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We present numerical results on the capacities of two-qubit unitary operations for performing communica-
tion and creating entanglement. The capacities for communication considered are based upon the increase in
Holevo information of an ensemble. Our results indicate that the capacity may be accurately estimated using
ensemble sizes and ancilla dimensions of 4. In addition, the calculated values of these capacities were close to,
and in some cases equal to, the similarly defined entangling capacities; this result indicates connections
between these capacities.
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I. INTRODUCTION

A nonlocal operation is one that operates on two sub-
systems, and cannot be expressed as a tensor product of op-
erations on the individual subsystems. Such operations occur
when the subsystems evolve under an interaction Hamil-
tonian. Nonlocal operations may be used to create entangle-
ment between two subsystems, and also to perform classical
communication. In fact, it is not possible to achieve these
tasks without an interaction. In characterizing quantum op-
erations, it is important to determine the capacities for creat-
ing entanglement or performing communication.

Shared classical information may be considered to be the
classical equivalent of entanglement. Therefore it is reason-
able to consider the process of classical communication to be
the classical equivalent of entanglement creation, and one
may expect that there is a close relationship between the
capacities for these two tasks. In this paper we make a direct
numerical comparison between the capacities for entangle-
ment creation and classical communication.

The capacities of unitary operations for creating entangle-
ment have been studied extensivelyf1–8g. It is relatively
straightforward to determine the entanglement capacity for
infinitesimal operationsf3g. For finite operations, most re-
sults are restricted to numerical results for classes of two-
qubit operationsf6g. We study the same classes of operations
here, and the results we present for the entanglement repro-
duce those given in Ref.f6g, except for some data points
where our results are more accurate.

The capacities for classical communication were initially
considered for simple unitary operations, such as theCNOT

and SWAP operationsf9,10g. It is straightforward to analyze
the capacities for these operations, because they allow error-
free communication. In contrast, more general operations
may allow somespossibly larged probability of error, so it is
necessary to take this into account in the definition of the
capacity. Bennettet al. f11g introduced asymptotic capaci-
ties, where the average communication when the operation is
performed a very large number of times is considered. When
the operation is performed a large number of times, it is
possible to use error correcting techniques to reduce the
probability of error to be arbitrarily small.

It is not feasible to calculate these asymptotic capacities
directly from their definitions. However, it is shown in Ref.
f11g that the unidirectional capacity is equal to an alternative
definition of the capacity based on the Holevo information.
This result means that it is possible to calculate this capacity.
The capacity based on the Holevo information is still diffi-
cult to calculate, as the definition potentially allows unlim-
ited ensemble size and ancilla dimensions. However, it is
reasonable that this capacity may be accurately estimated for
moderate ancilla dimensions and ensemble size. In particular,
it would be reasonable to conjecture that:

Conjecture 1. For a unitary operationU that acts upon two
subsystems of dimensiond, the Holevo capacities may be
estimated accurately using ancillas of dimensiond and en-
sembles withd2 states.

As motivation for this conjecture, note that ancillas of
dimensiond are sufficient for one of the entangling capaci-
ties f12g, and an ensemble size ofd2 is sufficient for qudit
channelsf13g. In this paper we numerically test this conjec-
ture for a range of two-qubit operations, and show that the
ancilla dimension required is larger.

Another interesting problem is the relationship between
the communication and entanglement capacities. In previous
work f11,14,15g it was shown that there are a number of
inequalities between these capacities. If the communication
capacities were equal to the entanglement capacities, this
would indicate deep connections between them. The results
in Refs.f11,14,15g are not sufficient to show equality, though
they do suggest that the capacities may be close. Therefore it
is reasonable to make the second conjecture:

Conjecture 2. For a unitary operationU that acts upon two
subsystems, the Holevo capacities may be estimated from
similarly defined entangling capacities.

In this paper we give numerical evidence supporting this
conjecture. Note that in these two conjectures we have not
specified how accurate an estimation is required. We will
refine this point in the conclusions.

This paper is organized as follows. In Sec. II we review
the definitions of entanglement and classical communication
capacities, and in Sec. III discuss the relations between these
capacities. We give numerical results for the communication
capacity based on the Holevo information obtained for initial
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ensembles with zero Holevo information in Sec. IV. We com-
pare this capacity to the entanglement that may be created
from initial states that have zero entanglement. We then
present analytic results for these capacities in Sec. V. In Sec.
VI we give results for the increase in Holevo information for
general initial ensembles. These capacities are compared to
the increase in entanglement for arbitrary initially entangled
states. We conclude in Sec. VII.

II. DEFINITIONS

First we provide definitions for the various capacities.
Throughout this paper we divide the system into two sub-
systems,A andB, and denote the Hilbert spaces byHA and
HB. The party in possession of subsystemA will be referred
to as Alice and the party in possession of subsystemB will
be referred to as Bob. The subsystemsA andB are divided
into further subsystems:

HA = HAanc
^ HAU

, HB = HBU
^ HBanc

. s1d

The operationU acts only uponHAU
^ HBU

, and the Hilbert
spacesHAanc

and HBanc
are ancillas. Each of these Hilbert

spaces has finite dimension, which we denote byd with the
appropriate subscripts. For example,dAU

=dimHAU
and dB

=dimHB. For cases where the dimensionsdAU
and dBU

are
equalsas in Conjecture 1d, we taked=dAU

=dBU
.

There are two main ways of defining capacities for en-
tanglement. The first is the entanglement that may be ob-
tained when the initial state is pure and unentangled:

EU ; sup
uflA[HA,uxlB[HB

EsUuflAuxlBd. s2d

The quantityEs¯d is the entropy of entanglementEsuCld
=SfTrAsuClkCudg, whereSsrd=−Trsr log rd. Throughout we
employ logarithms to base 2, so the entanglement is ex-
pressed in units of ebits. The second definition is the maxi-
mum increase in entanglement when the initial state may be
an arbitrary pure entangled state:

DEU ; sup
uclAB[HA^HB

fEsUuclABd − EsuclABdg. s3d

There are also a number of additional ways of defining the
entanglement capacity. One can allow mixed states, and use
the entanglement of formation as the entanglement measure.
Alternatively, the entanglement of formation may be used as
the initial entanglement measure, and the distillable en-
tanglement as the final entanglement measure. Another alter-
native definition is based on the average entanglement that
may be obtained in the limit that the operation is performed
a large number of times. These alternative definitions are
discussed in Ref.f11g, and it is shown that they are equal to
the maximum increase in entanglement as defined in Eq.s3d.
Therefore we do not separately consider them in this study.

In the numerical search, it is not possible to consider an-
cilla spaces with arbitrarily large dimension. For the results
presented below, equal ancilla dimensions were used, and
this common dimension is indicated by a superscript. For
example,DEU

s4d is the maximum change in entanglement

when the ancilla spaces are of dimension 4. When we refer to
multiple results with different ancilla dimensions we use a
superscript asterisk. We omit the superscript in the case of
EU whendAanc

ùdAU
anddBanc

ùdBU
, because this is known to

be sufficient to achieve the capacityf12g.
The classical communication capacities that we consider

are based upon the Holevo information of ensembles. An
ensemble is a set of stateshuFilABj that are supplied with
probabilitiespi. Each stateuFilAB is a pure state shared be-
tween Alice and Bob, and Alice chooses the indexi. The
ensemble is denoted byE=hpi , uFilABj. We also define the
ensemble of reduced density matrices possessed by Bob as

E = TrA E = hpi,rij, s4d

whereri =TrAuFilABkFiu. The Holevo information of the en-
sembleE is given by

xsEd = Ssrd − o
i

piSsrid, s5d

where r=oipiri. From the Holevo-Schumacher-
Westmoreland theoremf16,17g, the Holevo information
gives the average communication that may be performed
from Alice to Bob by coding over multiple states.

Similarly to the case for entanglement, we may define
capacities based on the maximum change in Holevo informa-
tion. One definition that we will use is the maximum final
Holevo information when the initial ensemble has zero
Holevo information. For the initial ensemble, we have an
initial state uclAB, and Alice encodesi by applying a local
unitary operationVi. For the capacity, the supremum is taken
over the initial stateuclAB, the encoding operationsVi and the
probabilitiespi:

xU = sup
pi,Vi,uclAB

xspi,TrA UViuclABd. s6d

We use the notation convention that TrAufl;TrAuflkfu.
Note that the initial stateuclAB may contain entanglement,
though the encoding operationsVi are restricted to be local.
This definition is equivalent to the capacityDxU

s1,xd as de-
fined in Ref.f11g.

One may also define the maximum change in Holevo in-
formation when the initial ensemble is arbitrary:

DxU = sup
E

fxsTrA UEd − xsTrA Edg. s7d

Here we are using the notation conventions

UE ; hpi,UuFilj, s8d

TrX E ; hpi,TrXsuFildj. s9d

This capacity is equivalent to the capacityDxU
s1,*d defined in

Ref. f11g. As shown in Ref.f11g, this capacity is equal to the
average entanglement-assisted communication that may be
performed from Alice to Bob. Therefore this quantity may be
interpreted as the asymptotic communication capacity, just as
DEU may be interpreted as the asymptotic entanglement ca-
pacity.

It is also possible to interpretxU in terms of asymptotic
capacities. The capacityxU gives the Holevo information
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after a single application of the operationU. This communi-
cation can not actually be performed for a single ensemble; it
is necessary to code over multiple states to perform this av-
erage communication. ThereforexU may be interpreted as
the asymptotic communication capacity with the restriction
that the applications ofU are performed on distinct input
states that are not entangled with each other, rather than al-
lowing the output of one application ofU to be used as part
of the input to another application ofU, as in the general
case.

One may also consider capacities where the initial en-
sembles are restricted to being unentangled. We will denote
the capacities analogous toxU and DxU but with initially
unentangled states using primes. In particular

xU8 = sup
pi,ufilA,uxlB

xspi,TrA UufilAuxlBd,

DxU8 = sup
pi,ufilA,uxilB

Fxspi,TrA UufilAuxilBd − SSo
i

piuxilBkxiuDG .

s10d

In this study we primarily consider the capacities where en-
tangled initial states are allowed. However, the capacitiesxU8
and DxU8 are useful as it is more straightforward to derive
analytic results for them.

In the case ofxU8 , it is easily seen that Conjecture 1 is
correct. To show this, first note that the ancilla for Bob need
have dimension no larger thandBU

. This can be seen imme-
diately, because in the Schmidt decomposition ofuxlB the
number of terms is no larger thandBU

. In addition, from
convexity the capacity will be maximized for unentangled
states inHAU

, so the ancillaHAanc
may be omitted. For a

given uxlB the operationU defines a quantum channel with
the initial state inHAU

as the input. Therefore the capacity is
maximized with no more thandAU

2 states in the ensemble
f13g. This derivation is provided in more detail in the Appen-
dix. For the other capacities it is also possible to restrict the
number of states required in the ensemble for given ancilla
dimensionsssee the Appendixd. However, we have not found
a way of limiting the ancilla dimensions required in these
cases.

In the numerical results presented forxU8 , we use the an-
cilla dimensions and ensemble sizes sufficient to obtain the
capacity. For the other Holevo capacities we use superscripts
to indicate the number of states in the ensemble and the
dimension of the ancilla spacesswe takedAanc

=dBanc
d. For

example,DxU
s2,4d is the maximum change in Holevo informa-

tion for two states in the ensemble and ancillas with dimen-
sion 4. We use a superscript asterisk to refer to multiple
capacities with different ancilla dimensions or ensemble
sizes. It must be emphasized that our use of superscripts in
this paper differs from that in Ref.f11g.

III. RELATIONS BETWEEN CAPACITIES

There are many relationships between the various capaci-
ties that enable one to derive inequalities. For example, it is
clear that restricting the initial states to be unentangled does

not increase the maximum change in entanglement. Simi-
larly, restricting the initial ensembles to have no correlations
or be unentangled does not increase the maximum change in
Holevo information. Therefore we have

EU ø DEU, xU8 ø xU ø DxU, DxU8 ø DxU. s11d

For two-qubit operations it has been shown that it is pos-
sible to derive ensembles for increasing the Holevo informa-
tion from a state related toDEU f14,15g. In particular, if
uclAB is a state such that the entanglement is decreased by
DEU under operationU, then we construct the ensemble
h1/4,si ^ siuclABj, where thesi are Pauli operators for
i [ h1,2,3j ands0 is the identity. The Holevo information of
this ensemble is increased byDEU under operationU. This
result is sufficient to show that

DxU ù DEU s12d

for two-qubit operations. In this paper we show thatxU
ùEU, though this derivation does not appear to have a
simple interpretation.

There is a subtlety in this derivation, in that it is possible
that the supremumDEU is not achieved for any initial state.
In that case, it is possible to obtain states such that the de-
crease in entanglement is at leastDEU−e, for anye.0. The
corresponding increase in the Holevo information of the en-
semble would beùDEU−e. As e may be made arbitrarily
small, it is still the case thatDxUùDEU.

It can also be shown thatDxUøDEU+DEU†. This was
shown in Ref.f11g using the result thatDxU is equal to the
unidirectional entanglement-assisted communication capac-
ity. It can also be shown in a more direct way as follows. For
anye.0, let hpi , ucilABj be an ensemble such that the Holevo
information is increased by at leastDxU−e. Then we have

DxU − e ø SSo
i

pi TrA UucilABD − SSo
i

pi TrAucilABD
− o

i

pifSsTrA UucilABd − SsTrAucilABdg. s13d

By taking the initial stateoi
ÎpiuilA8ucilAB, the change in en-

tanglement would be

SSo
i

pi TrA UucilABD − SSo
i

pi TrAucilABD ø DEU.

s14d

Similarly, by taking the initial stateucilAB, the change in
entanglement is

SsTrA UucilABd − SsTrA ucilABd ù − DEU†. s15d

Therefore Eq.s13d gives

DxU − e ø DEU + o
i

piDEU† = DEU + DEU†. s16d

As this is true for arbitrarye.0, we haveDxUøDEU
+DEU†. In the case of two-qubit operations,DEU=DEU†, so
we have the bounds

2DEU ù DxU ù DEU. s17d
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In the case where the initial states are restricted to being
unentangled, it is possible to derive additional relations. In
that case, we haveSsTrAucilABd=0, so we obtain

DxU8 − e ø SSo
i

pi TrA UucilABD − SSo
i

pi TrA ucilABD
ø DEU. s18d

As this is true for alle.0, DxU8 øDEU. For the capacityxU8 ,
let hpi , ufilAuxlBj be an ensemble that achieves the capacity
to within e. Then

xU8 − e ø SSo
i

pi TrA UufilAuxlBD − o
i

piSsTrA UufilAuxlBd.

s19d

Using the initial unentangled state

o
i

ÎpiuilAanc
ufilAU

uxlB, s20d

the final entanglement is

SSo
i

pi TrA UufilAuxlBD ø EU. s21d

ThereforexU8 −eøEU for all e.0, soxU8 øEU.
In the case of controlled-U operations, it is possible to

show the inequalities in the opposite direction. A controlled-
U operation is one of the form

U = o
i

ucilAU
kciu ^ Ui , s22d

where theucilAU
are an orthogonal basis forHAU

, and theUi

are unitary. Consider an initial unentangled stateuflAuxlB
such that the final entanglement is at leastEU−e. The state
uflA may be expanded asoi jli j uwilAanc

uc jlAU
, so the final state

is

o
i j

li j uwilAanc
uc jlAU

UjuxlB. s23d

Applying U to the ensemblehuli j u2, uwilAanc
uc jlAU

uxlBj results
in huli j u2, uwilAanc

uc jlAU
UjuxlBj. The Holevo information of

this ensemble is

SSo
i j

uli j u2UjuxlBkxuUj
†D ø xU8 . s24d

As this is equal to the entanglement of the stateUuflAuxlB,
we haveEU−eøxU8 for all e.0, soEUøxU8 . As we previ-
ously showedEUùxU8 , we have, for controlled-U operations,
EU=xU8 .

Similarly, for the case ofDEU, let uflAB be an initial state
such that the increase in entanglement is at leastDEU−e.
This state may be expressed as

uflAB = o
i j

li j uwilAanc
uc jlAU

uxi jlB, s25d

where theli j are real andoi jli j
2 =1, but the uxi jl are not

mutually orthogonal. The change in entanglement under the
operationU is then

SSo
i j

li j
2Ujuxi jlBkxi j uUj

†D − SSo
i j

li j
2 uxi jlBkxi j uD ù DEU − e.

s26d

Now consider the initial ensemblehli j
2 , uwilAanc

uc jlAU
uxi jlBj.

This ensemble gives a change in Holevo information equal to
the change in entanglement foruflAB. Therefore we have
DxU8 ùEU−e for all e.0, soDxU8 ùEU. As we have shown
DxU8 øEU, we have, for controlled-U operations, DEU
=DxU8 .

IV. CAPACITIES FOR ZERO INITIAL HOLEVO
INFORMATION

It is clear that the capacityxU is an analogous quantity for
communication toEU for entanglement; similarlyDxU is
analogous toDEU. Although it is possible to derive inequali-
ties for these quantities analytically, these results are not suf-
ficient to determine whether these capacities are equal. In
this section we perform a direct numerical comparison be-
tween the two capacitiesxU andEU. In addition we present
results for the simplest capacityxU8 . We then derive analytic
results for these capacities in Sec. V. In Sec. VI we numeri-
cally compare the capacitiesDxU andDEU.

In this paper we concentrate on two-qubit unitary opera-
tions. It is not possible to perform calculations for the entire
range of two-qubit operations. To make the problem feasible,
we only consider a limited number of examples of two-qubit
operations. In particular, we consider operations of the form

U1sad = Udsa,0,0d, s27d

U2sad = Udsa,a,0d, s28d

U3sad = Udsa,a,ad, s29d

where

Udsa1,a2,a3d = e−isa1s1^s1+a2s2^s2+a3s3^s3d. s30d

The operationsU1, U2, and U3 correspond to theCNOT,
doubleCNOT sDCNOTd, andSWAP families of operations con-
sidered in Ref.f6g.

In order to consider the complete range of two-qubit uni-
tary operations in the case of the entanglement, it is sufficient
to consider operations of the forms30d, with p /4ùa1ùa2
ùa3ù0 f5g. This derivation relies on the fact that any two-
qubit unitary operation may be simplified to one of the form
s30d with p /4ùa1ù ±a2ùa3ù0 using local operations
f3,5,18,19g. In addition to using local operations, the deriva-
tion in Ref.f5g relies on the fact that the entanglement capa-
bilities of U andU* are identicalswhich implies that all the
ai may be taken to be positived.

Similarly, for the Holevo information, xsTrAEd
=xsTrAE*d and xsTrAUEd=xsTrAU*E*d. Thus the capacities
of U andU* to increase the Holevo information are identical.
Therefore, in order to obtain results for the complete range of
two-qubit unitary operations, it is sufficient to consider op-
erations of the forms30d with p /4ùa1ùa2ùa3ù0 in the
cases of both the entanglement and the Holevo information.
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This restriction on the values of theai defines a three-
dimensional region of values. For most results in this paper
we do not consider the entire region; however, the operations
U1, U2, andU3 which we consider form three lines on the
boundaries of this region.

The numerical results forEU, xU8 , andxU
* for the operation

U1 are shown in Fig. 1. It was found that, forU1, the capac-
ity EU was achieved without ancilla, in agreement with Ref.
f5g. The values ofxU

* were determined with no ancilla and
two states in the ensemble, as well as with ancillas of dimen-
sion 4 and four states in the ensemble. It was found that the
results in these two cases were identical, indicating that, for
U1, a final Holevo information equal to the asymptotic ca-
pacity xU may be achieved without ancillas and with an en-
semble consisting of two states.

In addition, note that there is no difference between the
results obtained forEU and xU. These results strongly indi-
cate thatEU=xU for the operationU1. We also find thatEU
=xU8 for U1. This result may be predicted from the results of
Sec. III, because operations of the formU1 are equivalent to
controlled-U operationsf21g.

Numerical results forEU, xU8 , and xU
* for the operations

U2 andU3 are shown in Figs. 2 and 3, respectively. In both
cases, we find thatxU8 is well below the other capacities. For
U2, the capacityxU

* is increased for ancilla dimensions
higher than 2. For an ancilla dimension of 2, the value of
xU

s4,2d is less thanEU for many of the samples. The values of
xU

s4,3d are larger, but still less thanEU. When the ancilla di-
mension is increased to 4, we find thatxU

s4,4d is equal toEU,
just as in the case ofU1.

For U3, the results are similar, except that for some of the
samplesxU

* is slightly larger thanEU. For a=p /40, 2p /40,
and 3p /40, the values of bothxU

s4,3d andxU
s4,4d are larger than

EU. This difference is small, less than 0.02, but it is sufficient
to demonstrate thatEU is not equal toxU for U3. For the
other samples we find thatxU

s4,4d is equal toEU.
For bothU2 andU3 calculations have been performed for

an ancilla dimension of 8 and an ensemble size of 8, and in
both cases it was found thatxU

s8,8d is unchanged fromxU
s4,4d.

These results indicate that, for all three classes of operation
tested, a final Holevo information equal to the asymptotic
capacityxU may be achieved with ancillas of dimension 4
and an ensemble size of 4.

Our results also indicate that for two of the classes of
operation tested,U1 andU2, xU is equal toEU. For the op-
erationU3, it is possible to obtain slightly higher values of
xU

* , demonstrating thatxU is not equal toEU for this opera-
tion. Nevertheless, the results still indicate thatxU is close to
EU for this operation.

V. ANALYTIC RESULTS FOR ENSEMBLES

In the numerical results forEU presented in the previous
section it was found that the maximal values were obtained
for initial states in one of two forms:

u01l, su00l + u11ldsu00l + u11ld/2. s31d

Here we use the convention that, where there are four sub-
systems, these areAanc, AU, BU, and Banc. Where there are

FIG. 1. Capacities with zero initial entanglement or Holevo in-
formation for the operationU1. The values ofEU are shown as the
solid line, and the values ofxU8 , xU

s2,1d, xU
s4,4d are shown as the

circles, plusses and squares, respectivelysthese symbols overlap
and are not separately visibled.

FIG. 2. Capacities with zero initial entanglement or Holevo in-
formation for the operationU2. The values ofEU are shown as the
solid line, and the values ofxU8 , xU

s4,2d, xU
s4,3d, andxU

s4,4d are shown as
the circles, plusses, crosses, and squares, respectively.

FIG. 3. Capacities with zero initial entanglement or Holevo in-
formation for the operationU3. The values ofEU are shown as the
solid line, and the values ofxU8 , xU

s4,2d, xU
s4,3d, andxU

s4,4d are shown as
the circles, plusses, crosses, and squares, respectively.
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two subsystems, these are simplyAU and BU. It has been
found numerically that the maximal finallinear entropy is
obtained for one of the two statess31d f5g. To test this hy-
pothesis for the case of the entropy of entanglement, the
value of EU was determined for operationsUdsa1,a2,a3d
such thatp /4ùa1ùa2ùa3ù0. Recall that this range of
operations is sufficient to characterize the capacities for all
two-qubit unitaries. Step sizes ofp /4000 for each of theai
were used, and in each case one of the initial states in Eq.
s31d gave a final entanglement as large as the maximum ob-
tained numerically. This is compelling evidence that, for
two-qubit unitaries, the maximum final entropy of entangle-
ment is always obtained for one of these two states.

Next we show that, provided the maximum final entropy
is obtained for one of the initial statess31d, xUùEU. To
show this result, we first determine the entanglement ob-
tained for the initial states in Eq.s31d. To determine these
entanglements, we use the expression given by Ref.f12g:

Udsa1,a2,a3d = sc1c2c3 + is1s2s3ds0 ^ s0 + sc1s2s3

+ is1c2c3ds1 ^ s1 + ss1c2s3 + ic1s2c3ds2

^ s2 + ss1s2c3 + ic1c2s3ds3 ^ s3, s32d

wheresi =sinai andci =cosai. Using this expression it may
be shown that the two final entanglements obtained are

Hscos2 a+,sin2 a+d, Hsm+,m−,n+,n−d, s33d

wherea±=a1±a2,

m± = ssin2 a+ + sin2 a−d/2 ± sina+sina−coss2a3d,

n± = scos2 a+ + cos2a−d/2 ± cosa+cosa−coss2a3d,

s34d

and the functionH is the entropy of the arguments

Hsl1,…,lNd = − o
n=1

N

ln log ln. s35d

Next we consider two different ensembles:

E1 = h1/2,su011l ± u100ld/Î2j,

E2 = h1/4,sifu0lsu00l + u11ld + u1lsu02l + u13ldg/2j, s36d

wheresi acts upon subsystem 1 andi [ h0,1,2,3j. Here we
use the convention that subsystems 1, 2, and 3 areAU, BU,
andBanc, respectively. In the first case subsystem 3 is a qubit,
and in the second case subsystem 3 is a four-level ancilla.

Considering ensembleE1 first, applying Udsa1,a2,a3d
gives the two alternative states

sc+u011l + s+u101l ± c+u100l ± s+u010ld/Î2, s37d

where

c± = e7ia3 cosa±, s± = ie7ia3 sina±. s38d

We find that the reduced density matrices for Bob are

1

23
uc+u2 ±s+

* c+ 0 0

±s+c+
* us+u2 0 0

0 0 us+u2 ±s+c+
*

0 0 ±s+
* c+ uc+u2

4 . s39d

Both of these have entropy 1, but the average density matrix
has entropyHsuc+u2, us+u2d+1. Thus the final Holevo informa-
tion is the same as the final entanglement for the initial state
u01l.

For the ensembleE2, the four states obtained aresignoring
a trivial global phase foruc2ld

uc0/3l = fc+su011l ± u102ld + s+su101l ± u012ld

+ c−su000l ± u113ld + s−su110l ± u003ldg/2,

uc1/2l = fc+su100l ± u013ld + s+su010l ± u103ld

+ c−su111l ± u002ld + s−su001l ± u112ldg/2. s40d

It is straightforward to verify that each of these states is
maximally entangled, so the reduced density matrix has en-
tropy of 1. The average reduced density matrix for Bob has
entropyHsm+,m−,n+,n−d+1, resulting in a total Holevo in-
formation ofHsm+,m−,n+,n−d.

Therefore if the maximal entanglement is obtained for one
of the two initial states in Eq.s31d, thenxUùEU. Given the
compelling numerical evidence that the maximal entangle-
ment is always obtained for one of these two initial states,
our results show thatxUùEU for two-qubit unitaries. How-
ever, this result is not proven due to the reliance on numeri-
cal results.

There is also a relatively simple ensemble for which the
final Holevo information is greater thanEU for someU. It is
given by

E3 = h1/3,Hifu1lsu00l + u11l + u02ld

− u0lsu10l + u01l − u12ldg/Î6j, s41d

whereHi acts upon subsystem 1 andi [ h0,1,2j. H0 is the
identity, H1 is the Hadamard operator, andH2 has the matrix
representation

H2 =
1
Î2
F− 1 1

1 1G . s42d

As before, subsystems 1, 2, and 3 areAU, BU, and Banc,
respectively. It can be verified numerically that the Holevo
information obtained for this ensemble agrees with that dis-
played in Fig. 3.

In the case of the operationU1, it is not necessary to rely
on the numerical results. In this case it has been proven that
the maximal entanglement is obtained for either of the two
initial states in Eq.s31d f5g. Alternatively, this result may be
deduced from the fact that operations of the formU1 are
equivalent to controlled-U operationsf21g, so xU8 =EU. As
xU8 øxU, this proves thatxUùEU for U1.

To understand this result in terms of ensembles, the maxi-
mum entanglement is obtained for the initial stateu01l. Using
the method given in Sec. III we may derive the ensemble

D. W. BERRY AND B. C. SANDERS PHYSICAL REVIEW A71, 022304s2005d

022304-6



E3=h1/2,su0l± u1ldu1l /Î2j from this state. It is easily verified
that this ensemble gives the final entanglement
Hscos2 a ,sin2 ad. Therefore, in the case ofU1, there is a
simple explanation of the resultxUùEU in terms of en-
sembles. However, we do not have a similar explanation for
the general case.

An aspect of the results forxU8 that may be explained is
thatxU8 does not exceed 1. In general the Holevo information
can be no more than logdAU

higher than the initial entangle-
ment. This result may be shown in the following way:

xspi,TrA UViuclABd ø xspi,TrAanc
UViuclABd

ø SSo
i

piTrAanc
UViuclABD

= SsTrAanco
i

piViuclABkcuVi
†d

ø SsTrAancBo
i

piViuclABkcuVi
†d

+ SsTrAuclABd

ø log dAU
+ EsuclABd. s43d

Here EsuclABd is the entanglement of the initial state. This
result is related to superdense coding. In particular, it is
known that when transmitting a qudit, the information com-
municated can be no larger than logd plus the initial en-
tanglementf20g.

From this result it is clear that using unentangled states
for two-qubit unitaries will not allow a capacity above one
bit. Although we find thatxU8 =EU for controlled-U opera-
tions, we cannot expect this result for more general opera-
tions, becauseEU may be higher than logdAU

.

VI. CAPACITIES FOR ARBITRARY INITIAL ENSEMBLES

Next we consider the capacitiesDxU andDEU. These ca-
pacities are more general, in that arbitrary initial states or
ensembles are allowed. Analytic results for the relation be-
tween these capacities were derived in Refs.f14,15g. It was
proven that, for two-qubit unitary operations,DxUùDEU. If
a change in the entanglement ofDEU is obtained with a
particular ancilla dimension, then an increase in Holevo in-
formation equal toDEU may be obtained with the same an-
cilla dimension, and with four states in the ensemble.

In principle it is possible that there is no finite ancilla
dimension that achievesDEU, and insteadDEU is approached
in the limit of large ancilla dimension. However, in practice
it has been found that, for two-qubit unitary operations, it
appears to be possible to achieveDEU with an ancilla dimen-
sion of 2f6g. This means that it should be possible to achieve
an increase in Holevo information ofDEU with an ancilla
dimension of 2.

The capacitiesDxU
* andDEU

* are shown for the operation
U1 in Fig. 4. It was found that the entanglement capacity
DEU

* did not increase beyond that for no ancilla as the ancilla
dimension was increased up to 5, in agreement with the re-
sult given in Ref.f6g.

The capacitiesDxU
* without ancilla and with ancillas of

dimension 2 are shown in Fig. 4. In both cases these capaci-
ties are for ensembles with two states. It was found that, even
without ancilla, the capacityDxU

* is greater than the values
calculated forDEU

* . The only cases where there is equality
are the trivial cases wherea=0 or p /4. These results
strongly indicate that, for some unitary operations, there is
the strict inequalityDxU.DEU.

In addition, the capacityDxU
* is slightly increased by add-

ing an ancilla. This is not so visible in Fig. 4; to make this
difference visible, the differences between the capacities
DxU

* with ancilla and the capacities with no ancillaDxU
s2,1d

are plotted in Fig. 5. It can be seen that there is a small but
significant increase inDxU

* when an ancilla is allowed.
There are further increases as the ancilla dimension is

increased to 3, 4, or 5ssee Fig. 6d. These results suggest that
there is no finite ancilla dimension for which the capacity is
equal to the asymptotic capacityDxU. However, each in-
crease in the capacity with the ancilla dimension is smaller
than the previous, indicating that the results calculated here
should be a good approximation ofDxU.

Calculations were also performed with four-dimensional
ancillas and four states in the ensemble, and without ancillas

FIG. 4. Capacities with arbitrary initial states or ensembles for
the operationU1. The values ofDEU

s1d and DEU
s2d are shown as the

solid line, and the values ofDxU
s2,1d and DxU

s2,2d are shown as the
circles and plusses, respectively.

FIG. 5. The differences betweenDxU
* andDxU

s2,1d for the opera-
tion U1. The values ofDxU

s2,2d−DxU
s2,1d and DxU

s2,3d−DxU
s2,1d are

shown as the plusses and crosses, respectively.
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and eight states in the ensemble. In both cases it was found
that there was no increase in the capacity above that for two
states in the ensemble.

The results forDxU
* and DEU

* for the operationU2 are
shown in Fig. 7. In each case shown, ensembles with four
states were used. In the case without ancilla, it was found
that DxU

s4,1d and DEU
s1d were equal. When an ancilla is in-

cluded, there is a significant increase in bothDxU
* andDEU

* .
In particular, these have a maximum of 2, rather than 1 as in
the case without ancilla.

Note also that the value ofDEU
* is increased when an

ancilla is added for each of the values ofa except the trivial
points ata=0 andp /4. In contrast, for the data shown in
Ref. f6g there was no visible increase inDEU

* when the an-
cilla was included for another three data pointssat a
=p /40, 2p /40, and 3p /40d. The data points given in Ref.
f6g appear to correspond to the local maximum for the solu-
tion with no ancilla, rather than the global maximum.

It was found that using ancilla dimensions above 2 up to
an ancilla dimension of 5 did not increaseDEU

* , in agreement

with Ref. f6g. When the ancilla was included,DxU
* was

slightly greater thanDEU
* , just as in the case of the operation

U1. In addition, it was found thatDxU
* was further increased

as the ancilla dimension was increased beyond 2ssee Fig. 8d.
In this case the difference is somewhat greater, being around
0.02 rather than 10−4, but the values still appear to be con-
verging for large ancilla dimension. Calculations were also
performed for an ancilla dimension of 2 and an ensemble
size of 8. It was found that no increases inDxU

* were ob-
tained with this increase in the ensemble size.

The results forU3 are shown in Figs. 9 and 10. All results
here are for ensembles with four states. In this case it was
found that, if the ancillas had dimension 2, the values of
DxU

s4,2d andDEU
s2d were identical. In other respects the results

were similar to those for the operationU2. The value ofDEU
*

was not increased by increasing the ancilla dimension above
2, as for the operationsU1 and U2. The value ofDxU

* was
increased for larger ancilla dimensions, so for these larger
ancilla dimensionsDxU

* was not equal toDEU
* . Also, for an

ancilla dimension of 2, there was no increase inDxU
* when

the ensemble size was increased to 8.
To summarize, our results strongly indicate thatDxU is

strictly greater thanDEU for most two-qubit unitary opera-

FIG. 6. The differences betweenDxU
* andDxU

s2,2d for the opera-
tion U1. The values of DxU

s2,3d−DxU
s2,2d, DxU

s2,4d−DxU
s2,2d, and

DxU
s2,5d−DxU

s2,2d are shown as the crosses, squares, and asterisks,
respectively.

FIG. 7. Capacities with arbitrary initial states or ensembles for
the operationU2. The values ofDEU

s1d and DEU
s2d are shown as the

dotted and solid lines, respectively, and the values ofDxU
s4,1d,

DxU
s4,2d, andDxU

s4,3d are shown as the circles, plusses, and crosses,
respectively.

FIG. 8. The differences betweenDxU
* andDxU

s4,2d for the opera-
tion U2. The values of DxU

s4,3d−DxU
s4,2d, DxU

s4,4d−DxU
s4,2d, and

DxU
s4,5d−DxU

s4,2d are shown as the crosses, squares, and asterisks,
respectively.

FIG. 9. Capacities with arbitrary initial states or ensembles for
the operationU3. The values ofDEU

s2d are shown as the solid line,
and the values ofDxU

s4,2d, DxU
s4,3d, and DxU

s4,4d are shown as the
plusses, crosses, and squares, respectively.

D. W. BERRY AND B. C. SANDERS PHYSICAL REVIEW A71, 022304s2005d

022304-8



tions, rather than simply greater than or equal to, as was
shown in Refs.f14,15g. Nevertheless, for the operations we
have examined, the values calculated forDxU are quite close
to DEU. In addition, our results show that there are no in-
creases inDEU

* as the ancilla dimension is increased above 2,
but there are increases inDxU

* . In each case, there were in-
creases inDxU

* with ancilla dimension up to the largest di-
mension tested. These were small increases, indicating that
the asymptotic valueDxU was approximated accurately for
the larger ancilla dimensions used. Also the calculations in-
dicate thatDxU

* is not increased as the ensemble size is in-
creased above 4, so it is not necessary to use arbitrarily large
ensemble sizes in estimatingDxU.

VII. CONCLUSIONS

We have shown that, for a range of two-qubit unitary
operations, the values of the capacitiesxU andDxU are close
to EU and DEU, respectively. In no case was there a differ-
ence larger than 0.05, and in most casesxU was equal toEU.
This result supports Conjecture 2 made in the introduction.
From these results, it is reasonable to posit an accuracy in the
approximation of 5% of logd. Here the logd takes account
of the fact that the maximum capacity of two-qudit opera-
tions scales as logd.

We have also shown that, for the capacityxU, ancilla di-
mensions of 2 are not sufficient to accurately estimate the
capacity. The results indicate that the capacity is achieved
with ancillas of dimension 4. ForDxU, there were further
increases in the capacity with the ancilla dimension above 4,
though these differences were very small. In both cases, the
results indicate that an ensemble size of 4 is sufficient to
calculate the capacity. Also, the results indicate that an an-
cilla dimension of 2 is sufficient forDEU. These results are
summarized in Table I. Thus we find that the results support
a modified version of Conjecture 1:

Conjecture 18. For a unitary operationU that acts upon
two subsystems of dimensiond, the Holevo capacities may
be estimated accurately using ancillas of dimensiond2 and
ensembles withd2 states.

Judging from the numerical results, it would be reason-
able to posit an accuracy of 1% of logd.

In previous workf14,15g it was proven thatDxUùDEU
for two-qubit unitaries; here we have shown thatxUùEU. As
part of this derivation we have shown numerically that the
maximum final entanglement is obtained for one of two ini-
tial states. We have not proven this result, because it is not
possible to completely search the entire space of two-qubit
operations. However, we have performed a sufficiently thor-
ough search that it is highly unlikely that there is a counter-
example.

In the case of capacities where the initial states are unen-
tangled, it is possible to derive further analytic results. We
have proven that, in general,xU8 øEU andDxU8 øDEU, and in
the specific case of controlled-U operationsxU8 =EU and
DxU8 =DEU. That is, we have proven that Conjecture 2 holds
for these capacities in the case of controlled-U operations. In
addition, in the case ofxU8 , Conjecture 1 can be proven to
hold. It is possible to obtain the capacityxU8 for a two-qudit
operation with an ancilla of sized for Bob, no ancilla for
Alice andd2 states in the ensemble.

It must be emphasized that there is an inherent uncertainty
in the numerical results. It is possible, though unlikely, that
there is a significant change in the capacity for larger en-
semble sizes or ancilla dimensions than have been tested
here. Also, the numerical maximization is not guaranteed to
find the global maximum. Nevertheless, it is reasonable to
conclude from the numerical results presented here that, for a
range of two-qubit unitaries, the capacities for creating en-
tanglement and performing communication are numerically
close. It is already known that there are some connections
between these capacitiesf14,15g; the fact that there is nu-
merical agreement suggests that there may be further rela-
tions. Further work on analytically deriving relations is de-
sirable but challenging.
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APPENDIX: ENSEMBLE SIZE AND ANCILLA
DIMENSION LIMITS

Let us consider the ensembleE=hpi , ucilABj. We may use
this ensemble for any of the capacitiesxU8 , DxU8 , xU, or DxU.

FIG. 10. The differences betweenDxU
* and DxU

s4,2d for the op-
eration U3. The values ofDxU

s4,3d−DxU
s4,2d, DxU

s4,4d−DxU
s4,2d, and

DxU
s4,5d−DxU

s4,2d are shown as the crosses, squares, and asterisks,
respectively.

TABLE I. The ensemble sizes and ancilla dimensions required
for exactly calculating various capacities for two-qubit unitary op-
erations as indicated by the numerical results.

Capacity Ensemble size Ancilla dimension

EU NA 2 f12g
xU 4 4

DEU NA 2

DxU 4 ù5
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These capacities differ only in the restriction on the initial
ensemble. In each case, the change in the Holevo informa-
tion is

SsTrAU
UrU†d − SsTrAU

rd

− o
i

pifSsTrAU
UriU

†d − SsTrAU
ridg, sA1d

whereri =TrAanc
ucilAB andr=oipiri.

If the number of states in the ensemble is less than
sdAU

dBd2, then it is possible to find an ensemble that has a
smaller number of states and gives a change in the Holevo
information that is at least as large. To show this result, from
Caratheodory’s theoremf22g it is possible to form a convex
combination of no more thansdAU

dBd2 of the ri to obtainr.
That is,

r = o
i[S

qiri , sA2d

whereS is a set of no more thansdAU
dBd2 indices. Now let us

definer =mini[S pi /qi and

pi8 =5
pi − rqi

1 − r
for i [ S

pi

1 − r
for i ¹ S

. sA3d

There must be at least one value ofi for which pi8 is zero; we
denote the set of indices for whichpi8 is nonzero byS8. Also,
it is clear that

r = o
i[S8

pi8ri . sA4d

Therefore there are two ensemblesE1=hqi ,rij and E2

=hpi8 ,rij, that give the samer, and both of these ensembles
have fewer states than the original ensembleE.

The change in Holevo information for the original en-
semble may be written as

xsUEd − xsEd = SsTrAU
UrU†d − SsTrAU

rd

− o
i

pifSsTrAU
UriU

†d − SsTrAU
ridg

= SsTrAU
UrU†d − SsTrAU

rd

− ro
i[S

qifSsTrAU
UriU

†d − SsTrAU
ridg

− s1 − rd o
i[S8

pi8fSsTrAU
Uri U†d − SsTrAU

ridg

= rfxsUE1d − xsE1dg + s1 − rdfxsUE2d − xsE2dg.

sA5d

Thus the change in Holevo information forE is a weighted
average of that forE1 andE2. At least one of these must give

a change in Holevo information that is as large as that forE.
Hence we can find an ensemble that has fewer members, and
gives a change in Holevo information that is at least as large.
By iterating this procedure, we can obtain an ensemble that
has no more thansdAU

dBd2 states, but gives a change in
Holevo information that is at least as large as that for the
original ensemble. Therefore it is only necessary to consider
ensembles with no more thansdAU

dBd2 states.
In the case of the capacityxU8 , the states in the ensemble

are ucilAB= ufilAuxlB. We use the notationrA=TrB r and ri
A

=TrB ri. The densityri
A may be expressed as

ri
A = o

j

qij ufi jlAU
kfi j u. sA6d

The final Holevo information is then

SfTrAU
UsrA

^ uxlBkxudU†g − o
i

piSfTrAU
Usri

A

^ uxlBkxudU†g

ø SfTrAU
UsrA

^ uxlBkxudU†g

− o
i j

piqijSsTrAU
Uufi jlAU

uxlBd. sA7d

Therefore at least as large a capacity may be obtained using
ufilA that are not entangled betweenHAU

andHAanc
. That is,

one may consider statesufilAU
within HAU

, and omit Alice’s
ancilla entirely. Also, it is clear that the ancilla for Bob need
have dimension no larger thandBU

. This is because the
Schmidt decomposition ofuxlB can have no more thandBU
terms.

Using Caratheodory’s theorem, the densityrA may be ex-
pressed as a convex combination of no more thandAU

2 of the
ufilAU

. Therefore via exactly the same reasoning as in the
general case above, the ensemble in this case need have no
more thandAU

2 states.
Similar considerations hold forDxU8 . The states in the

ensemble areucilAB= ufilAuxilB, and the change in Holevo
information is

SsTrAU
U rU†d − SsTrAU

rd

− o
i

piSfTrAU
Usri

A
^ uxilBkxiudU†g

ø SsTrAU
UrU†d − SsTrAU

rd

− o
i j

piqijSsTrAU
Uufi jlAU

uxilBd. sA8d

Therefore it is again possible to omit the ancilla for Alice.
The situation is more complicated for Bob’s ancilla, due to
the multiple statesuxilB. In this case it does not appear to be
possible to place a limit on the dimension required for the
ancilla.
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