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We study the effect of inhomogeneities in the magnetic field on the thermal entanglement of a two-spin
system. We show that in the ferromagnetic case a very small inhomogeneity is capable of producing large
values of thermal entanglement. This shows that the absence of entanglement in the ferromagnetic Heisenberg
system is highly unstable against inhomogeneity of magnetic fields, which is inevitably present in any solid
state realization of qubits.
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I. INTRODUCTION

A. Motivation

It is well known that quantum entanglementf1–3g plays a
fundamental role in almost all efficient protocols of quantum
computation sQCd and quantum-information processing
f4,5g.

Without entanglement, which is the essential quantum in-
gredient of QC, any quantum algorithm that only uses the
other property of quantum mechanics, namely, the superpo-
sition property, can also be implemented on any physical
system which allows superposition of states, i.e., classical
linear optical devices. In any proposal for physical imple-
mentation of qubits, it is therefore of utmost importance to
investigate the entanglement properties of pairs and collec-
tions of such qubits. Among the many proposals for physical
implementation of qubits, those based on solid state devices
seem to be promising as far as the crucial scalability property
is concerned.

In one such proposalf6g a well-localized nuclear spin
coupled with an electron of a donor atom in silicon plays the
role of a qubit which can be individually initialized, manipu-
lated, and read out by extremely sensitive devices. In another
proposalf7–10g, the spin of an electron in a quantum dot
plays the role of a qubit. A long decoherence time and scal-
ability to more than 100 qubits are two of the important
virtues of this scheme.

In both schemes the effective interaction between the two
qubits is governed by an isotropic Heisenberg Hamiltonian
with Zeeman coupling of the individual spins, namely,

H = JS1 ·S2 + gsS1z + S2zd. s1d

Actually the isotropic interaction is an approximation, since
spin-orbit coupling introduce perturbations which break this
isotropy. A more complete Hamiltonian would bef11,12g

H = JsS1 ·S2 + bW ·S1 3 S2 + gbW ·S1bW ·S2d + gsS1z + S2zd,

s2d

where the dimensionless vectorbW is called the spin-orbit
field and in systems like GaAs quantum dots has a magni-

tude ubW u of a few percent, and the dimensionlessg is of the
order of 10−4. Note that the only coupling in the interaction
between spins that is controllable isJ f12g, and the individual
couplings between different components of spins denoted
usually byJx, Jy, andJz cannot be controlled separately and
thus one cannot adjust these parameters arbitrarily to en-
hance the entanglement in a given situation.

This means that although studies of entanglement for dif-
ferent types of anisotropic interactions are very interesting
theoretically sespecially when infinite-spin systems, are
treated which is the only case that yields valid results with
regard to quantum phase transitionsf13gd, they may not be of
much practical relevance to concrete physical realization of
qubits.

In this paper we ignore the anisotropic perturbations due
to both their smallness and the fact that strategies have been
invented to cancel such anisotropiesf14g.

Due to their smallness, they may introduce only minor
changes in any result derived for the isotropic case.

On the other hand, in any solid state construction of qu-
bits, there is always the possibility of inhomogeneous Zee-
man couplingf15,16g. Solid state heterostructures are usually
inhomogeneous and magnetic imperfections or impurities are
likely to be present leading to stray magnetic fields. Indeed,
it is one of the main challenges in this proposal to construct
identical qubitsf17g. Constructing nearly identical devices in
semiconductor technology has always been difficult and is
still difficult, e.g., a very small temperature or strain differ-
ence in the substrate produces differences which, although
they may not be significant for classical semiconductor tech-
nology, will certainly be important for quantum technology
f17g. Besides these unwanted effects, there are schemes like
parallel pulsed schemesf18g, in which both a localized and
hence inhomogeneous Zeeman coupling and exchange inter-
actions are employed to expedite manipulation of qubits.

In view of the above, it is desirable to consider a two-
qubit system in an inhomogeneous magnetic field and study
the entanglement properties of this system in detail.

At extremely low temperatures such a qubit system may
be assumed to be in its ground state. Thus, it will be desir-
able to study the entanglement properties of the ground state.

However, a real physical system is always at a finite tem-
perature and hence in a mixture of disentangled and en-
tangled states depending on the temperature. Therefore, one
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is naturally led to consider the thermal entanglement of such
physical systems.

In summary, we mean that the thermal entanglement of
finite systems has more relevance to the problem of initial-
ization of quantum computersf19g than to the problem of
quantum phase transitions, which requires a study of infinite-
size systems.

B. A brief account of previous works

Thermal entanglement in a two-qubit Heisenberg magnet
with the Hamiltonian

H = JsW 1 · sW 2 + Bss1z + s2zd s3d

was first studied by Nielsenf21g who showed that in the
ferromagnetic casesJ,0d no entanglement exists but in the
antiferromagnetic casesJ.0d entanglement appears below a
threshold temperatureTc. Since then many other systems
have been investigated.

There is now a vast literature on this subject and for clar-
ity it is better to separate the articles into two categories,
namely, thosef22–26g that study by analytical or numerical
methods infinite spin chains with at times particular attention
to quantum phase transitions, and those that study few-,
mostly two-, spin systems. In our opinion one cannot draw
valid results for quantum phase transitions by studying a
two-spin system, and these types of studies are useful in
other contexts, e.g., the problem of initialization of a quan-
tum computer as described above, provided they start with a
plausible Hamiltonian for the interaction of physical qubits.

In the following we mention some of the work only in this
latter category that is of relevance to our work in this paper.

After the work of Nielsonf21g, it was shown that two
spins interacting by the Ising interaction in thez direction,
when placed in a magnetic field of arbitrary direction, ac-
quire maximum entanglement when the magnetic field is per-
pendicular to thez direction f27g.

The effect of anisotropysin the spin couplings in thex, y,
andz directionsd has also been studied in a number of works
for different modelsf28–31g. The effect of inhomogeneous
magnetic fields was studied inf32g, but only on anXY sys-
tem. Such a system already shows entanglement when placed
in a uniform magnetic field.

C. Results

In this paper we have studied an isotropic two-qubit sys-
tem in an inhomogeneous magnetic field, described by the
Hamiltonian

H = JsW 1 · sW 2 + sB + bds1z + sB − bds2z, s4d

whereJ is the isotropic coupling between the spins,Bù0,
and the magnetic fields on the two spins have been so pa-
rametrized thatb controls the degree of inhomogeneity.

Let us first review the situation for the homogeneous
magnetic field. For the ferromagneticsJ,0d system, there
is no thermal entanglement at any temperature, but for the
antiferromagneticsJ.0d case, thermal entanglement devel-
ops when the temperature drops below the threshold value

kTcª4J/ ln 3. We want to see how the presence of inhomo-
geneity modifies this situation. We will show that inhomoge-
neity has the following effects.

s1d In the ferromagnetic system it generally produces en-
tanglement, dependent on the value of the magnetic field and
the temperature. There is a threshold temperature above
which no entanglement is possible. This temperature has in
fact been zero in the uniform case which has been shifted to
finite values by the inhomogeneity. Especially at tempera-
tures near zero and in zero magnetic field, the effect of in-
homogeneity is very significant. Under this condition a very
small inhomogeneity produces maximal entanglement as
shown in Figs. 3 and 4 below.

s2d In contrast to the ferromagnetic case, the effects in the
antiferromagnetic system are small. Inhomogeneity in this
case slightly raises the threshold temperature, and lowers the
value of entanglement as shown in Figs. 5 and 6 below.

The structure of this paper is as follows. After presenting
the essentials of thermal entanglement in the next section, in
Sec. III we study the spectrum of the Hamiltonian and char-
acterize the entanglement of the ground state in various re-
gions of the parameter space. In Sec. IV we analyze the
thermal entanglement of the system. Throughout the paper
we normalize the coupling between spins toJ=1 for the
antiferromagnetic case and toJ=−1 for the ferromagnetic
case and study the results for the two cases separately.

II. PRELIMINARIES ON THERMAL ENTANGLEMENT

A spin system with HamiltonianH kept at temperatureT
is characterized by a density matrixrª s1/Zde−bH, where
b=1/kT, k is the Boltzmann constant, andZª tre−bH is the
partition function.

The entanglement of this density matrix, called the ther-
mal entanglement of the spin system, can be calculated ex-
actly with the help of Wootters’ formulaf20g. Explicitly, it is
given by the following formula:

Esrd = −
1 +Î1 − C2

2
log2

1 +Î1 − C2

2

−
1 −Î1 − C2

2
log2

1 −Î1 − C2

2
, s5d

where

C = maxh0,l1 − l2 − l3 − l4j, s6d

andl’s are the positive square roots of the eigenvalues of the
matrix rr̃ in decreasing order. The matrixr̃ is defined as

r̃ = ssy
^ sydr*ssy

^ syd, s7d

where * denotes complex conjugation in the computational
basis.

In the case that the state is purer= uclkcu, with

ucl ª au+ , +l + bu+ ,− l + cu− , +l + du− ,− l, s8d

the above formula for the concurrence is simplified to
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Cscd = 2uad− bcu. s9d

SinceE is an increasing function ofC, it is usual to takeC
itself as a measure of entanglement whose value ranges from
0 for a disentangled state to 1 for a maximally entangled
state. In the following sections we apply this formalism to
the inhomogeneous system given by the Hamiltonians4d.

III. GROUND-STATE ENTANGLEMENT

When the magnetic field is uniform, i.e.,b=0, the Hamil-
tonian s4d has two symmetries, namely,fH ,Szg=fH ,S2g=0,
whereSz andS2 are the third component of the spin and the
total spin, respectively. In an inhomogeneous magnetic field,
the symmetryfH ,S2g=0 no longer holds and thus the triplet
and the singlet spins are no longer energy eigenstates sepa-
rately. A straightforward calculation gives the following
eigenstates:

uf1l = u+ , +l,

uf2l = u− ,− l,

uf3l =
1

Î2fd2 + s1 − jd2g

3fsd − 1 +jdu+ ,− l + sd + 1 −jdu− , +lg,

uf4l =
1

Î2fd2 + s1 − jd2g

3fsd + 1 −jdu+ ,− l − sd − 1 +jdu− , +lg, s10d

with corresponding energies

E1 = J + 2B,

E2 = J − 2B,

E3 = − Js1 – 2jd,

E4 = − Js1 + 2jd, s11d

wherejªÎ1+d2 andd=b/J.
Note that we are working in units so thatB and J are

dimensionless. It turns out thatj is the suitable parameter for
expressing the effects of inhomogeneity. Thus hereafter we
will mostly usej rather than the original parameterb, in our
analysis. The valuej=1 corresponds to a uniform magnetic
field and deviations from this value characterize the degree
of nonuniformity. In the limiting casej→1, the two states
uf1l and uf2l respectively go to the maximally entangled
statess1/Î2dsu+,−l+ u−,+ld and s1/Î2dsu+,−l− u−,+ld.

A. The ferromagnetic caseJ=−1

The ground state depends on the value of the magnetic
field B and the inhomogeneity parameterj. It is readily
found that the ground-state energy is equal to

E2 = − 1 – 2B if j , B + 1,

E3 = 1 – 2j if j . B + 1. s12d

Thus forj,B+1, the ground state is the disentangled state
uf2l and forj.B+1, the ground state is the entangled state
uf3l.

The phase diagram of the ground state is shown in Fig. 1.
For each value of the magnetic fieldB, there is a threshold

parameterj f
ªB+1 above which the ground state will be-

come entangled. Conversely for each value of inhomogene-
ity j there is a value of magnetic fieldBf

ªj−1 above which
the ground state will lose its entanglement.

In the entangled phase the entanglement of the ground
state is found from Eqs.s9d and s10d to be

Csf3d =
1

j
, s13d

which is solely determined by the inhomogeneity. A very
interesting point is that whenB=0, with an infinitesimal
value of b<0 sj<1d, the system enters the maximally en-
tangled phaseuf3l with entanglementC=1/j<1. This re-
markable feature means that the absence of entanglement in
a ferromagnetic Heisenberg chain is completely unstable
against very small inhomogeneities. It is also reminiscent of
quantum phase transitions where a slight change in one of
the parameters of the system changes the behavior of the
system dramatically. Increasing the inhomogeneity further
will move the ground state further into the entangled phase
but reduces its entanglement due to Eq.s13d.

B. The antiferromagnetic caseJ=1

In this case we find that the ground-state energy is equal
to

E2 = 1 – 2B if j , B − 1,

FIG. 1. sColor onlined The ground state of the ferromagnetic
case, as a function of the inhomogeneityj and the magnetic fieldB.
We work in units whereB is dimensionless.
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E4 = − 1 – 2j if j . B − 1. s14d

Thus forj,B−1, the ground state is the disentangled state
uf2l and forj.B−1, the ground state is the entangled state
uf4l. The phase diagram of the ground state is shown in Fig.
2.

Again in the entangled phase the entanglement of the
ground state is found from Eqs.s9d and s10d to be

Csf4d =
1

j
, s15d

which is independent ofB. Increasing inhomogeneity again
decreases the concurrence and hence the entanglement.

IV. THERMAL ENTANGLEMENT

Raising the temperature mixes the ground state with ex-
cited states. Depending on the sign ofJ and the value of
parameters this may increase or decrease the value of en-
tanglement. In some cases the disentangled ground state
mixes with entangled excited states and in some other cases
the entangled ground state mixes with disentangled excited
states. To see what happens exactly we calculate the en-
tanglement of the thermal stater=s1/Zde−bH. The symmetry
fH ,Szg=0 constrains the general form ofr to

r =1
u+

w z

z w

u−
2 , s16d

whereC is found from Eqs.s6d and s7d to be givenf22g by

C = 2 maxs0,uzu − Îu+u−d. s17d

The exact values of the elements ofr are obtained by know-
ing the spectrum ofH. After a simple calculation from

r =
1

Z
o
i=1

4

e−bEiufilkfiu s18d

we obtain

u+ =
1

Z
e−bsJ+2Bd,

u− =
1

Z
e−bsJ−2Bd, s19d

and

z=
− 1

Z

1

j
ebJsinh 2Jbj, s20d

whereZ is the partition function given by

Zª tr e−bH = 2e−bJcosh 2bB + 2ebJcosh 2bJj. s21d

Thus from Eq.s17d we find that

C =
2

Z
maxS0,

1

j
ebJusinh 2bJju − e−bJD . s22d

We consider the ferromagneticsJ=−1d and the antiferromag-
netic sJ=1d cases separately.

A. Ferromagnetic caseJ=−1

SettingJ=−1 in Eq.s22d , we have

C = maxS0,
e−b sinh 2bj − jeb

jsebcosh 2bB + e−b cosh 2bjdD . s23d

The threshold temperature is obtained from the equation

e−2bsinh 2bj = j. s24d

In the uniform casesj=1d, this equation turns intoe4b=−1
which has no solution. Thus in this limit there is no thermal

FIG. 2. sColor onlined The ground state of the antiferromagnetic
case, as a function of the inhomogeneityj and the magnetic fieldB.
We work in units whereB is dimensionless.

FIG. 3. sColor onlined Concurrence versus temperature and
magnetic field forj=1.1 in the ferromagnetic system.
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entanglement in the spin system in accordance with previous
resultsf21,23,24g.

However, in the inhomogeneous casesjÞ1d this equation
has nontrivial solutions. Figure 7 below shows the variation
of threshold temperature withj.

Figure 3 shows the entanglement as measured by the con-
currence for a fixed value of inhomogeneityj=1.1 in terms
of the temperature and magnetic field. Below the threshold
temperaturesabout 0.25 for this value ofjd, thermal en-
tanglement develops and is maximized for zero magnetic
field B. The value of this maximum entanglement occurs of
course atT=0, where its value is equal to 1/j, equal to 0.9 in
this case.

Figure 4 shows the value of entanglement in terms of the
temperature and the inhomogeneity for zero magnetic field.

It is seen that at any temperature there is a parameterj0
above which thermal entanglement will develop in the sys-
tem. The value ofj0 is obtained from Eq.s24d and increases
with increasing temperature. At very low temperaturesj0 is
very close to 1 which shows that a small degree of inhomo-
geneity will develop maximal entanglement in the system.

B. Antiferromagnetic case

SettingJ=1 in Eq. s22d we obtain

C = maxS0,
ebsinh 2bj − je−b

jse−bcosh 2bB + ebcosh 2bjdD . s25d

The threshold temperature is obtained from the equation

e2bsinh 2bj = j. s26d

In the uniform casesj=1d, this equation turns intoe4b=3
which gives the threshold temperaturekTc=4/ ln 3.

FIG. 4. sColor onlined Concurrence versus temperature and in-
homogeneity in zero magnetic field in the ferromagnetic system.

FIG. 5. The variation of threshold temperature with inhomoge-
neity sdenoted here as3d of the magnetic field in the ferromagnetic
sdotted lined and antiferromagneticssolid lined cases.

FIG. 6. sColor onlined Concurrence versus temperature and
magnetic field forj=1.1 in the antiferromagnetic system.

FIG. 7. sColor onlined Concurrence versus temperature and in-
homogeneity in zero magnetic field in the antiferromagnetic system.
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In the inhomogeneous casesjù1d this equation can be
solved numerically; the result is shown in Fig. 5. It is seen
that inhomogeneity only slightly increases the threshold tem-
perature, in contrast to the ferromagnetic case where it had
appreciable effect.

Figure 6 shows the entanglement as measured by the con-
currence for a fixed value of inhomogeneityj=1.1 in terms
of the temperature and the magnetic field and Fig. 7 shows
the value of entanglement in terms of the temperature and
the inhomogeneity for zero magnetic field. Comparing these
figures with Fig. 3 and with the corresponding figure off23g
we see that in the antiferromagnetic case, inhomogeneity has
a small effect on the threshold temperature and magnetic
field and only decreases the value of entanglement once it is
developed. Its value is weakened by raising the temperature
and near the threshold temperature it has a vanishingly small
effect. It is seen that for any fixed temperature inhomogene-
ity always decreases entanglement, in contrast to the ferro-
magnetic case.

V. DISCUSSION

We have studied the effect of an inhomogeneous magnetic
field on the ground-state entanglement and thermal entangle-
ment of a two-spin system. We have shown that the effect of
inhomogeneity is most pronounced on ferromagnetic spins,
i.e., spins coupled by ferromagnetic interactions. At zero
temperature an infinitesimal magnetic field applied to the
two spins in opposite directions maximally entangles the two
spins. It is as if we twist the two spins into an entangled
state. This effect also exists at higher temperatures but to
much less a degree. When the coupling of the spins is anti-
ferromagnetic inhomogeneity can only have a weakening ef-
fect on entanglement. Although we have derived our results
by studying a two-spin system, these results may also hold
true more or less on spin chains. A parameter likej
ªÎ1+kb2l, wherekb2l is the average of inhomogeneity on
all sites, i.e.,kb2lª s1/Ndoi=1

N sBi −kBld2, may characterize
the influence of inhomogeneity on the entanglement of a spin
chain.
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