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A necessary precondition for secure quantum key distribution is that sender and receiver can prove the
presence of entanglement in a quantum state that is effectively distributed between them. In order to deliver
this entanglement proof one can use the class of entanglement wil\W$®perators that can be constructed
from the available measurements results. This class of EWs can be used to provide a necessary and sufficient
condition for the existence of quantum correlations even when a quantum state cannot be completely recon-
structed. The set of optimal EWs for two well-known entanglement-bé&sBg schemes, the six-state and the
four-state EB protocols, has been obtained recéMlyCurty et al, Phys. Rev. Lett92, 217903(2004.] Here
we complete these results, now showing specifically the analysis for the case of prepare and (Rédisure
schemes. For this, we investigate the signal states and detection methods of the four-state and the two-state PM
schemes. For each of these protocols we obtain a reduced set of EWs. More importantly, each set of EWs can
be used to derive a necessary and sufficient condition to prove that quantum correlations are present in these
protocols.
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I. INTRODUCTION proper exploitation of particular quantum effects can prevent
Bob and Eve from receiving precisely the same information.
One of the most important problems in modern cryptog-The laws of quantum mechanics can guarantee some mini-
raphy is the transmission of secret information from a sendemal uncertainty between both signals, and this fact can be
(usually called Alicg to a receiver(Bob) over an insecure used by Alice and Bob to expand a previously shared secret
communication channél]. The goal is to guarantee that any key K in an unconditionally secure manng4-7]. This
possible eavesdroppé¢Eve), with access to the channel, is means that QKD together with the Vernam cipher can in
unable to obtain useful information about the message.  principle be used to achieve perfectly secret communications
Secret systems were studied from an information-even wherH(K) <H(M).
theoretic perspective by Shannit]. He analyzed the natu- In any realization of QKD one can typically distinguish
ral scenario where Eve has always access to exactly the samgo phases in order to expand a secret key. In the first phase,
information received by Bob. This information, denotedZas an effective bipartite quantum mechanical state is distributed
(from the term ciphertextis typically obtained by Alice as a between Alice and Bob. This state creates correlations be-
function of the message to be seM, and a secret kel  tween them and it might contain as well hidden correlations
that she needs to share previously with Bob. In this contextwith Eve. Next, arestricted set of measurements is used by
Shannon defined a cryptographic system to be perfectly sehe legitimate users to measure these correlations. As a re-
cret and uniquely decodable if it satisfies the following twosult, Alice and Bob obtain a classical joint probability distri-
conditions: first, the ciphertex@ and the messagd must be  bution P(A,B) representing the measurement results. In the
statistically independent. This means that Eve cannot obtaigecond phase, usually call&dy distillation Alice and Bob
any useful information about the messadefrom C. This  uyse an authenticated public channel to process the correlated
condition can be expressed H#1;C)=0, wherel denotes data in order to obtain a secret key. This procedure involves,
the mutual information measured in bj&. The second con-  typically, postselection of data, error correction to reconcile
dition states that Bob can recover the original mesddge the data, and privacy amplification to decouple the data from
from C andK. It can be formulated ad(M|C,K)=0, withH  Eve[8].
the Shannon entropy measured also in b&§ With this Two types of schemes are used to create the correlated
definition, Shannon proved the well-known pessimistic resuldata in the first phase of QKD. lentanglement-base@B)
that every perfectly secret uniquely decodable system musichemes an, in general, untrusted third party distributes a
satisfy H(K) =H(M). An example of a secret cryptographic bipartite state to Alice and Bob. This party may be even Eve
system satisfying this condition is the so-called one-time-padavho is in possession of a third subsystem that may be en-
or Vernam ciphef3]. tangled with those given to Alice and Bob. While the sub-
The result from Shannon relies in a fundamental way orsystems measured by Alice and Bob result in correlations
considering that both Bob and Eve have perfect access to ttidescribed byP(A,B), Eve can use her subsystem to obtain
same ciphertexC. However, there are scenarios, such a isinformation about the data of the legitimate users.
the case in quantum key distributiof@KD), where the In prepare and measuréPM) schemes Alice prepares a
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random sequence of predefined non orthogonal stat¢s schemes studied in R€fl0]: The six-state and four-state EB
that are sent to Bob through an untrusted quantum channgthemes. Then we present the results for PM schemes, ana-
(possibly controlled by Eve On the receiving side, Bob per- lyzing in detail the four-state and the two-state PM schemes.
forms a positive-operator-value measyROVM) on every  The last part of the section gives a brief outlook on the study
signal he receives. Generalizing the ideas introduced by Berof quantum correlations in higher-dimensionsal QKD
nettet al.[9], the signal preparation process in PM schemeschemes and in practical QKD. Finally, Sec. V concludes the
can be thought of as follows. Alice_prepares an entangleghaper with a summary.

bipartite state of the formW),s=3iVpi|a)|¢i), where the

states ;) form an orthonormal basis afg;}; represents the Il. QUANTUM CORRELATIONS AND QUANTUM

a priori probability distribution of the signal statég;). If KEY DISTRIBUTION

now Alice measures the first system in the bdsig, she

effectively prepares thénonorthogonal signal states ;) As mentioned in the Introduction, the provable presence

with probabilitiesp;,. The action of the quantum channel on Of quantum correlations i(A,B) has been shown to be a
the statglW),g leads to an effective bipartite quantum statenecessary precondition for secure QKIO]. The starting
shared by Alice and Bob. One important difference betweerpoint for such a proof is an upper bound for the distillation
PM schemes with effective entanglement and EB scheme@te of a secure key from correlated data via authenticated
with real entanglement is that in the first case the reduce@ublic communication, which is given by tietrinsic infor-
density matrix of Alice, pa=Trg(|¥)¥|ap), is fixed and mation (A;B|E), introduced by Maurer and Wolf18].
known and cannot be modified by Eve. These authors considered the problem of key distillation in
An essential question in QKD now is whether the corre-the classical scenario where Alice, Bob, and Eve have access

lated data generated in the first phase enable Alice and BJ® repeated independent realizations of three random vari-
to extract a secret key. In RéfL0] it has been proven that a ables, denoted a&, B, andE, characterized by a probability
necessary precondition for secure key distillation is the provdistribution P(A,B,E). In this context, Maurer and Wolf
able presence of quantum correlationsPigh,B). That is, it ~ proved that the rate of secret bits, denotedd@s BIIE), that
must be possible to interpreté(A,B), together with the Alice and Bob can get by communicating to each other
knowledge of the corresponding measurements, as comiri§rough a public authenticated channel satisffis]
exclusivelyfrom an entangled state. Moreover, this result ap- . —

plies both for EB and PM schemé®r EB schemes see also S(A;B|[E) < I(A;B|E) = min I (A;B[E), (1)
[11]). Alice and Bob need to be able to detect the presence of E—E

entanglement in the quantum state that is effectively diStribwhere the minimization runs over all possib|e chanrtels
uted between them, otherwise no secret key can be obtainegg characterized by the conditional probabilifg(a E)

Among all separability criteria available nowadays to deliver — , , ,

this entanglement proofsee, e.g.,[12] and references andI(A;B|E) is the. mutual information between Alice and
therein, entanglement witness¢§Ws) [13—15 are particu- Bob given the public announcement of Eve's data based on
larly suited for this purpose since they give rise to a necesthe probabilitiesP(A, B, E). This quantity is defined in terms
sary and sufficient condition for the existence of quantunof the conditional Shannon entropyH(X|e)=3,.x
correlations inP(A,B), even when the state shared by Alice —p(x|e)log, p(x|e) as

and Bob cannot be completely reconstrucié@]. In Ref. _

[10] a detailed analysis of two well-known EB protocols, the I(A;BIE) = >, P(e)[H(Ale) + H(B[e) - H(A,B[e)]. (2)
six-state and the four-state EB protocfts-7], is included BeE

and the set of optimal EWSs to detect quantum correlations in

both protocols has been found. The purpose of this paper is More important for QKD, the result of Mgurer and Wolf
to complete the results contained in REf0], now showing can as well be adapted to the case where Alice, Bob, and Eve

specifically the analysis for the case of PM schemes. In pargtart sharing a tripartite quantum state instead of a joint prob-

ticular, we investigate the signal states and detection methocfg)”'ty d|str_|but|pn. For this purpose, one can_consu;ier all
of the four-state and the two-state PM scherffe46], and possible tripartite states that Eve can establish using her
we obtain a reduced set of EWs that can be used to derive%avesdropplng method, and all pos§|blg mea}surements she
necessary and sufficient condition to prove that quantum coﬁOUId. perform on her subsystem. This gives rise 1o a set of
relations are present in these protocols. As a side point, W@OSS'bIe extensior® of the observable probability distribu-

put into context recent results that can be useful in the seardtP" P(A,B) to P(A,B,E). Now one can define the intrinsic

of quantum correlations for higher-dimensional QKD nformation as
scheme$17]. , , I(A;BJE) = infp 1(A;B[E). (3)

The paper is organized as follows. In Sec. Il we review
the role of quantum correlations as precondition for secure The main consequence of this fact is that whenever the
QKD. Section lIl introduces the concept of EWs and showsobservable dat&#(A,B) can be explained as coming from a
how to detect quantum correlations by using the class of EWiripartite state with a separable reduced density matrix for
operators that can be constructed from the available dat#lice and Bob, the intrinsic information vanishes and there-
This formalism is then used in Sec. IV to analyze well- fore no secret key can be established.
known QKD protocols. Our starting points are the EB  Observation 1[10]. Assume that the observable joint
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probability distributionP(A,B) together with the knowledge [22]. The main conjecture was that a quantum state could
of the corresponding measurements performed by Alice anbad to a secret key if and only if it is distillable, which is not
Bob can be interpreted as coming from a separable sigfe  equivalent to containing quantum correlatiof3]. How-
Then the intrinsic information vanishes and no secret key caever, this point of view changed recently, since it has been
be distilled via public communication from the correlated shown that it is also possible to generate a secret key even
data. from certain nondistillable entangled states, known as bound
Proof. This is easy to see for EB schemes as we extend antangled or positive partial transpos€@PT) entangled
separable reduced density matrixoag=2qi| P al Bl states[24]. These are states that require entanglement to be
®|)e(ts| to a tripartite pure state of the forfW),ge  created but do not allow one to distill entanglement from
=Sai|dal)ele)e. (See alsd11].) Here|e)g is a set of them [23]. This shows that the focus on entanglement-
orthonormal vectors spanning a Hilbert space of sufficiendlistillation-guided protocols in QKD is too narrow, though
dimension. If Eve measures her subsystem in the corresponthe interesting example introduced in Rgf4] does not an-
ing basis, the conditional probability distribution conditioned swer the question whether all entangled states can be trans-
on her measurement result factorizes such that for this medermed into a private key.
surement(A;B|E)=0. As a consequence, the intrinsic infor- ~ More recently, going back to the quantum correlations
mation vanishes and no secret key can be distilled. point of view, Acin and Gisin[25] proved that it is an
In the case of PM schemes we need to show additionallgquivalent statement to show that there has bgeal or
that the statdd),ge can be obtained by Eve by interaction effective entanglement in the distributed quantum state and
with _Bob’s system only. The initial state|¥)sg that the intrinsic information is nonzero. In particular, this
=3\pi|a;)| ;) can be written in the Schmidt decomposition result implies that there exists a one-to-one relation between
as|¥)ap=2iC|u)alvi)e. Then the statéd),ge from above is  the detection of entanglement P(A,B) and the fact that
in the Schmidt decomposition, with respect to sys#emnd  such probability distribution cannot be obtained by classical
the composite systemBE, of the form |®),ge Means using only local operations and classical communica-
=3iclual@)se sincec; and |u), are fixed by the known tion [25,26. That is,P(A,B) contains secret bits. More im-
reduced density matripg,=Trg(|W){W|5p) to the correspond- portant for QKD, this means that either it is possible to distill
ing values of|¥),s. Then one can find always a suitable & secret key fronany bi-partite entangled state or there exits

unitary operatorUgg such that[@)ge=Ugglvi)g/0)e where @ classical analog of bound entanglement, the so-called
|0)e is an initial state of an auxiliary system. ] bound informatior{ 11]. This is information shared by Alice,

The natural question that arises now is whether the preg3ob, and Eve such that Alice and Bob cannot obtain a secret
ence of quantum correlations is also a sufficient condition fokey from it although this information cannot be distributed
secure QKD. Let us mention already here that this is still arPy local operations and classical communication. However,
open question in the field of quantum cryptography. In EBSO far the existence of bound information has been proven
schemes, it is clear that it is possible to obtain a secret kefpr the multipartite cas¢27] (for the case of coherent ma-
whenever the distributed bipartite states are entangled qubiipulations of multiparty quantum states see d[28J), but
statesand each party is allowed to perform collective quan- not for the bipartite case relevant for QKD.
tum manipulations on their respective states. This is true

since in this situation one can first distill maximally en- IIl. DETECTING QUANTUM CORRELATIONS
tangled states from the initial states and subsequently mea-
sure them out in the standard bggi8]. The verification that Given that quantum correlations are necessary for distill-

the entanglement distillation process succeeded allows one t0g a secure secret key, the question now is how to detect
give the security statement about the resulting perfectly corthese quantum correlations in a given QKD scheme. More
related and random measurement data, which can then Iggecisely, we have to answer the question whether the joint
used as a secret key. probability distributionP(A,B), coming from the measure-

A completely different scenario arises once Alice and Bobments performed by Alice and Bob during the protocol, al-
have already performed their respective measurements on thaws them to conclude that the effectively distributed state
given states and they can only use classical operations omas entangled or not. In principle any separability criteria
their correlated data. This last case has been partially adsee, e.g.[12] and references thergimight be employed to
dressed under additional assumptions, namely, that thaeliver this entanglement proof. The important question here
eavesdropping attack employed by Eve is restricted to thés whether the chosen criterion can be used to provide a
so-called “incoherent symmetric strategies,”[#0]. In this  necessary and sufficient condition to detect entanglement
situation it has been proven that for a particular class ofvhen the knowledge about the state is not tomographic com-
QKD protocols key distillation is possible if and only if the plete. As we will see below, it is a property of EWs that they
initially distributed states are distillablg20]. In the same allow one to obtain a necessary and sufficient criterion for
spirit, Acin et al. [21] showed that one can always distill a separability even when the state cannot be completely recon-
secret key from any two-qubit and one-copy distillable statestructed[10].
by adapting the local measurements to the quantum states Let us first consider EB schemes. In these schemes, Alice
and performing subsequently a classical protocol. All thesend Bob perform some measurements on a bipartite quantum
results suggested the idea of a correspondence between etate distributed by an, in general, untrusted third party and
tanglement distillation and secret key distillation. See alsaetrieve the probability distributioR(A,B) of the outcomes.
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Before showing that in this scenario EWs are specially apsufficient for verifying entanglement. Whenever this prop-
propriated to detect entanglement, let us recall some factsrty holds, we refer to a set of withessasas being averi-
about witnessegl13-15. fication set The ultimate goal will be to obtain einimal

A witness is a Hermitian observabW/ with a positive  verification sein a compact description that contains no fur-
expectation value on all separable states. So if a ptateeys  ther redundancies to allow an efficient systematic search for
Tr(pW) <0, the statep must be entangled. We say then thatverifiable entanglement by evaluating the members of this
the statep is detected byV. In general, for every entangled set. The rest of this paper is mainly concerned with the
state there exists a witness detecting it; however, this witnessearch of these minimal verification sets, although in the case
is in most cases very difficult to construct. Witnesses can bef the four-state PM protocol and in the two-state PM proto-
optimizedin the following sense: A witnesd/, is calledfiner  col we find onlyreduced verification setsvhich still may
than another witnesd/, if W; detects all the states which are contain some redundancies.
detected bV, and some states in addition. Finally, a witness  Before starting our quest for minimal verification sets, let
W is calledoptimal, when there is no other witness which is us consider the case of PM schemes since in this section we
finer thanW [15]. Now we can state the followin(see also have considered, so far, only EB schemes. As we mentioned

[10]). previously, in these kinds of schemes the reduced density
Theorem 1Assume that Alice and Bob can perform somematrix of Alice is fixed since Eve has no access to the state
local measurements with POVM elements®B;, i of Alice to try to modify it. However, this situation also can

=1,...,n, to obtain the probability distribution of the out- be incorporated in the theorem from above. We can add to
comesP(A,B) on the distributed statp. Then the correla- the observables; ® B; other observable§;® I such that the
tions P(A,B) cannot originate from a separable state if andobservableC; form a tomographic complete set of Alice’s
only if there is an EW of the formW=3,cA ® B, which ~ Hilbert space. Those witnesses that can be evaluated with
detects the effectively distributed state, i.e., (VWp) this combined set of measurements can clearly be evaluated
=3.c;P(A,B)<0. with the megsuremgntfs ® I_3i and the knowledge of the re-
Proof. One direction of the above theorem is clear: If suchduced density matrix of Alice.
a witness with the properties from above exists, then the In the geometric picture obtained in the proof of the theo-

effectively distributed state is clearly entangled. To prove thd€m from above, the knowledge of the expectation value of
other direction, let us look at the the following map, which SOme of the observables implies that we know that our state

maps a quantum stajeto a real vectoR((p) e R™ lies on some hyperplane in the space of all expectation val-
ues. Then, we want to decide for a point on this hyperplane
A:p—=>Alp) ={AP)g, - .. A(p)n}, (4)  whether is is inS' or not, and this can be done by witnesses.

_ _ o The knowledge of the mean values of some observables may
where2(p);=P(4;,B)=Tr(A @ B; p). That is, it maps a state be used to argue that only a smaller set of witnesses is rel-

onto the set of probabilities or expectation values of theevant for such a PM scheme. We will see an example of this
POVM elements. This map is linear and, in general, not in'later '
jective. It maps the convex s8tof separable states onto the '

S _ Finally, let us emphasize again that there are many other
convex se':=2(S). An entangled statp with the property separability criteria besides EWs which might be used for the

QF(p)ES' cannot .be detected with the_ given probabilities, yataction  of entanglement in quantum cryptographic
since then there is a separable sfai®eing mapped to the gchemes. For instance, the security of the first EB scheme
same2(ps) =2A(p); thus p and p are indistinguishable. So a proposed by Ekert in 199[6], the four-state EB scheme,
statep, for which P(A,B) cannot originate from a separable \yas hased on the detection of quantum correlations by look-
state must obel(¢e) ¢ ', Now we have the usual con- ing at possible violations of Bell inequaliti¢9]. This cri-
struction of witnesses. There must exist a hyperplane sepgerion, or for example those based on uncertainty relations
rating 2(g) from S'. This means that there is a vectar  [30], is directly linked to experimental data, which makes the
=(Wy, ... W) with ZwA(0e); <0 while Zw2(¢);>0 for  implementation simple. Another interesting criterion that
all p with (p) e S'. The observabl&V==;w;A ® B; is now  seems to be particularly suited for the case of PM schemes,
the desired EW, since TWp)=2;w;P(A;,B;). B  where the reduced density matrix of Alice is fixed and
We refer to witnesses that can be evaluated with the giveknown, is, for instance, the reduction criteri¢8l1]. How-
POVM elements and the corresponding correlatiB&,B)  ever, it is not clear whether these criteria guarantee detection
asaccessibleAccording to Theorem 1, the set of all acces- of all entangled states which can be detected with the given
sible witness operators gives rise to a necessary and suffset of measurements. In fact, in the case of the four-state
cient condition for verifiable entanglement contained in thescheme, the knowledge of the performed measurements to-
correlations P(A,B): The joint probability distribution gether withP(A,B) allows us to detect entangled states be-
P(A,B) can come exclusively from an entangled state if andyond those that violate Bell-like inequalities.
only if at least one accessible witness in the set gives rise to
a negative expectation value when it is evaluated with
P(A,B). Of course, in this set there is some redundancy.
Typically, it contains witnesses that are finer than others, and We will now illustrate the consequences of this view for
therefore one can construct smaller sets of witnesses that aseme well-known QKD protocols. First we start reviewing
accessible and still have the property of being necessary artle recent results obtained in RgL0] for the six-state and

IV. QKD PROTOCOLS
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the four-state EB protocolks,7], which include a minimal Alice and Bob share, the four-state protocol needs a deeper
verification set to detect quantum correlations in both protoexamination. As we will show below, the class of the OEW
cols. Then we present the analysis for the case of PMor two-qubit systems cannot be evaluated with the given
schemes. We investigate the four-state and the two-state Pbbrrelations either in the EB or in the PM version of the
schemeg5,16], and we obtain a reduced verification set for protocol. In the EB case Alice and Bob perform projection
each of these protocols. Finally, the last part of the sectiomeasurements onto two mutually unbiased bases, say the
gives a brief outlook at the study of quantum correlations inones given by the eigenvectors of the two Pauli operaigrs
higher-dimensional QKD schemes and in practical QKDand o,. In the corresponding PM scheme, Alice can use as
[17]. well the same set of measurements but now on a maximally
entangled state. Here again, as in the six-state protocol, we
use the fact that the approaf),g==iVpilai)|¢;) to model
PM schemes can be reduced to employ only two-qubit states
For the case of the six-state EB protocol, Alice and Bobfor this protocol. Let us begin our analysis for the EB

perform projection measurements onto the eigenvectors afchemd 10].
the three Pauli operators, oy, ando, on the bipartite qubit
states distributed by Eve. In the corresponding PM scheme
Alice prepares the eigenvectors of those operators by per-
forming the same measurements on a maximally entangled In the case of the four-state EB protocol we will denote
two-qubit state. Note that here we are not using the generdhe set of EWs that can be evaluated with the resulting cor-
approach introduced DYEViOUSN,‘I’>AB:ENE|ai>|<Pi>, to  relations astB. All elements are of the form
model PM schemes, since for this protocol it is sufficient to B
consider that the effectively distributed quantum state con- W= N > Cj 07 ® 0j. (7)
sists only of two qubits. In both cases Alice has complete hi=0x2
tomographic knowledge of her subsystem and therefore th€his class of EWs can be characterized with the following
class of EWSs, that can be constructed in both protocols cosbservation.
incides. The set of three measurement bases used in the pro-Observation 410]. Given an entanglement witnedéwe
tocol allows Alice and Bob to construct any EW of the form find W e WE® if and only if W=W"=W'r,

Proof. To see this, we start with the general ansatz of Eq.

A. Six-state protocol

1. Entanglement-based

W= > ¢joi®oa, (5 (5) and we impose the conditioMy=WT=W'?. This directly
Lj={0xy.zt constraintsW to the form (7) since o, is the only skew-
where =1 and ¢;; are real numbers. Note that the set of symmetric element in the operator basis. The reverse direc-
operatoro; ® o7}; ; constitutes an operator basis(i® €2 tion is then trivial. u

This means that Alice and Bob can in principle evaluate all It is straightforward to see that the elements of the OEW
EWSs, in particular, the class of optimal witnesses for two-do not satisfy this condition. Below, we will provide a crite-
qubit states. This class, denoted by OEW, is given by théion to decide if an entangled state can be detected\by

witnesses operators of the fori2] e WEB, This means that, in contrast to the case of the six-
N state protocol, in the four-state EB protocol there can be
W= el P, (6) entangled states that give rise to correlatieX4, B) that are

where| ¢, denotes any entangled state of two-qubit system&0t Sufficient to prove the presence of entanglement.

and Tp is the partial transposition, that is, the transposition 1 "€ concept of optimal witnesses introduced in Sec. Il
with respect to one of the subsystef8s]. Therefore, in the for general witness operators can as well be extended to the
six-state protocol, for both EB and PM schemes, all enWitnesses that are accessible with the given set of measure-

tangled states can be detected and the optimal witness8&Nts: This way we call a witnes§ optimal in class Of
OEWs form the minimal verification set. and only if there is no other element @ that detects all

Alternatively to the witness approach, Alice and Bob can€ntangled states detected B Our goal now is to charac-
employ as well quantum state tomography techniques to rd€7i€ a complete family of witness operators that are optimal
construct the effectively distributed quantum state and thef the class\g™. This family forms the minimal verification
use the Peres-Horodecki criteriofi3,34 to determine S€t Then it is sufficient to check this family to decide

whether that state was entangled or not. This criterion estafjYhether the presence of entanglement can be verified from
lishes that a two-qubit state is separable if and only if itsthe given data. To do this we start presenting a necessary and

partial transposition is positive. For higher-dimensional Sys_sufficient condition for a bipartite state to contain entangle-
tems, however, note that although all operators with nonposi€nt that can be detected by elementW\gF.
tive partial transposition are entangled, there exist PPT en- OPservation 3;10]- An entangled statp can beldetected
tangled statef23]. with a We W;® if and only if the operatorQQ=3(p+p'
+p'B+p') is a nonpositive operator.
Proof. To see this, let us start by the observation that the
symmetries of the witness operators\lwfB give rise to the
While the analysis of the six-state protocol is quite identity TiWp)=Tr(WQ). Now let us assume that the opera-
simple, due to the complete tomographic information thator () is non-negative. Then one can interpret it as a density

B. Four-state protocol
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matrix. Since it is invariant under partial transposition, it 2. Prepare and measure
must be a separable state. SiMygs a witness operator, we

must therefore find TWp)=0. As a result, we find that the optimal for the EB scheme, we will show below that this

nonpositivity of {} is a necessary condition to detect en-g, iy is also sufficient to detect all entangled states that can
tanglement of the statewith witnesses i\;". The reverse o getected in the PM version of the four-state protocol. That
direction is included here only for completeness and thgg '\yith respect to the ability to detect quantum correlations,
proof is included implicitly in Theorem 2. . _both schemes can use the same verification set. As we
Next we present aBset_of EWs composed of optimal Wit-gp e in Sec. 111, in the case of PM schemes one can add to
nesses in the clad#;® which forms a minimal verification 6 set of observables measured in the protocol other observ-
set of the four-state EB protocol. , ablesC; ® 1 such that the observabl€; form a tomographic
lTheorcTam 2[10]. Consider the family of operator® .,y jete set of Alice’s Hilbert space. So we have to add the
=5(Q+Q'P), whereQ=|¢e) (¢ and|ee) denotes a real en- operatora, ® o, to the observables in E7). This way one
tangled state. The elements of this family are witness operasptains all the witnesses that can be evaluated in the four-
tors that are optimal in\;® (OEW;®) and detect all the state PM protocol. This new set, which we shall denote as

Once we have presented a set of witness operators that is

entangled states that can be detected withf?. WM, is of the form
Proof. Let us start by checking that this family, indeed,
can detect all entanglement that can be detected\/ﬁﬁ. WoM = c
. . = 0y ® o+ ® oy, 10
From Observation 3 we know that we need only consider 4 i’j:%x,z} 1719 0) T 600y © 9o (10

bipartite stateg such that)=z(p+p"A+p8+p") is nonposi-

tive. We have, therefore, that there exists always(em  Wherecy is as well a real number.

tangled state|¢,) such that(¢dQ|p.) <0. Moreover, since Now we present a result, Observation 4, that applies to the
Q=Q7, this operator has a real representation. In this repreobservables given by E¢7) and that will be useful to prove

sentation, also the stafe,) has a real representati¢@s].  that the set of OEf? obtained in Theorem 2 is also suffi-
Let us define the projectoQ=|¢.){(¢s. Then we find cient to detect all entangled states that can be detected in the

<¢e|Q|¢E>:Tr[%(Q+QTA+QTB+QT)p:|_ This means that we four-state PM scheme and, therefore, it forms a reduced veri-

can define the operatmv:i(Q+QTA+QTB+QT) which can flcaotlggef\?;t(i);r:hf gri(\)/teoncogn observablenv with W=WT"
be further simplified tav=3(Q+Q'?) thanks to the real rep- =W, then T(Wo)>0 for all o separable if and only if
resentation ofQ. This operator is a Witness operator, since.l.r(W(’T)20 for all o, real and separable.

Tr(Wo) =0 for all separable statas, while Tr(Wp) <0 for Procr)f (If) Using rthe fact thaW=WT we have TAWo)
the choserp. Moreover, by construction the family of these _ )

witness operators detects all entanglement that can be déiTr[W(U+‘T.).]' Note -that_ t.he symmetrlc matr|§r-+a 'S
tected withinWEB real and positive semidefinite becauseis Hermitian and
rut

Finally, we need to show that all witnesses of this new sePOSitive semidefinite ar_ld tran;position is. a pqsitive opera-
W=1(Q+Q'®) are optimal withinW5® so they form OEV§®. tion. Moreover(o+ ™) ? is positive semidefinite sinae'® is
In Rzef. [15] it has been proven that, given a set of witnessﬁ’os't've semidefinite for all- separable. This means that

operatorsSy, We Sy, is optimal inS, if and only if for all 2(o+0’) is a real separable quantum state. Therefore if
positive semidefinite operato® and >0, W'=(1+e)W Tr(Wo,) =0 for all o, real and separable then(Wo) =0 for

—eP ¢S, When aP can be subtracted, it has to satisfy &!l o separable(Only if) The proof ig triviall. . n
(e,f|Ple,f)=0 for all product vectorge,f) e C2®C? with Theorem 3 The family of OEWE?, W=3(Q+Q') with
(e,f|We, f)=0 since otherwise we would not have a witnessQ=|#eX ¢l and |4e) a real entangled state, is sufficient to
anymore. In the case of witness operators of the fakm detect all entangled states that can be detected in the four-

=1 T, - state PM scheme.
2(Q+Q'"), whereQ=|go) (¢l and Proof. To be EWs, the operatoi,™ given by Eq.(10)

1 must satisfy TeW; o) =0 for all o separable. In particular,
| ey = 2 cilid]i) (8) it must satisfy TeW;Ma,)=0 for all o, real and separable.
=0 We have that the ternr, ® o, satisfies
denotes the Schmidt decomposition|@f), we have that the
le,f) that satisfy(e, f|We,f)=0 are given by|0)|1), |1)[0), Trl(oy ® 0g)oy] =0, Ooay. (11

and the unnormalized states , i
This means, therefore, that we need to guarantee that the first

|600) = (N0 £ VT2 1)(e\1-NZ(0) F coA[1)), (9) term in Eq.(10) satisfies

with A €(0,1). These product vectors span a three- D
dimensional subspace that is orthogonal¢g. This means
that P cannot be subtracted froW unlessP=Q. But (1
+eW-eQ=3[(1-6)Q+(1+e)Q™] e WE® for all €>0. According to Observation 4, we obtain that the term
Therefore all witness operatorW:%(Q+QTP) with Q  Zjj=ox2Cijoi® 0y in Eq. (10) has to be an EW which be-
=|pe)bd and| ) real are OEVF®:s. M longs to the clas®\5®. That is, W,M=W;"+c o0, ® oy

c;jTrl(oy® oy)o] =0, Ooy. (12
i,j={0x,z2}
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To conclude the proof, now we have to take into account TABLE I. Example of aP(A,B) for the four-state EB protocol,
that in the four-state PM scheme the reduced density matriwhere |+)=1/12(/0)£[1)). The table is normalized such that

of Alice is fixed and given by,=31. This means that ZP(A,B)=1.
Tr(W;"p) = Tr(W;®p) (13 B
for all p such that Te(p)=31, since Tf(a,® op)p]=0. That A 10) ) +) =)
is, the entangled states that can be detected in the PM proto-
col are also detected by the class of witneas&8 We have, 0) 0.08058 0.04757 0.02106 0.10709
therefore, that it is sufficient to consider the set of AR 1) 0.04623 0.07560 0.11349 0.00834
|[+) 0.11808 0.01690 0.09319 0.04179
3. Evaluation [-) 0.00873 0.10627 0.04136 0.07364

From the set of witness operators OE®\given by W
=2(Q+Q™), with Q=|¢e(¢e and |¢) a real entangled six-state protocols, respectively. Nevertheless, it can be
state, one can obtain a necessary and sufficient condition fahown that in both cases the existence of quantum correla-
the presence of entanglement in the observable correlationns can be detected for all anglésThe case of the six-
P(A,B). This result applies to both versions of the four-statestate protocol is clear, since a unitary transformation pre-
protocol: EB and PM. Note that for the case of an EBserves the entanglement and all entanglement can be verified
scheme all the witnesses in OEWare optimal and form a in this protocol. With respect to the four-state protocol, note
minimal verification set. However, for a PM scheme some ofthat there is always an entanglement witn&gs OEW;®
them might be redundant and therefore this set of EWs formthat detects quantum correlationsR(A, B). In particular, let
a reduced verification set for this version of the protocol. Theys USEW:%(|¢e><¢e| +|pe) (b TP), With | ) as the eigenvec-
set OEW® includes an infinity number of witness operators, {or of the operator|y)(y{ ™ which corresponds to its nega-
but, as we will see below, these EWs can be easily paramye eigenvalue. Then we find in a suitable representation as

etrized with only three real parameters. From a practical pseudomixture[39] for the entanglement witness that
point of view, this means that Alice and Bob can easily CheCkl'r(Wp):E-c- P(a b)=-1
ivi » Mi 4

the conditions T¢Wp) with W e OEWE numerically. For the second example, we focus on the four-state EB

IL?t ushk_)ri%ﬂy analyzrt]a tT;" implicatiqns r?f (?ur results in (tjheprotocol only and we consider the particular joint probability
re ?glon_s Ipt tetwe(int Ie |tdertL0r raden the O;Jr'StatF ?n jistribution P(A,B) given by Table I, where the stat¢s)
in the six-state protocols and the presence of correlations of . jafined ad+)=1/v2(0)%|1)). In principle, it is not

uantum mechanical natuf&0]. Here the error rate quan- . . .
gfies the rate of events where Alice and Bob Obtainqdiﬁerentstralghtforward to decide whether these correlations can be

results. It refers to the shifted key, i.e., considering Onlyexplamed as coming exclusively from an entangled state or

: ; : ot. This is specially so since in this case the resulting bit
those cases where the signal preparation and detection mel(rel]]rror rate is given bye~35.4%. To decide that question

ods employ the same polarization basis. In an intercept: ; o :
d P P ystematically we can use the verification set defined by

resend attack Eve measures every signal emitted by AIic% B ovno 1 T
and prepares a new one, depending on the result obtaine EW;™: W= (| )bl +#e)(bel ). The real statefspe) can

that is given to Bob. This action corresponds to anP€ Parametrized as |¢e)=C0s¢|00)+sin $[cosy{01)
entanglement-breaking chanr@6], i.e., it is a channefp ~ +Sin¥(cos6|10)+sin 611))], with only three real param-
such asl @ d(p) is separable for any density mattixon a  eters¢, ¢, 6 < [0,2m). Moreover, since the stale,) is en-
tensor product space. Such a channel gives riset@5%  tangled these parameters satisfy additionally the condition
(four-state protocolande= 33% (six-state protocg| respec-  Sin¢ siny(sin ¢ cosy cosf-cos¢ sinh) #0 [40]. How-
tively [7,37], which might seem to indicate that these valuesever, from a practical point of view it might be easier just to
represent an upper bound for the tolerable error rate in theonsider all anglesp, i, and 6 and allow the evaluation of
protocols(see alsd38]). However, it turns out that for some some positive operators. After expressing the witness opera-
asymmetric error patterns, it is possible to detect the predors as gpseudomixtur¢39] the condition TéWp) <0 can be
ence of quantum correlations even for error rates above 25%ewritten asX;f;(¢, ¢, 0) P(A;,B;) <0, with ¢=f(o,,0)
(33%) [10]. Let us illustrate this fact with two examples that for some functiond;. Now it is easy to search numerically
are motivated by the propagation of the polarization state ofhrough the space of parametets , and # for quantum

a single photon in an optical fiber. correlations inP(A,B). This fact is illustrated in Fig. 1,

In the first example we will consider a channel describedyvhere some combinations of these parameters detecting en-
by a unitary transformation that changes on a time scaleanglement when they are evaluated on Bté,B) given in
much longer than the repetition cycle of the signal source, sqaple | are marked.
it can be thought to be constant over that time: for instance, To finish this section we show now that the family of
the channel given by the unitary transformatid(6)  witness operators OE§¥ allow us to detect entangled states
=cos6l —i sin foy. In this scenario, the resulting distributed beyond those that violate Bell-like inequaliti€®9]. Note
state for both QKD protocols is given bly)=cos#00)  that, as we mentioned previously, the security of the original
+sin 6|01) —sin 6|10) + cos#|11). The corresponding bit error four-state EB schemgs] was based on the detection of en-
rate is e=sir?  and e:§ sir? ¢ for the four-state and the tanglement by looking at possible violations of Bell inequali-

022306-7



CURTY et al. PHYSICAL REVIEW A 71, 022306(2005

think of the preparation process in the following way. Alice
prepares an entangled bipartite state of the form

[W)ag= \_1§(O>A|<PO>B+ [Daleve), (15

and then she measures her subsystem in the Hasisl)}.
Note that in this scheme the fact that the reduced density
matrix of Alice is fixed and equal tpp=Trg(|¥)}(W|sg) With
|¥)ag given by Eq.(15) is vital to detect quantum correla-
tions in P(A,B). Otherwise, the joint probability distribution
P(A,B) alone does not allow Alice and Bob to distinguish
between the entangled stai#),g and the separable one
Tae= 330l il ® @) l.

We obtain, therefore, that the set of EWs that can be
evaluated in the two-state protocol, and which we shall de-
note asW,, is of the form

FIG. 1. lllustration of several regimes of the parameigrsy,
and ¢ leading to negative expectation values of the operators W, =
. = Cjo; ® oy +
OEWE®=(1/2)(| ool +#)(0d™™),  with  |go)=coss|00) ? i%z} S k:{%z,y}
+sin ¢[cosy01)+sin y(cosh|10)+sin 6]11))], when they are
evaluated on the joint probability distributioR(A,B) given in . )
Table I. The angles, i, and @ are represented in radians. where the second term in E(L6) includes a set of observ-

ables such that Alice can reconstruct completely the state of
gher subsystem. This family of witness operators can equiva-

Ckok ® 0y, (16)

j={x.z}

ties, which is in principle more restrictive than detection o .
quantum correlations. It is known that a violation of a Bell |€ntly be rewritten as

inequality can be formally expressed as an E14], while W, =[0)(0] ® A+ |1)(1| ® B+x C(6), (17)
the contrary does not hold always. An interesting question

then is to ask whether the family of OEf/corresponds to where A and B represent two real symmetric operatdks
Bell inequalities or not. It is easy to see that the knowledge=A" andB=BT, given by

of the performed measurements in the four-state protocol to-

gether with the joint probability distributioR(A,B) allow us A= X (Co+Cy)o (19

to detect entangled states that do not violate Bell-like in- =02}
equalities. Consider for instance the two-qubit entangleagnd
states introduced by Werner [i41] and which are defined as
B= {2 }(Coi_czi)o'iv (19
i={0x,Z

NP :
pw =Pl ><w|+z(1—p)l, (14) . o .
respectively, the parametriis given byx:|cx+|cy| =0, and
with |7)=1/12(|01)=|10)). In the probability range 1/3 o loq
<p<1/y2 Werner states do not violate any known Bell in- c(9) = ,
equalitied42] but nevertheless they can be detected with the

(20)
witnesses OEP for p>%. To see this, note that the opera- . _ )
tor Q=1/4(py+pii+pie+pv) is a nonpositive operator for With 6=tan (cy/cy). That is, we have included the two ob-

e 1| 0

p>1. servablesr,® | ando,® | that appear in Eq16) in the term
2 x C(0) of Eq. (17), while the remaining observables in Eq.
C. Two-state protocol (16) are included in the first two termi)0|® A+|1)(1]
) ) ®B of Eq. (17).
The two-state protocdl16] is one of the simplest QKD ¢ js straightforward to see that, as in the case of the four-

protocols, since it is based on the random transmission Aftate (EB and PN protocol, the class of witness operators
only two nonorthogonal statdg,) and|¢;). Alice chooses W, does not allow us to evaluate the OEW given in ).
randomly a bit valuei, and prepares a qubit in the state Note that the element#/ in OEW satisfyW=0 and W'
l¢i)=a0)+(~1)'B|1), with 0<a<1/y2 andB=11-a? that =Q. The witnesses in the clas¥,, on the contrary, satisfy

is sent it to Bob. On the receiving side, Bob measures thgy,=ws, which means thatwle cannot be a positive
qubit he receives in a basis chosen, independently and g@bmidefinite operator unle¥s, is also positive semidefinite.
random, within the set{{|¢o),|¢g)} {ler),le1)}}, With  Therefore, in the two-state protocol there can be also en-
[{¢i] )| =0. Note that alternatively to this detection method, tangled states that give rise to correlatid®@,B) that are
Bob could also perform a POVM defined by the operatorsnot sufficient to prove the presence of entanglement. In the
Fo=|ei X1 |12, F1=|egXeg|/2, andF,,=1-Fo—F;. Us-  same way, it is interesting to note also that there are no
ing the ideas introduced by Bennett al. [9], one can also witnesses in the set dfV, that belongs to the family of
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OEVVEB:%(|¢e><¢e|+|¢e><¢e|TP)- To see this, note that the tangled states that can be detected in the two-state protocol.
representation given in EL7) is incompatible with the fact Proof. According to the results presented above, we only
that the statég,) is a real entangled state. In the rest of thisneed to prove that given a witness operaféy= 0 with a
section we obtain a reduced verification set of the two-stat¥alue ofx that saturates the bound of E2), and that we
protocol (Theorem 4. shall denote as\V,(XmaW, it is finer than the same witness
The first requirement that an operator of the form givenWx(x) with an x<Xm,, That is,
by Eg.(17) must satisfy to be an EW is TW,o) =0 for all
separable states Since the set of separable states is convex, TIW:(Xmanp] < THW,(X)p] (24)
this condition is equivalent to asking (W) pla® )  for all p entangled and detected Wy,(X). Since Wo(Xma)
X (i|g) =0 for all stateg)a|#)g. Let us start by considering and W,(x) share the same operatoksand B by definition,
states of the form0)s|¢)s. We have that TiV,|0)0|a®|#)  Eq. (24) can be further simplified to
X(Ylg) =( A, which means that the operatdrmust be
positive semidefinite, i.eA=0. In the same way, but now (Xmax=X) T C(0)p] < 0. (25
using the separable pure staté,|¢)s, one obtainB=0.  Finally note that this condition is always satisfied, since
This means that the first two terms of E@.7), [0)(0]® A (Xmax—X)>0 and TFC(#)p]<0, otherwisep cannot be de-
+|1)(1|® B, represent a positive semidefinite operator andected byW,(x). |
the only term responsable to detect quantum correlations is The coefficients of the pseudomixture decomposition of
the one given bk C(6). Note that this implies that the class the witness operators given by Theorem 4 can be param-
W, does not allow us to detect maximally entangled statestrized in this case with six real parameters.
|pe)=1IN2Zol )l @), with (x| )=(¢i| @)=8;, since in
that case it turns out that,|C(6)|p-)=0. This fact is not too D. Higher-dimensional QKD protocols
surp_rising since the distributed states in this protocol are not gy far we have searched for quantum correlations in
maximally entangled. Let us now come back to the generg), it-hased QKD protocols which means we have restricted
case: TEWo$){(¢la® [)(#lg) =0. If we express the state orselves to operators iP® (2 This fact makes the char-
|#)a as|¢)a=a|0)+p|1), this condition reduces to acterization of a given cla.;,s ofzwitness ogeragors easier, since
2 2 for systems defined ikl =C® €< andH=C*® C° all withess
Aapix < Alal*A+ BB, O19), (21) operators belong to the class of so-caltltomposable en-
and for alla and 8 such thafa|?+|8|?=1. After optimizing  tanglement witnesse€DEWS) which has a simple well-
over the parameters and 8, Eq. (21) can be further simpli- known form:W=eP+(1-¢€)Q'P, with P=0 andQ=0 satis-

fied to fying Tr(P)=Tr(Q)=1, ande<[0,1) [43]. In the case of
. —_— systems of higher dimension than thoseHr(?® (? and
x < miny, (YA UB| ). (220 H=(2& (8 not all the witness operators are DEWS; for ex-

ample DEWs cannot detect PPT entangled stg28§ It is
necessary to use also the so-calleahdecomposable en-
tanglement witnessé¢bIDEWSs). This fact makes the charac-
terization of witness operators more subtle and so far it is
still not clear how to construct such witness operators even
when the information about the state is tomographic com-
plete[14,15,44. As we mentioned already before, ideally the
goal is to obtain a compact description of the minimal veri-
fication set for a given QKD protocol in order to systemati-
cally search for entanglement iA(A,B). However, due to

. . : . the fact that the characterization of NDEWSs is not easy to
+xC(6), with A and B being two real symmetric positive handle it might be of interest to obtain, at leasterelevant

operatorsA>0 andB>0, and the operatd€(6) given by g\ yithin the proper class as a first step toward the demon-
Eq. (20) with #e[0,27) satisfiesW,20 if and only if X ciration of successful QKD.
> Xmin With Recently, it has been shown that a good deal of new in-
> sight into the optimization of NDEWs can come from the
X = \/i’ - \/0‘_ - de(A)detB), (23)  theory of convex optimizatioi17,45,4@. More important

2 4 for QKD, the problem of the minimization of expectation
values of witness operatol& with respect to pure product
states,

That is, whenever the value of the parametés below the
bound given by Eq(22), W, has a positive expectation value
on all separable states.

Now we will provide a necessary and sufficient condition
for the operator$V, in order to detect entanglement, i.e., to
guaranteeN,#0. First, it is straightforward to see that the
operatorsA andB have to be of full rank, otherwise accord-
ing to Eq.(22) we havex=0 andW,=|0)(0| ® A+|1)(1|® B
=0. Now we can prove the following observation.

Observation 5 An operator W,=|0)(0| ® A+|1)(1|® B

and wherea=Tr(AB).

Proof. See Appendix A.

Theorem 4 The family of witness operatorg/,=|0)(0| min Tr(Wla,b)(a,b]), (26)
® A+|1)(1|® B+xC(6), with A and B being two real sym- [a,b)
metric positive operator#,>0 andB>0, the operatoC(6)  can also be formulated as a convex optimization problem
given by Eqg. (200 with #<[0,27), and such thatx [17]. Solving Eq.(26) allows us to obtain new witness op-
=miny, VCUAA[YUB|Y) > xmin is sufficient to detect all en-  erators which are finer thaw, even within a restricted class
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W, of them [17]. To see this, leWWe W, and denote the reduced density matrix of the virtual internal preparation
result of the minimization problem in Eq(26) as € state, as described before. This idea then needs to be gener-
=minj,p, Tr[|a,b){a,b|W]>0. Then the unnormalized new alized to signal states that are described by mixed quantum

witness operator given bgv:W—e}l is finer thanW and states. F_or this pur_po§e, one uses still a pure state as internal
- ~ ) preparation, but Alice’s signal preparation corresponds now
moreover It Is guaranteed thét e WC since the observable no |onger to a projection onto an orthogona| set of pure

is always accessible. At first sight it seems that this procestates, but to projections onto orthogonal subspaces, thereby
dure requires one to have already a valid entanglement witeffectively preparing mixed states.

nessW for the given QKD protocol. However, this operator  |In those general scenarios, it will be difficult to provide
does not need to be an entanglement witness in the strighe minimal verification set of witnesses. Instead, one can
sense, but can be also a positive operator from the restrictddll back to the approach to search for just one accessible
set which is more easy to characterize than an entanglemewitness via numerical methods such as presented in the pre-
witness[47]. With respect to the minimization problem it- vious section. In this way, one can search through restricted
self, it has been shown that although the polynomial conclasses of accessible witnesses at the price that the result of
straints parametrizing the pure Staﬂasb) are nonconvex this se_:qrch will not be conclusive, i.e., this search erIdS only
and computationally expensive to handle, one can apply red sufficient condition.

sults from relaxation theory of nonconvex probleid8,49,

notably the method of Lasserfd9], to find hierarchies of v CC.)’.\ICLUSION o
solutions to that problem in such a way that each step of the A necessary precondition for secure quantum key distri-
hierarchy is a better approximation than the previous ondution is that sender and receiver can use their available
[17]. Each step itself amounts to solving an efficiently imple-Measurement results to prove the presence of entanglement
mentable semidefinite prografis0] and the hierarchy is N @ quantum state that is eﬁgcuvely distributed between
asymptotically complete, in the sense that the exact solutiof'€M- Moreover, this result applies both to prepare and mea-

is asympotically attained. This means that during severaf!'® (PM) and to entanglement-bas¢BB) schemes. This
means that to construct practical and efficient new QKD pro-

steps of the optimization method, better witness operaors .5 it s vital to separate the generation of two-party cor-
can be obtained fronW, belonging to the same restricted \o|ations from the public discussion protocol which extracts
CIaS.SWC' . . a key from those data. Among all separability criteria to de-
_Finally, let us mention that, of course, not all higher- e "this necessary entanglement proof, entanglement wit-
dlmensmnal QKD protocols'r('aquwe thg_use of NDEWs tOnesseiEWs) are especially appropriate since from them one
derive a necessary and sufficient condition for the presencg,, yerive a necessary and sufficient condition for the exis-
of entanglement irP(A,B). For instance, consider the Class yoce of quantum correlations even when the state shared by
of EB protocols inH=C?® CN, where Alice realizes projec- e ysers cannot be completely reconstructed.
tion measurements onto the eigenvectors of the two Pauli |, a recent work 10], the set of optimal witness operators
operatorssy ando. In all these EB prqtocoIsTthe accessible tor o well-known EB schemes, the six-state and the four-
witness operators satisfy the conditig=W'A. One can  gt51e EB protocols, was obtained and a necessary and suffi-
show that this fact implies for the given dimensionalities thatgient condition to detect entanglement in both protocols was
ItIs a necessary co?dmon for a staido be detected bW jgrived. The purpose of this paper was to complete these
that the operatof2=3(p+p'™) is a nonpositive operator. To resyits, now showing specifically the analysis for the case of
prove this, note that TwWp)=Tr(W(Q). From the work by  pnm schemes where, contrary to the case of EB schemes, now
Krauset al.[53] we learn that wheneve is a non-negative  the reduced density matrix of the sender is fixed and cannot
operator it represents a separable state. To summarize thie modified by the eavesdropper. In particular, we have in-
remark, we learn that all detectable states for this class dfestigated the signal states and detection methods of the
protocols are negative partial transposed entangled states afifiir-state and the two-state PM schemes, and we have ob-
can be detected by usiranly DEWs. The situation changes tained a reduced set of EWs that can be used to provide a
once Alice performs also a projection measurement onto th@ecessary and sufficient condition for the existence of quan-
eigenvectors ofr,. tum correlations in both protocols.

Finally, we have discussed very briefly how to detect
quantum correlations in higher-dimensional QKD schemes
and in practical QKD, where the characterization of EWs is

The idea to check for quantum correlations in the ob-not as easy to handle as in the case of qubit-based QKD
served data with the help of a verification set of witnesseschemes. In this scenario it might be still of interest to obtain
applies also, in principle, to real implementations of QKD one relevant EW as a first step toward the demonstration of
setups[51]. One can incorporate any imperfection of the successful QKD. Here, mathematical results from the field of
sources and the detection devices into the corresponding igonvex optimization theory can be used to get new insights
vestigation within the framework of trusted devices. In thatinto the construction of finer EWs within a given class.
framework one characterizes detection devices by the use of
an appropriate POVM description, e.g., on the infinite di-
mensional Hilbert space of optical modes. For PM schemes, The authors wish to thank A. Dolinska, Ph. Raynal, and
one has to characterize additionally the given source via thespecially K. Tamaki for very useful discussions, P. van
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a-yf c+
y yg) =0 (A3)

c+yg b-ye

has to be positive. This is the case, if and only if (det

Project SECOQGE and the network of competence QIP of =0 and TfX)=0. After a short calculation, this implies that

the state of Bavaria.

APPENDIX: CONDITION FOR W,%0

In this appendix we provide a proof for Observation 5.

ab—c®— (ae+bf+2cqy+(ef-gd)y*=0, (A4)

(a+b)-ye+f)=0. (A5)

W,=|0)0| ® A+|1)(1| ® B+XxC(6). That is, if we write the
matrix element oW, explicitly we have

a c xé’ 0

wel © b 0 xé’ A1)
ZIxe” 0 e g
0 xe'’ g f

Now we have to understand what the conditdf=0
imposes on the elements df,. We have by definition of the
classW, A=0 andB=0 or, sinceA andB are of full rank,
we can assume at this poidt>0 and B>0. Under this

y=07? Fory=0 the matrixX is clearly positive. Ify increases
X get first one negative eigenvalue. Thus E&4) is vio-
lated, while Eq.(A5) is still valid. If y increases further, the
eigenvalues decrease and E45) gets violated. FinallyX
gets two negative eigenvalues, and E&4) is valid, while
Eq. (A5) is still violated. So we have to look for the smallest
zero of Eq.(A4) which is given by

__a \/ a? ~ detA)
Yo= S detB)” Vade(B)?  de(B)’

where we have used=Tr(AB)=(ae+bf+2cg). We obtain,
therefore, thatV, is positive if and only if

(A6)

assumption, we can use the well-known fact that such a

block matrix as in Eq(A1) is positive if and only if its Schur
complement is positiv€52], which implies here
A-x°Bt=0. (A2)

Introducing the notatioly=x?/de{B) the 2x 2 matrix

X< Xmins

a a®
Xmin = \/E - \/Z —de{A)det(B).

(A7)
with

(A8)
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