin
and helicity bases. Much of what is described in the rest of
this section holds whether the Wigner spin basis or helicity
basis is chosen and therefore we will use the notationj to
stand for eitherx or l.

Choosing a relativistically invariant normalization

kp8,j8fs, jgupjfs jgl = 2Espdd3sp8 − pddj8j s14d

gives the following form to the expansion of a vector
f[Fss , jd with invariant measure:

f = o
j
E d3p

2Espd
upjfs jglkpjfs jguf. s15d

For f[Fss , jd andupxfs jgl[F3ss , jd fthe topological dual
of Fss , jdg, the Poincaré transformations then are represented
in this infinite-dimensional basis as

Usa,adfxspd = kpxfs jguUsa,adufl

= eip·ao
x8

Dx8x
j sW„a,L−1sadp…dfx8„L

−1sadp…,

s16ad

or equivalently

Usa,adupxfs jgl = e−iLsadp·ao
x8

Dx8x
j (Wsa,pd)uLsadp,x8fs, jgl,

s16bd

whereWsa ,pd[SUs2d is the Wigner rotation. The Wigner
rotation depends on the choice of representantaspd:

Wsa,pd = a−1
„Lsadp…aaspd, s17d

whereaspd= , spd in the Wigner spin basis andaspd=hspd in
the helicty basis. For clarity, we will sometimes denote these
two different Wigner rotations associated with the same Lor-

entz transformation and momentum but different boosts as
W,sa ,pd andWhsa ,pd. In f4g, it was correctly noted that for
u[SUs2d

W,su,pd = 1, s18d

which is one advantage of the Wigner spin basis. However, it
is not correct to say that the transformations16d associated
with a pure rotation does not depend on the momentum,
because the momentum is implicitly included in the defini-
tion of the spin component.

Finally, we note that in nonrelativistic quantum mechan-
ics, one can write basis vectors of momentum and spin as
direct products like

upl ^ ujl s19d

and these transform under the group of Galilean transforma-
tions. Galilean boosts and space-time translations act only on
the momentum degrees of freedom whereas rotations act on
both the momentum space and spin space. Rotations are not
complicated by the momentum dependence of the spin defi-
nition and are implemented as

Usrdupl ^ ujl = uRsrdpl ^ o
j8

Dj8j
j srdujl, s20d

wherer[SUs2d andRsrd[SOs3d. When considering UIRs

of P̃+
↑, not only is r in the rotation representation matrix

changed to a Wigner rotation, but the separations19d makes
no sense because of the implicit momentum dependence of
the spin component. Seef5,6,11g for examples where this
serroneousd direct product assumption is applied.

III. RELATIVISTIC TWO-PARTICLE BASES
AND CLEBSCH-GORDAN COEFFICIENTS

FOR THE POINCARÉ GROUP

The state space of a multiparticle system can be decom-

posed into a direct sum of irreducible representations ofP̃+
↑.

For example, for the direct product of two UIRs associated
with particles with massesmi and spinsj i, we havef17g

Fsm1
2, j1d ^ Fsm2

2, j2d = o
j=j0

` E
sm1 + m2d2

`

dmssdo
h

Fss, jdh.

s21d

The sum over total angular momentumj begins atj0=0 if
both particles are fermions or bosons and atj0=1/2 for an
unlike pair, and the integral is a direct integral over center-
of-mass energy squareds with measuredmssd. As we will
discuss in more detail below, a particular UIRFss , jd may
appear in the direct sum decomposition multiple times andh
labels this degeneracy.

Poincaré covariance of the interaction assures that any
dynamical entanglement will be constrained to UIRs in the
direct sum with particular values fors and j . All transition
amplitudes are diagonal ins and j because even the interact-
ing generators should satisfy the same commutation rules as
the noninteracting Poincaré algebra. Therefore, in this sec-
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tion we will use the Clebsch-Gordan coefficients forP̃+
↑ to

decompose two particle spaces into UIRs of the total genera-
tors and thereby obtain a set of entangled basis states with
fixed s and j that do not mix under any Poincaré transforma-
tion.

The CGCs transform from the direct product basis to the
direct sum basis. We make the following choice of notation
and normalization for the two-particle direct product states
valid for either the Wigner spin basis or helicity basissthe
single-particle invariants have been suppressed in the equa-
tions belowd:

k1 ^ 2u18 ^ 28l = kp1j1;p2j2up18j18;p28j28l

= 2E1sp1d2E2sp2dd3sp1 − p18dd
3sp2 − p28d

3dj1j18
dj2j28

. s22d

On the direct product vectors, the representation ofP̃+
↑ on

Fss1, j1d ^ Fss2, j2d fand its extension to F3ss1, j1d
^ F3ss2, j2dg is the direct product of the one-particle trans-
formation representationss16d

Usa,adu1 ^ 2l = U1sa,adup1j1l ^ U2sa,adup2j2l. s23d

The CSCO for this basis is the sum of the one-particle
CSCOs

hM1
2,W1

2,P1,S3sP1d1,M2
2,W2

2,P2,S3sP2d2j,

where, for example, the notationM1
2 implies the natural ex-

tension to the direct product spaceM1
2

^ I and whereS3
could mean either the Wigner spin operator or the helicity
operator.

There are many possible choices of CSCO for the direct
sum basis, but all have a form like

hM2,W2,P,S3sPd,h1
sopd,h2

sopd,M1
2,W1

2,M2
2,W2

2j. s24d

The Poincaré algebra from the total system is constructed
from the sums of the generators of the single-particle gen-
erators, i.e.,Pm=P1

m
^ I + I ^ P2

m. The total operatorsM2 and
W2 are again invariants specifying how transformations act
in the UIR, and the single-particle invariantsMi

2 andWi
2 are

also invariants of the total system, and so the direct sum
spaceFss , jdh implicitly also carries the labels of the one-
particle invariants. Additionally, there are two more opera-
tors hi

sopd that label the degeneracy of the UIR in the direct
sum. They depend on the choice made for the degeneracy
parametershi ssee belowd. Finally, there are the noninvariant
momentum and spin-component operators labeling the states
within the UIR spaceFss , jdh.

We choose the normalization eigenkets of the direct sum
CSCO in the following fashion:

ktut8l = kpjfs jh1h2gup8x8fs8 j8h18h28gl

= 2Esspdsd3sP − P8ddjj8dss − s8dd j j 8dh1h18
dh2h28

.

s25d

These kets obey the same transformation rules16d as the
one-particle UIRs:

Usa,adupjfs jh1h2gl

= e−iLsadp·ao
j8

Dj8j
j (Wsa,pd)uLsadpj8fs jh1h2gl.

s26d

The CGCs for the quantum-mechanical Poincaré group
then are the amplitudes

k1 ^ 2utl = kp1j1p2j2upxfs jh1h2gl.

Their structure clearly depends on how the one-particle UIRs
are constructedsand therewith the one-particle CSCOsd as
well as the choice of coupling scheme. A general scheme for

constructing the CGCs ofP̃+
↑ is the double-coset methodf16g

used inf17,22,23g. Whippmanf24g uses a nice alternative
technique involving group integration over representation
matrix elements.

The CGCs for the direct product of two distinguishable

representations ofP̃+
↑ can be split into a kinematics on nor-

malization term and an angular correlation term

k1 ^ 2utl = K12sp1p2;pdA12sp1j1p2j2;pj jh1h2d. s27d

The termK12 is the kinematic term involving momentum
conservation and will have the same form in any coupling
scheme. It depends on the normalizationss22d and s25d and
looks like

K12sp1p2;pd =
2Î2

Dss,s1,s2d1/4s2Esspdd3sp1 + p2 − pd

3d„sp1 + p2d2 − s…, s28d

where

Dss,s1,s2d = s2 + s1
2 + s2

2 − 2sss1 + ss2 + s1s2d.

Note that the magnitude of the center-of-mass momentum of
both particles is

k =ÎDss,s1,s2d
4s

.

A choice of phase convention has been made such thatK
=K* . The termA12 contains the information about the angu-
lar distribution and spin correlations and differs depending
on the choice of boost or spin component.

Working with the Wigner spin basis, the degeneracy can
be labeled according to the spin-orbit coupling scheme of
Joosf25g and MacFarlanef26g. In this scheme, the single-
particle generators can be combined to form total intrinsic
spin S and orbital angular momentumL operators, andh
=hs, lj are their eigenvalues. This choice has the advantage
that it is familiar from nonrelativistic quantum mechanics

and that, if the full Poincaré groupP̃ including discrete
transformations is allowed, there is a simple correspondence
betweenh and the eigenvalues of parity and charge parity
for the composite system.

In the helicity basis, important conventions were estab-
lished by Jacob and Wickf27g and have a long history of use
in partial wave analysis of scattering experiments. In the he-
licity coupling, theh are the eigenvalues of the two single-
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particle helicity operators in the rest frame of the system. We
will consider the CGCs associated with each choice of direct
sum basis.

A. Wigner basis spin-orbit coupling CGCs

In this basis, the CSCO is

hM2,W2,P,S3sPd,L 2,S2,M1
2,W1

2,M2
2,W2

2j, s29d

where L is the orbital angular momentum andS is the
coupled intrinsic spinssee f21g, p. 329 for an example of
their explicit construction in terms of the one-particle gen-
eratorsd.

For spin orbit-coupling, the angular term isf24,26g

A12sp1x1p2x2;px jlsd = o
x18x28

D
x18x1

j1 (usp,p1d)D
x28x2

j2
„usp,p2d…

3 o
l3s3

Cssj1j2;s3x18x28dCs jls;xl3s3d

3s− 1dxYll 3
„V̂sp1,p2d…, s30d

where the following conventions and notations have been
chosen.

s1d The rotationW,(,
−1spd ,pi) when applied to a single-

particle ketupi ,xil effects the mixing of the spin coordinates
when the basis vector for particlei is transformed into the
c.m. frame in which the spin coupling takes place. The argu-
mentusp,pid of the rotation matrixDji is then the inverse of
this Wigner rotation:

usp,pid = W,
−1
„,−1spd,pi…. s31d

s2d The CGCs for the rotation group are chosen according
to standard phase conventionssi.e., they are all reald. They
are

Cs j j 1j2;xx1x2d = kx1x2f j1j2guxf j j 1j2gl, s32d

wherex=x1+x2. These are used to couple the spins of the
two particles and to couple the total spin with the orbital
angular momentum.

s3d The spherical harmonicYll 3
sV̂d describes the angular

dependence on the orbital angular momentum and is a func-

tion of the unit-normalized relative momentume=s0,V̂d in
the barycentric frame:

esp1,p2d = S s

lss,s1,s2dD
1/2

L−1sp1 + p2dhp1 − p2

− fss1 − s2d/sgsp1 + p2dj. s33d

s4d The phase factors−1dx is introduced so that the direct
sum basis vectors transform in the usual way under time
reversalf28g.

Each vector inFss , jdls describes a particular kind of two-
particle entanglement and the basis vectors ofFss , jdls span
a space of entangled two-particle states that is invariant un-
der Poincaré transformations. This entanglement involves
both spin and momentum. An additional property of the spin-
orbit coupling scheme is that the spacesFss , jdls are eigen-

spaces of the parity and charge parity operatorf28g.

B. Helicty basis coupling CGCs

In this basis, the CSCO is

hM2,W2,P,HsPd,H1
c.m.,H2

c.m.,M1
2,W1

2,M2
2,W2

2j, s34d

whereHi
c.m. is the helicity of theith particle in the center-of-

mass frame and is invariant. Its eigenvalues arel̃i.
For helicity couplingf17,24,27g, the angular term has the

form

A12sp1l1p2l2;pl j l̃1l̃2d

= S2j + 1

4p
D1/2

o
l̃1l̃2

D
l̃1l1

j1 (usp,p1d)

3D
l̃2l2

j2
„usp,p2d… 3 D

lsl̃1−l̃2d
j

„rsV̂1d…, s35d

whereusp,p1d is the inverse Wigner rotations31d, but this
time calculated using the helicity boosthspd. The rotation

rsV̂1d is the rotation that performs a rotation of −f1 around

thez axis and then aligns thez axis with the directionV̂1; in
other words, using the standardzyzEuler angle form and the
Pauli matricessi f29g,

rsV̂1d = e−if1s3/2e−iu1s2/2eif1s3/2, s36d

and so

D
lsl̃1−l̃2d
j

„rsV̂1d… = e−ilf1d
lsl̃1−l̃2d
j su1deisl̃1−l̃2df1. s37d

The helicity coupling scheme does not produce eigen-
spaces of the discrete symmetries, but it is generalizable to
massless particles and more easily generalized to multipar-
ticle sN.2d direct productsf20,23,30,31g.

IV. BASIS VECTORS FOR DYNAMICALLY ENTANGLED
DECAY PRODUCTS

For the sake of specificity, consider the entanglement of
two particles due to the decay of a parent particle of massM
and spinj . Far from the decay site, there will be no interac-
tion between the decay products and the state spaceF12 will

TABLE I. Possible values ofl and s and assignment of parity
and charge parity eigenvalues withj =0 and 1 for UIRs appearing in
the direct sum decomposition of a spin-1/2 fermion-antifermion
pair.

j s l pP jC

0 0 0 2 1

1 1 1 1

1 0 1 1 2

1 0 2 2

1 1 1 2

1 2 2 1
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be a subspace of the direct product of the UIRs associated
with each daughter particleFsm1

2, j1d ^ Fsm2
2, j2d.F12.

However, because of the Poincaré covariance of the dynam-
ics, all elements ofF12 must have a c.m. energy squareds
=M2 and total angular momentumj , i.e.,

F12 = %
h[ds jd

FsM2, jdh. s38d

Further information about the dynamics may restrict the di-
rect sum to a single value ofh. For example, in the spin-orbit
coupling scheme,h determines the overall parity and charge
parity of the spacessee belowd.

The full mathematical details and explanation of the phe-
nomenological signatures of relativistic decay processes can
be described using the relativistic Gamow vectorf19g, an
element of an irreducible representation of the Poincaré
semigroup. Since we are just interested in the kinematic cor-
relations of the decay products, we can gloss over most of
the details of mathematical rigor without changing any con-
clusions.

In what follows, we will explore these basis vectors for a
simple case of a particle-antiparticle pair with massmi =m
and spinj i =1/2. In particular, we will look at the case that
the parent particle has spin eitherj =0 or j =1 and find the
basis vectors for the direct sum UIRs.

First we consider the spin-orbit coupling scheme for
Wigner spin vectors. Simplifying to the c.m. reference frame,
the rest vector of the composite statesupRxfs jlsgl[F3ss jdls

can be expressed using the CGCs in the following form:

upRxfs jlsgl = o
x1,x2

E d3p1d
3p2

4E1sp1dE2sp2d
up1x1;p2x2l

3K12sp1p2;pRdA12sp1x1p2x2;pRx jhd

=
Î2

2
D1/4ss,s1,s2d o

x1,x2

E d2V̂

3A12sp̃1x1p̃2x2;pRxjlsdup̃1x1; p̃2x2l, s39d

wherep̃1=(E1skd ,kV̂) and p̃2=(E2skd ,−kV̂). The factorA12

takes the simpler form

A12sp̃1x1p̃2x2;pRxjlsd = o
l3s3

Cssj1j2;s3x1x2dCs jls;xl3s3d

3s− 1dxYll 3
sV̂d s40d

in the c.m. frame since,spRd= I. Note that even in the c.m.
frame there is an implicit momentum dependence inA12 be-
cause of the spin components.

The possible values forl ands are implicit in the rotation
group CGCs,s[ h0,1j and ul −su, j , l +s. In this case, the
spacesFss , jdls are eigenspaces of the parity and charge par-
ity operator f28g with the parity pP=pP1pP2s−1dl =s−1dl+1

ssince the parities of fermions and antifermions are opposited
and charge parityjC=s−1dl+s. These six relevant UIRs
Fss , jdls are summarized in Table I.

For the two j =0 cases, the c.m. frame subspace of
Fss , jdls is spanned by a single vector:

upRxfs000gl =Î 1

8p
D1/4E d2V̂sup̃11/2;p̃2 − 1/2l

− up̃1 − 1/2;p̃21/2ld s41d

or

upRxfs011gl =Î 1

32p
D1/4E d2V̂ssinue−ifup̃11/2;p̃21/2l

− cosuup̃11/2;p̃2 − 1/2l

− cosuup̃1 − 1/2;p̃2 + 1/2l

− sinueifup̃1 − 1/2;p̃2 − 1/2ld s42d

where V̂=ssinu cosf ,sinu sinf ,cosud. The slsd=s00d
case looks like the typical spin singlet casesexcept for the

TABLE II. Angular part of CGCs for Wigner spin basis using spin-orbit coupling forj =1.

s l x up̃11/2;p̃21/2l up̃11/2;p̃2−1/2l up̃1−1/2;p̃21/2l up̃1−1/2;p̃2−1/2l

0 1 1 0 Î3/16p sinueif −Î3/16p sinueif 0

0 0 Î3/8p cosu −Î3/8p cosu 0

21 0 −Î3/16p sinue−if Î3/16p sinue−if 0

1 0 1 Î1/4p 0 0 0

0 0 Î1/8p Î1/8p 0

21 0 0 0 −Î1/4p

1 1 1 Î3/8p cosu Î3/16p sinueif Î3/16p sinueif 0

0 −Î3/16p sinue−if 0 0 −Î3/16p sinueif

21 0 Î3/16p sinue−if Î3/16p sinue−if −Î3/8p cosu

1 2 1 −Î1/8p s3/2 cos2 u− 1/2d −Î9/32p sinu cosueif −Î9/32p sinu cosueif −Î9/32p sin2 ue2if

0 Î9/16p sinu cosue−if −Î1/4p s3/2 cos2 u− 1/2d −Î1/4p s3/2 cos2 u− 1/2d −Î9/16p sinu cosueif

21 −Î9/32p sin2 ue−2if Î9/32p sinu cosue−if Î9/32p sinu cosue−if −Î1/8p s3/2 cos2 u− 1/2d
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momentum direction integrald, but thes11d is quite different
and shows explicitly the momentum dependence of the spin
correlations. Since the definition of the spin component in-
volves momentum, separating out momentum and spin cor-
relations may not be meaningful. Future work should decide
whether such a division can be measured and is meaningful,
and results on the ill-defined nature of spin entropy in rela-
tivistic systemsf32,33g suggest it will not be analogous to
the nonrelativistic case.

In Table II, we have included the angular coefficients of
the 12 basis vectors for the fourj =1 UIRs. Rotations will
create superpositions of these basis states, but no Poincaré
transformation will mix differentl ands values. These vec-
tors form sensible bases for dynamically entangled states.

Entangled bases can also be constructed with the helicity
basis and helicity coupling. In the center-of-mass frames35d
simplifies considerably since this coupling scheme relies on
the helicities of the component particles in the c.m. frame:

A12sp̃1l̃1p̃2l̃2;pRl j l̃1l̃2d = S2j + 1

4p
D1/2

D
lsl̃1−l̃2d
j

„rsV̂1d….

s43d

Using the analogous result from spin-orbit coupling in the
c.m. frames39d, we have

upRlfs j l̃1l̃2gl =E d3p1d
3p2

4E1sp1dE2sp2d
up1l̃1;p2l̃2lK12sp1p2;pRd

3A12sp1l̃1p2l̃2;pRl j l̃1l̃2d

=
Î2

2
l1/4E d2V̂

3A12sp̃1l̃1p̃2l̃2;pRl j l̃1l̃2dup̃1l̃1; p̃2l̃2l.

s44d

The angular parts of the CGCs are given in Table III. The
vectors of Eq.s44d using these angular coefficients are not
entangled, except in the most trival sense of opposite mo-
menta. However, any superposition of the vectors ofs44d for
a given j value will also show spin correlations. A typical
decay process will lead to such a superposition, and therefore
entanglement.

V. CONCLUSION

Constructions of entangled basis vectors are the first step
in calculations of Bell-type inequalities and their properties
under Lorentz transformations. Working with vectors like
s1d, a conclusion off3g is that entanglement fidelity is pre-
served, whereasf5,6g claim that entanglement is not invari-
ant under Lorentz boosts. The authors off2,5,6g use different

methods to come to the conclusion that Lorentz boosts re-
duce the amount of spin correlation and that entangled bipar-
tite systems may appear to satisfy Bell’s inequality to a
highly relativistic observer, whereasf8g show that perfect
santidcorrelations still appear if the correct measurements of
spin are made.

Some of this difference in opinion stems from a mistake
made by the authors off5,6g in expressing the state of a
particle as the direct product of the momentum state and the
spin state, as discussed above. However, another obscuring
issue, which this paper hopes to make clear, is that states like
s1d do not have the kinematic correlations that arise from
dynamic entanglement. For analysis of actual scattering and
decay experiments, basis vectors constructed using the CGCs

of P̃+
↑ have proved their usefulness many times, and it should

be no surprise that similar techniques will be required for
relativistic quantum information theory.

There are some results about entanglement measures and
spin entropy of these kinds of relativistic entangled states
sseef1g for a reviewd, but there are many more unanswered
questions. Future research by this author will present a rig-
orous solution to the properties of Bell’s inequalities under
Poincaré transformations and will consider appropriate mea-
sures for entanglement in systems like these.
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TABLE III. Angular part of CGCs for helicity basis using he-
licity coupling for j =0 and 1.

l̃1 l̃2 j l A12

+1/2 +1/2 0 0 Î1/4p

−1/2 −1/2 0 0 Î1/4p

+1/2 +1/2 1 1 −Î3/8pe−if sinu

0 Î3/4p cosu

21 Î3/8peif sinu

+1/2 −1/2 1 1 Î3/16ps1+cosud
0 Î3/8peif sinu

21 Î3/16pe2ifs1−cosud
−1/2 +1/2 1 1 Î3/16pe−2ifs1−cosud

0 −Î3/8pe−if sinu

21 Î3/16ps1+cosud
−1/2 −1/2 1 1 −Î3/8pe−if sinu

0 Î3/4p cosu

21 Î3/8peif sinu
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