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A necessary precondition for secure quantum key distribution is that sender and receiver can prove the
presence of entanglement in a quantum state that is effectively distributed between them. In order to deliver
this entanglement proof one can use the class of entanglement witnesssEWd operators that can be constructed
from the available measurements results. This class of EWs can be used to provide a necessary and sufficient
condition for the existence of quantum correlations even when a quantum state cannot be completely recon-
structed. The set of optimal EWs for two well-known entanglement-basedsEBd schemes, the six-state and the
four-state EB protocols, has been obtained recentlyfM. Curty et al., Phys. Rev. Lett.92, 217903s2004d.g Here
we complete these results, now showing specifically the analysis for the case of prepare and measuresPMd
schemes. For this, we investigate the signal states and detection methods of the four-state and the two-state PM
schemes. For each of these protocols we obtain a reduced set of EWs. More importantly, each set of EWs can
be used to derive a necessary and sufficient condition to prove that quantum correlations are present in these
protocols.
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I. INTRODUCTION

One of the most important problems in modern cryptog-
raphy is the transmission of secret information from a sender
susually called Aliced to a receiversBobd over an insecure
communication channelf1g. The goal is to guarantee that any
possible eavesdroppersEved, with access to the channel, is
unable to obtain useful information about the message.

Secret systems were studied from an information-
theoretic perspective by Shannonf2g. He analyzed the natu-
ral scenario where Eve has always access to exactly the same
information received by Bob. This information, denoted asC
sfrom the term ciphertextd, is typically obtained by Alice as a
function of the message to be sent,M, and a secret keyK
that she needs to share previously with Bob. In this context,
Shannon defined a cryptographic system to be perfectly se-
cret and uniquely decodable if it satisfies the following two
conditions: first, the ciphertextC and the messageM must be
statistically independent. This means that Eve cannot obtain
any useful information about the messageM from C. This
condition can be expressed asIsM ;Cd=0, whereI denotes
the mutual information measured in bitsf2g. The second con-
dition states that Bob can recover the original messageM
from C andK. It can be formulated asHsM uC,Kd=0, with H
the Shannon entropy measured also in bitsf2g. With this
definition, Shannon proved the well-known pessimistic result
that every perfectly secret uniquely decodable system must
satisfyHsKdùHsMd. An example of a secret cryptographic
system satisfying this condition is the so-called one-time-pad
or Vernam cipherf3g.

The result from Shannon relies in a fundamental way on
considering that both Bob and Eve have perfect access to the
same ciphertextC. However, there are scenarios, such a is
the case in quantum key distributionsQKDd, where the

proper exploitation of particular quantum effects can prevent
Bob and Eve from receiving precisely the same information.
The laws of quantum mechanics can guarantee some mini-
mal uncertainty between both signals, and this fact can be
used by Alice and Bob to expand a previously shared secret
key K in an unconditionally secure mannerf4–7g. This
means that QKD together with the Vernam cipher can in
principle be used to achieve perfectly secret communications
even whenHsKd!HsMd.

In any realization of QKD one can typically distinguish
two phases in order to expand a secret key. In the first phase,
an effective bipartite quantum mechanical state is distributed
between Alice and Bob. This state creates correlations be-
tween them and it might contain as well hidden correlations
with Eve. Next, asrestrictedd set of measurements is used by
the legitimate users to measure these correlations. As a re-
sult, Alice and Bob obtain a classical joint probability distri-
bution PsA,Bd representing the measurement results. In the
second phase, usually calledkey distillation, Alice and Bob
use an authenticated public channel to process the correlated
data in order to obtain a secret key. This procedure involves,
typically, postselection of data, error correction to reconcile
the data, and privacy amplification to decouple the data from
Eve f8g.

Two types of schemes are used to create the correlated
data in the first phase of QKD. Inentanglement-basedsEBd
schemes an, in general, untrusted third party distributes a
bipartite state to Alice and Bob. This party may be even Eve
who is in possession of a third subsystem that may be en-
tangled with those given to Alice and Bob. While the sub-
systems measured by Alice and Bob result in correlations
described byPsA,Bd, Eve can use her subsystem to obtain
information about the data of the legitimate users.

In prepare and measuresPMd schemes Alice prepares a
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random sequence of predefined non orthogonal statesuwil
that are sent to Bob through an untrusted quantum channel
spossibly controlled by Eved. On the receiving side, Bob per-
forms a positive-operator-value measuresPOVMd on every
signal he receives. Generalizing the ideas introduced by Ben-
nett et al. f9g, the signal preparation process in PM schemes
can be thought of as follows. Alice prepares an entangled
bipartite state of the formuClAB=Si

Îpiuailuwil, where the
statesuail form an orthonormal basis andhpiji represents the
a priori probability distribution of the signal statesuwil. If
now Alice measures the first system in the basisuail, she
effectively prepares thesnonorthogonald signal statesuwil
with probabilitiespi. The action of the quantum channel on
the stateuClAB leads to an effective bipartite quantum state
shared by Alice and Bob. One important difference between
PM schemes with effective entanglement and EB schemes
with real entanglement is that in the first case the reduced
density matrix of Alice, rA=TrBsuClkCuABd, is fixed and
known and cannot be modified by Eve.

An essential question in QKD now is whether the corre-
lated data generated in the first phase enable Alice and Bob
to extract a secret key. In Ref.f10g it has been proven that a
necessary precondition for secure key distillation is the prov-
able presence of quantum correlations inPsA,Bd. That is, it
must be possible to interpretePsA,Bd, together with the
knowledge of the corresponding measurements, as coming
exclusivelyfrom an entangled state. Moreover, this result ap-
plies both for EB and PM schemessfor EB schemes see also
f11gd. Alice and Bob need to be able to detect the presence of
entanglement in the quantum state that is effectively distrib-
uted between them, otherwise no secret key can be obtained.
Among all separability criteria available nowadays to deliver
this entanglement proofssee, e.g.,f12g and references
thereind, entanglement witnessessEWsd f13–15g are particu-
larly suited for this purpose since they give rise to a neces-
sary and sufficient condition for the existence of quantum
correlations inPsA,Bd, even when the state shared by Alice
and Bob cannot be completely reconstructedf10g. In Ref.
f10g a detailed analysis of two well-known EB protocols, the
six-state and the four-state EB protocolsf5–7g, is included
and the set of optimal EWs to detect quantum correlations in
both protocols has been found. The purpose of this paper is
to complete the results contained in Ref.f10g, now showing
specifically the analysis for the case of PM schemes. In par-
ticular, we investigate the signal states and detection methods
of the four-state and the two-state PM schemesf5,16g, and
we obtain a reduced set of EWs that can be used to derive a
necessary and sufficient condition to prove that quantum cor-
relations are present in these protocols. As a side point, we
put into context recent results that can be useful in the search
of quantum correlations for higher-dimensional QKD
schemesf17g.

The paper is organized as follows. In Sec. II we review
the role of quantum correlations as precondition for secure
QKD. Section III introduces the concept of EWs and shows
how to detect quantum correlations by using the class of EW
operators that can be constructed from the available data.
This formalism is then used in Sec. IV to analyze well-
known QKD protocols. Our starting points are the EB

schemes studied in Ref.f10g: The six-state and four-state EB
schemes. Then we present the results for PM schemes, ana-
lyzing in detail the four-state and the two-state PM schemes.
The last part of the section gives a brief outlook on the study
of quantum correlations in higher-dimensionsal QKD
schemes and in practical QKD. Finally, Sec. V concludes the
paper with a summary.

II. QUANTUM CORRELATIONS AND QUANTUM
KEY DISTRIBUTION

As mentioned in the Introduction, the provable presence
of quantum correlations inPsA,Bd has been shown to be a
necessary precondition for secure QKDf10g. The starting
point for such a proof is an upper bound for the distillation
rate of a secure key from correlated data via authenticated
public communication, which is given by theintrinsic infor-
mation IsA;B↓Ed, introduced by Maurer and Wolff18g.
These authors considered the problem of key distillation in
the classical scenario where Alice, Bob, and Eve have access
to repeated independent realizations of three random vari-
ables, denoted asA, B, andE, characterized by a probability
distribution PsA,B,Ed. In this context, Maurer and Wolf
proved that the rate of secret bits, denoted asSsA;BiEd, that
Alice and Bob can get by communicating to each other
through a public authenticated channel satisfiesf18g

SsA;BiEd ø IsA;B↓Ed = min
E→Ē

IsA;BuĒd, s1d

where the minimization runs over all possible channelsE

→ Ē characterized by the conditional probabilityPsĒuEd,
and IsA;Bu Ēd is the mutual information between Alice and
Bob given the public announcement of Eve’s data based on

the probabilitiesPsA,B,Ēd. This quantity is defined in terms
of the conditional Shannon entropyHsXu ēd=SxPX

−psxu ēdlog2 psxu ēd as

IsA;BuĒd = o
ēPĒ

PsēdfHsAuēd + HsBuēd − HsA,Buēdg. s2d

More important for QKD, the result of Maurer and Wolf
can as well be adapted to the case where Alice, Bob, and Eve
start sharing a tripartite quantum state instead of a joint prob-
ability distribution. For this purpose, one can consider all
possible tripartite states that Eve can establish using her
eavesdropping method, and all possible measurements she
could perform on her subsystem. This gives rise to a set of
possible extensionsP of the observable probability distribu-
tion PsA,Bd to PsA,B,Ed. Now one can define the intrinsic
information as

IsA;B↓Ed = infP IsA;BuEd. s3d

The main consequence of this fact is that whenever the
observable dataPsA,Bd can be explained as coming from a
tripartite state with a separable reduced density matrix for
Alice and Bob, the intrinsic information vanishes and there-
fore no secret key can be established.

Observation 1f10g. Assume that the observable joint
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probability distributionPsA,Bd together with the knowledge
of the corresponding measurements performed by Alice and
Bob can be interpreted as coming from a separable statesAB.
Then the intrinsic information vanishes and no secret key can
be distilled via public communication from the correlated
data.

Proof. This is easy to see for EB schemes as we extend a
separable reduced density matrixsAB=SiqiufilAkfiu
^ ucilBkciu to a tripartite pure state of the formuFlABE

=Si
ÎqiufilAucilBueilE. sSee alsof11g.d Here ueilE is a set of

orthonormal vectors spanning a Hilbert space of sufficient
dimension. If Eve measures her subsystem in the correspond-
ing basis, the conditional probability distribution conditioned
on her measurement result factorizes such that for this mea-
surementIsA;BuEd=0. As a consequence, the intrinsic infor-
mation vanishes and no secret key can be distilled.

In the case of PM schemes we need to show additionally
that the stateuFlABE can be obtained by Eve by interaction
with Bob’s system only. The initial stateuClAB

=Si
Îpiuailuwil can be written in the Schmidt decomposition

as uClAB=SiciuuilAuvilB. Then the stateuFlABE from above is
in the Schmidt decomposition, with respect to systemA and
the composite system BE, of the form uFlABE
=SiciuuilAuẽilBE since ci and uuilA are fixed by the known
reduced density matrixrA=TrBsuClkCuABd to the correspond-
ing values ofuClAB. Then one can find always a suitable
unitary operatorUBE such that uẽilBE=UBEuvilBu0lE where
u0lE is an initial state of an auxiliary system. j

The natural question that arises now is whether the pres-
ence of quantum correlations is also a sufficient condition for
secure QKD. Let us mention already here that this is still an
open question in the field of quantum cryptography. In EB
schemes, it is clear that it is possible to obtain a secret key
whenever the distributed bipartite states are entangled qubit
statesand each party is allowed to perform collective quan-
tum manipulations on their respective states. This is true
since in this situation one can first distill maximally en-
tangled states from the initial states and subsequently mea-
sure them out in the standard basisf19g. The verification that
the entanglement distillation process succeeded allows one to
give the security statement about the resulting perfectly cor-
related and random measurement data, which can then be
used as a secret key.

A completely different scenario arises once Alice and Bob
have already performed their respective measurements on the
given states and they can only use classical operations on
their correlated data. This last case has been partially ad-
dressed under additional assumptions, namely, that the
eavesdropping attack employed by Eve is restricted to the
so-called “incoherent symmetric strategies,” inf20g. In this
situation it has been proven that for a particular class of
QKD protocols key distillation is possible if and only if the
initially distributed states are distillablef20g. In the same
spirit, Acín et al. f21g showed that one can always distill a
secret key from any two-qubit and one-copy distillable states
by adapting the local measurements to the quantum states
and performing subsequently a classical protocol. All these
results suggested the idea of a correspondence between en-
tanglement distillation and secret key distillation. See also

f22g. The main conjecture was that a quantum state could
lead to a secret key if and only if it is distillable, which is not
equivalent to containing quantum correlationsf23g. How-
ever, this point of view changed recently, since it has been
shown that it is also possible to generate a secret key even
from certain nondistillable entangled states, known as bound
entangled or positive partial transposedsPPTd entangled
statesf24g. These are states that require entanglement to be
created but do not allow one to distill entanglement from
them f23g. This shows that the focus on entanglement-
distillation-guided protocols in QKD is too narrow, though
the interesting example introduced in Ref.f24g does not an-
swer the question whether all entangled states can be trans-
formed into a private key.

More recently, going back to the quantum correlations
point of view, Acín and Gisinf25g proved that it is an
equivalent statement to show that there has beensreal or
effectived entanglement in the distributed quantum state and
that the intrinsic information is nonzero. In particular, this
result implies that there exists a one-to-one relation between
the detection of entanglement inPsA,Bd and the fact that
such probability distribution cannot be obtained by classical
means using only local operations and classical communica-
tion f25,26g. That is,PsA,Bd contains secret bits. More im-
portant for QKD, this means that either it is possible to distill
a secret key fromanybi-partite entangled state or there exits
a classical analog of bound entanglement, the so-called
bound informationf11g. This is information shared by Alice,
Bob, and Eve such that Alice and Bob cannot obtain a secret
key from it although this information cannot be distributed
by local operations and classical communication. However,
so far the existence of bound information has been proven
for the multipartite casef27g sfor the case of coherent ma-
nipulations of multiparty quantum states see alsof28gd, but
not for the bipartite case relevant for QKD.

III. DETECTING QUANTUM CORRELATIONS

Given that quantum correlations are necessary for distill-
ing a secure secret key, the question now is how to detect
these quantum correlations in a given QKD scheme. More
precisely, we have to answer the question whether the joint
probability distributionPsA,Bd, coming from the measure-
ments performed by Alice and Bob during the protocol, al-
lows them to conclude that the effectively distributed state
was entangled or not. In principle any separability criteria
ssee, e.g.,f12g and references thereind might be employed to
deliver this entanglement proof. The important question here
is whether the chosen criterion can be used to provide a
necessary and sufficient condition to detect entanglement
when the knowledge about the state is not tomographic com-
plete. As we will see below, it is a property of EWs that they
allow one to obtain a necessary and sufficient criterion for
separability even when the state cannot be completely recon-
structedf10g.

Let us first consider EB schemes. In these schemes, Alice
and Bob perform some measurements on a bipartite quantum
state distributed by an, in general, untrusted third party and
retrieve the probability distributionPsA,Bd of the outcomes.
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Before showing that in this scenario EWs are specially ap-
propriated to detect entanglement, let us recall some facts
about witnessesf13–15g.

A witness is a Hermitian observableW with a positive
expectation value on all separable states. So if a stater obeys
TrsrWd,0, the stater must be entangled. We say then that
the stater is detected byW. In general, for every entangled
state there exists a witness detecting it; however, this witness
is in most cases very difficult to construct. Witnesses can be
optimizedin the following sense: A witnessW1 is calledfiner
than another witnessW2 if W1 detects all the states which are
detected byW2 and some states in addition. Finally, a witness
W is calledoptimal,when there is no other witness which is
finer thanW f15g. Now we can state the followingssee also
f10gd.

Theorem 1. Assume that Alice and Bob can perform some
local measurements with POVM elementsAi ^ Bi, i
=1, . . . ,n, to obtain the probability distribution of the out-
comesPsA,Bd on the distributed stater. Then the correla-
tions PsA,Bd cannot originate from a separable state if and
only if there is an EW of the formW=oiciAi ^ Bi which
detects the effectively distributed state, i.e., TrsWrd
=oiciPsAi ,Bid,0.

Proof. One direction of the above theorem is clear: If such
a witness with the properties from above exists, then the
effectively distributed state is clearly entangled. To prove the
other direction, let us look at the the following map, which
maps a quantum stater to a real vectorAsrdPRn:

A:r ° Asrd = hAsrd0, . . . ,Asrdnj, s4d

whereAsrdi =PsAi ,Bid=TrsAi ^ Bi rd. That is, it maps a state
onto the set of probabilities or expectation values of the
POVM elements. This map is linear and, in general, not in-
jective. It maps the convex setS of separable states onto the
convex setS8ªAsSd. An entangled stater with the property
AsrdPS8 cannot be detected with the given probabilities,
since then there is a separable staters being mapped to the
sameAsrsd=Asrd; thusr andrs are indistinguishable. So a
statere for which PsA,Bd cannot originate from a separable
state must obeyAs%ed¹S8, Now we have the usual con-
struction of witnesses. There must exist a hyperplane sepa-
rating As%ed from S8. This means that there is a vectorw
=sw1, . . . ,wnd with oiwiAs%edi ,0 while oiwiAs%di .0 for
all r with AsrdPS8. The observableW=oiwiAi ^ Bi is now
the desired EW, since TrsWrd=oiwiPsAi ,Bid. j

We refer to witnesses that can be evaluated with the given
POVM elements and the corresponding correlationsPsA,Bd
asaccessible. According to Theorem 1, the set of all acces-
sible witness operators gives rise to a necessary and suffi-
cient condition for verifiable entanglement contained in the
correlations PsA,Bd: The joint probability distribution
PsA,Bd can come exclusively from an entangled state if and
only if at least one accessible witness in the set gives rise to
a negative expectation value when it is evaluated with
PsA,Bd. Of course, in this set there is some redundancy.
Typically, it contains witnesses that are finer than others, and
therefore one can construct smaller sets of witnesses that are
accessible and still have the property of being necessary and

sufficient for verifying entanglement. Whenever this prop-
erty holds, we refer to a set of witnessesW as being averi-
fication set. The ultimate goal will be to obtain aminimal
verification setin a compact description that contains no fur-
ther redundancies to allow an efficient systematic search for
verifiable entanglement by evaluating the members of this
set. The rest of this paper is mainly concerned with the
search of these minimal verification sets, although in the case
of the four-state PM protocol and in the two-state PM proto-
col we find only reduced verification sets, which still may
contain some redundancies.

Before starting our quest for minimal verification sets, let
us consider the case of PM schemes since in this section we
have considered, so far, only EB schemes. As we mentioned
previously, in these kinds of schemes the reduced density
matrix of Alice is fixed since Eve has no access to the state
of Alice to try to modify it. However, this situation also can
be incorporated in the theorem from above. We can add to
the observablesAi ^ Bi other observablesCi ^ 1 such that the
observablesCi form a tomographic complete set of Alice’s
Hilbert space. Those witnesses that can be evaluated with
this combined set of measurements can clearly be evaluated
with the measurementsAi ^ Bi and the knowledge of the re-
duced density matrix of Alice.

In the geometric picture obtained in the proof of the theo-
rem from above, the knowledge of the expectation value of
some of the observables implies that we know that our state
lies on some hyperplane in the space of all expectation val-
ues. Then, we want to decide for a point on this hyperplane
whether is is inS8 or not, and this can be done by witnesses.
The knowledge of the mean values of some observables may
be used to argue that only a smaller set of witnesses is rel-
evant for such a PM scheme. We will see an example of this
later.

Finally, let us emphasize again that there are many other
separability criteria besides EWs which might be used for the
detection of entanglement in quantum cryptographic
schemes. For instance, the security of the first EB scheme
proposed by Ekert in 1991f6g, the four-state EB scheme,
was based on the detection of quantum correlations by look-
ing at possible violations of Bell inequalitiesf29g. This cri-
terion, or for example those based on uncertainty relations
f30g, is directly linked to experimental data, which makes the
implementation simple. Another interesting criterion that
seems to be particularly suited for the case of PM schemes,
where the reduced density matrix of Alice is fixed and
known, is, for instance, the reduction criterionf31g. How-
ever, it is not clear whether these criteria guarantee detection
of all entangled states which can be detected with the given
set of measurements. In fact, in the case of the four-state
scheme, the knowledge of the performed measurements to-
gether withPsA,Bd allows us to detect entangled states be-
yond those that violate Bell-like inequalities.

IV. QKD PROTOCOLS

We will now illustrate the consequences of this view for
some well-known QKD protocols. First we start reviewing
the recent results obtained in Ref.f10g for the six-state and
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the four-state EB protocolsf6,7g, which include a minimal
verification set to detect quantum correlations in both proto-
cols. Then we present the analysis for the case of PM
schemes. We investigate the four-state and the two-state PM
schemesf5,16g, and we obtain a reduced verification set for
each of these protocols. Finally, the last part of the section
gives a brief outlook at the study of quantum correlations in
higher-dimensional QKD schemes and in practical QKD
f17g.

A. Six-state protocol

For the case of the six-state EB protocol, Alice and Bob
perform projection measurements onto the eigenvectors of
the three Pauli operatorssx, sy, andsz on the bipartite qubit
states distributed by Eve. In the corresponding PM scheme
Alice prepares the eigenvectors of those operators by per-
forming the same measurements on a maximally entangled
two-qubit state. Note that here we are not using the general
approach introduced previously,uClAB=oi

Îpiuailuwil, to
model PM schemes, since for this protocol it is sufficient to
consider that the effectively distributed quantum state con-
sists only of two qubits. In both cases Alice has complete
tomographic knowledge of her subsystem and therefore the
class of EWs, that can be constructed in both protocols co-
incides. The set of three measurement bases used in the pro-
tocol allows Alice and Bob to construct any EW of the form

W= o
i,j=h0,x,y,zj

cijsi ^ s j , s5d

where s0=1 and cij are real numbers. Note that the set of
operatorshsi ^ s jji,j constitutes an operator basis inC2 ^ C2.
This means that Alice and Bob can in principle evaluate all
EWs, in particular, the class of optimal witnesses for two-
qubit states. This class, denoted by OEW, is given by the
witnesses operators of the formf32g

W= ufelkfeuTP, s6d

whereufel denotes any entangled state of two-qubit systems
and TP is the partial transposition, that is, the transposition
with respect to one of the subsystemsf33g. Therefore, in the
six-state protocol, for both EB and PM schemes, all en-
tangled states can be detected and the optimal witnesses
OEWs form the minimal verification set.

Alternatively to the witness approach, Alice and Bob can
employ as well quantum state tomography techniques to re-
construct the effectively distributed quantum state and then
use the Peres-Horodecki criterionf13,34g to determine
whether that state was entangled or not. This criterion estab-
lishes that a two-qubit state is separable if and only if its
partial transposition is positive. For higher-dimensional sys-
tems, however, note that although all operators with nonposi-
tive partial transposition are entangled, there exist PPT en-
tangled statesf23g.

B. Four-state protocol

While the analysis of the six-state protocol is quite
simple, due to the complete tomographic information that

Alice and Bob share, the four-state protocol needs a deeper
examination. As we will show below, the class of the OEW
for two-qubit systems cannot be evaluated with the given
correlations either in the EB or in the PM version of the
protocol. In the EB case Alice and Bob perform projection
measurements onto two mutually unbiased bases, say the
ones given by the eigenvectors of the two Pauli operatorssx
and sz. In the corresponding PM scheme, Alice can use as
well the same set of measurements but now on a maximally
entangled state. Here again, as in the six-state protocol, we
use the fact that the approachuClAB=oi

Îpiuailuwil to model
PM schemes can be reduced to employ only two-qubit states
for this protocol. Let us begin our analysis for the EB
schemef10g.

1. Entanglement-based

In the case of the four-state EB protocol we will denote
the set of EWs that can be evaluated with the resulting cor-
relations asW4

EB. All elements are of the form

W4
EB = o

i,j=h0,x,zj
cij si ^ s j . s7d

This class of EWs can be characterized with the following
observation.

Observation 2f10g. Given an entanglement witnessW we
find WPW4

EB if and only if W=WT=WTP.
Proof. To see this, we start with the general ansatz of Eq.

s5d and we impose the conditionsW=WT=WTP. This directly
constraintsW to the form s7d since sy is the only skew-
symmetric element in the operator basis. The reverse direc-
tion is then trivial. j

It is straightforward to see that the elements of the OEW
do not satisfy this condition. Below, we will provide a crite-
rion to decide if an entangled state can be detected byW
PW4

EB. This means that, in contrast to the case of the six-
state protocol, in the four-state EB protocol there can be
entangled states that give rise to correlationsPsA,Bd that are
not sufficient to prove the presence of entanglement.

The concept of optimal witnesses introduced in Sec. III
for general witness operators can as well be extended to the
witnesses that are accessible with the given set of measure-
ments. This way we call a witnessW optimal in class Cif
and only if there is no other element inC that detects all
entangled states detected byW. Our goal now is to charac-
terize a complete family of witness operators that are optimal
in the classW4

EB. This family forms the minimal verification
set. Then it is sufficient to check this family to decide
whether the presence of entanglement can be verified from
the given data. To do this we start presenting a necessary and
sufficient condition for a bipartite state to contain entangle-
ment that can be detected by elements ofW4

EB.
Observation 3f10g. An entangled stater can be detected

with a WPW4
EB if and only if the operatorV= 1

4sr+rTA

+rTB+rTd is a nonpositive operator.
Proof. To see this, let us start by the observation that the

symmetries of the witness operators inW4
EB give rise to the

identity TrsWrd=TrsWVd. Now let us assume that the opera-
tor V is non-negative. Then one can interpret it as a density
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matrix. Since it is invariant under partial transposition, it
must be a separable state. SinceW is a witness operator, we
must therefore find TrsWrdù0. As a result, we find that the
nonpositivity of V is a necessary condition to detect en-
tanglement of the stater with witnesses inW4

EB. The reverse
direction is included here only for completeness and the
proof is included implicitly in Theorem 2. j

Next we present a set of EWs composed of optimal wit-
nesses in the classW4

EB which forms a minimal verification
set of the four-state EB protocol.

Theorem 2f10g. Consider the family of operatorsW
= 1

2sQ+QTPd, whereQ= ufelkfeu and ufel denotes a real en-
tangled state. The elements of this family are witness opera-
tors that are optimal inW4

EB sOEW4
EBd and detect all the

entangled states that can be detected withinW4
EB.

Proof. Let us start by checking that this family, indeed,
can detect all entanglement that can be detected inW4

EB.
From Observation 3 we know that we need only consider
bipartite statesr such thatV= 1

4sr+rTA+rTB+rTd is nonposi-
tive. We have, therefore, that there exists always ansen-
tangledd stateufel such thatkfeuVufel,0. Moreover, since
V=VT, this operator has a real representation. In this repre-
sentation, also the stateufel has a real representationf35g.
Let us define the projectorQ= ufelkfeu. Then we find
kfeuVufel=Trf 1

4sQ+QTA+QTB+QTdrg. This means that we
can define the operatorW= 1

4sQ+QTA+QTB+QTd which can
be further simplified toW= 1

2sQ+QTPd thanks to the real rep-
resentation ofQ. This operator is a witness operator, since
TrsWsdù0 for all separable statess, while TrsWrd,0 for
the chosenr. Moreover, by construction the family of these
witness operators detects all entanglement that can be de-
tected withinW4

EB.
Finally, we need to show that all witnesses of this new set

W= 1
2sQ+QTPd are optimal withinW4

EB so they form OEW4
EB.

In Ref. f15g it has been proven that, given a set of witness
operatorsSW, WPSW is optimal inSW if and only if for all
positive semidefinite operatorsP and e.0, W8=s1+edW
−eP¹SW. When a P can be subtracted, it has to satisfy
ke, f uPue, fl=0 for all product vectorsue, flPC2 ^ C2 with
ke, f uWue, fl=0 since otherwise we would not have a witness
anymore. In the case of witness operators of the formW
= 1

2sQ+QTPd, whereQ= ufelkfeu and

ufel = o
i=0

1

ciuiluil s8d

denotes the Schmidt decomposition ofufel, we have that the
ue, fl that satisfyke, f uWue, fl=0 are given byu0lu1l, u1lu0l,
and the unnormalized states

ufsldl = slu0l ± Î1 − l2u1ldsc1
Î1 − l2u0l 7 c0lu1ld, s9d

with lP s0,1d. These product vectors span a three-
dimensional subspace that is orthogonal toufel. This means
that P cannot be subtracted fromW unlessP=Q. But s1
+edW−eQ= 1

2fs1−edQ+s1+edQTPg¹W4
EB for all e.0.

Therefore all witness operatorsW= 1
2sQ+QTPd with Q

= ufelkfeu and ufel real are OEW4
EB‘s. j

2. Prepare and measure

Once we have presented a set of witness operators that is
optimal for the EB scheme, we will show below that this
family is also sufficient to detect all entangled states that can
be detected in the PM version of the four-state protocol. That
is, with respect to the ability to detect quantum correlations,
both schemes can use the same verification set. As we
showed in Sec. III, in the case of PM schemes one can add to
the set of observables measured in the protocol other observ-
ablesCi ^ 1 such that the observablesCi form a tomographic
complete set of Alice’s Hilbert space. So we have to add the
operatorsy ^ s0 to the observables in Eq.s7d. This way one
obtains all the witnesses that can be evaluated in the four-
state PM protocol. This new set, which we shall denote as
W4

PM, is of the form

W4
PM = o

i,j=h0,x,zj
cijsi ^ s j + cy0sy ^ s0, s10d

wherecy0 is as well a real number.
Now we present a result, Observation 4, that applies to the

observables given by Eq.s7d and that will be useful to prove
that the set of OEW4

EB obtained in Theorem 2 is also suffi-
cient to detect all entangled states that can be detected in the
four-state PM scheme and, therefore, it forms a reduced veri-
fication set of this protocol.

Observation 4. Given an observableW with W=WT

=WTP, then TrsWsdù0 for all s separable if and only if
TrsWsrdù0 for all sr real and separable.

Proof. sIf d Using the fact thatW=WT we have TrsWsd
= 1

2TrfWss+sTdg. Note that the symmetric matrixs+sT is
real and positive semidefinite becauses is Hermitian and
positive semidefinite and transposition is a positive opera-
tion. Moreoverss+sTdTP is positive semidefinite sincesTP is
positive semidefinite for alls separable. This means that
1
2ss+sTd is a real separable quantum state. Therefore if
TrsWsrdù0 for all sr real and separable then TrsWsdù0 for
all s separable.sOnly ifd The proof is trivial. j

Theorem 3. The family of OEW4
EB, W= 1

2sQ+QTPd with
Q= ufelkfeu and ufel a real entangled state, is sufficient to
detect all entangled states that can be detected in the four-
state PM scheme.

Proof. To be EWs, the operatorsW4
PM given by Eq.s10d

must satisfy TrsW4
PMsdù0 for all s separable. In particular,

it must satisfy TrsW4
PMsrdù0 for all sr real and separable.

We have that the termsy ^ s0 satisfies

Trfssy ^ s0dsrg = 0, ∀ sr . s11d

This means, therefore, that we need to guarantee that the first
term in Eq.s10d satisfies

o
i,j=h0,x,zj

cijTrfssi ^ s jdsrg ù 0, ∀ sr . s12d

According to Observation 4, we obtain that the term
oi,j=h0,x,zjcijsi ^ s j in Eq. s10d has to be an EW which be-
longs to the classW4

EB. That is,W4
PM=W4

EB+cy0sy ^ s0.
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To conclude the proof, now we have to take into account
that in the four-state PM scheme the reduced density matrix
of Alice is fixed and given byrA= 1

21. This means that

TrsW4
PMrd = TrsW4

EBrd s13d

for all r such that TrBsrd= 1
21, since Trfssy ^ s0drg=0. That

is, the entangled states that can be detected in the PM proto-
col are also detected by the class of witnessesW4

EB. We have,
therefore, that it is sufficient to consider the set of OEW4

EB.j

3. Evaluation

From the set of witness operators OEW4
EB given by W

= 1
2sQ+QTPd, with Q= ufelkfeu and ufel a real entangled

state, one can obtain a necessary and sufficient condition for
the presence of entanglement in the observable correlations
PsA,Bd. This result applies to both versions of the four-state
protocol: EB and PM. Note that for the case of an EB
scheme all the witnesses in OEW4

EB are optimal and form a
minimal verification set. However, for a PM scheme some of
them might be redundant and therefore this set of EWs forms
a reduced verification set for this version of the protocol. The
set OEW4

EB includes an infinity number of witness operators,
but, as we will see below, these EWs can be easily param-
etrized with only three real parameters. From a practical
point of view, this means that Alice and Bob can easily check
the conditions TrsWrd with WPOEW4

EB numerically.
Let us briefly analyze the implications of our results in the

relationship between the bit error ratee in the four-state and
in the six-state protocols and the presence of correlations of
quantum mechanical naturef10g. Here the error ratee quan-
tifies the rate of events where Alice and Bob obtain different
results. It refers to the shifted key, i.e., considering only
those cases where the signal preparation and detection meth-
ods employ the same polarization basis. In an intercept-
resend attack Eve measures every signal emitted by Alice
and prepares a new one, depending on the result obtained,
that is given to Bob. This action corresponds to an
entanglement-breaking channelf36g, i.e., it is a channelF
such asI ^ Fsrd is separable for any density matrixr on a
tensor product space. Such a channel gives rise toeù25%
sfour-state protocold andeù33% ssix-state protocold, respec-
tively f7,37g, which might seem to indicate that these values
represent an upper bound for the tolerable error rate in the
protocolsssee alsof38gd. However, it turns out that for some
asymmetric error patterns, it is possible to detect the pres-
ence of quantum correlations even for error rates above 25%
s33%d f10g. Let us illustrate this fact with two examples that
are motivated by the propagation of the polarization state of
a single photon in an optical fiber.

In the first example we will consider a channel described
by a unitary transformation that changes on a time scale
much longer than the repetition cycle of the signal source, so
it can be thought to be constant over that time: for instance,
the channel given by the unitary transformationUsud
=cosu1− i sinusy. In this scenario, the resulting distributed
state for both QKD protocols is given byucl=cosuu00l
+sinuu01l−sinuu10l+cosuu11l. The corresponding bit error
rate is e=sin2 u and e= 2

3 sin2 u for the four-state and the

six-state protocols, respectively. Nevertheless, it can be
shown that in both cases the existence of quantum correla-
tions can be detected for all anglesu. The case of the six-
state protocol is clear, since a unitary transformation pre-
serves the entanglement and all entanglement can be verified
in this protocol. With respect to the four-state protocol, note
that there is always an entanglement witnessWPOEW4

EB

that detects quantum correlations inPsA,Bd. In particular, let
us useW= 1

2sufelkfeu+ ufelkfeuTPd, with ufel as the eigenvec-
tor of the operator12uclkcuTP which corresponds to its nega-
tive eigenvalue. Then we find in a suitable representation as
a pseudomixturef39g for the entanglement witness that
TrsWrd=oiciPsai ,bid=−1

4.
For the second example, we focus on the four-state EB

protocol only and we consider the particular joint probability
distribution PsA,Bd given by Table I, where the statesu6l
are defined asu± l=1/Î2su0l± u1ld. In principle, it is not
straightforward to decide whether these correlations can be
explained as coming exclusively from an entangled state or
not. This is specially so since in this case the resulting bit
error rate is given bye<35.4%. To decide that question
systematically we can use the verification set defined by
OEW4

EB: W= 1
2sufelkfeu+ ufelkfeuTPd. The real statesufel can

be parametrized as ufel=cosfu00l+sinffcoscu01l
+sincscosuu10l+sinuu11ldg, with only three real param-
etersf ,c ,uP f0,2pd. Moreover, since the stateufel is en-
tangled these parameters satisfy additionally the condition
sinf sincssinf cosc cosu−cosf sinudÞ0 f40g. How-
ever, from a practical point of view it might be easier just to
consider all anglesf, c, andu and allow the evaluation of
some positive operators. After expressing the witness opera-
tors as apseudomixturef39g the condition TrsWrd,0 can be
rewritten asoi f isf ,c ,ud PsAi ,Bid,0, with ci = f isf ,c ,ud
for some functionsf i. Now it is easy to search numerically
through the space of parametersf, c, and u for quantum
correlations inPsA,Bd. This fact is illustrated in Fig. 1,
where some combinations of these parameters detecting en-
tanglement when they are evaluated on thePsA,Bd given in
Table I are marked.

To finish this section we show now that the family of
witness operators OEW4

EB allow us to detect entangled states
beyond those that violate Bell-like inequalitiesf29g. Note
that, as we mentioned previously, the security of the original
four-state EB schemef6g was based on the detection of en-
tanglement by looking at possible violations of Bell inequali-

TABLE I. Example of aPsA,Bd for the four-state EB protocol,
where u± l=1/Î2su0l± u1ld. The table is normalized such that
oiPsAi ,Bid=1.

A

B

u0l u1l u1l u2l

u0l 0.08058 0.04757 0.02106 0.10709

u1l 0.04623 0.07560 0.11349 0.00834

u1l 0.11808 0.01690 0.09319 0.04179

u2l 0.00873 0.10627 0.04136 0.07364
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ties, which is in principle more restrictive than detection of
quantum correlations. It is known that a violation of a Bell
inequality can be formally expressed as an EWf14g, while
the contrary does not hold always. An interesting question
then is to ask whether the family of OEW4

EB corresponds to
Bell inequalities or not. It is easy to see that the knowledge
of the performed measurements in the four-state protocol to-
gether with the joint probability distributionPsA,Bd allow us
to detect entangled states that do not violate Bell-like in-
equalities. Consider for instance the two-qubit entangled
states introduced by Werner inf41g and which are defined as

rW = puc−lkc−u +
1

4
s1 − pd1, s14d

with uc−l=1/Î2su01l− u10ld. In the probability range 1/3
,p,1/Î2 Werner states do not violate any known Bell in-
equalitiesf42g but nevertheless they can be detected with the
witnesses OEW4

EB for p.
1
2. To see this, note that the opera-

tor V=1/4srW+rW
TA+rW

TB+rW
T d is a nonpositive operator for

p.
1
2.

C. Two-state protocol

The two-state protocolf16g is one of the simplest QKD
protocols, since it is based on the random transmission of
only two nonorthogonal statesuw0l and uw1l. Alice chooses
randomly a bit valuei, and prepares a qubit in the state
uwil=au0l+s−1dibu1l, with 0,a,1/Î2 andb=Î1−a2, that
is sent it to Bob. On the receiving side, Bob measures the
qubit he receives in a basis chosen, independently and at
random, within the set{huw0l , uw0

'lj ,huw1l , uw1
'lj}, with

zkwi uwi
'lz=0. Note that alternatively to this detection method,

Bob could also perform a POVM defined by the operators
F0= uw1

'lkw1
'u /2, F1= uw0

'lkw0
'u /2, andFnull=1−F0−F1. Us-

ing the ideas introduced by Bennettet al. f9g, one can also

think of the preparation process in the following way. Alice
prepares an entangled bipartite state of the form

uClAB =
1
Î2

su0lAuw0lB + u1lAuw1lBd, s15d

and then she measures her subsystem in the basishu0l , u1lj.
Note that in this scheme the fact that the reduced density
matrix of Alice is fixed and equal torA=TrBsuClkCuABd with
uClAB given by Eq.s15d is vital to detect quantum correla-
tions in PsA,Bd. Otherwise, the joint probability distribution
PsA,Bd alone does not allow Alice and Bob to distinguish
between the entangled stateuClAB and the separable one
sAB= 1

2oi=0
1 uilki uA ^ uwilkwiu.

We obtain, therefore, that the set of EWs that can be
evaluated in the two-state protocol, and which we shall de-
note asW2, is of the form

W2 = o
i=h0,zj
j=hx,zj

cijsi ^ s j + o
k=h0,x,z,yj

cksk ^ s0, s16d

where the second term in Eq.s16d includes a set of observ-
ables such that Alice can reconstruct completely the state of
her subsystem. This family of witness operators can equiva-
lently be rewritten as

W2 = u0lk0u ^ A + u1lk1u ^ B + x Csud, s17d

where A and B represent two real symmetric operatorsA
=AT andB=BT, given by

A = o
i=h0,x,zj

sc0i + czidsi s18d

and

B = o
i=h0,x,zj

sc0i − czidsi , s19d

respectively, the parameterx is given byx= ucx+ icyuù0, and

s20d

with u=tan−1scy/cxd. That is, we have included the two ob-
servablessx ^ 1 andsy ^ 1 that appear in Eq.s16d in the term
x Csud of Eq. s17d, while the remaining observables in Eq.
s16d are included in the first two termsu0lk0u ^ A+ u1lk1u
^ B of Eq. s17d.

It is straightforward to see that, as in the case of the four-
statesEB and PMd protocol, the class of witness operators
W2 does not allow us to evaluate the OEW given in Eq.s6d.
Note that the elementsW in OEW satisfyWà0 and WTP

ù0. The witnesses in the classW2, on the contrary, satisfy
W2=W2

TB, which means thatW2
TB cannot be a positive

semidefinite operator unlessW2 is also positive semidefinite.
Therefore, in the two-state protocol there can be also en-
tangled states that give rise to correlationsPsA,Bd that are
not sufficient to prove the presence of entanglement. In the
same way, it is interesting to note also that there are no
witnesses in the set ofW2 that belongs to the family of

FIG. 1. Illustration of several regimes of the parametersf, c,
and u leading to negative expectation values of the operators
OEW4

EB=s1/2dsufelkfeu+ ufelkfeuTPd, with ufel=cosfu00l
+sinffcoscu01l+sincscosuu10l+sinuu11ldg, when they are
evaluated on the joint probability distributionPsA,Bd given in
Table I. The anglesf, c, andu are represented in radians.
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OEW4
EB= 1

2sufelkfeu+ ufelkfeuTPd. To see this, note that the
representation given in Eq.s17d is incompatible with the fact
that the stateufel is a real entangled state. In the rest of this
section we obtain a reduced verification set of the two-state
protocol sTheorem 4d.

The first requirement that an operator of the form given
by Eq. s17d must satisfy to be an EW is TrsW2sdù0 for all
separable statess. Since the set of separable states is convex,
this condition is equivalent to asking TrsW2uflkfuA ^ ucl
3kcuBdù0 for all statesuflAuclB. Let us start by considering
states of the formu0lAuclB. We have that TrsW2u0lk0uA ^ ucl
3kcuBd=kcuAucl, which means that the operatorA must be
positive semidefinite, i.e.,Aù0. In the same way, but now
using the separable pure statesu1lAuclB, one obtainsBù0.
This means that the first two terms of Eq.s17d, u0lk0u ^ A
+ u1lk1u ^ B, represent a positive semidefinite operator and
the only term responsable to detect quantum correlations is
the one given byxCsud. Note that this implies that the class
W2 does not allow us to detect maximally entangled states
ufel=1/Î2oi=0

1 uciluwil, with kci uc jl=kwi uw jl=di j , since in
that case it turns out thatkfeuCsudufel=0. This fact is not too
surprising since the distributed states in this protocol are not
maximally entangled. Let us now come back to the general
case: TrsW2uflkfuA ^ uclkcuBdù0. If we express the state
uflA as uflA=au0l+bu1l, this condition reduces to

2uabux ø kcusuau2A + ubu2Bducl, ∀ ucl, s21d

and for alla andb such thatuau2+ ubu2=1. After optimizing
over the parametersa andb, Eq. s21d can be further simpli-
fied to

x ø minucl ÎkcuAuclkcuBucl. s22d

That is, whenever the value of the parameterx is below the
bound given by Eq.s22d, W2 has a positive expectation value
on all separable states.

Now we will provide a necessary and sufficient condition
for the operatorsW2 in order to detect entanglement, i.e., to
guaranteeW2ù” 0. First, it is straightforward to see that the
operatorsA andB have to be of full rank, otherwise accord-
ing to Eq.s22d we havex=0 andW2= u0lk0u ^ A+ u1lk1u ^ B
ù0. Now we can prove the following observation.

Observation 5. An operator W2= u0lk0u ^ A+ u1lk1u ^ B
+xCsud, with A and B being two real symmetric positive
operators,A.0 andB.0, and the operatorCsud given by
Eq. s20d with uP f0,2pd satisfiesW2à0 if and only if x
.xmin with

xmin =Îa

2
−Îa2

4
− detsAddetsBd, s23d

and wherea=TrsABd.
Proof. See Appendix A.
Theorem 4. The family of witness operatorsW2= u0lk0u

^ A+ u1lk1u ^ B+xCsud, with A and B being two real sym-
metric positive operators,A.0 andB.0, the operatorCsud
given by Eq. s20d with uP f0,2pd, and such thatx
=minucl ÎkcuAuclkcuBucl.xmin is sufficient to detect all en-

tangled states that can be detected in the two-state protocol.
Proof. According to the results presented above, we only

need to prove that given a witness operatorW2à0 with a
value ofx that saturates the bound of Eq.s22d, and that we
shall denote asW2sxmaxd, it is finer than the same witness
W2sxd with an x,xmax. That is,

TrfW2sxmaxdrg ø TrfW2sxdrg s24d

for all r entangled and detected byW2sxd. SinceW2sxmaxd
and W2sxd share the same operatorsA and B by definition,
Eq. s24d can be further simplified to

sxmax− xdTrfCsudrg ø 0. s25d

Finally note that this condition is always satisfied, since
sxmax−xd.0 and TrfCsudrg,0, otherwiser cannot be de-
tected byW2sxd. j

The coefficients of the pseudomixture decomposition of
the witness operators given by Theorem 4 can be param-
etrized in this case with six real parameters.

D. Higher-dimensional QKD protocols

So far we have searched for quantum correlations in
qubit-based QKD protocols which means we have restricted
ourselves to operators inC2 ^ C2. This fact makes the char-
acterization of a given class of witness operators easier, since
for systems defined inH=C2 ^ C2 andH=C2 ^ C3 all witness
operators belong to the class of so-calleddecomposable en-
tanglement witnessessDEWsd which has a simple well-
known form:W=eP+s1−edQTP, with Pù0 andQù0 satis-
fying TrsPd=TrsQd=1, and eP f0,1d f43g. In the case of
systems of higher dimension than those inH=C2 ^ C2 and
H=C2 ^ C3 not all the witness operators are DEWs; for ex-
ample DEWs cannot detect PPT entangled statesf23g. It is
necessary to use also the so-callednondecomposable en-
tanglement witnessessNDEWsd. This fact makes the charac-
terization of witness operators more subtle and so far it is
still not clear how to construct such witness operators even
when the information about the state is tomographic com-
pletef14,15,44g. As we mentioned already before, ideally the
goal is to obtain a compact description of the minimal veri-
fication set for a given QKD protocol in order to systemati-
cally search for entanglement inPsA,Bd. However, due to
the fact that the characterization of NDEWs is not easy to
handle it might be of interest to obtain, at least,onerelevant
EW within the proper class as a first step toward the demon-
stration of successful QKD.

Recently, it has been shown that a good deal of new in-
sight into the optimization of NDEWs can come from the
theory of convex optimizationf17,45,46g. More important
for QKD, the problem of the minimization of expectation
values of witness operatorsW with respect to pure product
states,

min
ua,bl

TrsWua,blka,bud, s26d

can also be formulated as a convex optimization problem
f17g. Solving Eq.s26d allows us to obtain new witness op-
erators which are finer thanW, even within a restricted class
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WC of them f17g. To see this, letWPWC and denote the
result of the minimization problem in Eq.s26d as e
=minua,bl Trfua,blka,buWg.0. Then the unnormalized new

witness operator given byW̃=W−e1 is finer thanW and

moreover it is guaranteed thatW̃PWC since the observable1
is always accessible. At first sight it seems that this proce-
dure requires one to have already a valid entanglement wit-
nessW for the given QKD protocol. However, this operator
does not need to be an entanglement witness in the strict
sense, but can be also a positive operator from the restricted
set which is more easy to characterize than an entanglement
witnessf47g. With respect to the minimization problem it-
self, it has been shown that although the polynomial con-
straints parametrizing the pure statesua,bl are nonconvex
and computationally expensive to handle, one can apply re-
sults from relaxation theory of nonconvex problemsf48,49g,
notably the method of Lasserref49g, to find hierarchies of
solutions to that problem in such a way that each step of the
hierarchy is a better approximation than the previous one
f17g. Each step itself amounts to solving an efficiently imple-
mentable semidefinite programf50g and the hierarchy is
asymptotically complete, in the sense that the exact solution
is asympotically attained. This means that during several

steps of the optimization method, better witness operatorsW̃
can be obtained fromW, belonging to the same restricted
classWC.

Finally, let us mention that, of course, not all higher-
dimensional QKD protocols require the use of NDEWs to
derive a necessary and sufficient condition for the presence
of entanglement inPsA,Bd. For instance, consider the class
of EB protocols inH=C2 ^ CN, where Alice realizes projec-
tion measurements onto the eigenvectors of the two Pauli
operatorssx andsz. In all these EB protocols the accessible
witness operators satisfy the conditionW=WTA. One can
show that this fact implies for the given dimensionalities that
it is a necessary condition for a stater to be detected byW
that the operatorV= 1

2sr+rTAd is a nonpositive operator. To
prove this, note that TrsWrd=TrsWVd. From the work by
Krauset al. f53g we learn that wheneverV is a non-negative
operator it represents a separable state. To summarize this
remark, we learn that all detectable states for this class of
protocols are negative partial transposed entangled states and
can be detected by usingonly DEWs. The situation changes
once Alice performs also a projection measurement onto the
eigenvectors ofsy.

E. Outlook to practical QKD systems

The idea to check for quantum correlations in the ob-
served data with the help of a verification set of witnesses
applies also, in principle, to real implementations of QKD
setupsf51g. One can incorporate any imperfection of the
sources and the detection devices into the corresponding in-
vestigation within the framework of trusted devices. In that
framework one characterizes detection devices by the use of
an appropriate POVM description, e.g., on the infinite di-
mensional Hilbert space of optical modes. For PM schemes,
one has to characterize additionally the given source via the

reduced density matrix of the virtual internal preparation
state, as described before. This idea then needs to be gener-
alized to signal states that are described by mixed quantum
states. For this purpose, one uses still a pure state as internal
preparation, but Alice’s signal preparation corresponds now
no longer to a projection onto an orthogonal set of pure
states, but to projections onto orthogonal subspaces, thereby
effectively preparing mixed states.

In those general scenarios, it will be difficult to provide
the minimal verification set of witnesses. Instead, one can
fall back to the approach to search for just one accessible
witness via numerical methods such as presented in the pre-
vious section. In this way, one can search through restricted
classes of accessible witnesses at the price that the result of
this search will not be conclusive, i.e., this search yields only
a sufficient condition.

V. CONCLUSION

A necessary precondition for secure quantum key distri-
bution is that sender and receiver can use their available
measurement results to prove the presence of entanglement
in a quantum state that is effectively distributed between
them. Moreover, this result applies both to prepare and mea-
sure sPMd and to entanglement-basedsEBd schemes. This
means that to construct practical and efficient new QKD pro-
tocols, it is vital to separate the generation of two-party cor-
relations from the public discussion protocol which extracts
a key from those data. Among all separability criteria to de-
liver this necessary entanglement proof, entanglement wit-
nessessEWsd are especially appropriate since from them one
can derive a necessary and sufficient condition for the exis-
tence of quantum correlations even when the state shared by
the users cannot be completely reconstructed.

In a recent workf10g, the set of optimal witness operators
for two well-known EB schemes, the six-state and the four-
state EB protocols, was obtained and a necessary and suffi-
cient condition to detect entanglement in both protocols was
derived. The purpose of this paper was to complete these
results, now showing specifically the analysis for the case of
PM schemes where, contrary to the case of EB schemes, now
the reduced density matrix of the sender is fixed and cannot
be modified by the eavesdropper. In particular, we have in-
vestigated the signal states and detection methods of the
four-state and the two-state PM schemes, and we have ob-
tained a reduced set of EWs that can be used to provide a
necessary and sufficient condition for the existence of quan-
tum correlations in both protocols.

Finally, we have discussed very briefly how to detect
quantum correlations in higher-dimensional QKD schemes
and in practical QKD, where the characterization of EWs is
not as easy to handle as in the case of qubit-based QKD
schemes. In this scenario it might be still of interest to obtain
one relevant EW as a first step toward the demonstration of
successful QKD. Here, mathematical results from the field of
convex optimization theory can be used to get new insights
into the construction of finer EWs within a given class.
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APPENDIX: CONDITION FOR W2à0

In this appendix we provide a proof for Observation 5.
Our starting point is the most general form of the operators
W2= u0lk0u ^ A+ u1lk1u ^ B+xCsud. That is, if we write the
matrix element ofW2 explicitly we have

W2 =1
a c xeiu 0

c b 0 xeiu

xe−iu 0 e g

0 xe−iu g f
2 . sA1d

Now we have to understand what the conditionW2ù0
imposes on the elements ofW2. We have by definition of the
classW2 Aù0 andBù0 or, sinceA andB are of full rank,
we can assume at this pointA.0 and B.0. Under this
assumption, we can use the well-known fact that such a
block matrix as in Eq.sA1d is positive if and only if its Schur
complement is positivef52g, which implies here

A − x2B−1 ù 0. sA2d

Introducing the notationy=x2/detsBd the 232 matrix

X = Sa − yf c+ yg

c + yg b− ye
D ù 0 sA3d

has to be positive. This is the case, if and only if detsXd
ù0 and TrsXdù0. After a short calculation, this implies that

ab− c2 − sae+ bf + 2cgdy + sef − g2dy2 ù 0, sA4d

sa + bd − yse+ fd ù 0. sA5d

When are these inequalities satisfied for different values of
yù0? Fory=0 the matrixX is clearly positive. Ify increases
X get first one negative eigenvalue. Thus Eq.sA4d is vio-
lated, while Eq.sA5d is still valid. If y increases further, the
eigenvalues decrease and Eq.sA5d gets violated. Finally,X
gets two negative eigenvalues, and Eq.sA4d is valid, while
Eq. sA5d is still violated. So we have to look for the smallest
zero of Eq.sA4d which is given by

y0 =
a

2 detsBd
−Î a2

4 detsBd2 −
detsAd
detsBd

, sA6d

where we have useda=TrsABd=sae+bf+2cgd. We obtain,
therefore, thatW2 is positive if and only if

x ø xmin, sA7d

with

xmin =Îa

2
−Îa2

4
− detsAddetsBd. sA8d
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