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We present numerical results on the capacities of two-qubit unitary operations for performing communica-
tion and creating entanglement. The capacities for communication considered are based upon the increase in
Holevo information of an ensemble. Our results indicate that the capacity may be accurately estimated using
ensemble sizes and ancilla dimensions of 4. In addition, the calculated values of these capacities were close to,
and in some cases equal to, the similarly defined entangling capacities; this result indicates connections
between these capacities.
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I. INTRODUCTION It is not feasible to calculate these asymptotic capacities
A nonlocal operation is one that operates on two supdirectly from their definitions. However, it is shown in Ref.

systems, and cannot be expressed as a tensor product of ¢pd! that the unidirectional capacity is equal to an alternative
erations on the individual subsystems. Such operations occ@efinition of the capacity based on the Holevo information.
when the subsystems evolve under an interaction Hamill NS result means that it is possible to calculate this capacity.
tonian. Nonlocal operations may be used to create entangld'€ capacity based on the Holevo information is still diffi-
ment between two subsystems, and also to perform cIassicS\P't to calculate, as the definition potentially allows unlim-

communication. In fact, it is not possible to achieve thesd©d enste)lmkt)rlle tstﬁ'e and a.?c'"a dltr)nensmnst. :—|ow$ver,t '(tj :(s
tasks without an interaction. In characterizing quantum Op_reasona € that this capacity may be accurately estimated for

) o . o moderate ancilla dimensions and ensemble size. In particular,
erations, it is important to determine the capacities for creat:, P

ing entanglement or performing communication it would be reasonable to conjecture that
9 9 1t orp 1ing o Conjecture 1For a unitary operatiob that acts upon two
Shared classical information may be considered to be thgubsystems of dimensiod, the Holevo capacities may be

classical equivalent of entanglement. Therefore it is reasonsgtimated accurately using ancillas of dimensiband en-
able to consider the process of classical communication to bg&mples withd? states.

the classical equivalent of entanglement creation, and one As motivation for this conjecture, note that ancillas of
may expect that there is a close relationship between thgimensiond are sufficient for one of the entangling capaci-
capacities for these two tasks. In this paper we make a direg¢fes [12], and an ensemble size df is sufficient for qudit

numerical comparison between the capacities for entangleshanneld13]. In this paper we numerically test this conjec-

ment creation and classical communication. ture for a range of two-qubit operations, and show that the
The capacities of unitary operations for creating entangleancilla dimension required is larger.
ment have been studied extensivgll-8]. It is relatively Another interesting problem is the relationship between

straightforward to determine the entanglement capacity fothe communication and entanglement capacities. In previous
infinitesimal operationg3]. For finite operations, most re- work [11,14,15 it was shown that there are a number of
sults are restricted to numerical results for classes of twoinequalities between these capacities. If the communication
qubit operation$6]. We study the same classes of operationscapacities were equal to the entanglement capacities, this
here, and the results we present for the entanglement reprarould indicate deep connections between them. The results
duce those given in Ref6], except for some data points in Refs.[11,14,15 are not sufficient to show equality, though

where our results are more accurate. they do suggest that the capacities may be close. Therefore it
The capacities for classical communication were initiallyis reasonable to make the second conjecture:
considered for simple unitary operations, such asakeTt Conjecture 2For a unitary operatiob that acts upon two

and swaAP operationg 9,10]. It is straightforward to analyze subsystems, the Holevo capacities may be estimated from
the capacities for these operations, because they allow errogimilarly defined entangling capacities.

free communication. In contrast, more general operations In this paper we give numerical evidence supporting this
may allow somé&possibly large probability of error, so itis conjecture. Note that in these two conjectures we have not
necessary to take this into account in the definition of thespecified how accurate an estimation is required. We will
capacity. Bennetet al. [11] introduced asymptotic capaci- refine this point in the conclusions.

ties, where the average communication when the operation is This paper is organized as follows. In Sec. Il we review
performed a very large number of times is considered. Whethe definitions of entanglement and classical communication
the operation is performed a large number of times, it iscapacities, and in Sec. Il discuss the relations between these
possible to use error correcting techniques to reduce theapacities. We give numerical results for the communication
probability of error to be arbitrarily small. capacity based on the Holevo information obtained for initial
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ensembles with zero Holevo information in Sec. IV. We com-when the ancilla spaces are of dimension 4. When we refer to
pare this capacity to the entanglement that may be createdultiple results with different ancilla dimensions we use a
from initial states that have zero entanglement. We thersuperscript asterisk. We omit the superscript in the case of
present analytic results for these capacities in Sec. V. In Se&, WhendAancz dAu anddBam> dBU, because this is known to
VI we give results for the increase in Holevo information for be sufficient to achieve the capacjti2].
general initial ensembles. These capacities are compared to The classical communication capacities that we consider
the increase in entanglement for arbitrary initially entangledare based upon the Holevo information of ensembles. An
states. We conclude in Sec. VILI. ensemble is a set of statésb;),g} that are supplied with
probabilitiesp;,. Each statgd;),z is a pure state shared be-
tween Alice and Bob, and Alice chooses the indexthe
ensemble is denoted hy={p;,|P;)ag}- We also define the
First we provide definitions for the various capacities.ensemble of reduced density matrices possessed by Bob as
Throughout this paper we divide the system into two sub- E=Tra&={p.pl} 4)
systemsA andB, and denote the Hilbert spaces B and A Pia i
‘Hg. The party in possession of subsyst@mwill be referred where p;=Tra|®)ag(®i|. The Holevo information of the en-

II. DEFINITIONS

to as Alice and the party in possession of subsysBewmill sembleE is given by
be referred to as Bob. The subsystefandB are divided B
into further subsystems: X(E)=S(p) - E piS(pi), (5)
1
HA=Hay ® Hay Ho=Te, @ He,,: D where p=3ppp. From the Holevo-Schumacher-

The operatiorlJ acts only uport{, ® Hg, , and the Hilbert Westmoreland theorenj16,17, the Holevo information

spacesH,__and Hg__are ancillas. Each of these Hilbert gives the average communication that may be performed

spaces has finite dimension, which we denotedhyith the ~ T0mM Alice to Bob by coding over multiple states. _

appropriate subscripts. For exampth, =dim*, and dg Similarly to the case for entanglement, we may define
U

=dimHg. For cases where the dimensioths anddg  are capacities ba?‘?d. on the maximum change In Holgvo qurma—
. . U u tion. One definition that we will use is the maximum final
equal(as in Conjecture )1 we taked—dAU—dBU.

h . ¢ defini itios f Holevo information when the initial ensemble has zero
Tlere are tr\:vo f_maln Wﬁys orae I|n|ng cagamhes %r €N"Holevo information. For the initial ensemble, we have an
tanglement. The first is the entanglement that may be Obgtia| state|y),s and Alice encodes by applying a local

tained when the initial state is pure and unentangled: unitary operationV;. For the capacity, the supremum is taken

E,= sup E(U|d)alx)e)- (2) over the initial statéy) g, the encoding operationg and the
|6)aEHAIVBE HB probabilitiesp;:
The quantityE(--+) is the entropy of entangleme#(|¥)) xu= sup x(pi,Tra UVi|{)ag). (6)
=g Tra(|¥)XW¥|)], whereS(p)=—Tr(p log p). Throughout we P Vil¥ae

employ logarithms to base 2, so the entanglement is exWe use the notation convention thatllb) =Tra| ¢} &|.
pressed in units of ebits. The second definition is the maxiNote that the initial staté/),g may contain entanglement,
mum increase in entanglement when the initial state may bthough the encoding operatios are restricted to be local.
an arbitrary pure entangled state: This definition is equivalent to the capacityy | as de-
_ B fined in Ref.[11].
ARy = ‘@ABE%SMB[E(U'@AB) E(4)ap)] ) One may also define the maximum change in Holevo in-

N . formation when the initial ensemble is arbitrary:
There are also a number of additional ways of defining the

entanglement capacity. One can allow mixed states, and use Axu= SEF{X(TrA Ué) = x(Tra )]. (7)
the entanglement of formation as the entanglement measure. _ _ _
Alternatively, the entanglement of formation may be used aglere we are using the notation conventions

the initial entanglement measure, and the distillable en- UE = {p;,U|D)} (8)
tanglement as the final entanglement measure. Another alter- v v
native definition is based on the average entanglement that Try & ={p;, Trx(|P)}. 9

may be obtained in the limit that the operation is performed

a large number of times. These alternative definitions arehis capacity is equivalent to the capad&yfjl’*) defined in

discussed in Ref11], and it is shown that they are equal to Ref.[11]. As shown in Ref[11], this capacity is equal to the

the maximum increase in entanglement as defined if&Eg. average entanglement-assisted communication that may be

Therefore we do not separately consider them in this studyperformed from Alice to Bob. Therefore this quantity may be
In the numerical search, it is not possible to consider aninterpreted as the asymptotic communication capacity, just as

cilla spaces with arbitrarily large dimension. For the resultsAE;; may be interpreted as the asymptotic entanglement ca-

presented below, equal ancilla dimensions were used, angshcity.

this common dimension is indicated by a superscript. For |t is also possible to interpreg, in terms of asymptotic

example,AEfj” is the maximum change in entanglementcapacities. The capacity, gives the Holevo information
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after a single application of the operatibh This communi- not increase the maximum change in entanglement. Simi-
cation can not actually be performed for a single ensemble; iarly, restricting the initial ensembles to have no correlations
is necessary to code over multiple states to perform this awer be unentangled does not increase the maximum change in
erage communication. Therefosg, may be interpreted as Holevo information. Therefore we have

the asymptotic communication capacity with the restriction , ,

that the applications ot are performed on distinct input Ey<ABy, xu=xusa&x, AxusAdy. (1D
states that are not entangled with each other, rather than al- For two-qubit operations it has been shown that it is pos-

lowing the output of one application &f to be used as part sjple to derive ensembles for increasing the Holevo informa-
of the input to another application &f, as in the general tjon from a state related taE, [14,15. In particular, if
case. _ -~ o |y)ag is @ state such that the entanglement is decreased by
One may also consider capacities where the initial eNAE, under operationU, then we construct the ensemble
sembles are restricted to being unentangled. We will de”Otﬂ/4,0i®Ui|¢>AB}, where theo; are Pauli operators for
the capacities analogous ja, and Ay, but with initially <1 2 3 andgy is the identity. The Holevo information of

unentangled states using primes. In particular this ensemble is increased W, under operatiorJ. This
Xb= sup  x(p,TraUlddalve), result is sufficient to show that

Pil#dalXB Axy = AE (12
uU~=— U

Ax,= sup [X(piiTrAU|¢i>A|Xi>B)_S<E pi|Xi>B<Xi|)]- for two-qubit operations. In this paper we show that
pil b alxiB i =E, though this derivation does not appear to have a

(10) simple interpretation.
There is a subtlety in this derivation, in that it is possible

In this study we primarily consider the capacities where enthat the supremumE is not achieved for any initial state.
tangled initial states are allowed. However, the capacifigs In that case, it is possible to obtain states such that the de-
and Ay, are useful as it is more straightforward to derive crease in entanglement is at leA,— ¢, for anye>0. The
analytic results for them. corresponding increase in the Holevo information of the en-

In the case ofy, it is easily seen that Conjecture 1 is semble would be=AE;-e€. As e may be made arbitrarily
correct. To show this, first note that the ancilla for Bob needsmall, it is still the case thaty,=AEy.
have dimension no larger thaly . This can be seen imme- It can also be shown thaty,<AE,+AE,+. This was
diately, because in the Schmidt decomposition|0f the  shown in Ref[11] using the result thaAy is equal to the
number of terms is no larger that . In addition, from unidirectional entanglement-assisted communication capac-
convexity the capacity will be maximized for unentangledity. It can also be shown in a more direct way as follows. For
states inH, , so the ancillad,__may be omitted. For a anye>0, let{p;,|¢)ag} be an ensemble such that the Holevo
given |x)s the operationd defines a quantum channel with information is increased by at leas—e. Then we have
the initial state irTHAU as the input. Therefore the capacity is
maximized with no more thaaf states in the ensemble Axu~es S(E Pi Tra U|'/’i>AB) - S(; Pi TrA"mAB)

[13]. This derivation is provided in more detail in the Appen-
dix. For the other capacities it is also possible to restrict the A IEUN Ulgidap) — S(Tralviap)]. (13
number of states required in the ensemble for given ancilla i
dimensiong{s_e_e the Appen_d)x prevgr, we hav_e not found By taking the initial state
a way of limiting the ancilla dimensions required in these
cases.

_In the numerical results presented fels, we use the an- 5(2 P Tra Uleidag| - 5(2 P TrAWi)AB) < AE,.
cilla dimensions and ensemble sizes sufficient to obtain the i i
capacity. For the other Holevo capacities we use superscripts (14)
to indicate the number of states in the ensemble and the
dimension of the ancilla spacdwe takEdAanc:dBan)' For  Similarly, by taking the initial staté;)ag, the change in
example,AX(Uz"‘) is the maximum change in Holevo informa- entanglement is
tion for two states in the ensemble and ancillas with dimen- Ny Ny
sion 4. We use a superscript asterisk to refer to multiple S(TrAUli)ag) = S(Tra [4i)ae) = — ABy. (15)
capacities with different ancilla dimensions or ensembleTherefore Eq(13) gives
sizes. It must be emphasized that our use of superscripts in
this paper differs from that in Ref11]. Axy-— €< AEy+ >, pAE i = AE, +AEyr.  (16)

i

pili)arl i) as, the change in en-
tanglement would be

Ill. RELATIONS BETWEEN CAPACITIES As this is true for arbitrarye>0, we haveAy,<AE,

+AEy+. In the case of two-qubit operatiorAE;=AE+, SO
There are many relationships between the various capac\i/\-,e hlgve the bounds g P Fu ut

ties that enable one to derive inequalities. For example, it is
clear that restricting the initial states to be unentangled does 2AE, = Ay = AEy. (17)
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In the case where the initial states are restricted to being
unentangled, it is possible to derive additional relations. In

that case, we havB(Tr,|#i)as) =0, SO we obtain
Axj-es S(E Pi Tra U|'lfi>AB> - 5(2 Pi Tra |‘/’i>AB)
I I

(18)
< AE,,. For the capacity,,

< AE.

!

As this is true for alle>0, Ay,

PHYSICAL REVIEW A71, 022304(2005

Z)\ﬁuj|Xij>B<Xij|UjT) - Z’\ﬁ|Xij>B<Xij|) = AEy-e.
i i
(26)

Now consider the initial ensembbb\ﬁ, <Pi>AanJ¢j>AU|Xij>B}-
This ensemble gives a change in Holevo information equal to
the change in entanglement fop),s. Therefore we have
Ax(,=Ey—e€for all e>0, soAy,=Ey. As we have shown
Ax,<Ey, we have, for controlled} operations, AE

let {p;,| i)l x)s} De an ensemble that achieves the capacit;gAX(J_

to within e. Then

X)— €< 5(2 Pi Tra U|¢i>A|X>B) - E PIS(Tra Ul alx)s)-

(19
Using the initial unentangled state
2 VE“)AMJ biaylX)8s (20)
the final entanglement is
S(EI: Pi Tra U|¢’i>A|X>B> =< Eg. (21

Thereforex(,—e<Ej for all €>0, soyx,<Ey.
In the case of controlletd} operations, it is possible to

show the inequalities in the opposite direction. A controlled-

U operation is one of the form

U =2 [ida,(tal © U;, (22)
I

where the z,/;i>AU are an orthogonal basis fét, , and theU;
are unitary. Consider an initial unentangled sthia|x)s
such that the final entanglement is at leBgt-€. The state
| )5 may be expanded ﬁj)\iﬂgoi)AanJ ¥)a,, SO the final state
is

2 Nijleia,, J¥)a Vil xs. (23)

ij
Applying U to the ensemblé|)\ij|2,|<pi>AanJ l//j>AU|X>B} results
in {|)\ij|2,|goi)Aaanj)AUUj|X>B}. The Holevo information of
this ensemble is

> |xij|2u,-|x>8<x|u;) <xb- (24)

ij
As this is equal to the entanglement of the stdteb)|x)s,
we haveEy—e< x|, for all >0, soE;=<yx/,. As we previ-
ously showedE, = x(,, we have, for controlled operations,
Eu=xi-

Similarly, for the case oAEy, let|p)ag be an initial state

such that the increase in entanglement is at l&dsj—e.
This state may be expressed as

|b)ae = 2 Nijleda, J¥da,lxipes (25)
i

where the\;; are real andZijAﬁ=1, but the|Xij> are not

IV. CAPACITIES FOR ZERO INITIAL HOLEVO
INFORMATION

It is clear that the capacity, is an analogous quantity for
communication toEy for entanglement; similarlyAy, is
analogous ta\Ey,. Although it is possible to derive inequali-
ties for these quantities analytically, these results are not suf-
ficient to determine whether these capacities are equal. In
this section we perform a direct numerical comparison be-
tween the two capacitieg, andE. In addition we present
results for the simplest capacigy,. We then derive analytic
results for these capacities in Sec. V. In Sec. VI we numeri-
cally compare the capacitiesy, and AE.

In this paper we concentrate on two-qubit unitary opera-
tions. It is not possible to perform calculations for the entire
range of two-qubit operations. To make the problem feasible,
we only consider a limited number of examples of two-qubit
operations. In particular, we consider operations of the form

Ul(a) = Ud(avovo)a (27)
Uj(a) = Uy, @,0), (29
Us(a) =Ug(e, a,a), (29
where
Uglag, ap,a3) = g (0101801t ap0p@ 0t agogBog) (30

The operationdd,, U,, and U3 correspond to thecNoOT,
doublecNoT (DcNOT), andswAP families of operations con-
sidered in Ref[6].

In order to consider the complete range of two-qubit uni-
tary operations in the case of the entanglement, it is sufficient
to consider operations of the for(80), with 7/4= ;= «a,
= a3=0 [5]. This derivation relies on the fact that any two-
qubit unitary operation may be simplified to one of the form
(30 with /4= a;=+a,=a3=0 using local operations
[3,5,18,19. In addition to using local operations, the deriva-
tion in Ref.[5] relies on the fact that the entanglement capa-
bilities of U andU" are identicalwhich implies that all the
a; may be taken to be positive

Similarly, for the Holevo information, y(Tra&)
=x(Tra&") and x(TraUE)=x(TraU™E"). Thus the capacities
of U andU" to increase the Holevo information are identical.
Therefore, in order to obtain results for the complete range of
two-qubit unitary operations, it is sufficient to consider op-

mutually orthogonal. The change in entanglement under therations of the form30) with w/4= oy = a,= a3=0 in the

operationU is then

cases of both the entanglement and the Holevo information.
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FIG. 1. Capacities with zero initial entanglement or Holevo in-  FIG. 2. Capacities with zero initial entanglement or Holevo in-
formation for the operatiot),. The values ok are shown as the formation for the operatiol,. The values o, are shown as the
splid line, and the values of,, X(Uz'l), .X(L?A) are shown as the solid .Iine, and the values of, X(Ju,z), ij”), andX(Lj"“) are shown as
circles, plusses and squares, respectiéthese symbols overlap the circles, plusses, crosses, and squares, respectively.

and are not separately visible

) o ] These results indicate that, for all three classes of operation
This restriction on the values of the; defines a three- tested, a final Holevo information equal to the asymptotic
dimensional region of values. For most results in this Papegapacity v, may be achieved with ancillas of dimension 4
we do not consider the entire region; however, the operationgnd an ensemble size of 4.

U;, Up, and U; which we consider form three lines on the  our results also indicate that for two of the classes of
boundaries of this region. . _ operation testedJ; andU,, xy is equal toE. For the op-

The numerical results fdE,, x(,, andyy, for the operation  erationUs,, it is possible to obtain slightly higher values of
U, are shown in Fig. 1. It was found that, for, the capac- Xy, demonstrating thaty, is not equal toE, for this opera-

ity Ey was achieved without ancilla, in agreement with Ref.tion. Nevertheless, the results still indicate tygtis close to
[5]. The values ofy, were determined with no ancilla and g for this operation.

two states in the ensemble, as well as with ancillas of dimen-

sion 4 and four states in the ensemble. It was found that the V. ANALYTIC RESULTS FOR ENSEMBLES

results in these two cases were identical, indicating that, for _ _ _

U,, a final Holevo information equal to the asymptotic ca- N the numerical results foE, presented in the previous
pacity x, may be achieved without ancillas and with an en-Section it was found that the maximal values were obtained

semble consisting of two states. for initial states in one of two forms:

In addition, note that there is no difference between the
results obtained foE and . These results strongly indi- 0D, (100 + [11)(|00) + [11))/2. (39)
cate thatE =y, for the operatiorlJ;. We also find thag, Here we use the convention that, where there are four sub-
=y, for Uy. This result may be predicted from the results of systems, these am,,, Ay, By, andB,,. Where there are
Sec. lll, because operations of the foliy are equivalent to
controlledy operationg 21]. 2
Numerical results foiEy, x(,, and XL for the operations
U, and U5 are shown in Figs. 2 and 3, respectively. In both
cases, we find thay, is well below the other capacities. For 15}
U,, the capacity){[J is increased for ancilla dimensions
higher than 2. For an ancilla dimension of 2, the value of
X(4’2) is less thark, for many of the samples. The values of
XE“) are larger, but still less thah,. When the ancilla di-
mension is increased to 4, we find tbéf"") is equal toE,
just as in the case df;. o5t
For Uz, the results are similar, except that for some of the
sampIeS)(iJ is slightly larger tharg,. For a=/40, 27/40,
and 3r/40, the values of botly{,® andx(} are larger than e
Ey. This difference is small, less than 0.02, but it is sufficient 0 01 02 03 04 05 06 07 038
to demonstrate thdg is not equal toy, for U;. For the o
other samples we find tha{j"“’ is equal toE. FIG. 3. Capacities with zero initial entanglement or Holevo in-
For bothU, andU5; calculations have been performed for formation for the operatiot/;. The values of, are shown as the
an ancilla dimension of 8 and an ensemble size of 8, and igolid line, and the values of, x.}'2, x.}"%, andx*¥ are shown as
both cases it was found thqﬁg‘& is unchanged fron)((J"‘). the circles, plusses, crosses, and squares, respectively.

*
U

E .1
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two subsystems, these are simgly, and By. It has been
found numerically that the maximal findihear entropy is
obtained for one of the two stat€31) [5]. To test this hy-
pothesis for the case of the entropy of entanglement, th
value of E, was determined for operationdy(a;, a;, a3)
such thatm/4= a;= a,= a3=0. Recall that this range of

PHYSICAL REVIEW A71, 022304(2005

lc)> #s,c, O 0
1| +s,c, |s2 0 0
2. 8 0 0 -
e 2[ o 0 s, #s,c,
0 0 #s,c, |c,f?

operations is sufficient to characterize the capacities for alpoth of these have entropy 1, but the average density matrix

two-qubit unitaries. Step sizes af/4000 for each of they,

has entropyH(|c,|?,|s,|?) + 1. Thus the final Holevo informa-

were used, and in each case one of the initial states in E4On is the same as the final entanglement for the initial state

(31) gave a final entanglement as large as the maximum o
tained numerically. This is compelling evidence that, for
two-qubit unitaries, the maximum final entropy of entangle-
ment is always obtained for one of these two states.

Next we show that, provided the maximum final entropy
is obtained for one of the initial statg81), xy=E,. To

HO).

For the ensemblé,, the four states obtained alignoring
a trivial global phase fofis))

|02 =[€.(|011) +[102) +5,(|10D) +(012)
+¢-(|000  |113) +s.(|110 +(003) /2,

show this result, we first determine the entanglement ob-

tained for the initial states in Ed31). To determine these
entanglements, we use the expression given by [R&f:

Ug(ay, ap, ar3) = (C1C,C5 +1515,S3) 09 ® 07 + (C1S,S3
+181C,C3) 0y ® 07 + (81C,83 +1C1S,C5) 07
(32

wheres =sin«; andc;=cosg;. Using this expression it may
be shown that the two final entanglements obtained are

® 0+ (818,C3 +1C1C,83) 03 ® 073,

H(C0§ a+15inz a+)1 H(M+1[u'—1y+1v—)1 (33)
where a, = a1+ ay,
s = (SI? a, + Sirf a_)/2 + sina,sin a_cog2as),
v, = (cog a, + cofa_)/2 + COSa,COSa_co2a3),
(34)
and the functiorH is the entropy of the arguments
N
H\p,...,Ay) == 2 Ay l0g A (35)
n=1

Next we consider two different ensembles:

£1={1/2,(|011) + [100)/2},

&,={1/4,0i[|0)(|00) + [11)) + |1)(|02) + |13))1/2}, (36)

whereo; acts upon subsystem 1 ane{0,1,2,3. Here we
use the convention that subsystems 1, 2, and 3AgreBy,,

112 =[c4(|100 % [013) +5,(/010 + [103))
+c_(|111) + |002) + s.(|001) +|112)]/2. (40)

It is straightforward to verify that each of these states is
maximally entangled, so the reduced density matrix has en-
tropy of 1. The average reduced density matrix for Bob has
entropyH(u,,u_, vy, v_)+1, resulting in a total Holevo in-
formation of H(gy, i, vy, vo).

Therefore if the maximal entanglement is obtained for one
of the two initial states in Eq31), theny,= E,. Given the
compelling numerical evidence that the maximal entangle-
ment is always obtained for one of these two initial states,
our results show thay,= E for two-qubit unitaries. How-
ever, this result is not proven due to the reliance on numeri-
cal results.

There is also a relatively simple ensemble for which the
final Holevo information is greater thag, for someU. It is
given by

E3= {1/3,Hi[|1>(|00> + |11> + |02>)
~10)(|10) +[01) - [12))]/\6}, (41)

whereH; acts upon subsystem 1 ané&{0,1,2. H, is the
identity, H, is the Hadamard operator, aht} has the matrix
representation

1 - 1 1
H2: .= 1 1 (42)
V2

As before, subsystems 1, 2, and 3 dg, By, and B,
respectively. It can be verified numerically that the Holevo
information obtained for this ensemble agrees with that dis-

andB,p, respectively. In the first case subsystem 3 is a qubitplayed in Fig. 3.

and in the second case subsystem 3 is a four-level ancilla.
Considering ensemblé&; first, applying Uy(ay, as, a3)
gives the two alternative states
(c//011) +5,]10D +¢,|100 £ 5.[010)1V2,  (37)
where
s, zie'“ssina,.

c. =€ '*3cosay, (39)

We find that the reduced density matrices for Bob are

In the case of the operatiddy, it is not necessary to rely
on the numerical results. In this case it has been proven that
the maximal entanglement is obtained for either of the two
initial states in Eq(31) [5]. Alternatively, this result may be
deduced from the fact that operations of the fom are
equivalent to controlled) operations[21], so x,=E,. As
XU= xu, this proves thaj,=E for U;.

To understand this result in terms of ensembles, the maxi-
mum entanglement is obtained for the initial st@®. Using
the method given in Sec. Ill we may derive the ensemble
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E3={1/2,(|0)%|1))|1)/ 2} from this state. It is easily verified
that this ensemble gives the final entanglement
H(cos a,sirf a). Therefore, in the case dfl;, there is a
simple explanation of the resufy,=E, in terms of en-
sembles. However, we do not have a similar explanation for
the general case.

An aspect of the results fog(, that may be explained is
that x|, does not exceed 1. In general the Holevo information
can be no more than laty | higher than the initial entangle-
ment. This result may be shown in the following way:

) i < ) : . , . . . . .
X(Py, Tra UV ag) < X(Pi Tri,, UVil o) 0 01 02 03 04 05 06 07 08

< S(E piTrAanCUViW)AB) :

*
U

AE*, Ay

FIG. 4. Capacities with arbitrary initial states or ensembles for
; (1) (2
_ v + the operatiorlJ;. The values ofAE;” and AE;” are shown as the
- S(TrAanEi PVl asdVi) solid line, and the values oix(uz’l) and AXS’ ) are shown as the
circles and plusses, respectively.

. . .1. *
= S(TrAamB; PVilas Vi) The capacities\y,, without ancilla and with ancillas of

dimension 2 are shown in Fig. 4. In both cases these capaci-
+ S(Tra|h)ae) ties are for ensembles with two states. It was found that, even
without ancilla, the capacityy, is greater than the values
< + . - Y : :
log da, + E|¥)ae) (43 calculated forAE;,. The only cases where there is equality

Here E(|)ap) is the entanglement of the initial state. This @re the trivial cases where=0 or w/4. These results
result is related to superdense coding. In particular, it iStrongly indicate that, for some unitary operations, there is

known that when transmitting a qudit, the information com-the strict inequalityAxy, > AE,.

municated can be no larger than léglus the initial en- N addition, the capacitpxy, is slightly increased by add-
tanglemen{20]. ing an ancilla. This is not so visible in Fig. 4; to make this
From this result it is clear that using unentangled statedlifférence visible, the differences between the capacities

for two-qubit unitaries will not allow a capacity above one Axy With ancilla and the capacities with no ancillgy;
bit. Although we find thaty,,=E, for controlledU opera- &€ plotted in Fig. 5. It can be seen that there is a small but

tions, we cannot expect this result for more general operasignificant increase iy, when an ancilla is allowed.
tions, becaus&, may be higher than logd, There are further increases as the ancilla dimension is
1 U'

increased to 3, 4, or &ee Fig. 6. These results suggest that
there is no finite ancilla dimension for which the capacity is
VI. CAPACITIES FOR ARBITRARY INITIAL ENSEMBLES equal to the asymptotic capacityy,. However, each in-
crease in the capacity with the ancilla dimension is smaller
Next we consider the capacitidsy, andAEy. These ca- than the previous, indicating that the results calculated here
pacities are more general, in that arbitrary initial states oghould be a good approximation Afy,,.
ensembles are allowed. Analytic results for the relation be- Calculations were also performed with four-dimensional
tween these capacities were derived in REf4,15. It was  ancillas and four states in the ensemble, and without ancillas
proven that, for two-qubit unitary operationsy,= AE,. If

-3

a change in the entanglement AE, is obtained with a 3x10 .
particular ancilla dimension, then an increase in Holevo in- o,
formation equal toAE; may be obtained with the same an- 2.5} ¥ *
cilla dimension, and with four states in the ensemble. %
In principle it is possible that there is no finite ancilla I 3
dimension that achievesE;, and instead\E, is approached )
in the limit of large ancilla dimension. However, in practice <,’ L3¢ *
it has been found that, for two-qubit unitary operations, it ) X
appears to be possible to achieMg with an ancilla dimen- < X
sion of 2[6]. This means that it should be possible to achieve 05
an increase in Holevo information &E with an ancilla ’ N
dimension of 2.

The capacitied\ x,, and AE,, are shown for the operation 0 01 02 03 04 05 06 07 08
U, in Fig. 4. It was found that the entanglement capacity
AE} did not increase beyond that for no ancilla as the ancilla  FIG. 5. The differences betweery;, andA x> for the opera-
dimension was increased up to 5, in agreement with the reion U,. The values ofAx>?-Ax2? and Ax2?-Ax2? are

. . U
sult given in Ref[6]. shown as the plusses and crosses, respectively.
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- ] g * x "
x x 0.005 x
02} ¥ x o
# — Y e
0 01 02 03 04 05 06 07 08

o

o8
(-]

® 01 02 03 04 05 06 07
o
FIG. 8. The differences betvveen»(%, andA)(<4 2 for the opera-
FIG. 6. The differences betweekp(l(, andAXZZ) for the opera-  tion U, The values ofAX(“) Ax*2 44) A 42) and
2,2)

tion U;. The values of AX(” 4) —-Ax 22, and Ax(45) AX(4 2 are shown as the crosses squares and asterisks,
x2¥-Ax2? are shown as the crosses squares and asterisksespectrvely
respectrvely
with Ref. [6]. When the ancilla was mcludeds)(U was
and eight states in the ensemble. In both cases it was fourfghtly greater thaEy, just as in the case of the operation
that there was no increase in the capacity above that for w2 [N @ddition, it was found thah x;, was further increased
states in the ensemble as the ancilla dimension was increased beyolge2 Fig. 3.
The results forAy" end AE" for the operationU. are In this case the difference is somewhat greater, being around
Xu u P 2 0.02 rather than 10, but the values still appear to be con-
shown in Fig. 7. In each case shown, ensembles with fou%

erging for large ancilla dimension. Calculations were also
states were used. In the case without ancilla, it was foun ging 9

@) ) erformed for an ancilla dimension of 2 and an ensemble
that Ay, ™ and AE," were equal. When an ancilla is in- sjze of 8. It was found that no increases Ay, were ob-

cluded, there is a srgnrfrcant increase in baty, and AE,,. tained with this increase in the ensemble size.

In particular, these have a maximum of 2, rather than 1 as i The results folJ5 are shown in Figs. 9 and 10. All results
the case without ancilla.

Note also that the value okE is increased when an
ancilla is added for each of the values@Except the trivial
points atae=0 and /4. In contrast, for the data shown in
Ref. [6] there was no visible increase iE;, when the an-
cilla was included for another three data poirst «
=7/40, 27/40, and 3r/40). The data points given in Ref.
[6] appear to correspond to the local maximum for the soluanCIIIa dimensions\ /, was not equal ta\E;,. Also, for an
tion with no ancilla, rather than the global maximum. ancilla dimension ofUZ there was no mcreuasekm, when

It was found that using ancilla dimensions above 2 up %he ensemble size was increased to 8.
an ancilla dimension of 5 did not incread&,), in agreement

here are for ensembles with four states. In this case it was
found that, if the ancillas had dimension 2, the values of
Ax? andAE(z) were identical. In other respects the results
were similar to those for the operatidhy. The value ofAEU

was not increased by increasing the ancilla dimension above
2, as for the operations; and U,. The value ofA)(’[J was
increased for larger ancilla dimensions, SO for these larger

To summarize, our results strongly indicate thay, is
N . " strictly greater tham\Ey, for most two-qubit unitary opera-

2 . . . . . &

0 01 02 03 04 05 06 07 08
[+

® 01 02 03 04 05 06 07 038
FIG. 7. Capacities with arbitrary initial states or ensembles for *

the operatiorlJ,. The values ofAE(l) and AE(Z) are shown as the FIG. 9. Capacities with arbrtrary initial states or ensembles for
dotted and solid lines, respectrvely, and the vaIuesAq{j‘ 2 the operatiorlJ;. The values ofAE are shown as the solid line,
AX(4 2 andA)((4 9 are shown as the circles, plusses, and crossesand the values oﬁx(4 2 AX(4 9, and Ax(“ 4 are shown as the

respectrvely plusses, crosses, and squares, respectively.
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0.05 " T ¥ " " ¥ TABLE I. The ensemble sizes and ancilla dimensions required
# for exactly calculating various capacities for two-qubit unitary op-
0.04 erations as indicated by the numerical results.
L "
§=003 | Capacity Ensemble size Ancilla dimension
<50
N . . Eu NA 2 [12]
:??O‘OZ 1 Xu 4 4
AEy NA 2
001 . 1
" M x " AXU 4 =5
X X P
x X -

0 01 02 03 04 05 06 07 08 . . .
o Judging from the numerical results, it would be reason-

_ . @2 able to posit an accuracy of 1% of log
FIG. 10. The differences betweety, and Ay, for the op- In previous work[14,15 it was proven that\y, = AE,
eration Us. The values ofAyj""—Ax,"", Ax " —Ax,”, and

a5 2 u u ~ for two-qubit unitaries; here we have shown thygt= Ey. As
Axy”~Ax,"" are shown as the crosses, squares, and asteriskgart of this derivation we have shown numerically that the
respectively. maximum final entanglement is obtained for one of two ini-

tial states. We have not proven this result, because it is not

tions, rather than simply greater than or equal to, as wapossible to completely search the entire space of two-qubit
shown in Refs[14,15. Nevertheless, for the operations we operations. However, we have performed a sufficiently thor-
have examined, the values calculated4of, are quite close ough search that it is highly unlikely that there is a counter-
to AEy. In addition, our results show that there are no in-example.
creases i\ E, as the ancilla dimension is increased above 2, In the case of capacities where the initial states are unen-
but there are increases iy,,. In each case, there were in- tangled, it is possible to derive further analytic results. We
creases My, with ancilla dimension up to the largest di- have proven that, in generaly <Ey, andAy,<AE, and in
mension tested. These were small increases, indicating thdte specific case of controlldd- operations y,=E, and
the asymptotic valué\y, was approximated accurately for Ay(,=AE,. That is, we have proven that Conjecture 2 holds
the larger ancilla dimensions used. Also the calculations infor these capacities in the case of controllédperations. In
dicate thatAy,, is not increased as the ensemble size is in-addition, in the case of,, Conjecture 1 can be proven to
creased above 4, so it is not necessary to use arbitrarily largeold. It is possible to obtain the capacity, for a two-qudit
ensemble sizes in estimatingyy,. operation with an ancilla of sizd for Bob, no ancilla for
Alice andd? states in the ensemble.

It must be emphasized that there is an inherent uncertainty
VIl. CONCLUSIONS in the numerical results. It is possible, though unlikely, that

We have shown that, for a range of two-qubit unitarythere is a significant_change in.the capacity for larger en-
operations, the values of the capacitigsandAyy, are close semble sizes or anm!la d|mens[one thr_;m have been tested
to E, and AEy, respectively. In no case was there a differ- here. Also, the numencal maximization |s'net guaranteed to
ence larger than 0.05, and in most caggsvas equal tcE,. find the global maximum. Nevertheless, it is reasonable to
This result supports Conjecture 2 made in the introductionconclude from the numerical results presented here that, for a
From these results, it is reasonable to posit an accuracy in tH8n9€ of two-qubit unitaries, the capacities for creating en-
approximation of 5% of logl. Here the logl takes account tangleme.nt and performing communication are numencelly
of the fact that the maximum capacity of two-qudit opera_close. It is already kn.o_wn that there are some cor_mectlons
tions scales as log, between these capaciti€$4,15; the fact that there is nu-

We have also shown that, for the capagity, ancilla di- mencal agreement suggests _that ther_e_may be_furth_er rela-
mensions of 2 are not sufficient to accurately estimate thd0ns. Further work on analytically deriving relations is de-
capacity. The results indicate that the capacity is achievedirable but challenging.
yvith ancilles of dimen;ion 4. FoAXU,.ther_e were further ACKNOWLEDGMENTS
increases in the capacity with the ancilla dimension above 4,
though these differences were very small. In both cases, the This research has been supported by an Australian Depart-
results indicate that an ensemble size of 4 is sufficient tanent of Education Science and Training Innovation Access
calculate the capacity. Also, the results indicate that an anProgram Grant to support collaboration in the European Fifth
cilla dimension of 2 is sufficient foAE,,. These results are Framework project QUPRODIS, and by Alberta’s informat-
summarized in Table I. Thus we find that the results supporics Circle of Research Excellen¢é€ORE).

a modified version of Conjecture 1:

Conjecture 1. For a unitary operatiot that acts upon
two subsystems of dimensiah the Holevo capacities may
be estimated accurately using ancillas of dimensiérand Let us consider the ensemife={p;,|¢i)ag}. We may use
ensembles withl? states. this ensemble for any of the capacitig$, Ax(;, xu, or Axy.

APPENDIX: ENSEMBLE SIZE AND ANCILLA
DIMENSION LIMITS
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These capacities differ only in the restriction on the initiala change in Holevo information that is as large as thatfor
ensemble. In each case, the change in the Holevo informddence we can find an ensemble that has fewer members, and
tion is gives a change in Holevo information that is at least as large.
_ _ By iterating this procedure, we can obtain an ensemble that
Ty —
S(TrAu UpU" S(Tr’*u P) has no more thanidAUdB)2 states, but gives a change in
- pi[S(TfAU Up;U™ —S(TFAU ol (A1) Hc_)lgvo information that is at_Igast as large as that for Fhe
i original ensemble. Therefore it is only necessary to consider
_ _ ensembles with no more the(dAUdB)2 states.
wherepi=Tra, [1h)as andp=Zipip:. In the case of the capacity, the states in the ensemble

If the number of states in the ensemble is less tha%re|‘r/f'>AB=|¢'>A|X>B- We use the notatiop”=Trg p and p?
(da de)? then it is possible to find an ensemble that has &y [')__ The Idensityp- may be expressed as '
smaller number of states and gives a change in the Holevo ' '
information that is at least as large. To show this result, from PiA => 0 |¢ij>A (¢ |. (AB)
Caratheodory’s theorefi22] it is possible to form a convex j v

combination of no more thal dg)? of the p; to obtainp. . . L
(s, dp) P P~ The final Holevo information is then

That is,

p=2 dp; (A2) STra, U™ @ [0e(x)U'] = 2 PiS[Tra, V(o

ies
+
whereSis a set of no more thaftl, dg)? indices. Now let us ® [xs(x)U']
definer =mincs p;/q and = S[TTAU UG @ |0)e(x)UT]
. — r . i
pll _ rql fories - 2 Pic S(Tra, Uldija,lX)8)- (A7)
=y . (A3) '
P fori & S Therefore at least as large a capacity may be obtained using
1-r |¢i)a that are not entangled betweef), andH, . Thatis,

There must be at least one valuei d6r which p! is zero; we ~ One may consider statég),, within 7, , and omit Alice’s
denote the set of indices for whigi is nonzero byS'. Also, ~ ancilla entirely. Also, it is clear that the ancilla for Bob need

it is clear that have dimension no larger thadlBU. This is because the
_ , Schmidt decomposition dfy)g can have no more thatd\3U
ies

Using Caratheodory’s theorem, the dengifymay be ex-
Therefore there are two ensembles={q,p;} and &  pressed as a convex combination of no more tli@unof the
={p/,pi}, that give the samp, and both of these ensembles |¢i>AU. Therefore via exactly the same reasoning as in the

have fewer states than the original ensentble general case above, the ensemble in this case need have no
The change in Holevo information for the original en- more thand,iU states.

semble may be written as Similar considerations hold foAy(,. The states in the

X(UE) = X(€) =S(Try, UﬁUT)—S(TrAU ) ensemble aréy;)ag=|®)alxi)s, and the change in Holevo

information is

_ ; 11 — )
Eil PLS(Tra, UpU") = S(Tra, pi)] S(Tra, U U - S(Tra 7)

= S(Try, UpU") = S(Try p) - 2 P Tra, U @ [x)e(xiDU']
S aq Ut - . |
"2, G[S(Tra, UpU") = S(Tr, )] = S(Try, U - S(Tra, )
-1-n> P/ [S(Tra,Upi UT) = S(Tra, p1)] - E PiChj S(Tra, Uldia,lxide)- (A8)
ies ij

=r[x(U&E) — x(ED]+ (L =1)[x(UE,) — x(E]. Therefore it is again possible to omit the ancilla for Alice.

(A5) The situation is more complicated for Bob’s ancilla, due to

the multiple state$y;)g. In this case it does not appear to be

Thus the change in Holevo information féris a weighted possible to place a limit on the dimension required for the
average of that fo€; and&,. At least one of these must give ancilla.
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