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Invariants of the local Clifford group
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We study the algebra of complex polynomials which remain invariant under the action of the local Clifford
group under conjugation. Within this algebra, we consider the linear spaces of homogeneous polynomials
degree by degree and construct bases for these vector spaces for each degree, thereby obtaining a generating set
of polynomial invariants. Our approach is based on the description of Clifford operators in terms of linear
operations over GR). Such a study of polynomial invariants of the local Clifford group is mainly of impor-
tance in quantum coding theory, in particular in the classification of binary quantum codes. Some applications
in entanglement theory and quantum computing are briefly discussed as well.
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I. INTRODUCTION restricted version of this equivalence relation, where only

The (local) Clifford group plays an important role in nu- operatordJ Clﬁ‘ are con§idered, and thi; is wherfa Fhe invari-
merous theoretical investigations, as well as applications, i1t @lgebra o€, comes into play. What is more, it is to date
quantum information theory, quantum computing and quanynclear whether t_hls restrictias in fact a restriction at all:
tum error correctior{1-7]. The Clifford groupC, on one m@eed, the question exists yvhether. every two equalem sta-
qubit consists of all X2 unitary operators which map the bilizer codes are also equivalent in thls sec_ond, restnctgd
Pauli group G,=(y, 05,05 to itself under conjugation, S€NSe. A possible _way_towards solving this problem is
whereoq, 0, 05 are the Pauli matrices. In other wordy, is through a study Of_ |_nvar|anténf. ?"ISO [9). Moreover, _the
the normalizer ofg; in the unitary group U2). The local proplem of recognizing local unitary a_md/qr local Clifford
Clifford groupC'n on n qubits, which is our topic of interest equwalencg of certain classes of multipartite pure quantum
in the following, is then-fold tensor product of, with itself, ~ States(stabilizer states, graph statéms recently gained at-

In this paper we study thmvariant algebraof the local tention both in entanglement theof$,5.4 and in the one-
Clifford group, defined as follows: lefp;} be a set of 2 way quantum computing modélO]_. These examples make
variabes, wich are assembied in 25 mat (). 13 1P 0 SepIERLen Somans of e pecertvork

. . | . ’
;gg;gl\’sagar;t:a;%ﬁir,i Sn- j[h,i:nggn\?\;ﬁ?(s;hOfrZ‘L(;?r:nIi:)l’ll\e/)é(ll’ﬁ):r?': theory of the Clifford group is also of interest from a purely
under the substitutions— UpUT, for everyU ec tltis our mathematical point Of- view Rung[dl] and Ne_be, Ralns,
goal to construct a generating set of this algeTJra. and Sloané¢12,13 published a series of papers in which they

Thi h d h dwork for th dinvestigate the connection between the invariants of ¢ne
IS research started out as the groundwork for the stu fire) Clifford group (and generalizations theréaind the so-
of equivalence classes of binary quantum stabilizer code

Ralled generalized weight polynomials of a class of self-dual
the latter being a large and extensively studied class of quar g 1zed Welgh! poly I "

; 4ed8] A stabil de is a ioint ei ¢ t1assica|binary codes. Their work is a considerable gener-
um co es{_ ]. A stabilizer code IS a joint €igenspace ot a S€lyi; ation of a central result in classical coding theory, known
of commuting observables in the Pauli grouprogubits and

is d ived by th . hi b T bi as Gleason’s theoreril4], which states that the invariant
Is described by the projectts on this subspace. Two stabi- algebra ofC, is generated by the weight enumerators of the
lizer codesps and psr on n qubits are called equivalent if

) ) class of doubly even self-dual classical coe® definition

there exists a local unitary operatbre U(2)*" such that s the invariant algebra af, is here somewhat different than

UpsUT is equal tops: modulo a permutation of the qubits. ours; cf. footnote). It is interesting that the Clifford

A natural question to ask is how the equivalence class of @roup_a group which appears natura”y ina quantum theo-

code can be characterized by a minimal set of invariants—retical setting—has such a connection, through invariant

i.e., (polynomia) functionsF(ps) in the entries of the matrix theory, with the theory otlassicalcodes. It is not known

ps Which take on equal values for equivalent codes. This iswhether this link is a mere coincidence or a manifestation of

however, a difficult and unsolved problem. Therefore, givensome deeper resuliL5]. This remark may serve as another

the explicit connections between stabilizer codes, the Paujustification of the present research.

group and the Clifford group, it seems natural to consider a |n our study of the invariant algebra 6f, we will make
extensive use of the description of this group in terms of
binary linear algebra—i.e., algebra over the field[BEL",.

*Electronic address: mvandenn@esat.kuleuven.ac.be It is indeed well known thah-qubit (local) Clifford opera-

To be exact, in the literature the invariant algebra oflaN  tions can be represented elegantly by a certain classof 2
matrix groupG is usually defined as the set of all polynomials X 2n linear operators ovef, [1,4] and this binary picture
p(x)=p(Xq,...,%;) such thap(Ax)=p(x) for everyAe G. Our defi- makes thelocal) Clifford group particularly manageable in
nition is a variant of this. the following. In order to obtain a generating set of the in-
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variant algebra, we will adopt the following basic strategy:tation of Pauli matrices by pairs of bits, a Clifford operation
note that each invariant polynomi&l (simply calledinvari-  corresponds to an invertible linear transformatidp
ant) can be written as a sum of its homogeneous compoe GL(2,F,) (instead of a permutatior € S;) and a couple
nents, each of which is an invariant as well. One can thereef phasesy; and as. It is this second description of Clifford
fore always find a generating set of the invariant algebraperations in terms of binary linear transformations which is
which consists of homogeneous invariants only. Furthermost often used in the literature in quantum information
more, the set of homogeneous invariants of fixed degree is #heory and quantum computing, and we will do the same.
finite-dimensional vector space, as one can easily verify Thelocal Clifford groupCl, on n qubits is then-fold ten-
(which gives the algebra of invariants the structure of asor product ofC; with itself—i.e.,

graded algebna Therefore, a natural approach to our prob- | _

lem is to consider these spaces of homogeneous invariants Ch=C1® - ®Cy(ntimes.

degree by degree and to construct a basis of invariants f
each degree. This construction will yield a generatipet
infinite) set of the invariant algebra.

o/i’\nalogous to the case of one qubit, the grtﬁl'r{p:an be most
easily described by its action on the Pauli gragpon n
qubits, defined by

Il. LOCAL CLIFFORD GROUP Gh=0G1® -+ ® Gy(ntimes.
The Clifford group C;on one qubitis the following group Using the mappingl), the elements ofj, can be represented
of unitary 2x 2 matrices: as D-dimensional binary vectors as follows:
oo i{l 1 } {1 o] Tup, ® " @ 0y, =0y > (W) € 15,
Szl -aflo i ]/ where (u,v)=(uy, ...,U,,v1, ...,0,). As in the case of one

single qubit, local Clifford operations mag, to itself under
conjugation. Thereforen-qubit local Clifford operations as
well can be described in terms of linear operations dwer
One can readily verify that, in this binary picture, an operator
Ue C'n corresponds to an invertiblenX 2n binary matrixQ

of the block form

22 e 2] ) Y

The order ofC, is finite and equal to 192. Up to overall phase
factors, the Clifford group consists of all unitary operators
which map thePauli groupto itself under conjugation; here,
the Pauli groug; (on one qubix consists of the identityr,
and the three pauli matrices

C D
all having four possible overall phase factors equal to +1 or
+i. In other words, up to these overall phase factors, th
group(, is the normalizer ofj; in the unitary group U2).
Note that these phases are not relevant in the following, since Uo UT= Q0ge; (2)
we are considering the action of the Clifford group under '
conjugation as explained in the Introduction. It follows thatwhereeg; is theith canonical basis vector ifi3", for everyi
everyU e C; is, for our purposes, completely described by a=1,...,2n. Denoting the diagonal entries &{,B,C,D, re-
permutations € S;, where S; is the symmetric group on spectively, bya;,b;,c;,d;, respectively, then submatrices
three letters, and a set of three phasgsa,,a3=*1, such

_ b
that QW= {a‘ dl} e GL(2,I)
UO’iUT:a{iO'ﬂ.(i)(i :1,2,3. I I

here then X n matricesA, B, C,D are diagonal, and a set of
n phasesy;=+1, defined by

correspond to the tensor factorsdf The group of all such
Moreover, sinceo,0,~ 03, one hasaja,az=1 and it is  Q is isomorphic to GI2,I,)" (and S).
therefore sufficient to keep track of only two of thgs (say,
ay and ag). Another useful characterization of the Clifford
group is obtained by considering the mapping [1I. INVARIANT POLYNOMIALS AND MATRIX

0.0 ALGEBRAS
00 = 0go—> (U, U),
Let {p;} be a set of 2 variables, which are assembled in

o= 01— (0,2), a 2'x 2" matrix p=(pjj). An)_/ homogeneous polynomi&lp)
of degreer e N can be written as a trace
o3= 010> (1,0, F(p) = Tr(Aep®")
nr 1 i 1
oy= oy (1,0), 1) for some complex 2 X 2" matrix Az. To see this, simply

note that the tensor produpf’’ contains all monomials of
which establishes a homomorphism between the gréljps degreer in the entries;;. The coefficients of these monomi-
andI'3. Here, I, is the finite field of two element® and 3,  als in the polynomialF are encoded in the entries &
where arithmetics are performed modulo 2. In this represenmote, however, that the correspondefee A is not one to
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one. It can easily be verified tha&(UpUT)=F(p) for every  cients ap;, aq0, a31= 1 With agai000;,=1 and a linear op-
U e Cl if and only if there exists als such that eratorQ e GL(2,I,) such thatUo o) U"= b0 for ev-
ery (a,b) e [3\{0}. Defining the integers,,ny,n, by

USTAR(U®)T = A 3
for everyU e C'n. Therefore, the study of invariant homoge- M = |{J|(u0i'voi) - (0‘1)}|’
neous polynomials of fixed degreeis transformed to the i
study of the algebrad,,, of matricesA: which satisfy Eq. ny = {il(ug;.ve) = (1D},
(3). In this section, we will construct a linear basis of this
algebra. This will yield a generating set of homogeneous n,={jl(ug,ve) = (1,0},

invariants of degree.2 First we consider the simplest case of
one single qubit, i.en=1, and then we move to the general

i ne N, n — _ngny, n +n,
case of arbltrary1. aOial%)al)j.U(Uo,FO) = agy Yayh ya(%’%) (5)

the operatolU®" mapsoy, ) 10

A. One qubit under conjugation, wher@l,,vo) € I' is the image ofug,v)
under the actior4) of Q. The crucial observation is now that
maps a 2x 2' matrix A fo the coefficient ofog, ) in Eq. (5 is always positive(and
thus equal to Lif and only if both the numbers,+n, and
1 n,+n, are even. Note that this occurs if and onlynjf n,, and
= t z7 Yy ) X Y )
T e EC USAUEH . n, are all even or all odd or, equivalently, if and only if
vea (ug,vo) €V, as one can readily verify. It follows that

Let re Ny and letR, be the averaging operator which

Ri(A) :

Note thatR, is the orthogonal projector of the space 6f 2

X 2" matrices onto the subspagh ,. Therefore, a spanning Rr(0<uo,u0)) -~ E O(u)

(though in general nonminimaket of A;, is obtained by (uv)el

fixing a vector space basis of 2 2" matrices and calculating if (uy,vo) € V;. If (Ug,vo) & V;, ONe can easily see that the

its image undefR,. In this context, a natural choice for such different terms in the SUnR,(ay, . interfere such as to

a basis is the sefo(,,|u,v e I3} of Pauli operators ot yield zero. This ends the proof.

qubits(all having an overall phase equal th Before calcu- Using the result in lemma 1, we can construct a basis of

lating the imagesk(oyy,,)) in lemma 1, we need some defi- 4, . Denote byO, the set of all orbitd" of the elements in

nitions: firstly, let the group G(2,I,) act onF2 as follows:  V;, (note that®, forms a partition ofV,). For everyl’ e O,
define the matrix

Q e GL(2,F,):(up) € F¥ — (U,0) € F¥, (4)
where(u,v) is defined by Ar= (UUE)"EF Tuw): (6)
Ul Ay By construction, the matrice& linearly generate the alge-
v; =Q v |’ bra A, ,. Moreover, this set of matrices is linearly indepen-

. o . dent: indeed, this follows immediately from the linear inde-
for eVefyFl,---,f,_\/\lﬂereuj,vj,uj,vj, respectlvely, are the pendence of the Pauli operatoss, . Therefore, we can
components oti,v,u,v. Second, let the binary vector space -gnclude that thé\’s are a basis of4; . In order to calcu-

V; consist of all(u,v) e 3" such that late the dimensiof©,| of A, ,, we use the Cauchy-Frobenius
r orbit-counting lemma, which states that the number of orbits
> (u;,v)) =(0,0). of a finite groupG acting on a sekK is equal to the average
=1 number of fixed points; i.e., the number of orbits is equal to
We are now in a position to state the following lemma. 1 D
Lemma 1 Let re Ny. Let (Ugp,vg) € ]F%’ and denote by G| 7, (7

eG
the orbit of this vector under the actidd). Then ’

where|F(g)| is the number of fixed points in the S¥tof the
CE(u,v)eF Oy If (Ugvg) € V4 group elemeng. Let us therefore calculate the number of
fixed points of an arbitrary matri® € GL(2,F,) acting on
V,. First, it is trivial that the identity has$V,|=4""! fixed
where ¢ is a constant. points. Second, there are three elements if2GE,) of order
Proof. Let U e C; be an arbitrary Clifford operation. The 2. Consider, e.g., the matrix
action ofU on the Pauli matrices is parametrized by coeffi- [ 0 1}

Rr(O’(uO‘UO)) = .
otherwise,

o Qo= 10
This set will, however, not be linearly independent in general,

due to fact that the description of an invaridhtp) by a trace  When acting OriF‘g, this operator fixes exactly two vectors:

Tr(Agp®") is nonunique. Bases of invariant polynomials are dis-namely,(0,0) and (1,1). Therefore, wher), acts on),, the

cussed below. set F(Qg) consists of all vectors of the form
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ay(1,0,...,0:1,0,..,0) + a5(0,1,...,0:0,1, ..
+«(0,0,...,1;0,0,..,1),

,O)+
(8

where ; € {0,1} for everyi=1,...,r and where exactly an
even number ofy’s are nonzero. Therefore, the cardinality

of F(Qg) is equal to the number of even subsets of

{1,...,r}—i.e., |F(Qy)|=2""1. Note that an analogous argu-
ment holds for the other two matrices of order 2. Finally,
there are two elements in G2,I,) of order 3, which fix

only the zero vector. Gathering these results in the formula

(7), we find that the numbd©,| of orbits is equal to
1 -
ARG L+3x 27+ 2).

We have proven the following.

Theorem 1Letr e No. The sef{Arjr o, is a vector space
basis of the algebral; ;. The dimensionfO,| of A;, is equal
to

1

5(22“3 +3X 272+ 1), (9)
Thus, we have obtained the desired result of constructin

a basis of matrices of the algebw . It will be useful to

have an explicit parametrization of the orbits= O,. Such a

PHYSICAL REVIEW A1, 022310(2009

(i) r=1: there is one orbit in0;: namely, I'y={(0,0)}
e 0. This orbit is characterized byy(I'p)={1} and P(I'y)
={0,0,0}.

(i) r=2: there are two orbits inO,:
={(0,0;0,0} and
F’ :{(010111])1(11110101(111111])}:{(uav) € Fg|(ulvvl)

= (u21v2) * (0,0)}

The orbitsI” and I’

namely, T’

are described by
() ={1,2, PI)={0,0,0}
and
") =0, PI’")={{1,2,0,0}.

B. Multiple qubits

For arbitraryn, the result in theorem 1 can immediately
be used to construct a basis 4f,;. To see this, let us first
consider the algebra of"2x 2"" matricesA which satisfy

U ® - @ UZTAUY @ - @ UP)T=A,

9or everyUy,...,U,eC;. It is straightforward to show that
this algebra is then-fold tensor product of4; , with itself.

parametrization could, e.g., be used to enumerate all the maerefore, a basis of this algebra is given by the matrices

trices Ar for a given degree. Also when we will move from
the matrix algebrad, , to the polynomials T#Ap®") in Sec.
IV, a more operational description of tig’s will turn out to
be very useful. To this end, for each,v) Fgr, define the
sets

WO(U,U) = {J|(UJIUJ) = (0!0)}1
nx(urv) = {J|(UJ,UI) = (011)}1
my(u,0) ={j|(uj,0p) = (1,D},

7]Z(U,U) = {J |(ulej) = (110)}

Then the following characterization is easily verified: two
vectors(u,v),(u’,v’) ngr belong to the same orbit if and
only if

@ mo(u,v)=ne(u’",v’) and

(b) there exists a permutatiofr of {x,y,z} such that
U, 0") = 10U, 0), (U, 0") = 7 (U,0), @nd nu’,v’)
:7777(2)(“,0)-
This implies that any orbif’ of the action(4) can completely
be described by

(@) asety(Ic{1,...,r} and

(b") a partition P(I')={n, 75, 73} of {1,...,r}\ 5D
into three (possibly empty subsets, such thdu,v) e I' if
and Only if Wo(UaU): 7]0(F) and{nx(u,v) ' 77y(UaU) ' ﬂz(uyv)}
=P(I'). Moreover, I'e O, if and only if the numbers
[74],] 72|, | 75| are either all even or all odécfr. proof of
lemma 1. Let us illustrate this characterization with two
simple examples.

F1®"'®Afn' whereT’; ranges over all orbits irQ,, for
everyi=1,...,n. In order to obtain a basis of,, one sim-
ply has to conjugate this basis with the permutation marix
defined by

Pligs...igriiogeerior;eeeiing. . iny

=liggeeeintsiae . ing)eees

(10
wherei,, € {0, 1} and|i,;...) are the standard basis vectors in
2", Indeed, the matri® performs the appropriate permuta-
tion of tensor factors, mapping;' ® ---®UZ" to (U;® -+

®U,)®" under conjugation. This leads to the following re-
sult.

i1reIne),

Theorem 2Letr e N. For everyn-tuple y=(I"y, ...,I",) of
orbitsI'; € O,, define the matrix
A,=PA ® - ® AFHPT. (11

Then the sefA,}, forms a vector space basis gf,,. The
dimension ofA,,, is equal to]O,|".

Following the discussion at the end of Sec. Il A, the ma-
trices A, can be described in an alternative way than Eq.
(1), using the description of orbitd’ e O, by couples
(10(T"),P(T")). Defining thesupportof a vectorw e 3" to be
the set

suppw) ={i e {1,...,n}{(w;,W,;) # (0,0},

one obtains the following.

Theorem 3Let y=(I'y,...,I';) be ann-tuple of orbitsT’
e O,. For everyj,ke{1,...,r},j <k, define the sets®'’ and
w(jk) by

(12)

oV ={i e {1,...,n}]j € (T},
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o ={ie{1,..,nlj,k e 5T} orjandk A. One qubit

belong to the same subsetB(T,)}. (13) Let p=(p;), wherei,j=0, 1, be a matrix of variables. Fix
an orbitI' € O, with 7y(I")= 5y and P(I') ={51, 10, 73}. It
ThenA,=Z0y1® *: ® o, Where the sum runs over all will be convenient to introduce the linear forms(p):

orderedr-tuples(w(l), ,W(r)) S (F%n)xr satisfying :Tr(pg-ij), wherei,j=0, 1 or, more explicitly,
suppgw!) = 0", (14) Xoo(P) = poo+ P11,
suppw! + wk) = Uk, (15 X01(p) = po1 + P10,

for every j,ke{1,...,r},j <k, where o’ ,w¥ denote the
complements of the setsVw'™ in {1,...,n}.
Proof. By definition, A, is equal to

X10(P) = Poo+ P11,

X11(p) =1(po1~ p10)- (18)

2T ® @ Ty, Conversely, thep;'s can be written as linear forms in the

1 variablesx=(x;) as follows:
where the sum runs over all ordereduples(w®, ..., w")

e (Fa"*" such that 12
p(x) = > > Xjj Tij -

W, owO wd L owh) e T, (16) 1,j=0

for everyi=1,...,n. The proof of the theorem then follows We will consider TfApp(x)*'] to be a polynomial in the
immediately from the characterization of the orbitsby the ~ variablesx. This yields
couples(7o(I'y), P(T)), for everyi=1,...,n. O

Example 1.Let us consider this result for the case of Tr[Al_p(x)W]:ir > X0, Xuo
smallest nontrivial degree—i.et=2. Let y?=(I'y,...,I") (up)erl o
be ann-tuple of orbitsT’; e O,. Recall thatO, contains ex- 1
actly two orbitsI" andI"’, as defined in the last paragraph of = > XguolyBuolyiduo) iylue)
Sec. lll A. Letw be the subset dfl,...,n} which consists of (uv)el’
all i such that’;=I". Following the definitions stated in theo- (19
rem 3, we havawP=w=w? and *?={1,...,n}. Conse- -
quently, where we have used the definitiong(u,v)=|7,(u,v)| etc.
Note that
Ay = an 0w ® oy No(U,v) = | 79
we 5", supgw)=w
and

This shows that the matrices,» are parametrized by the

subsetsw of {1,...,n} in a one-to-one correspondence. {ny(u,v),ny(u,v),n(u,v)} = {| 7], 72| | 73]}
While the result in theorem 3 is in fact no more than a

reformulation of Eq(11), it is interesting in that it relates the

matricesA,, [and thus the corresponding invariant polynomi-

als Ti(A,p®") as well to the notion of the support of a binary 70l 1720\ 72) | 7(3)|

vector, which is of central importance in quantum coding X 2 X g 20

theory. Note that the definitiofl2) of support is indeed the

same as is used in the theory of quantum codes. up to a normalization factor. Expressi¢20) shows that the
polynomial T(Arp®") only depends on the numbgy,| and

the set{|n|,|7,|,|7sl}. In other words, ifl" andI'" are two
orbits such that

for every(u,v) eI'. It readily follows that Eq(19) is equal

TeSy

IV. BASES OF INVARIANTS

It follows from theorem 2 that the polynomials
Par(p) = Tr(A,p®"), (17 and

in the variablesp, (1,j=0,..., 2’ 1) linearly generate the {jy, (1) |y(I)] | (1)} = {| (") 7o) | T )
space of homogeneous mvanantﬂ:;bf degree. However,

different A,’s may correspond to the same polynomial andthen (and only theh the polynomials TiArp®") and
therefore linear dependences within the set of the polynomiTr(App®") coincide. This equivalence relation ) leads to
als (17) can exist in general. We now set out to pinpoint athe following definition: for each 4-tupl&=(\g,\1,\2,\3)
basis of polynomials for each degreeAs in the preceding of non-negative integers; such that\,,\,,\5 are either all
section, we start by considering the simplest case of oneven or all odd g+ +Ny+A3=r and\;=A,=\3, we de-
qubit and then move to the general case. fine an invariamprA of C, of degreer as follows:

|70(D)| = | 770(I"")]|
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p?:XSBE oDy 2y M r(3) (21) degreer. Second, the linear independence of fjg’s fol-
e, L0 M lows from (i). For, suppose there exist complex coefficients

- Lo . &, not all equal to zero, such that
Recall thatp; is to be regarded as a polynomial in the vari-

ablesp via Eq. (18). By construction, the set of all these > apl. =0. (26)
polynomials generates the space of invariants of degree i
What is more, thep;’s are linearly independent. This imme- Aq aach monomiall’
diately follows from the fact that each monomial in the vari-
ablesx;; occurs in exactly one polynomiad} and that the
polynomials x;;(p) are algebraically independent. We have
therefore proven:

Theorem 4The polynomialsp? form a basis of the vector
space of homogeneous invariantsCgfof degreer.

<%, wherew!) e F2", occurs in ex-
actly one |nvar|anpm, this yields a nontrivial linear combi-
nation of these monomials adding up to zero, which is a
contradiction; indeed, the monomial%}zlxw(p are linearly
independent, as the polynomidls,(p)} are algebraically in-
dependent.

We now set out to construct a set of invariants which
satisfies(i) and(ii). According to the discussion above, there
is an equivalence relatior- on the setO; of n-tuples of
orbits, such thaty~ v’ if and only if there exists a permuta-

The construction of bases of invariants for arbitrBWi” tion JTR= Sr such tha’[ny’ = ;y//« A set of invariants which satis-
be a generalization of the one-qubit case. Starting from ges the desired conditions is obtained by choosing any set
27X 2" matrix p of variables, we again perform a change of{y,y,,...} of orbits such that every equivalence class is rep-
variables, definings,=x,(p)=Tr(po,), for everywe F3".  resented by exactly onetuple .

Analogous to the one-qubit case, the converse relation reads Recall that am-tuple y=(T'y, ...,T,) € O"is described by
p(X)=(1/2)Zxy0. Note that the polynomialéx,(p)} are  n couples(7,(T;), P(T)), whereny(T;) C{1,...,r} andP(T})
algebraically independent; this follows from the fact that thejs a partition of{1,...,r}\ 7,(I;) into three subsets. While
variablesx and the variablep are related by an invertible g;ch g system af couples compactly describas it will be

B. Multiple qubits

linear transformation. Now, lettingy=(I',...,T'y) be an  ysefyl to represent in a different way, which contains some
n-tuple of orbitsI'; € O, the invariantpy , regarded as & redundant information but has the advantage of being more
polynomial in the variableg, is equal to transparent: we describeby annx r matrix M with entries
in the set{0, 1, 2, 3, satisfyin
> XD+« Xip1) (22 .{ . 3 fying o
W W) ey M;; =0 iff j & 5o(I"), 0# M;; = M, iff j andk belong to
up to a normalization. Heréw'?, ... ,w") e y is a shorthand the same subset in the partitihl’;), (27)

notation to express th&'?, ..., w") is anr-tuple of vectors

W(].)ngn satisfying for everyi=1,...,n and j,k=1,...,r. It is clear that this

description exhibits some degeneracy, as any permutation of

(W(l) W (r) W§11+)“_ n+|) el (23) {1, _2, 3inany row ofM yields a(generally different matrix
which also satisfies Eq27). However, the equivalence rela-
for everyi=1,...,n. As in the case of one single qubit, the tion ~ is translated into a simple kind of equivalence trans-

correspondence between the polynongia! and the matrix  formation of matrices. Indeed, twa-tuplesy,y’ € Oy, de-

A, is nonunique. Indeed, suppose that S is an arbitrary  scribed byn X r matricesM andM’, respectively, belong to

permutation and define thretuple y*=(I'f', ... ,I'}) such that  the same equivalence class of the relatierif and only if
M’ is equal toM modulo a permutatiop € S of its columns

j & naIf) iff w7HG) € na(I) (24 andn row-wise permutations, of {1, 2, 3, and we write
for everyje{1,...,r} andae{0,1,2,3. Equivalently, one M~M". _ _ .
has (WD, ... w) e y* if and only if (WED), . wlkm) Seelng_ that we are Ioo_klng for suneble representatives of
e v. Then each equivalence class, it is appropriate to look for normal
forms of the matriced/ under the above action of the per-
Y = pg”:, (25)  mutationsu and m;. There is in fact a lot of freedom to

o ) ) define sensible normal forms. One possible definition is
which immediately follows from Eq(22). Conversely, ify  stated below in definition 4. First we need some preliminary
and ' are twon-tuples of orbits such thap} =p},, then definitions:
there exists a permutatigne S such thaty’ = y" as one can Definition 1 Let de Ny Let u=(uq,u,,...,Uy) and v
easily verify. We now claim that a basip}t,pj2,...} of the  =(vy,v,,...,v4) be twod-dimensional vectors with nonnega-
space of invariants ofC], is obtained by fixing a set tive integer components. A lexicographical ordering relation
{y1,72,...} of n-tuples of orbits such thdt) the polynomials =, is defined as followsu= v if u=v or if there exists
py, are pairwise different, andi) for every n-tuple y of  j(1<j=d) such that;=v; if i <j andu; <vj.
orbits, Par=Pny for somei=1, 2.... Definition 2 Let u be ad-dimensional vector with entries

The claim is proven as follows: first, it follows from the in {0, 1, 2, 3. For everyae{0,1,2,3, define n,(u)={j
construction of the invariants} . and item(ii) that the poly-  e{1,... ,d}|uj:a}.
nomialsp}, generate the space of homogeneous invariants of Definition 3 Let M be annxr matrix with entries in the
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set{0, 1, 2, 3. Let MiT denote theith row of M. Let m
=(my,... ,mio) be aniy-dimensional vector with entries i,
1, 2, 3, whereig=n. Then the sety(M)C{1,...r} is de-
fined as follows:

M) = Ny 7 (M) (28)

For everyae{1,2,3, the vectomI +1(M) with components

I(ail(M)m, wherem ranges over aIIO -dimensional vectors

W|th components iq0, 1, 2, 3, is defined by
Ufgll(M)m: |{J € 77m('\/|)||v|i0+1j = a}|

[the indicesm of the components oﬂo (M) are ordered

according to the lexicographical ordering relafion
Definition 4.Let M be annXxr matrix with entries in the
set{0, 1, 2, 3. ThenM is in normal form if it satisfies the
following conditions.
(i) The columnsK; of M are ordered nondecreasingly—
e, KiSiex  SjexKs-
(i) |7aMD| <] 7MD|<|(MD| and for every i
2,...,n,

(29)

=

Ui(g)(M)glexuiQ)(M)glexui(l)(M)' (30)

(i) For every i=1,...,n the three numbers
|7 (M), | (M), | 75(MT)] are either all even or all odd.
Example 2.The following 3xX 11 matrix is in normal
form:
000 1111 22 3
012 1112 33 27.

123 0123 03 1

(31)

Indeed, conditions$i) and (iii) are easily checked, as well as
the first part of conditior(ii). As for the second part dfi),
let us calculate the vector

FM) = (U)o, ()1, U)o (UF)g)  (32)
and the vectou (M), equal to
(( )ooi(U(a))OL(U )ozi(U(a))o:ay(Us))lo (U )11:---)-
Using definition(29), we find
u = (1,35, %), uP=(1,1,%,%), uP=(0,0,%,*)
and
u’ =(1,0,0,%,...),
u?=(0,1,0,%,...),
ud=(0,0,1,%,...), (33)

where the entries denoted with * afi@ this example irrel-

PHYSICAL REVIEW A71, 022310(2005
no(l'}) = 7lo(MiT),

PTY) ={m(M]), (M), (M)}

For instance, the tuplg corresponding to the normal form in
example 2 is defined by

7]0(F1) = {1,2;3; P(Fl)

(34)

={{4,5,6,%.{8,9,.{10,13},

7]0(F2) = {1}1 P(FZ) = {{2!4i5!61{3!7! 10! 11,{8,9}},

710(F3) = {4’8}! P(F3) = {{1!51 1q1{2!61 1]}!{3’7!q}

We have proven our main result:

Theorem 5For everynXr normal formM, denote the
correspondingn-tuple of orbits byyy,. Then the set of all
invariantsp¥ forms a basis of the space of homogeneous
invariants ofCl, of degreer.

Thus, we have obtained our initial objective of construct-
ing for everyn and for everyr a basis of the space of invari-
ants ofC}, of degreer. Note that for the case=1 we indeed
recover the result obtained in the previous section.

It is interesting to investigate the behavior of the dimen-
sionsd,, of these spaces for largeandr. Lower and upper
bounds ford,, are the following.

Lemma 2Let n,r e Ng. Then

r+4n- 1)
) .
Proof. Let M, denote the set of alhXr matricesM

with entries in the sef{0,1,2,3, such that for everyi
=1,...,n the three numbers

| (M) [ (M), | (M) (35

are either all even or all odd. Recall thd, is equal to the
number of orbits of the grouf X S} acting on this set as
defined above. Using the Cauchy-Frobenius lemma, the
number of orbits is equal to

1
6! (4r—1+ 3- 2_l+ 2)n = dn,r = (

(36)

where F(u, ;) denotes the number of fixed points M.,

of the elemen{w, m)=(u,m,...,m,), whereu € S and

e S;. First, note that restricting the sum to all group elements
where p is equal to the identity yields the desired lower
bound, using a highly similar argument to the one used to
calculate|O,|" above. In order to obtain the upper bound, we
will calculate the numbeN, , of orbits of the groufs acting

on the set ofll n X r matrices with entries in the s, 1, 2,

3} by permuting columns. Note that this number is indeed an
upper bound fod, . The Cauchy-Frobenius lemma yields

evant to order the vectors lexicographically, and condition

(ii) follows.

One can easily verify that each equivalence class contains

exactly one normal form. Note that, given ar<r normal
form M, one recovers the corresponding tuplg,
=(Ty,...,I'y) € OF as follows:

== E (4w

,uesr

wherec(w) denotes the number of cycles in the permutation
m. Consequently,

(37

022310-7



VAN den NEST, DEHAENE, AND DE MOOR PHYSICAL REVIEW A1, 022310(2009

10 a subgroup of the former. Let us now prove the reverse im-
Ny = —'2 t(r,k)4nk, (38)  plication.

M=o Let p be a 2X2" matrix of variables. First, it follows
wheret(r k) is defined as the number of permutationsgn  rom theorems 1 and 2 that, has only one invariant of
which have exactlk cycles. Note that this number is related degrgne 1: namely, Tp), which is trivially an invariant of
to the Stirling number & ,k) of the first kindby the relation U@

t(r,k)=(-1)™*s(r, k) [16]. Using the identity[16] _In order to examine the invariants of degrees 2 and 3, it
will be convenient to introduce the following functions.
' ) r—x—1 Definiton 5 Let wC{1,...,n}. Define the functions
kZ S(r,kx<=(=1)r! , B9 5,6, F2—C by
=0

S,(w) =1 if suppw) = w and §,(w) =0 otherwise,

we find that
r+4"-1 €,(w) =1 if supgw) C w and e, (w) =0 otherwise.
nr = ( r ) 40 It is straightforward to show the relations
which completes the proof. €,= S S

While these bounds are in fact quite rough, they are suf-

ficient to gain qualitative insight into the limit behavior of vee
the dimensionsl,, whenn or r are large. Let us first exam- _ > o]
ine lim,_..d,,, for fixed n. Denotex=4"-1. Then, using the 6,=(=1) “ (=D e, (44)
Stirling approximation Ia!)=~alna-a, the upper bound @ Cw
reads the first of which is trivial and the second of which can easily
FE be verified by substitution in the first one.
In( ): In(r+N\)!=Inr!=In\! Now, regardingr=2, using example 1 we find that the
r polynomials
=(+MNIn(r+N)-rinr=In\!-x
( Jin( ) Pu(p) = 2 Tr(oy ® 0'wp(g)z)
)\ r € 2”, =w
:In(1+?> +XInr+N) —-InX!I=-\ W sup)
= 2 Triew?, (45)
=NIn(r+\)—-In\!, (41) We}‘gn,sup;ﬁw)zw
where in the last line we have usdd+(\/r))"~exp(\)  wherew ranges over all 2subsets of1,...,n}, form a gen-
whenr is large. Finally, we obtain erating set of the space of invariants of degree 2. Moreover,
1 using the techniques of the previous section, one can easily
N ) . .
o< —(r+ MM (42)  show that thep,’s are linearly independent and therefore the
Al dimension of this space is'2Interesting variants of Eq45)
We have proven the following. are the polynomials

Theorem 6 For every fixedn e Ny, the dimensiond,
tends polynomially irr to infinity. In other words, for every
n there exists a polynomiap,(r) in r such thatd,,
=0O(pn(r)). Note that a similar result does not hold for where the operation Frdenotes the partial trace over all
lim,_.d,, for fixed r. Indeed, the lower bound in lemma 2 qubits outside the seb. The polynomialsy, are manifestly

W)= X T2 =Td(Trzp)?, (46)

we 3" suppw) Cow

shows that invariant under the entire local unitary group. In fact, it is
1{a\n well known that these polynomials are generators of the
dy, = @<_<_> ) (43)  space of invariants of (2)°" of degree twd17]. Moreover,
’ r'\ 6 one has the relations
which is nonpolynomial im if r=2.
poly Qo = 2 Por
V. INVARIANTS OF DEGREES 1, 2, AND 3 o'Co
In this section we investigate the mvarla_ntsaﬁfof low o= (=l S (=1)lq,,, 47)
degrees in more detail. In particular, we will show the fol- ‘
lowing result. oo

Theorem 7Every invariant ot'n of degree 1, 2, or 3is an which follow immediately from Eqs(44). In particular, the
invariant of U2)®" (which also acts by conjugatiprand  second expression in Eqel7) shows that every polynomial
vice versa. p,, is an invariant of W2)*", implying that the set$p,} and

One of the implications in the theorem is trivial. Indeed, {q,} span the same space, which yields the desired result for
every invariant of W2)®" is an invariant oC'n, as the latter is  theorem 6 forr=2. Furthermore, it follows from Eqg47)
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that polynomialsg,, are a basis as well, being a generatingthis group in terms of binary arithmetic. Our approach was to
set of cardinality 2 in a 2"-dimensional space. consider the spaces of homogeneous invariants degree per
A similar result can be proven for the invariants of degreedegree and to construct bases of these spaces for each degree

3. Theorem 2 shows that the space of invariants’jpbf
degree 3 is spanned by all polynomials

>

WO @ 3

TrHoww ® gw@ @ owap®),
ey

Yy —
pn,3 -

wherey ranges over all elements fi5. Note that, for every
yeO3 one has wl+w@+w®=0  whenever
(W, w?@ wd) e y, by definition of ©3. Using the descrip-
tion of y by setsw and »l) introduced in theorem 3, it
follows that

pZ,B = 2 TI'(O'W(l) ® oy ® 0'W(1)+W(2)P®3)a (48)

where the sum runs over all couplés', w?) e (IF3")*2
such that

supgw?) = w;,  supgw?) = w,

SUpF(VV(l) + VV(Z)) = w12, (49)

for somew;, w,, w1,C{1,...,n}. Using Egs.(44), a straight-
forward calculation shows tha} 5 is, up to an overall sign,
equal to

2 (= el T (Trg p) (Trop) (Try p)}, (50)

where the sum runs over all; C w;, w5 C w, and w;,C wq,.
As the summands in E¢50) are manifestly invariant under
the action of W2)®", the polynomialp} 5 is an invariant of

r. In order to study these spaces of homogeneous invariants,
we transformed the problem to the study of certain algebras
A, of matrices, such that every matrix in an algebtg,
corresponds to an invariant polynomial of degre&/e then
constructed base{at\y}yeop of these algebras, which yielded

generating, though linearly dependent, g%}, of homo-
geneous invariants. We subsequently showed how a basis of
invariants could be pinpointed amongst these polynomials
for each degree, which was the main result of this paper.

As stated in the Introduction, we believe that these results
are relevant in a number of fields in quantum information
theory, with in particular, the classification of binary quan-
tum codes. In forthcoming work we will apply the present
results to this problem.
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