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Basis states for relativistic dynamically entangled particles
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In several recent papers on entanglement in relativistic quantum systems and relativistic Bell's inequalities,
relativistic Bell-type two-particle states have been constructed in analogy to nonrelativistic states. These con-
structions do not have the form suggested by relativistic invariance of the dynamics. Two relativistic formu-
lations of Bell-type states are shown for massive particles, one using the standard Wigner spin basis and one
using the helicity basis. The construction hinges on the use of Clebsch-Gordan coefficients of the Poincaré
group to reduce the direct product of two unitary irreducible representalii®s) into a direct sum of UIRs.
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[. INTRODUCTION However, in the relativistic case the separation of the an-
f gular momentum of a particle between orbital and spin is

S : ; .. frame dependent and the value of the spin component de-
growing interestsee the review1]). Tracing back to Bell's pends on the momentum of the particle. In other words,

famous reimagining of the Einstein-Podolosky-Ro¢ERR Poincaré covariant dynamics require the dynamics to be di-

SP 1tang pro Y I?r momentumj [13]. Interactions are diagonal i and so
ing. Various authors have considered the entanglement q

two relativistic particleg2—11]. In this paper, we present a any particular scattering or decay channel will be in a partial

. Lo wave specified by. Therefore, the basis vectors of the par-
general scheme for constructing relativistic entangled base?al waves are an alternate choice of bases for relativistic

thritjtrjizps)etﬁ: érrlsarfolglr%aelﬁ invariance of the dynamics th%tntangled states that has a closer connection to the physical
P 9 o dynamics that cause the entanglement.

In analogy to the nonrelativistic cai?], the authors of Several of these authors give meanindgtp, 1) in Eq. (1)
[2,3,5,6,8,19,1]100n5|der a _bags fqr EPR states” or. Bell- as an element of the nonunitary spinor representations of the
type states” for two relativistic spin-1/2 particles with the Poincaré group. Others work witlp;, 1) as an(singular

. . . 1 y
form of one or more of the following states: non-normalizableelement of a unitary irreducible represen-
tation (UIR) of the restricted Poincaré grodp,. In this pa-

per, we will work with UIRs of P.. Then the process of
reducing direct product states like HG) to partial waves is
1 carried out by finding the Clebsch-Gordan coefficients
|4ho0) = T§(|I01aT> ® |p2, 1) +[p1 1) ® [p2,1)), (CGC3 for PL. In general, direct products of UIRs are re-
v ducible, a common example being the direct product of two
UIRs H(j,) and H(j,) of the rotation group being decom-

Relativistic quantum-information theory is a field o

1
oo = Eqpl,ﬂ @ P2 +Ipnl) @ [pal)),

|10 = %dpm ®[p2.1) = [pwl) @ P2 1)), posed into a direct sum of UIRs:
v i1tz
H(j) @ Hj) = & H(j)jljzv 2

1 i=lig-il
lip=—=(pu D @ [p2 = lpnl) @ [p21), (D) _ _ _ _ o
V2 where H(j); ;, is labeled by the invariants of the original

OH|RS. The CGCs for the rotation group then show how to
mass(c.m) framep,=—-p,. Since in the nonrelativistic case, expand direct product vectors in terms of direct sum vectors,

the spin degrees of freedom and momentum degrees of fretéé‘pd vice versa. .AI_though more c_c?mphcated for_the noncom-
dom are independent, states li& are useful in the analysis Pact groupP,, similar decompositions are possible. The ba-
of dynamically entangled states far from the scattering o8iS vectors for the UIRs in the direct sum spaces, reexpressed
decay region because the interaction will be diagonal in tota¥sing the CGCs, form a natural basis for describing entangle-
intrinsic spins. Then the first three states form a basis for thement produced by Poincaré invariant dynamics.

s=1 triplet subspace in the c.m. frame and the last one cor- In what follows, the necessary details of single-particle
responds to the=0 singlet c.m. subspace. Even though theUIRsS will be briefly reviewed. Then an overwev!of Clebsch-
states(1) are not eigenstates of the total angular momentumGordan coefficients and the reduction problem7mwill be

their transformation properties under rotations are stillgiven, followed by the explicit form of the CGCs using spin-
straightforward(see below. orbit coupling in the Wigner spin basis and using helicity

where the three-momentum is considered in the center-
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coupling in the helicty basis. As an example, the last sectiorigenstates of continuous observables a proper mathematical
will explicitly show the two basis vectors corresponding to definition.

the center-of-mass frame ofja&0 composition, and the 12

Within a particular UIR, a complete set of commuting

center-of-mass frame basis vectors of the four direct sunoperatorf CSCQ is chosen of the form

UIRs with j=1.

II. ONE-PARTICLE RELATIVISTIC STATES

The results in this section are well known and trace back

to Wigner's seminal wor{14] on classifying the unitary

irreducible representations of the Poincaré group. We review
these results briefly to clarify notation, to focus on the defi-
nition of the spin-component operator, and to correct mis

taken assumptions made [i#—6,11].

Here we work exclusively with the proper, orthochronous,

guantum-mechanicali.e., projectivé Poincaré groupﬁ
which is isomorphic to the semidirect product(8LC)+R4.
We will denote these elements @s,a), wherea € SL(2,()
anda€ R* The group multiplication law is

(a’,a")(a,a) = (a'a,@’ + A(a)a),

()

where A(a) €SQ(1,93) is a well-known two-to-one homo-
morphism[15]. The subset S{2) C SL(2,C) corresponds to
the rotation subgroup of transformatiorss= R* is the trans-
lation subgroup.

Representations 5321 are constructed using the method of
induced representations, first carried out by Wigriel and
generalized by Macke}16]. The technique relies on build-

ing the representation for the full groﬁﬁ from representa-

tions of a subgroup, for massive representations typically

chosen to beH=SU(2) X R* (see[13,15,17 for detail9.
Here we consider only positive energy representations.

The unitary representation @rl is the direct sum of uni-
tary irreducible representations on which the Casimir invari

ants of the Poincaré algebra act as multiples of the identitgard’
The two invariant operators are identified as the mas

squaredMZ:PMPf‘ and the negative square of the Pauli-
Lubanski VECtOt\NZZ—WMW'“, where the four-vectow is
w,=(P-J,H)-P XK) (4)

andP#=(H,P). We will consider UIRs with positive definite
mass labeled bg=n7 and intrinsic spinj such that for all
vectors in the representation spage &(s,j),

M?¢p=s¢ andW¢=sj(j + 1)¢b. (5

The representation spadgs, j) is typically endowed with a

{M 2!W2! P! E3( P)}!

where the operataE;(P) is a function of the generators of
the Poincaré group and is constructed as

3,(P) = s W (a(P)w,U ™ a(P)) = Vs A (a(P))!W,.
(6)

its 4x4 representation
A(a(P)),]is an operator associated with a particular “boost”
elementa(p). Since[P,,w,]=0, P can be replaced with its
eigenvalugp whenX;(P) acts on a momentum eigenvector.
The Poincaré group element(p) has the property that it
boosts the four-momentum in the rest framg=(m,0) to
final momentunyp, i.e.,

A(a(p))pr=p. (7)

The choice ofa(p) is not unique. Foue SU(2), the group
elementa(p)u also satisfies Eq(7). The four-momentum
hyperboloid p?=s is isomorphic to the left coset spacg
=SL(2,C)/SU(2) and the particular left cos&d(p)={a(p)}
contains all elements that satisfy Ha).

Specifying which representative elemer(ip) of Q(p) to
use in Eq.(6) gives different physical meanings for the spin
componen{20,21]. Choosinga(p) to be £(p), defined as

_ 1/2_ M+ O_,up’u
LRSS orim+ Es(p)]) 2

[where o#=(1,,0), m=vs, m=ml, p=(Es(p),p), Es(p)
=ys+p?, andp?=p?] means that\(¢(p))=L(p) is the stan-
rotation-free boost used {13—6,10. Then we call

i(P)=S(P), and physically it is theth spin component in
the particle rest frame.

The choice for CSCO{M?,W?,P,S;(P)} leads to the
Wigner three-momentum spin basis for the expansion of the
representation spack(s,j). If p€d(s,]j) are chosen to be
elements of the Schwartz space of “well-behaved” functions
of the momentum, then improper eigenvect{pg{sj]), or
Dirac eigenkets, of this CSCO are elementsiof(s, j), the
linear topological dual ofdb(s,j), and have the following
properties:

The operator U(a(P)) [and

op,
m

8

M2|px{sjT) = s|pxisiD),

topology given by the scalar product norm and is therefore

the Hilbert spaceH(s,j). Since we wish to use the non-

W2 px[sil) =sj(j + 1)|pxlsil),

normalizable basis vectors of momentum, technically we

must work with a dense subspadgs,j) CH(s,j) with a

Plpx(sil) =plpxlsjD,

stronger topology that allows for the nuclear spectral theo-

rem and the continuity of the Poincaré algelia the gen-

S;(P)|px[sil) = xIpxlsiD- 9

eral details of rigged Hilbert spaces or Gel'fand triplets, see

[18]; for details relevant to the Poincaré algebra EEg).
Since we are dealing with group representati@sopposed
to, for example, semigroup representatioifiss will have no

Another choice for the representative element of the coset

Q(p) is h(p)=p(p)€(p,), where p,=(Es(p),0,0,p) and
p(p) €SU(2) is the rotation that takes the three-axis into the

practical effect on the calculations other than giving thedirection ofp:
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p(p) =€ —ipodI2 —I002/2 (10) entz transformation and momentum but different boosts as

, W, (a,p) andW(a,p). In [4], it was correctly noted that for
where p=p(sin § cos¢,sindsin¢,cosp) and o' are Pauli yesy(©2)

matrices. Then the spin operator is transformed into the he-
licity operator: We(u,p) =1, (18)

which is one advantage of the Wigner spin basis. However, it
(11 is not correct to say that the transformatigi6) associated
IPI : :
with a pure rotation does not depend on the momentum,
The CSCO{M? W? P ,H(P)} leads to the helicity basis because the momentum is implicitly included in the defini-

23(P)=H(P) =

|pA[sj]), with the only difference that tion of the spin component.
) ) Finally, we note that in nonrelativistic quantum mechan-
H(P)[pX[sj]) = N|pA[sj]). (120 ics, one can write basis vectors of momentum and spin as
An advantage of the helicity basis is thep) is well defined ~ direct products like
even for massless particles wherégp) is not. p)® |8 (19)
One can convert between the helicity basis and the
Wigner spin basis using and these transform under the group of Galilean transforma-
_ tions. Galilean boosts and space-time translations act only on
Ipxlsil =2 D{X(p‘l(p))|p)\[sj]>, (13) the momentum degrees of freedom whereas rotations act on
A both the momentum space and spin space. Rotations are not

complicated by the momentum dependence of the spin defi-

whereD! is the (2] + 1)th-dimensional representation of the “%. g
nition and are implemented as

guantum-mechanical rotatiop& SU(2). Other bases are

possible, such as the front-form bagsee[21] for a review — j

of this mattey, but this work will focus on the Wigner spin Uiplp) & [6)=[R(p)p) @ 2 Df'g(p)@’ 20

and helicity bases. Much of what is described in the rest of

this section holds whether the Wigner spin basis or heliciiwherep € SU(2) andR(p) € SO(3). When considering UIRs

basis is chosen and therefore we will use the notafida  of P!, not only is p in the rotation representation matrix

stand for eithery or \. changed to a Wigner rotation, but the separatit® makes
Choosing a relativistically invariant normalization no sense because of the implicit momentum dependence of

(0, &[s,illpelsi] = 2E(p) &(p’ D) S (14) the spin component. S€&,6,11] for examples where this

(erroneousdirect product assumption is applied.
gives the following form to the expansion of a vector

pE d(s,]) with invariant measure:
ll. RELATIVISTIC TWO-PARTICLE BASES

_ E d3p 15 AND CLEBSCH-GORDAN COEFFICIENTS
b= 2E(p) (15 FOR THE POINCARE GROUP
For € d(s,j) and|pX[SJ]>Ed>X s,j) [the topological dual The state space of a multiparticle system can be decom-
of ®(s, )], the Poincaré transformations then are representegosed into a direct sum of irreducible representation®lof
in this infinite-dimensional basis as For example, for the direct product of two UIRs associated
) with particles with massesy and spinsj;, we have[17]
U(e,a)¢,(p) = (pxlsj]|U(e.a)|$) B
=P D!, (W(a, A™H(@)p) b, (A H@)p), (N, jy) ® DM, jp) = 2 du(s) 2 B(s,j),-
X' i=io  (my + mp)? n
(16a (21)

or equivalently The sum over total angular momentunbegins atj,=0 if

_ both particles are fermions or bosons and@t1/2 for an
U(a,a)|pxlsj]) = e M@pay D\, (W(a,p)|A(a)p,x'[s,j]),  unlike pair, and the integral is a direct integral over center-
X' of-mass energy squaredwith measuredu(s). As we will
(16  discuss in more detail below, a particular UiRs,j) may
i i i . appear in the direct sum decomposition multiple times and
Wher.eW(a,p)ESU(Z) is the _ngner rotation. The Wigner |5pels this degeneracy.
rotation depends on the choice of representep): Poincaré covariance of the interaction assures that any
_ -1 dynamical entanglement will be constrained to UIRs in the
Wlap) = a"(Ala)p)aa(p), (47 direct sum with particular values far and j. All transition
wherea(p) =€ (p) in the Wigner spin basis andp)=h(p) in amplitudes are diagonal mandj because even the interact-
the helicty basis. For clarity, we will sometimes denote theséng generators should satisfy the same commutation rules as
two different Wigner rotations associated with the same Lorthe noninteracting Poincaré algebra. Therefore, in this sec-
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tion we will use the Clebsch-Gordan coefficients oy to U(a,a)|p&sj mm.l)

decompose two particle spaces into UIRs of the total genera- _ _—iAa)p i R

tors and thereby obtain a set of entangled basis states with =€ paZ Dy (W(,p))|A(@)pE'[S] m72]) -
fixed s andj that do not mix under any Poincaré transforma- ¢

tion. (26)

The CGCs transform from the direct product basis to the . , .
. : ; ; . The CGCs for the quantum-mechanical Poincaré group
direct sum basis. We make the following choice of notation :
o . ! then are the amplitudes
and normalization for the two-particle direct product states
valid for either the Wigner spin basis or helicity bagike (1® 2|7) =(p1&1p2&l pPxISi mmal) -
single-particle invariants have been suppressed in the equ

tions below: %heir structure clearly depends on how the one-particle UIRs

are constructedand therewith the one-particle CSOG&s
(1® 2|1 ® 2"y =(p1&1; PotolPi&r; Préh) well as the choice of coupling scheme. A general scheme for

_ o oy constructing the CGCs 5?1 is the double-coset meth¢i6]
= 2E:(py)2Ex(P2) (P2~ P (P2~ P2) used in[17,22,23. Whippman[24] uses a nice alternative

X5§1§£5§z§§' (22 technique involving group integration over representation
~ matrix elements.
On the direct product vectors, the representatiorPpfon The CGCs for the direct product of two distinguishable

®(sy,j1) ®P(s,,j2) [and its extension tod*(s;,j;)  representations o can be split into a kinematics on nor-
®@®*(s,,j,)] is the direct product of the one-particle trans- malization term and an angular correlation term

formation representationtd6) (1@ 2|7) = Kyo(p1P2; P) A12(P1é1Padn; PEf mmp) . (27)

U(@a)l1® 2) =Us(@a)lpiéy) ® U@ d)lpatn). (23 g orm Ky, is the kinematic term involving momentum
The CSCO for this basis is the sum of the one-particleconservation and will have the same form in any coupling

CSCOs scheme. It depends on the normalizati¢28) and(25) and
looks like
{MZ,W},P1,35(P)1, M3, W5, Py, 35(P,) 23
where, for example, the notatidvi implies the natural ex- K12(p1P2;p) = WSZEJF))(SS(F)N P2-P)
tension to the direct product spadé®| and where3, b2
could mean either the Wigner spin operator or the helicity X &((p+P2)* - S), (28)
operator. where
There are many possible choices of CSCO for the direct
sum basis, but all have a form like A(s,51,8p) =2+ 52+ 55— 2(SS; +5S,+5;S,).

{M2WR,P,34(P), P, 7P M2 W2, M2, W3}, (24)  Note that the magnitude of the center-of-mass momentum of
both particles is
The Poincaré algebra from the total system is constructed
from the sums of the generators of the single-particle gen- K= |A(s,S1,52)
erators, i.e.P*=P{®1+| ® P4. The total operator$1? and 4s

W2 are again invariants specifying how transformations act : :
g pecifying A choice of phase convention has been made suchKhat

in the UIR, and the single-particle invarian&? andW? are ~ ~ ~ . . .
also invariants of the total system, and so the direct surrEl I:di;_rtr:ﬁ)SﬁgmnAéago:tﬁ:nsotx;ggrg::zt;%n da}?rgfst t(;‘: 223::1
spaced(s,j), implicitly also carries the labels of the one- P P 9

article invariants. Additionally, there are two more opera-"" the choice of boost or spin component.
P (op) ' Y: P Working with the Wigner spin basis, the degeneracy can

tors 7; " that label the degeneracy of the UIR in the directy,o |5pejed according to the spin-orbit coupling scheme of

sum. They depeng (I)n th[f C“Oicﬁ made f(;r the Qegepera%os[zs] and MacFarlang26]. In this scheme, the single-
parametersy (see below. Finally, there are the noninvariant (garticle generators can be combined to form total intrinsic

momentum and spin-component operators labeling the stat ?)in S and orbital angular momentuin operators, andy

within the UIR spaceb(s, j),, ={s,1} are their eigenvalues. This choice has the advantage
Mhat it is familiar from nonrelativistic guantum mechanics

CSCO in the following fashion: ~
g and that, if the full Poincaré grouf including discrete

(A7) =(pdsjmnllp’ X'[S"}' nim5]) transformations is allowed, there is a simple correspondence
_ 5 , , betweens and the eigenvalues of parity and charge parity
= 2E4(p)s&* (P~ P') 6 8(s s )51'1"57717/1 oy for the composite system.

(25) In the helicity basis, important conventions were estab-

lished by Jacob and Wid7] and have a long history of use
These kets obey the same transformation (1l® as the in partial wave analysis of scattering experiments. In the he-
one-particle UIRs: licity coupling, the » are the eigenvalues of the two single-
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particle helicity operators in the rest frame of the system. We TABLE |. Possible values of ands and assignment of parity
will consider the CGCs associated with each choice of direcand charge parity eigenvalues wjth0 and 1 for UIRs appearing in

sum basis. the direct sum decomposition of a spin-1/2 fermion-antifermion
pair.
A. Wi basi in-orbit ling CGC .
igner basis spin-orbit coupling s J S | - £
In this basis, the CSCO is
0 0 0 - +
{MZW2,P,5(P),L% S, ME,WE M WG),  (29) 1 1 + +
where L is the orbital angular momentum arfd is the 1 0 1 + -
coupled intrinsic spin(see[21], p. 329 for an example of 1 0 - -
their explicit construction in terms of the one-particle gen- 1 1 + -
erators. 1 2 _ +
For spin orbit-coupling, the angular term[i24,26]
CAvile) — i j . .
ArAPixiPax2i Pxils) = 2 D, (U(P.P)D . (U(p,P2)) spaces of the parity and charge parity operfa.
X1X5
X 2 C(Siaj 2 Saxix) Cjls; x1383) B. Helicty basis coupling CGCs
1% In this basis, the CSCO is
X (- 1)XY||3(Q(p1, P2), (30) {M2W2,P,H(P), HE™ HS™, Mi,VVZ, M%,Wﬁ}, (34)

Wrrefe the following conventions and notations have beefyhereHS™ is the helicity of theith particle in the center-of-
chosen.

(1) The rotationW,(¢"X(p),p;) when applied to a single-
particle ket|p;, x;) effects the mixing of the spin coordinates for
when the basis vector for particleis transformed into the

mass frame and is invariant. Its eigenvalues?ére
For helicity coupling[17,24,27, the angular term has the
m

c.m. frame in which the_spin cogplipg takes plaqe. The argu- Aro(PNPoAS p)\jX1X2)
mentu(p, p;) of the rotation matrixX@’i is then the inverse of o 4 1\12

. . - : J + .
this Wigner rotation =( i ) ~E~ D’J)_\::-}\l(u(p,pl))

u(p,p) =W (¢ (p),p)- (3D) MA2

(2) The CGCs for the rotation group are chosen according ><D;~\2A (u(p,py)) X D]x(i 5 )(p(ﬁl)), (35)
to standard phase conventiofi®., they are all real They 22 L
are whereu(p,p;) is the inverse Wigner rotatiof81), but this

time calculated using the helicity booktp). The rotation
p(€,) is the rotation that performs a rotation ofraround

where x=x1+x,. These are used to couple the spins of theye 7 axis and then aligns theaxis with the directior),; in
two particles and to couple the total spin with the orbital yipar words, using the standaryizEuler angle form and the

C(ji iz xxx2) = xaxalidi2llxlii a2, (32

angular momentum. A Pauli matricess’ [29],
(3) The spherical harmonitt’us(ﬂ) describes the angular R B o2 s
dependence on the orbital angular momentum and is a func- p(Qy) = g7 gt 12gl 61712, (36)

tion of the unit-normalized relative momentues (0,Q) in and so
the barycentric frame:

I D)) = aiNbig ~ - i(\-No)
D)\()\l_}\z)(p(ﬂl))—el ld)\()\l_)\z)(el)el 2% (37)

s 1/2 N
epw.p2) ()\(s,sl,sz)) L (Pt PP P The helicity coupling scheme does not produce eigen-
_ _ spaces of the discrete symmetries, but it is generalizable to
[(s1—s2)/s](py + p2)}- (83 assless particles and more easily generalized to multipar-
(4) The phase factof—1)* is introduced so that the direct ticle (N>2) direct productg20,23,30,31
sum basis vectors transform in the usual way under time
reversal[28].
Each vector inb(s,j),; describes a particular kind of two-
particle entanglement and the basis vector®, j),; span
a space of entangled two-particle states that is invariant un- For the sake of specificity, consider the entanglement of
der Poincaré transformations. This entanglement involveswo particles due to the decay of a parent particle of niAss
both spin and momentum. An additional property of the spin-and spinj. Far from the decay site, there will be no interac-
orbit coupling scheme is that the spackts, j) are eigen- tion between the decay products and the state spagwvill

IV. BASIS VECTORS FOR DYNAMICALLY ENTANGLED
DECAY PRODUCTS
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TABLE Il. Angular part of CGCs for Wigner spin basis using spin-orbit couplingjfed.

s | X 011/2;p,1/2) [P11/2;p,-1/2) P1—-1/2.p,1/2) [B1-1/2p,-1/2)
0 1 0 \r%sin oe'® —w/3/T6wsin oe'® 0
0 0 \/% cosd —\r’% cosf 0
-1 0 —\,% sin ge™'¢ \"m sin ge™'® 0
10 V1/4n 0 0 0
0 0 V1/87 V1/87 0
-1 0 0 ~1/4x
11 1 \3/8x cosd \3/ 167 sin 66 \3/ 167 sin 66 0
0 3/ 167 sin 671 0 0 —\/3/167 sin6e*
-1 0 \3/ 167 sin 671 \3/ 167 sin 6e7'* ~\3/87 cos
12 1 —N%(3/2 cog g-1/2) —\e"%sin 6 cosbe? —v’%sinﬁcos@e‘d’ —\e"%sin2 0e?id

-\9/ 16 sin 6 cos fe'®
—V1/87(3/2 cog 9-1/2)

—~1/4n(3/2 cog 9-1/2) —V1/4w(3/2 cod 6-1/2)
\9/327 sin# cosge'¢ \'9/32m sin @ cose™®

/ . H
0  \9/16m sinfcosee™¢
— .
-1 -V9/327 sir? ge™2¢

be a subspace of the direct product of the UIRs associatqghereﬁl:(El(k),kﬁ) andbzz(Ez(k),—kﬁ)_ The factorA,,
with each daughter particleP(mf,jy) ® ®(M5,j)) DP1o  takes the simpler form

However, because of the Poincaré covariance of the dynam-

lcs. all elements ofb,, must have a c.m. energy squaed A, (py .oy, paxils) = 2 ClShizi Soxux2)Clils: Mloso)
=M? and total angular momentuimi.e., 1353

D= @& D(MZ)),. 38 - 1
0= & (M%), (38 X (= DY, (Q) (40)
Further information about the dynamics may restrict the diin the c.m. frame sincé(pg)=1. Note that even in the c.m.
rect sum to a single value of. For example, in the spin-orbit  frame there is an implicit momentum dependencégbe-
coupling schemey determines the overall parity and charge cause of the spin components.
parity of the spacésee below. The possible values fdrands are implicit in the rotation
The full mathematical details and explanation of the phegroup CGCss€{0,1} and|l-s/<j<I+s. In this case, the
nomenological signatures of relativistic decay processes Cagpacesb(s, j); are eigenspaces of the parity and charge par-
be described using the relativistic Gamow vedt®®], an ity operator[28] with the parity mp=mp;mpy(~1)'=(~1)'*
element of an irreducible representation of the Poincargsince the parities of fermions and antifermions are oppposite
semigroup. Since we are just interested in the kinematic corynq charge parityée=(-1)"*S. These six relevant UIRs
relations of the decay products, we can gloss over most Qi)(s i)is are summarized in Table I.

the details of mathematical rigor without changing any con- For the two j=0 cases, the c.m. frame subspace of

clusions. S )
. . d(s,j)s is spanned by a single vector:
In what follows, we will explore these basis vectors for a (8.5 P y 9

simple case of a particle-antiparticle pair with massm
and spinj;=1/2. In particular, we will look at the case that
the parent particle has spin eithigrO or j=1 and find the
basis vectors for the direct sum UIRs.

First we consider the spin-orbit coupling scheme for
Wigner spin vectors. Simplifying to the c.m. reference frame,or
the rest vector of the composite stapgy[sjls]) € ®*(sj)s
can be expressed using the CGCs in the following form:

IprxIsilsy = 2 J

X1 X2

1 ~
|prx[S000)) = +/ 8TTA1/4 f d?Q([p,1/12:p, - 1/2)

- [P1—1/2{p,1/2)) (41)

1 ~ )
|prx[s011]) = \/EA““I d?Q(sin e ¢p,1/2p,1/2)
a1

- cosé[p1/2p, - 1/2)
—-cosHp, - 1/2p, + 112
- sin 6P, - 112, - 1/2))

d3p1d3p2
4E;(p1)Ex(p2)

X K12(P1P2; PrIA1AP1X1P2X2; PrX] 1)

s’E “
=\?A1’4(s,sl,32)2 f d’Q

X1 X2

[P1x1; P2x2)

(42)

where fz:(sin 0 cos¢,sinfsin¢,cosd). The (Is)=(00)

X Ar(Prx1P2ox2; PrxilS) [Pixai Pax2), (39  case looks like the typical spin singlet ca@xcept for the
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momentum direction integralbut the(11) is quite different TABLE IIl. Angular part of CGCs for helicity basis using he-
and shows explicitly the momentum dependence of the spificity coupling for j=0 and 1.

correlations. Since the definition of the spin component in
volves momentum, separating out momentum and spin coix, X2 j A Ay
relations may not be meaningful. Future work should decide

whether such a division can be measured and is meaningfuT,ll2 +1/2 0 0 \”i"
and results on the ill-defined nature of spin entropy in rela=1/2 -1/2 0 0 _viiamw
tivistic systemg[32,33 suggest it will not be analogous to +1/2 +1/2 1 1 ~3/8me ¢ sin @
the nonrelativistic case. 0 \3/47 cos#

In Table II, we have included the angular coefficients of 1 V31876 sin 6
the 12 basis ve(_:t_ors for the founzl_UIRs. Rotations WI|! +1/2 -1/2 1 1 \V3/16m(1 +cosé)
create superpositions of these basis states, but no Poincare a i

X S 0 V3/8mwe?sing
transformation will mix different ands values. These vec- ATia.zid
tors form sensible bases for dynamically entangled states. -1 fw"ez_ (1-cosf)

Entangled bases can also be constructed with the helicityl/2 +1/2 1 1 \3/16me™¥(1~cosf)
basis and helicity coupling. In the center-of-mass fraB& 0 —\3/8me¢sin g
simplifies considerably since this coupling scheme relies on -1 V3/16m(1+cosh)
the helicities of the component particles in the c.m. frame: -1/2 -1/2 1 1 ~3/8me*sin g

-~ s 25 +1)\2 . 0 \3/4m cose

A1(P1N1P2N2; PRAAIN) = (?) D\ 5, (P(QD). -1 \3/8me®sin 6

(43 .
methods to come to the conclusion that Lorentz boosts re-
Using the analogous result from spin-orbit coupling in theduce the amount of spin correlation and that entangled bipar-
c.m. frame(39), we have tite systems may appear to satisfy Bell’s inequality to a
s dPo.d? L highly relativistic observer, whered8] show that perfect
IPRALSjA1N2]) :f Mmlxl;pZ)\QKlZ(plpZ;pR) (antcorrelations still appear if the correct measurements of

4E;(p1)Ex(po) spin are made.
XA Do DA iNe N ) Some of this difference in.opinion stems from a mistake
12l P1A1P2A2; PRAJ 1A, made by the authors db,6] in expressing the state of a
V2 val on particle as the direct product of the momentum state and the
= ??\ Jd Q spin state, as discussed above. However, another obscuring

issue, which this paper hopes to make clear, is that states like
X Ago(PINPo2; PRV NN PN 1 Paks). (1) do not have the kinematic cor_relanons that arise from
(44) dynamic entanglement. For analysis of actual scattering and
decay experiments, basis vectors constructed using the CGCs

The angular parts of the CGCs are given in Table Ill. Theof P} have proved their usefulness many times, and it should
vectors of Eq.(44) using these angular coefficients are notbe no surprise that similar techniques will be required for
entangled, except in the most trival sense of opposite morelativistic quantum information theory.

menta. However, any superposition of the vectorgAdj for There are some results about entanglement measures and
a givenj value will also show spin correlations. A typical spin entropy of these kinds of relativistic entangled states
decay process will lead to such a superposition, and thereforgee[1] for a review, but there are many more unanswered
entanglement. questions. Future research by this author will present a rig-
orous solution to the properties of Bell's inequalities under
Poincaré transformations and will consider appropriate mea-
sures for entanglement in systems like these.

Constructions of entangled basis vectors are the first step
in calculations of Bell-type inequalities and their properties
under Lorentz transformations. Working with vectors like  The author would like to thank Y. S. Kim, organizer of the
(1), a conclusion of 3] is that entanglement fidelity is pre- “Second Feynman Festival,” held at University of Maryland,
served, whereasb, 6] claim that entanglement is not invari- College Park. | was made aware of this problem at that con-
ant under Lorentz boosts. The author§b,6] use different  ference thanks to a talk given by Doyeol Ahn.

V. CONCLUSION
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