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Thermal entanglement of spins in an inhomogeneous magnetic field
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We study the effect of inhomogeneities in the magnetic field on the thermal entanglement of a two-spin
system. We show that in the ferromagnetic case a very small inhomogeneity is capable of producing large
values of thermal entanglement. This shows that the absence of entanglement in the ferromagnetic Heisenberg
system is highly unstable against inhomogeneity of magnetic fields, which is inevitably present in any solid
state realization of qubits.

DOI: 10.1103/PhysRevA.71.022308 PACS nunter03.67.Mn, 03.65.Ud, 75.10.Jm

. INTRODUCTION tude | 8| of a few percent, and the dimensionlegss of the

A. Motivation order of 10 Note that the only coupling in the interaction
between spins that is controllableli$12], and the individual
couplings between different components of spins denoted
usually byJ,, J,, andJ, cannot be controlled separately and
thus one cannot adjust these parameters arbitrarily to en-

Without entanglement, which is the essential quantum jnhance the entanglement in a given situation. .
gredient of QC, any quantum algorithm that only uses the | IS Means that although studies of entanglement for dif-
other property of quantum mechanics, namely, the superpcf?re”t types of anisotropic interactions are very interesting
sition property, can also be implemented on any physicaiheoretically (especially when infinite-spin systems, are
system which allows superposition of states, i.e., classicdfeated which is the only case that yields valid results with
linear optical devices. In any proposal for physical imple-regard to quantum phase transitigts]), they may not be of
mentation of qubits, it is therefore of utmost importance tomuch practical relevance to concrete physical realization of
investigate the entanglement properties of pairs and collegjubits.
tions of such qubits. Among the many proposals for physical In this paper we ignore the anisotropic perturbations due
implementation of qubits, those based on solid state device® both their smallness and the fact that strategies have been
seem to be promising as far as the crucial scalability propertinvented to cancel such anisotrop|ds}].
is concerned. Due to their smallness, they may introduce only minor

In one such proposdl6] a well-localized nuclear spin changes in any result derived for the isotropic case.
coupled with an electron of a donor atom in silicon plays the  On the other hand, in any solid state construction of qu-
role of a qubit which can be individually initialized, manipu- bits, there is always the possibility of inhomogeneous Zee-
lated, and read out by extremely sensitive devices. In anothenan coupling15,16. Solid state heterostructures are usually
proposal[7-10, the spin of an electron in a quantum dot inhomogeneous and magnetic imperfections or impurities are
plays the role of a qubit. A long decoherence time and scallikely to be present leading to stray magnetic fields. Indeed,
ability to more than 100 qubits are two of the importantit is one of the main challenges in this proposal to construct
virtues of this scheme. identical qubitd17]. Constructing nearly identical devices in

In both schemes the effective interaction between the twgemiconductor technology has always been difficult and is
qubits is governed by an isotropic Heisenberg Hamiltoniarstill difficult, e.g., a very small temperature or strain differ-
with Zeeman coupling of the individual spins, namely, ence in the substrate produces differences which, although

- ) they may not be significant for classical semiconductor tech-
H=JS;- S+ AS+ ). @) nology, will certainly be important for quantum technology
Actually the isotropic interaction is an approximation, since[17]. Besides these unwanted effects, there are schemes like
spin-orbit coupling introduce perturbations which break thisparallel pulsed schemg48], in which both a localized and

It is well known that quantum entanglemét-3] plays a
fundamental role in almost all efficient protocols of quantum
computation (QC) and quantum-information processing
[4,5].

isotropy. A more complete Hamiltonian would p&l,12] hence inhomogeneous Zeeman coupling and exchange inter-
B - - - actions are employed to expedite manipulation of qubits.
H=JS, S+ B8-S, X S+ yB-S18-S) + USp+ S, In view of the above, it is desirable to consider a two-

(2) qubit system in an inhomogeneous magnetic field and study
- the entanglement properties of this system in detail.

Where the dimensionless Vectﬂ' iS Ca”ed the Spin-OI’bit At extreme|y low temperatures such a qub|t System may

field and in systems like GaAs quantum dots has a magnihe assumed to be in its ground state. Thus, it will be desir-
able to study the entanglement properties of the ground state.

However, a real physical system is always at a finite tem-

*Email address: asoudeh@mebhr.sharif.edu perature and hence in a mixture of disentangled and en-
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is naturally led to consider the thermal entanglement of suckT.:=4J/In 3. We want to see how the presence of inhomo-
physical systems. geneity modifies this situation. We will show that inhomoge-
In summary, we mean that the thermal entanglement ofieity has the following effects.
finite systems has more relevance to the problem of initial- (1) In the ferromagnetic system it generally produces en-
ization of quantum computefd 9] than to the problem of tanglement, dependent on the value of the magnetic field and
quantum phase transitions, which requires a study of infinitethe temperature. There is a threshold temperature above
size systems. which no entanglement is possible. This temperature has in
fact been zero in the uniform case which has been shifted to
finite values by the inhomogeneity. Especially at tempera-
) . . tures near zero and in zero magnetic field, the effect of in-
Thermal entanglement in a two-qubit Heisenberg magnefomogeneity is very significant. Under this condition a very
with the Hamiltonian small inhomogeneity produces maximal entanglement as
R shown in Figs. 3 and 4 below.

H=Joy -0+ Bloy + 02) 3) (2) In contrast to the ferromagnetic case, the effects in the
was first studied by Nielsef21l] who showed that in the antiferromagnetic system are small. Inhomogeneity in this
ferromagnetic cas&)<0) no entanglement exists but in the case slightly raises the threshold temperature, and lowers the
antiferromagnetic casg > 0) entanglement appears below a value of entanglement as shown in Figs. 5 and 6 below.
threshold temperatur@,. Since then many other systems  The structure of this paper is as follows. After presenting
have been investigated. the essentials of thermal entanglement in the next section, in

There is now a vast literature on this subject and for clarSec. lll we study the spectrum of the Hamiltonian and char-
ity it is better to separate the articles into two categories@cterize the entanglement of the ground state in various re-
namely, thosé22-26 that study by analytical or numerical gions of the parameter space. In Sec. IV we analyze the
methods infinite spin chains with at times particular attentionthermal entanglement of the system. Throughout the paper
to quantum phase transitions, and those that study fewwe normalize the coupling between spins el for the
mostly two-, spin systems. In our opinion one cannot drawantiferromagnetic case and t=-1 for the ferromagnetic
valid results for quantum phase transitions by studying &ase and study the results for the two cases separately.
two-spin system, and these types of studies are useful in
other contexts, e.g., the problem of initialization of a quan- || pRELIMINARIES ON THERMAL ENTANGLEMENT
tum computer as described above, provided they start with a
plausible Hamiltonian for the interaction of physical qubits. A spin system with Hamiltoniai kept at temperatur@

In the following we mention some of the work only in this is characterized by a density matrix=(1/2)e", where
latter category that is of relevance to our work in this paper,8=1/kT, k is the Boltzmann constant, aifi=tre”?" is the

After the work of Nielson[21], it was shown that two partition function.
spins interacting by the Ising interaction in thelirection, The entanglement of this density matrix, called the ther-
when placed in a magnetic field of arbitrary direction, ac-mal entanglement of the spin system, can be calculated ex-
guire maximum entanglement when the magnetic field is peractly with the help of Wootters’ formulg20]. Explicitly, it is

B. A brief account of previous works

pendicular to the direction[27]. given by the following formula:

The effect of anisotropyin the spin couplings in thg, y, R -
andz directions has also been studied in a number of works _1+y1-C%  1+y1-C?
for different modelq28-31]. The effect of inhomogeneous Elp) =~ 2 02 2
magnetic fields was studied [B82], but only on anXY sys- N JE—
tem. Such a system already shows entanglement when placed 1-\1-¢ o 1-V1-C? 5)
in a uniform magnetic field. 2 g2 2 ’

C. Results where

In this paper we have studied an isotropic two-qubit sys- C=max0,\1 =Ny = A3— A4}, (6)
tem in an inhomogeneous magnetic field, described by the N )
Hamiltonian and\’s are the positive square roots of the eigenvalues of the

matrix pp in decreasing order. The matfixis defined as

H=Jgy 0.+ (B+b)oy,+(B-b)oy, (4) .
whereJ is the isotropic coupling between the spis=0, p=(0'®d)p ('® o), @)
and the magnetic fields on the two spins have been so pggnere * denotes complex conjugation in the computational
rametrized thab controls the degree of inhomogeneity. basis.

Let us first review the situation for the homogeneous | the case that the state is pyre|#)(y|, with
magnetic field. For the ferromagnetid<0) system, there
is no thermal entanglement at any temperature, but for the |) == al+,+) +b|+,= )+ |-, +) +d-,-), (8)
antiferromagnetidJ>0) case, thermal entanglement devel-
ops when the temperature drops below the threshold valuéae above formula for the concurrence is simplified to
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C(y) = 2|ad-bd. (9)

SinceE is an increasing function dt, it is usual to takeC

itself as a measure of entanglement whose value ranges from
0 for a disentangled state to 1 for a maximally entangled
state. In the following sections we apply this formalism to
the inhomogeneous system given by the Hamiltori@n

Ill. GROUND-STATE ENTANGLEMENT

When the magnetic field is uniform, i.da=0, the Hamil-
tonian (4) has two symmetries, namelyd,S,]=[H,$]=0,
whereS, and S are the third component of the spin and the
total spin, respectively. In an inhomogeneous magnetic field,
the symmetnfH,S?]=0 no longer holds and thus the triplet
and the singlet spins are no longer energy eigenstates sepa-
rately. A straightforward calculation gives the following
eigenstates:
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FIG. 1. (Color online The ground state of the ferromagnetic

case, as a function of the inhomogenéitgnd the magnetic fielB.
We work in units whereB is dimensionless.

|¢l> = |+ ’ +>:
E,=-1-B if £é<B+1,
|¢2> = |— =
1 E;=1-2 if &>B+1. (12
b= V[ + (1 - 97 Thus foré<B+1, the ground state is the disentangled state
and foré>B+1, the ground state is the entangled state
X[(5-1+8]+ =)+ (5+1-9]- +)], 92 and foré g 9
The phase diagram of the ground state is shown in Fig. 1.
|pa) = 1 For each value of the magnetic fiddd there is a threshold
YT P+ (1-97 parameteré’:=B+1 above which the ground state will be-
come entangled. Conversely for each value of inhomogene-
X[(6+1-9l+,~)-(6-1+9|-. %], (10 ity £ there is a value of magnetic fieRf := ¢~ 1 above which
with corresponding energies the ground state will lose its entanglement.
In the entangled phase the entanglement of the ground
Ei=J+2B, state is found from Eqg9) and (10) to be
E,=J-2B, 1
? Cldo) =7, (13)
E3 == ‘](1 - 2§)|
which is solely determined by the inhomogeneity. A very
E,=-J(1+28), (11) interesting point is that wheB=0, with an infinitesimal
— value ofb=0 (£=1), the system enters the maximally en-
where¢:=1+6 and §=b/J. tangled phasé¢s) with entanglemenC=1/¢~1. This re-

_Note that we are working in units so thBtand J are  markable feature means that the absence of entanglement in
dimensionless. It turns out théts the suitable parameter for 5 ferromagnetic Heisenberg chain is completely unstable
expressing the effects of inhomogeneity. Thus hereafter wggainst very small inhomogeneities. It is also reminiscent of
will mostly use¢ rather than the original parametgrin our  guantum phase transitions where a slight change in one of
analysis. The valug=1 corresponds to a uniform magnetic the parameters of the system changes the behavior of the
field and deviations from this value characterize the degregystem dramatically. Increasing the inhomogeneity further
of nonuniformity. In the limiting cas&— 1, the two states | move the ground state further into the entangled phase
|¢)) and |¢,) respectively go to the maximally entangled pt reduces its entanglement due to Ep).

states(1/v2)(|+,-)+|-,+) and (1/\2)(|+,-)—|-,+)).

A. The ferromagnetic caseJ=-1

The ground state depends on the value of the magneti
field B and the inhomogeneity parametér It is readily
found that the ground-state energy is equal to
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B. The antiferromagnetic caseJ=1

In this case we find that the ground-state energy is equal

Ez:l—B
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£<B-1,
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FIG. 3. (Color onlin@ Concurrence versus temperature and

FIG. 2. (Color onling The ground state of the antiferromagnetic magnetic field foré=1.1 in the ferromagnetic system.

case, as a function of the inhomogenéitgind the magnetic fielB.
We work in units whereB is dimensionless.

4
1
-= ~BE| bW b
E4=—1—2§ if £>B-1. (14) P Zze |¢|><¢|| (18)
Thus for é<B-1, the ground state is the disentangled stateye obtain
|#,) and foré>B-1, the ground state is the entangled state
|2¢>4>. The phase diagram of the ground state is shown in Fig. U, = }e—gsz),
Again in the entangled phase the entanglement of the
ground state is found from Eq&) and(10) to be 1
u_=-e P, (19)
1 Z
Cla) =7, (15)
& and
which is independent oB. Increasing inhomogeneity again -11 _
decreases the concurrence and hence the entanglement. z= ?Eeﬁjsmh 2B¢, (20)
IV. THERMAL ENTANGLEMENT whereZ is the partition function given by
Raising the temperature mixes the ground state with ex- Z:=tr e "1 =2e"Fcosh BB+ 2eMcosh BI&.  (21)

cited states. Depending on the sign bfand the value of .

parameters this may increase or decrease the value of e-rl;hus from Eq.(17) we find that

tanglement. In some cases the disentangled ground state 2 1

mixes with entangled excited states and in some other cases C= —ma><<0,—em|sinh 2834 - e‘ﬁJ). (22
the entangled ground state mixes with disentangled excited Z §

states. To see what happens exactl;i we calculate the eQye consider the ferromagnetid=—1) and the antiferromag-
tanglement of the thermal staper (1/2)e™"". The symmetry  o4ic (J=1) cases separately

[H,S,]=0 constrains the general form pfto '

U, A. Ferromagnetic caseJ=-1
w z SettingJ=-1 in Eq.(22) , we have
p= W , (16) ; y
e * sinh -
u C= ma><0, : 28_5 & ) (23
&(ePcosh BB + e? cosh Bé)

whereC is found from Eqs(6) and(7) to be given[22] by  The threshold temperature is obtained from the equation

C=2 max0,|z| - Ju'u). (17) e 2hsinh 28¢= ¢, (24)

z

The exact values of the elementséire obtained by know- In the uniform casdé=1), this equation turns inte*#=-1
ing the spectrum oH. After a simple calculation from which has no solution. Thus in this limit there is no thermal
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FIG. 4. (Color onling Concurrence versus temperature and in-  F/G- 6. (Color onling Concurrence versus temperature and
homogeneity in zero magnetic field in the ferromagnetic system. Magnetic field foré=1.1 in the antiferromagnetic system.

entanglement in the spin system in accordance with previou$§ is seen that at any temperature there is a paranggter

results[21,23,24. above which thermal entanglement will develop in the sys-
However, in the inhomogeneous cdge- 1) this equation  tem. The value og; is obtained from Eq(24) and increases

has nontrivial solutions. Figure 7 below shows the variationwith increasing temperature. At very low temperatugss

of threshold temperature with very close to 1 which shows that a small degree of inhomo-
Figure 3 shows the entanglement as measured by the cogeneity will develop maximal entanglement in the system.

currence for a fixed value of inhomogene#y 1.1 in terms

of the temperature and magnetic field. Below the threshold

temperature(about 0.25 for this value of), thermal en-

tanglement develops and is maximized for zero magnetic SettingJ=1 in Eq.(22) we obtain

field B. The value of this maximum entanglement occurs of

course aff=0, where its value is equal to §/equal to 0.9 in c= ma>< ePsinh 28¢ - ée7#

this case. _ ' &(e”Pcosh BB + efcosh Bé)
Figure 4 shows the value of entanglement in terms of the

temperature and the inhomogeneity for zero magnetic fieldrhe threshold temperature is obtained from the equation

B. Antiferromagnetic case

). (25

- e?Psinh 28¢=¢. (26)
3.5
In the uniform casgé=1), this equation turns int@*#=3
which gives the threshold temperatk&.=4/In 3.

2.5

061
041
e 021

e 0

FIG. 5. The variation of threshold temperature with inhomoge-
neity (denoted here ag) of the magnetic field in the ferromagnetic FIG. 7. (Color online Concurrence versus temperature and in-
(dotted ling and antiferromagneticsolid line) cases. homogeneity in zero magnetic field in the antiferromagnetic system.
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In the inhomogeneous casé=1) this equation can be V. DISCUSSION

SOIV?d numerical_ly; the re_sult is_ shown in Fig. 5. It is seen We have studied the effect of an inhomogeneous magnetic
that inhomogeneity only slightly increases the threshold teMygie1y o, the ground-state entanglement and thermal entangle-
peratur_e, in contrast to the ferromagnetic case where it haghant of a two-spin system. We have shown that the effect of
appreciable effect. inhomogeneity is most pronounced on ferromagnetic spins,
Figure 6 shows the entanglement as measured by the cola | spins coupled by ferromagnetic interactions. At zero
currence for a fixed value of inhomogeney 1.1 in terms  temperature an infinitesimal magnetic field applied to the
of the temperature and the magnetic field and Fig. 7 showgyo spins in opposite directions maximally entangles the two
the value of entanglement in terms of the temperature angpins. It is as if we twist the two spins into an entangled
the inhomogeneity for zero magnetic field. Comparing thesatate. This effect also exists at higher temperatures but to
figures with Fig. 3 and with the corresponding figurd 28]  much less a degree. When the coupling of the spins is anti-
we see that in the antiferromagnetic case, inhomogeneity hdsrromagnetic inhomogeneity can only have a weakening ef-
a small effect on the threshold temperature and magnetitect on entanglement. Although we have derived our results
field and only decreases the value of entanglement once it By studying a two-spin system, these results may also hold
developed. Its value is weakened by raising the temperatufgue_more or less on spin chains. A parameter like
and near the threshold temperature it has a vanishingly smatf \1+(b%, where(b?) is the average of inhomogeneity on
effect. It is seen that for any fixed temperature inhomogeneall sites, i.e.,(b?):=(1/N)=, (B=(B))?, may characterize
ity always decreases entanglement, in contrast to the ferrdghe influence of inhomogeneity on the entanglement of a spin

magnetic case. chain.
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