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We study the algebra of complex polynomials which remain invariant under the action of the local Clifford
group under conjugation. Within this algebra, we consider the linear spaces of homogeneous polynomials
degree by degree and construct bases for these vector spaces for each degree, thereby obtaining a generating set
of polynomial invariants. Our approach is based on the description of Clifford operators in terms of linear
operations over GFs2d. Such a study of polynomial invariants of the local Clifford group is mainly of impor-
tance in quantum coding theory, in particular in the classification of binary quantum codes. Some applications
in entanglement theory and quantum computing are briefly discussed as well.
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I. INTRODUCTION

The slocald Clifford group plays an important role in nu-
merous theoretical investigations, as well as applications, in
quantum information theory, quantum computing and quan-
tum error correctionf1–7g. The Clifford groupC1 on one
qubit consists of all 232 unitary operators which map the
Pauli group G1=ks1,s2,s3l to itself under conjugation,
wheres1,s2,s3 are the Pauli matrices. In other words,C1 is
the normalizer ofG1 in the unitary group Us2d. The local
Clifford group Cn

l on n qubits, which is our topic of interest
in the following, is then-fold tensor product ofC1 with itself.

In this paper we study theinvariant algebraof the local
Clifford group, defined as follows: lethri jj be a set of 22n

variables, which are assembled in a 2n32n matrix r=sri jd.
The invariant algebra ofCn

l then consists of all complex poly-
nomials Fsrd=Fsr11,r12,… ,r2n2nd which remain invariant
under the substitutionsr→UrU†, for everyUPCn

l .1 It is our
goal to construct a generating set of this algebra.

This research started out as the groundwork for the study
of equivalence classes of binary quantum stabilizer codes,
the latter being a large and extensively studied class of quan-
tum codesf8g. A stabilizer code is a joint eigenspace of a set
of commuting observables in the Pauli group onn qubits and
is described by the projectorrS on this subspace. Two stabi-
lizer codesrS and rS8 on n qubits are called equivalent if
there exists a local unitary operatorUPUs2d^n such that
UrSU† is equal torS8 modulo a permutation of then qubits.
A natural question to ask is how the equivalence class of a
code can be characterized by a minimal set of invariants—
i.e., spolynomiald functionsFsrSd in the entries of the matrix
rS which take on equal values for equivalent codes. This is,
however, a difficult and unsolved problem. Therefore, given
the explicit connections between stabilizer codes, the Pauli
group and the Clifford group, it seems natural to consider a

restricted version of this equivalence relation, where only
operatorsUPCn

l are considered, and this is where the invari-
ant algebra ofCn

l comes into play. What is more, it is to date
unclear whether this restrictionis in fact a restriction at all:
indeed, the question exists whether every two equivalent sta-
bilizer codes are also equivalent in this second, restricted
sense. A possible way towards solving this problem is
through a study of invariantsscf. also f9gd. Moreover, the
problem of recognizing local unitary and/or local Clifford
equivalence of certain classes of multipartite pure quantum
statessstabilizer states, graph statesd has recently gained at-
tention both in entanglement theoryf3,5,6g and in the one-
way quantum computing modelf10g. These examples make
for a number of application domains of the present work.

From a somewhat different perspective, the invariant
theory of the Clifford group is also of interest from a purely
mathematical point of view. Rungef11g and Nebe, Rains,
and Sloanef12,13g published a series of papers in which they
investigate the connection between the invariants of thesen-
tired Clifford group sand generalizations thereofd and the so-
called generalized weight polynomials of a class of self-dual
classicalbinary codes. Their work is a considerable gener-
alization of a central result in classical coding theory, known
as Gleason’s theoremf14g, which states that the invariant
algebra ofC1 is generated by the weight enumerators of the
class of doubly even self-dual classical codessthe definition
of the invariant algebra ofC1 is here somewhat different than
ours; cf. footnote1d. It is interesting that the Clifford
group—a group which appears naturally in a quantum theo-
retical setting—has such a connection, through invariant
theory, with the theory ofclassicalcodes. It is not known
whether this link is a mere coincidence or a manifestation of
some deeper resultf15g. This remark may serve as another
justification of the present research.

In our study of the invariant algebra ofCn
l , we will make

extensive use of the description of this group in terms of
binary linear algebra—i.e., algebra over the field GFs2d=F2.
It is indeed well known thatn-qubit slocald Clifford opera-
tions can be represented elegantly by a certain class of 2n
32n linear operators overF2 f1,4g and this binary picture
makes theslocald Clifford group particularly manageable in
the following. In order to obtain a generating set of the in-
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1To be exact, in the literature the invariant algebra of aN3N

matrix groupG is usually defined as the set of all polynomials
psxd=psx1,… ,x1d such thatpsAxd=psxd for everyAPG. Our defi-
nition is a variant of this.
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variant algebra, we will adopt the following basic strategy:
note that each invariant polynomialF ssimply calledinvari-
antd can be written as a sum of its homogeneous compo-
nents, each of which is an invariant as well. One can there-
fore always find a generating set of the invariant algebra
which consists of homogeneous invariants only. Further-
more, the set of homogeneous invariants of fixed degree is a
finite-dimensional vector space, as one can easily verify
swhich gives the algebra of invariants the structure of a
graded algebrad. Therefore, a natural approach to our prob-
lem is to consider these spaces of homogeneous invariants
degree by degree and to construct a basis of invariants for
each degree. This construction will yield a generatingsyet
infinited set of the invariant algebra.

II. LOCAL CLIFFORD GROUP

The Clifford groupC1on one qubitis the following group
of unitary 232 matrices:

C1 =K 1
Î2
F1 1

1 − 1
G,F1 0

0 i
GL .

The order ofC1 is finite and equal to 192. Up to overall phase
factors, the Clifford group consists of all unitary operators
which map thePauli groupto itself under conjugation; here,
the Pauli groupG1 son one qubitd consists of the identitys0
and the three pauli matrices

s1 = F0 1

1 0
G, s2 = F0 − i

i 0
G, s3 = F1 0

0 − 1
G ,

all having four possible overall phase factors equal to ±1 or
±i. In other words, up to these overall phase factors, the
groupC1 is the normalizer ofG1 in the unitary group Us2d.
Note that these phases are not relevant in the following, since
we are considering the action of the Clifford group under
conjugation as explained in the Introduction. It follows that
everyUPC1 is, for our purposes, completely described by a
permutationpPS3, where S3 is the symmetric group on
three letters, and a set of three phasesa1,a2,a3= ±1, such
that

UsiU
† = aispsidsi = 1,2,3d.

Moreover, sinces1s2,s3, one hasa1a2a3=1 and it is
therefore sufficient to keep track of only two of theai’s ssay,
a1 and a3d. Another useful characterization of the Clifford
group is obtained by considering the mapping

s0 = s00 ° s0,0d,

s1 = s01 ° s0,1d,

s3 = s10 ° s1,0d,

s2 = s11 ° s1,1d, s1d

which establishes a homomorphism between the groupsG1
andF2

2. Here,F2 is the finite field of two elementss0 and 1d,
where arithmetics are performed modulo 2. In this represen-

tation of Pauli matrices by pairs of bits, a Clifford operation
corresponds to an invertible linear transformationQ
PGLs2,F2d sinstead of a permutationpPS3d and a couple
of phasesa1 anda3. It is this second description of Clifford
operations in terms of binary linear transformations which is
most often used in the literature in quantum information
theory and quantum computing, and we will do the same.

The local Clifford groupCn
l on n qubits is then-fold ten-

sor product ofC1 with itself—i.e.,

Cn
l = C1 ^ ¯ ^ C1sn timesd.

Analogous to the case of one qubit, the groupCn
l can be most

easily described by its action on the Pauli groupGn on n
qubits, defined by

Gn = G1 ^ ¯ ^ G1sn timesd.

Using the mappings1d, the elements ofGn can be represented
as 2n-dimensional binary vectors as follows:

su1v1
^ ¯ ^ sunvn

= ssu,vd ° su,vd P F2
2n,

where su,vd=su1,… ,un,v1,… ,vnd. As in the case of one
single qubit, local Clifford operations mapGn to itself under
conjugation. Therefore,n-qubit local Clifford operations as
well can be described in terms of linear operations overF2.
One can readily verify that, in this binary picture, an operator
UPCn

l corresponds to an invertible 2n32n binary matrixQ
of the block form

Q = FA B

C D
G ,

where then3n matricesA,B,C,D are diagonal, and a set of
2n phasesai = ±1, defined by

Usei
U† = aisQei

, s2d

whereei is the ith canonical basis vector inF2
2n, for every i

=1,… ,2n. Denoting the diagonal entries ofA,B,C,D, re-
spectively, byai ,bi ,ci ,di, respectively, then submatrices

Qsid
ª Fai bi

ci di
G P GLs2,F2d

correspond to the tensor factors ofU. The group of all such
Q is isomorphic to GLs2,F2dn sandS3

nd.

III. INVARIANT POLYNOMIALS AND MATRIX
ALGEBRAS

Let hri jj be a set of 22n variables, which are assembled in
a 2n32n matrix r=sri jd. Any homogeneous polynomialFsrd
of degreer PN0 can be written as a trace

Fsrd = TrsAFr^rd

for some complex 2nr32nr matrix AF. To see this, simply
note that the tensor productr^r contains all monomials of
degreer in the entriesri j . The coefficients of these monomi-
als in the polynomialF are encoded in the entries ofAF
snote, however, that the correspondenceF↔AF is not one to
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oned. It can easily be verified thatFsUrU†d=Fsrd for every
UPCn

l if and only if there exists anAF such that

U^rAFsU^rd† = AF s3d

for everyUPCn
l . Therefore, the study of invariant homoge-

neous polynomials of fixed degreer is transformed to the
study of the algebraAn,r of matricesAF which satisfy Eq.
s3d. In this section, we will construct a linear basis of this
algebra. This will yield a generating set of homogeneous
invariants of degreer.2 First we consider the simplest case of
one single qubit, i.e.n=1, and then we move to the general
case of arbitraryn.

A. One qubit

Let r PN0 and let Rr be the averaging operator which
maps a 2r 32r matrix A to

RrsAd ª
1

uC1u o
UPC1

U^rAsU^rd†.

Note thatRr is the orthogonal projector of the space of 2r

32r matrices onto the subspaceA1,r. Therefore, a spanning
sthough in general nonminimald set of A1,r is obtained by
fixing a vector space basis of 2r 32r matrices and calculating
its image underRr. In this context, a natural choice for such
a basis is the sethssu,vd uu,vPF2

r j of Pauli operators onr
qubitssall having an overall phase equal to 1d. Before calcu-
lating the imagesRrsssu,vdd in lemma 1, we need some defi-
nitions: firstly, let the group GLs2,F2d act onF2

2r as follows:

Q P GLs2,F2d:su,vd P F2
2r ° sū,v̄d P F2

2r , s4d

wheresū, v̄d is defined by

Fūj

v̄ j
G = QFuj

v j
G ,

for every j =1,… ,r, whereuj ,v j ,ūj , v̄ j, respectively, are the
components ofu,v ,ū, v̄. Second, let the binary vector space
Vr consist of allsu,vdPF2

2r such that

o
j=1

r

suj,v jd = s0,0d.

We are now in a position to state the following lemma.
Lemma 1. Let rPN0. Let su0,v0dPF2

2r and denote byG
the orbit of this vector under the actions4d. Then

Rrsssu0,v0dd =Hcosu,vdPG
ssu,vd if su0,v0d P Vr

0 otherwise,
J

where c is a constant.
Proof. Let UPC1 be an arbitrary Clifford operation. The

action ofU on the Pauli matrices is parametrized by coeffi-

cientsa01,a10,a11= ±1 with a01a10a11=1 and a linear op-
eratorQPGLs2,F2d such thatUssa,bdU

†=aabsQsa,bd for ev-
ery sa,bdPF2

2\ h0j. Defining the integersnx,ny,nz by

nx = uh j usu0j,v0jdu = s0,1dju ,

ny = uh j usu0j,v0jdu = s1,1dju ,

nz = uh j usu0j,v0jdu = s1,0dju ,
the operatorU^r mapsssu0,v0d to

a01
nxa10

nza11
nyssū0,v̄0d = a01

nx+nya10
nz+nyssū0,v̄0d s5d

under conjugation, wheresū0, v̄0dPG is the image ofsu0,v0d
under the actions4d of Q. The crucial observation is now that
the coefficient ofssū0,v̄0d in Eq. s5d is always positivesand
thus equal to 1d if and only if both the numbersnx+ny and
nz+ny are even. Note that this occurs if and only ifnx,ny, and
nz are all even or all odd or, equivalently, if and only if
su0,v0dPVr, as one can readily verify. It follows that

Rrsssu0,v0dd , o
su,vdPG

ssu,vd

if su0,v0dPVr. If su0,v0d¹Vr, one can easily see that the
different terms in the sumRrsssu0,v0dd interfere such as to
yield zero. This ends the proof.

Using the result in lemma 1, we can construct a basis of
A1,r. Denote byOr the set of all orbitsG of the elements in
Vr snote thatOr forms a partition ofVrd. For everyGPOr,
define the matrix

AG ª o
su,vdPG

ssu,vd. s6d

By construction, the matricesAG linearly generate the alge-
bra A1,r. Moreover, this set of matrices is linearly indepen-
dent: indeed, this follows immediately from the linear inde-
pendence of the Pauli operatorsssu,vd. Therefore, we can
conclude that theAG’s are a basis ofA1,r. In order to calcu-
late the dimensionuOru of A1,r, we use the Cauchy-Frobenius
orbit-counting lemma, which states that the number of orbits
of a finite groupG acting on a setX is equal to the average
number of fixed points; i.e., the number of orbits is equal to

1

uGu ogPG

uFsgdu, s7d

whereuFsgdu is the number of fixed points in the setX of the
group elementg. Let us therefore calculate the number of
fixed points of an arbitrary matrixQPGLs2,F2d acting on
Vr. First, it is trivial that the identity hasuVru=4r−1 fixed
points. Second, there are three elements in GLs2,F2d of order
2. Consider, e.g., the matrix

Q0 = F0 1

1 0
G .

When acting onF2
2, this operator fixes exactly two vectors:

namely,s0,0d and s1,1d. Therefore, whenQ0 acts onVr, the
setFsQ0d consists of all vectors of the form

2This set will, however, not be linearly independent in general,
due to fact that the description of an invariantFsrd by a trace
TrsAFr^rd is nonunique. Bases of invariant polynomials are dis-
cussed below.
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a1s1,0,…,0;1,0,…,0d + a2s0,1,…,0;0,1,…,0d + ¯

+ ars0,0,…,1;0,0,…,1d, s8d

whereai P h0,1j for every i =1,… ,r and where exactly an
even number ofai’s are nonzero. Therefore, the cardinality
of FsQ0d is equal to the number of even subsets of
h1,… ,rj—i.e., uFsQ0du=2r−1. Note that an analogous argu-
ment holds for the other two matrices of order 2. Finally,
there are two elements in GLs2,F2d of order 3, which fix
only the zero vector. Gathering these results in the formula
s7d, we find that the numberuOru of orbits is equal to

1

6
s4r−1 + 3 3 2r−1 + 2d.

We have proven the following.
Theorem 1.Let r PN0. The sethAGjGPOr

is a vector space
basis of the algebraA1,r. The dimensionuOru of A1,r is equal
to

1

3
s22r−3 + 3Ã 2r−2 + 1d. s9d

Thus, we have obtained the desired result of constructing
a basis of matrices of the algebraA1,r. It will be useful to
have an explicit parametrization of the orbitsGPOr. Such a
parametrization could, e.g., be used to enumerate all the ma-
tricesAG for a given degree. Also when we will move from
the matrix algebraA1,r to the polynomials TrsAGr^rd in Sec.
IV, a more operational description of theAG’s will turn out to
be very useful. To this end, for eachsu,vdPF2

2r, define the
sets

h0su,vd = h j usuj,v jd = s0,0dj,

hxsu,vd = h j usuj,v jd = s0,1dj,

hysu,vd = h j usuj,v jd = s1,1dj,

hzsu,vd = h j usuj,v jd = s1,0dj.

Then the following characterization is easily verified: two
vectorssu,vd ,su8 ,v8dPF2

2r belong to the same orbit if and
only if

sad h0su,vd=h0su8 ,v8d and
sbd there exists a permutationp of hx,y,zj such that

hxsu8 ,v8d=hpsxdsu,vd ,hysu8 ,v8d=hpsydsu,vd, and hzsu8 ,v8d
=hpszdsu,vd.
This implies that any orbitG of the actions4d can completely
be described by

sa8d a seth0sGd# h1,… ,rj and
sb8d a partition PsGd=hh1,h2,h3j of h1,… ,rj \h0sGd

into three spossibly emptyd subsets, such thatsu,vdPG if
and only if h0su,vd=h0sGd and hhxsu,vd ,hysu,vd ,hzsu,vdj
=PsGd. Moreover, GPOr if and only if the numbers
uh1u , uh2u , uh3u are either all even or all oddscfr. proof of
lemma 1d. Let us illustrate this characterization with two
simple examples.

sid r =1: there is one orbit inO1: namely, G0=hs0,0dj
PO1. This orbit is characterized byh0sG0d=h1j and PsG0d
=h0” ,0” ,0” j.

sii d r =2: there are two orbits inO2: namely, G
=hs0,0;0,0dj and

G8 = hs0,0;1,1d,s1,1;0,0d,s1,1;1,1dj = hsu,vd P F2
4usu1,v1d

= su2,v2d Þ s0,0dj.

The orbitsG andG8 are described by

h0sGd = h1,2j, PsGd = h0” ,0” ,0” j

and

h0sG8d = 0” , PsG8d = hh1,2j,0” ,0” j.

B. Multiple qubits

For arbitraryn, the result in theorem 1 can immediately
be used to construct a basis ofAn,r. To see this, let us first
consider the algebra of 2nr32nr matricesA which satisfy

U1
^r

^ ¯ ^ Un
^rAsU1

^r
^ ¯ ^ Un

^rd† = A,

for every U1,… ,UnPC1. It is straightforward to show that
this algebra is then-fold tensor product ofA1,r with itself.
Therefore, a basis of this algebra is given by the matrices
AG1

^ ¯ ^ AGn
, where Gi ranges over all orbits inOr, for

every i =1,… ,n. In order to obtain a basis ofAn,r, one sim-
ply has to conjugate this basis with the permutation matrixP,
defined by

Pui11…i1r ; i21…i2r ;…; in1…inrl

= ui11…in1; i12…in2;…; i1r…inrl, s10d

whereiabP h0,1j andui11…l are the standard basis vectors in
C2nr

. Indeed, the matrixP performs the appropriate permuta-
tion of tensor factors, mappingU1

^r
^ ¯ ^ Un

^r to sU1 ^ ¯

^ Und^r under conjugation. This leads to the following re-
sult.

Theorem 2.Let r PN. For everyn-tupleg=sG1,… ,Gnd of
orbits Gi POr, define the matrix

Ag ª PAG1
^ ¯ ^ AGn

PT. s11d

Then the sethAgjg forms a vector space basis ofAn,r. The
dimension ofAn,r is equal touOrun.

Following the discussion at the end of Sec. III A, the ma-
trices Ag can be described in an alternative way than Eq.
s11d, using the description of orbitsGPOr by couples
(h0sGd ,PsGd). Defining thesupportof a vectorwPF2

2n to be
the set

suppswd = hi P h1,…,njuswi,wn+id Þ s0,0dj, s12d

one obtains the following.
Theorem 3.Let g=sG1,… ,Gnd be ann-tuple of orbitsGi

POr. For everyj ,kP h1,… ,rj , j ,k, define the setsvs jd and
vs jkd by

vs jd = hi P h1,…,nju j P h0sGidj,

VAN den NEST, DEHAENE, AND DE MOOR PHYSICAL REVIEW A71, 022310s2005d

022310-4



vs jkd = hi P h1,…,nju j ,k P h0sGid or j andk

belong to the same subset ofPsGidj. s13d

Then Ag=osws1d ^ ¯ ^ swsrd, where the sum runs over all
orderedr-tuplessws1d ,… ,wsrddP sF2

2nd3r satisfying

suppsws jdd = v̄s jd, s14d

suppsws jd + wskdd = v̄s jkd, s15d

for every j ,kP h1,… ,rj , j ,k, where v̄s jd ,v̄s jkd denote the
complements of the setsvs jdvs jkd in h1,… ,nj.

Proof. By definition,Ag is equal to

o sws1d ^ ¯ ^ swsrd,

where the sum runs over all orderedr-tuplessws1d ,… ,wsrdd
P sF2

2nd3r such that

swi
s1d,…,wi

srd,wn+1
s1d ,…,wn+1

srd d P Gi , s16d

for every i =1,… ,n. The proof of the theorem then follows
immediately from the characterization of the orbitsGi by the
couples(h0sGid ,PsGid), for every i =1,… ,n. h

Example 1.Let us consider this result for the case of
smallest nontrivial degree—i.e.,r =2. Let gs2d=sG1,… ,Gnd
be ann-tuple of orbitsGi PO2. Recall thatO2 contains ex-
actly two orbitsG andG8, as defined in the last paragraph of
Sec. III A. Letv be the subset ofh1,… ,nj which consists of
all i such thatGi =G. Following the definitions stated in theo-
rem 3, we havevs1d=v=vs2d and vs12d=h1,… ,nj. Conse-
quently,

Ags2d = o
wPF2

2n,suppswd=v̄

sw ^ sw.

This shows that the matricesAgs2d are parametrized by the
subsetsv of h1,… ,nj in a one-to-one correspondence.

While the result in theorem 3 is in fact no more than a
reformulation of Eq.s11d, it is interesting in that it relates the
matricesAg fand thus the corresponding invariant polynomi-
als TrsAgr^rd as wellg to the notion of the support of a binary
vector, which is of central importance in quantum coding
theory. Note that the definitions12d of support is indeed the
same as is used in the theory of quantum codes.

IV. BASES OF INVARIANTS

It follows from theorem 2 that the polynomials

pn,r
g srd ª TrsAgr^rd, s17d

in the variablesri jsi , j =0,… ,2n−1d linearly generate the
space of homogeneous invariants ofCn

l of degreer. However,
different Ag’s may correspond to the same polynomial and
therefore linear dependences within the set of the polynomi-
als s17d can exist in general. We now set out to pinpoint a
basis of polynomials for each degreer. As in the preceding
section, we start by considering the simplest case of one
qubit and then move to the general case.

A. One qubit

Let r=sri jd, wherei , j =0, 1, be a matrix of variables. Fix
an orbit GPOr with h0sGd;h0 and PsGd;hh1,h2,h3j. It
will be convenient to introduce the linear formsxijsrd :
=Trsrsi jd, wherei , j =0, 1 or, more explicitly,

x00srd = r00 + r11,

x01srd = r01 + r10,

x10srd = r00 + r11,

x11srd = isr01 − r10d. s18d

Conversely, theri j ’s can be written as linear forms in the
variablesx=sxijd as follows:

rsxd =
1

2 o
i,j=0

1

xijsi j .

We will consider TrfAGrsxd^rg to be a polynomial in the
variablesx. This yields

TrfAGrsxd^rg =
1

2r o
su,vdPG

xu1v1
…xurvr

=
1

2r o
su,vdPG

x00
n0su,vdx01

nxsu,vdx10
nzsu,vdx11

nysu,vd,

s19d

where we have used the definitionsn0su,vd= uh0su,vdu etc.
Note that

n0su,vd = uh0u

and

hnxsu,vd,nysu,vd,nzsu,vdj = huh1u,uh2u,uh3uj

for every su,vdPG. It readily follows that Eq.s19d is equal
to

x00
uh0u o

pPS3

x01
uhps1dux10

uhps2dux11
uhps3du s20d

up to a normalization factor. Expressions20d shows that the
polynomial TrsAGr^rd only depends on the numberuh0u and
the sethuh1u , uh2u , uh3uj. In other words, ifG and G8 are two
orbits such that

uh0sGdu = uh0sG8du

and

huh1sGdu,uh2sGdu,uh3sGduj = huh1sG8du,uh2sG8du,uh3sG8duj,

then sand only thend the polynomials TrsAGr^rd and
TrsAG8r

^rd coincide. This equivalence relation onOr leads to
the following definition: for each 4-tuplel=sl0,l1,l2,l3d
of non-negative integersli such thatl1,l2,l3 are either all
even or all odd,l0+l1+l2+l3=r and l1ùl2ùl3, we de-
fine an invariantpr

l of C1 of degreer as follows:
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pr
l = x00

l0 o
xPS3

x01
lps1dx10

lps2dx11
lps3d. s21d

Recall thatpr
l is to be regarded as a polynomial in the vari-

ablesr via Eq. s18d. By construction, the set of all these
polynomials generates the space of invariants of degreer.
What is more, thepr

l’s are linearly independent. This imme-
diately follows from the fact that each monomial in the vari-
ablesxij occurs in exactly one polynomialpr

l and that the
polynomialsxijsrd are algebraically independent. We have
therefore proven:

Theorem 4. The polynomialspr
l form a basis of the vector

space of homogeneous invariants ofC1 of degreer.

B. Multiple qubits

The construction of bases of invariants for arbitraryn will
be a generalization of the one-qubit case. Starting from a
2n32n matrix r of variables, we again perform a change of
variables, definingxw;xwsrd=Trsrswd, for every wPF2

2n.
Analogous to the one-qubit case, the converse relation reads
rsxd=s1/2ndowxwsw. Note that the polynomialshxwsrdj are
algebraically independent; this follows from the fact that the
variablesx and the variablesr are related by an invertible
linear transformation. Now, lettingg=sG1,… ,Gnd be an
n-tuple of orbits Gi POr, the invariantpn,r

g , regarded as a
polynomial in the variablesx, is equal to

o
sws1d,…,wsrddPg

xws1d…xwsrd s22d

up to a normalization. Here,sws1d ,… ,wsrddPg is a shorthand
notation to express thatsws1d ,… ,wsrdd is anr-tuple of vectors
ws jdPF2

2n satisfying

swi
s1d,…,wi

srd,wn+i
s1d ,…,wn+i

srd d P Gi , s23d

for every i =1,… ,n. As in the case of one single qubit, the
correspondence between the polynomialpn,r

g and the matrix
Ag is nonunique. Indeed, suppose thatmPSr is an arbitrary
permutation and define then-tuplegm=sG1

m ,… ,Gn
md such that

j P hasGi
md iff m−1s jd P hasGid s24d

for every j P h1,… ,rj andaP h0,1,2,3j. Equivalently, one
has sws1d ,… ,wsrddPgm if and only if sw(ms1d) ,… ,w(msrd)d
Pg. Then

pn,r
g = pn,r

gm
, s25d

which immediately follows from Eq.s22d. Conversely, ifg

and g8 are two n-tuples of orbits such thatpn,r
g =pn,r

g8 , then
there exists a permutationmPSr such thatg8=gm, as one can
easily verify. We now claim that a basishpn,r

g1 ,pn,r
g2 ,…j of the

space of invariants ofCn
r is obtained by fixing a set

hg1,g2,…j of n-tuples of orbits such thatsid the polynomials
pn,r

gi are pairwise different, andsii d for every n-tuple g of
orbits, pn,r

g =pn,r
gi for somei =1, 2,… .

The claim is proven as follows: first, it follows from the
construction of the invariantspn,r

g and itemsii d that the poly-
nomialspn,r

gi generate the space of homogeneous invariants of

degreer. Second, the linear independence of thepn,r
gi ’s fol-

lows from sid. For, suppose there exist complex coefficients
ai, not all equal to zero, such that

o
i

aipn,r
gi = 0. s26d

As each monomialP j=1
r xws jd, wherews jdPF2

2n, occurs in ex-
actly one invariantpn,r

gi , this yields a nontrivial linear combi-
nation of these monomials adding up to zero, which is a
contradiction; indeed, the monomialsP j=1

r xws jd are linearly
independent, as the polynomialshxwsrdj are algebraically in-
dependent.

We now set out to construct a set of invariants which
satisfiessid andsii d. According to the discussion above, there
is an equivalence relation, on the setOr

n of n-tuples of
orbits, such thatg,g8 if and only if there exists a permuta-
tion mPSr such thatg8=gm. A set of invariants which satis-
fies the desired conditions is obtained by choosing any set
hg1,g2,…j of orbits such that every equivalence class is rep-
resented by exactly onen-tuple gi.

Recall that ann-tupleg=sG1,… ,GndPOr
n is described by

n couples(h0sGid ,PsGid), whereh0sGid# h1,… ,rj andPsGid
is a partition of h1,… ,rj \h0sGid into three subsets. While
such a system ofn couples compactly describesg, it will be
useful to representg in a different way, which contains some
redundant information but has the advantage of being more
transparent: we describeg by ann3 r matrix M with entries
in the seth0, 1, 2, 3j, satisfying

Mij = 0 iff j P h0sGid, 0Þ Mij = Mik iff j andk belong to

the same subset in the partitionPsGid, s27d

for every i =1,… ,n and j ,k=1,… ,r. It is clear that this
description exhibits some degeneracy, as any permutation of
h1, 2, 3j in any row ofM yields asgenerallyd different matrix
which also satisfies Eq.s27d. However, the equivalence rela-
tion , is translated into a simple kind of equivalence trans-
formation of matrices. Indeed, twon-tuplesg ,g8POr

n, de-
scribed byn3 r matricesM andM8, respectively, belong to
the same equivalence class of the relation, if and only if
M8 is equal toM modulo a permutationmPSr of its columns
and n row-wise permutationspi of h1, 2, 3j, and we write
M ,M8.

Seeing that we are looking for suitable representatives of
each equivalence class, it is appropriate to look for normal
forms of the matricesM under the above action of the per-
mutationsm and pi. There is in fact a lot of freedom to
define sensible normal forms. One possible definition is
stated below in definition 4. First we need some preliminary
definitions:

Definition 1. Let dPN0. Let u=su1,u2,… ,udd and v
=sv1,v2,… ,vdd be twod-dimensional vectors with nonnega-
tive integer components. A lexicographical ordering relation
ølex is defined as follows:uølexv if u=v or if there exists
js1ø j ødd such thatui =vi if i , j anduj ,v j.

Definition 2. Let u be ad-dimensional vector with entries
in h0, 1, 2, 3j. For everyaP h0,1,2,3j, define hasud=h j
P h1,… ,dj uuj =aj.

Definition 3. Let M be ann3 r matrix with entries in the
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set h0, 1, 2, 3j. Let Mi
T denote theith row of M. Let m

=sm1,… ,mi0
d be ani0-dimensional vector with entries inh0,

1, 2, 3j, where i0øn. Then the sethmsMd# h1,…rj is de-
fined as follows:

hmsMd = ùiøi0
hmi

sMi
Td. s28d

For everyaP h1,2,3j, the vectorui0+1
sad sMd with components

ui0+1
sad sMdm, wherem ranges over alli0-dimensional vectors

with components inh0, 1, 2, 3j, is defined by

ui0+1
sad sMdm = uh j P hmsMduMi0+1,j = aju s29d

fthe indicesm of the components ofui0+1
sad sMd are ordered

according to the lexicographical ordering relationg.
Definition 4.Let M be ann3 r matrix with entries in the

set h0, 1, 2, 3j. ThenM is in normal form if it satisfies the
following conditions.

sid The columnsKj of M are ordered nondecreasingly—
i.e., K1ølex¯ølexKr.

sii d uh3sM1
Tduø uh2sM1

Tduø uh1sM1
Tdu and for every i

=2,… ,n,

ui
s3dsMdølexui

s2dsMdølexui
s1dsMd. s30d

siii d For every i =1,… ,n the three numbers
uh1sMi

Td , uh2sMi
Tdu , uh3sMi

Tdu are either all even or all odd.
Example 2.The following 3311 matrix is in normal

form:

30 0 0 111 1 22 33

0 1 2 111 2 33 22

1 2 3 012 3 03 12
4 . s31d

Indeed, conditionssid andsiii d are easily checked, as well as
the first part of conditionsii d. As for the second part ofsii d,
let us calculate the vector

u2
sadsMd = „su2

sadd0,su2
sadd1,su2

sadd2,su2
sadd3… s32d

and the vectoru3
sadsMd, equal to

„su3
sadd00,su3

sadd01,su3
sadd02,su3

sadd03,su3
sadd10,su3

sadd11,…….

Using definitions29d, we find

u2
s1d = s1,3,p , p d, u2

s2d = s1,1,p , p d, u2
s3d = s0,0,p , p d

and

u3
s1d = s1,0,0,p ,…d,

u3
s2d = s0,1,0,p ,…d,

u3
s3d = s0,0,1,p ,…d, s33d

where the entries denoted with * aresin this exampled irrel-
evant to order the vectors lexicographically, and condition
sii d follows.

One can easily verify that each equivalence class contains
exactly one normal form. Note that, given ann3 r normal
form M, one recovers the corresponding tuplegM
=sG1,… ,GndPOr

n as follows:

h0sGid = h0sMi
Td,

PsGid = hh1sMi
Td,h2sMi

Td,h3sMi
Tdj. s34d

For instance, the tupleg corresponding to the normal form in
example 2 is defined by

h0sG1d = h1,2,3j, PsG1d = hh4,5,6,7j,h8,9j,h10,11jj,

h0sG2d = h1j, PsG2d = hh2,4,5,6j,h3,7,10,11j,h8,9jj,

h0sG3d = h4,8j, PsG3d = hh1,5,10j,h2,6,11j,h3,7,9jj.

We have proven our main result:
Theorem 5.For everyn3 r normal form M, denote the

correspondingn-tuple of orbits bygM. Then the set of all
invariantspn,r

gM forms a basis of the space of homogeneous
invariants ofCn

l of degreer.
Thus, we have obtained our initial objective of construct-

ing for everyn and for everyr a basis of the space of invari-
ants ofCn

l of degreer. Note that for the casen=1 we indeed
recover the result obtained in the previous section.

It is interesting to investigate the behavior of the dimen-
sionsdn,r of these spaces for largen andr. Lower and upper
bounds fordn,r are the following.

Lemma 2.Let n,r PN0. Then

1

6nr!
s4r−1 + 3 · 2r−1 + 2dn ø dn,r ø Sr + 4n − 1

r
D .

Proof. Let Mn3r denote the set of alln3 r matricesM
with entries in the seth0,1,2,3j, such that for everyi
=1,… ,n the three numbers

uh1sMi
Tdu,uh2sMi

Tdu,uh3sMi
Tdu s35d

are either all even or all odd. Recall thatdn,r is equal to the
number of orbits of the groupSr 3S3

n acting on this set as
defined above. Using the Cauchy-Frobenius lemma, the
number of orbits is equal to

1

6nr! o
sm,pid

Fsm,pid, s36d

whereFsm ,pid denotes the number of fixed points inMn3r

of the elementsm ,pid=sm ,p1,… ,pnd, wheremPSr andpi

PS3. First, note that restricting the sum to all group elements
where m is equal to the identity yields the desired lower
bound, using a highly similar argument to the one used to
calculateuOrun above. In order to obtain the upper bound, we
will calculate the numberNn,r of orbits of the groupSr acting
on the set ofall n3 r matrices with entries in the seth0, 1, 2,
3j by permuting columns. Note that this number is indeed an
upper bound fordn,r. The Cauchy-Frobenius lemma yields

Nn,r =
1

r! o
mPSr

s4ndcsmd, s37d

wherecsmd denotes the number of cycles in the permutation
m. Consequently,
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Nn,r =
1

r! ok=0

r

tsr,kd4nk, s38d

wheretsr ,kd is defined as the number of permutations inSr

which have exactlyk cycles. Note that this number is related
to theStirling number ssr ,kd of the first kindby the relation
tsr ,kd=s−1dr+kssr ,kd f16g. Using the identityf16g

o
k=0

r

ssr,kdxk = s− 1drr ! Sr − x − 1

r
D , s39d

we find that

Nn,r = Sr + 4n − 1

r
D , s40d

which completes the proof.
While these bounds are in fact quite rough, they are suf-

ficient to gain qualitative insight into the limit behavior of
the dimensionsdn,r whenn or r are large. Let us first exam-
ine limr→`dn,r for fixed n. Denotel=4n−1. Then, using the
Stirling approximation lnsa! d<a ln a−a, the upper bound
reads

lnSr + l

r
D = lnsr + ld ! − ln r ! − ln l !

< sr + ldlnsr + ld − r ln r − ln l ! − l

= lnS1 +
l

r
Dr

+ l lnsr + ld − ln l ! − l

< l lnsr + ld − ln l ! , s41d

where in the last line we have useds1+sl / rddr <expsld
when r is large. Finally, we obtain

dn,r ø
1

l!
sr + ldl. s42d

We have proven the following.
Theorem 6. For every fixednPN0, the dimensiondn,r

tends polynomially inr to infinity. In other words, for every
n there exists a polynomialpnsrd in r such that dn,r

=O(pnsrd). Note that a similar result does not hold for
limn→`dn,r for fixed r. Indeed, the lower bound in lemma 2
shows that

dn,r ù OS 1

r!
S4r

6
DnD , s43d

which is nonpolynomial inn if r ù2.

V. INVARIANTS OF DEGREES 1, 2, AND 3

In this section we investigate the invariants ofCn
l of low

degrees in more detail. In particular, we will show the fol-
lowing result.

Theorem 7. Every invariant ofCn
l of degree 1, 2, or 3 is an

invariant of Us2d^n swhich also acts by conjugationd and
vice versa.

One of the implications in the theorem is trivial. Indeed,
every invariant of Us2d^n is an invariant ofCn

l , as the latter is

a subgroup of the former. Let us now prove the reverse im-
plication.

Let r be a 2n32n matrix of variables. First, it follows
from theorems 1 and 2 thatCn

l has only one invariant of
degree 1: namely, Trsrd, which is trivially an invariant of
Us2d^n.

In order to examine the invariants of degrees 2 and 3, it
will be convenient to introduce the following functions.

Definition 5. Let v# h1,… ,nj. Define the functions
dv ,ev :F2

2n→C by

dvswd = 1 if suppswd = v anddvswd = 0 otherwise,

evswd = 1 if suppswd # v andevswd = 0 otherwise.

It is straightforward to show the relations

ev = o
v8#v

dv8,

dv = s− 1duvu o
v8#v

s− 1duv8uev8, s44d

the first of which is trivial and the second of which can easily
be verified by substitution in the first one.

Now, regardingr =2, using example 1 we find that the
polynomials

pvsrd = o
wPF2

2n,suppswd=v

Trssw ^ swr^2d

= o
wPF2

2n,suppswd=v

Trhsswrd2j, s45d

wherev ranges over all 2n subsets ofh1,… ,nj, form a gen-
erating set of the space of invariants of degree 2. Moreover,
using the techniques of the previous section, one can easily
show that thepv’s are linearly independent and therefore the
dimension of this space is 2n. Interesting variants of Eq.s45d
are the polynomials

qvsrd = o
wPF2

2n,suppswd#v

Trhsswrd2j = TrhsTrv̄rd2j, s46d

where the operation Trv̄ denotes the partial trace over all
qubits outside the setv. The polynomialsqv are manifestly
invariant under the entire local unitary group. In fact, it is
well known that these polynomials are generators of the
space of invariants of Us2d^n of degree twof17g. Moreover,
one has the relations

qv = o
v8#v

pv8,

pv = s− 1duvu o
v8#v

s− 1duv8uqv8, s47d

which follow immediately from Eqs.s44d. In particular, the
second expression in Eqs.s47d shows that every polynomial
pv is an invariant of Us2d^n, implying that the setshpvj and
hqvj span the same space, which yields the desired result for
theorem 6 forr =2. Furthermore, it follows from Eqs.s47d
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that polynomialsqv are a basis as well, being a generating
set of cardinality 2n in a 2n-dimensional space.

A similar result can be proven for the invariants of degree
3. Theorem 2 shows that the space of invariants ofCn

l of
degree 3 is spanned by all polynomials

pn,3
g = o

sws1d,ws2d,ws3ddPg

Trssws1d ^ sws2d ^ sws3dr^3d,

whereg ranges over all elements inO3
n. Note that, for every

gPO3
n, one has ws1d+ws2d+ws3d=0 whenever

sws1d ,ws2d ,ws3ddPg, by definition ofO3
n. Using the descrip-

tion of g by setsvsid and vsi j d introduced in theorem 3, it
follows that

pn,3
g = o Trssws1d ^ sws2d ^ sws1d+ws2dr^3d, s48d

where the sum runs over all couplessws1d ,ws2ddP sF2
2nd32

such that

suppsws1dd = v1, suppsws2dd = v2

suppsws1d + ws2dd = v12, s49d

for somev1,v2,v12# h1,… ,nj. Using Eqs.s44d, a straight-
forward calculation shows thatpn,3

g is, up to an overall sign,
equal to

o s− 1duv18u+uv28u+uv128 uTrhsTrv̄18
rdsTrv̄28

rdsTrv̄128
rdj, s50d

where the sum runs over allv18#v1,v28#v2 andv128 #v12.
As the summands in Eq.s50d are manifestly invariant under
the action of Us2d^n, the polynomialpn,3

g is an invariant of
the local unitary group and the proof of theorem 7 is com-
pleted.

VI. CONCLUSION

We have performed a systematic study of the invariant
algebra of the local Clifford groupCn

l using the description of

this group in terms of binary arithmetic. Our approach was to
consider the spaces of homogeneous invariants degree per
degree and to construct bases of these spaces for each degree
r. In order to study these spaces of homogeneous invariants,
we transformed the problem to the study of certain algebras
An,r of matrices, such that every matrix in an algebraAn,r
corresponds to an invariant polynomial of degreer. We then
constructed baseshAgjgPOr

n of these algebras, which yielded
generating, though linearly dependent, setshpn,r

g jg of homo-
geneous invariants. We subsequently showed how a basis of
invariants could be pinpointed amongst these polynomials
for each degreer, which was the main result of this paper.

As stated in the Introduction, we believe that these results
are relevant in a number of fields in quantum information
theory, with in particular, the classification of binary quan-
tum codes. In forthcoming work we will apply the present
results to this problem.
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