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Control of decoherence: Analysis and comparison of three different strategies
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We analyze and compare three different strategies, all aimed at controlling and eventually halting decoher-
ence. The first strategy hinges upon the quantum Zeno effect, the second makes use of frequent unitary
interruptions(“bang-bang” pulses and their generalization, quantum dynamical decoygimdthe third uses
a strong, continuous coupling. Decoherence is shown to be suppressed only if the frejueite mea-
surements or pulses is large enough or if the couing sufficiently strong. Otherwise, M or K is large, but
not extremely large, all these control procedures accelerate decoherence. We investigate the problem in a
general setting and then consider some practical examples, relevant for quantum computation.
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I. INTRODUCTION quent(unitary) interruptions during the evolution of the sys-

Interactions with the environment deteriorate the purity oft€m. in order to suppress the system-environment interaction.
quantum states. This general phenomenon, known as decéhere is a manifest similarity with the QZE. It is, however,
herencd 1], is a serious obstacle against the preservation o€lear that the two procedures are physically equivalent, if one
quantum superpositions and entanglement over long periodédheres to the commonly accepted interpretation of the QZE
of time. Decoherence entails nonunitary evolutions, with seas abona fidedynamical process, that can be completely
rious consequences, like a loss of information and/or probexplained in terms ofunitary evolutions[25]. One should
ability leakage toward the environment. notice that this idea hinges upon a seminal remark by Wigner

This issue is recently attracting much attention in view of[26], who introduced in 1963 the notion of “spectral decom-
interesting applications: for instance, the possibility of con-position,” namely, a dynamical process that associates a dif-
trolling and eventually halting decoherence is a key problenferent wave packet with each eigenvalue of the observable to
in quantum computatiof2], where several computational be measured. For example, the interesting proposal by Cook
states are simultaneously described by a single wave fun¢27] and the subsequent experiment with Rabi oscillations
tion and parallel information processing is carried out by[28] can be easily interpreted in fully dynamical terms when
unitary operations. In such a situation, efficient quantum alone observes that the “measurement” was realized as a dy-
gorithms need large scale computations, performed @aer namical processoptical pulse irradiation[16,25,29.
croscopically long time span$3]. Once this physical equivalence is appreciated, the next

A number of interesting schemes have been proposed dulegical step is a natural one: after having analyzed and un-
ing the last few years in order to counter the effects of dederstood the consequences of frequent unitary pulses, one
coherence. Among these, there are quantum error-correctirgjudies the effect of a stron@nitary) continuous coupling.
codes[4], schemes based on feedback or stochastic contrdlhe relationship between these two procedures can be made
[5], the use of decoherence-free subspaces and noiseless soiathematically precisésee Sec. )land is of interest in it-
systems[6], and mechanisms based on frequent unitaryself: if an external field or “apparatus” is coupled to the
“bang-bang”(BB) pulses and their generalization, quantumsystem in such a way that the state of the system is “moni-
dynamical decouplin§7—11]. In this context, it was recently tored” in some sensg30-33, a Zeno-like dynamics takes
proposed 12] that the method of dynamical decoupling can place in the strong coupling limit and once again one can
be unified with the basic ideas underlying the quantum Zendailor decoherence-free subspa¢ég]. This happens to be
effect(QZE) [13,14] (for a review, se¢15,16)). In particular,  one of the most efficient and convenient control procedures,
the decoherence-free subspace is one of the dynamically gefiem a practical point of view.

erated quantum Zeno subspa¢&g], within which the dy- The aim of this article is to investigate these different
namics is not trivial[18] and whose subtle mathematical physical procedure§Zeno, BB dynamical decoupling, and
aspects are still debaté¢d4,19-23. continuous coupling and compare their effects. We will

It is worth stressing that the “bang-bang” scheme is astudy the dynamics generated by very frequent interruptions
well-established “classical” control method, typically used in(projective measurements or unitary “kicks,” yielding dy-
engineering problems and in connection with spin-echo techaamical decoupling or by very strong coupling, and inves-
niques; see, for instance, R¢R4]. Its revival in quantum- tigate the possibility of designing decoherence-free sub-
information-related problems is only very recent. The keyspaces. The method is general and can be applied to diverse
ingredient of BB and dynamical decoupling is to apply fre-situations of practical interest, such as atoms and ions in
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cavities, organic molecules, quantum dots, and Josephson Liot= Lo+ Lsg=Ls+ Lg+ Lgp, (3)
junctions[34-37].

Our main objective is to endeavor to understand whethewhere the meaning of the symbols is obvious. We will not
it is possible tocontrol decoherencé38-42. Clearly, this ~ explicitly write the coupling constant multiplying the in-
requires a thorough understanding of the physical mechderaction LiouvillianLsg
nisms that provoke decoherence and in general dissipative We focus on a proper subspa@é;om,C Hs, in which
phenomena. One finds that very frequent kicks or measurdéiuantum computation is to be performed. For this reason we
ments or very strong couplings can indeed control the evowill look in detail at the case
lution of the system and suppress decoherence: The physical _
mechanisms at the origin of this phenomenon are very close Hs=Heomp® Horth: (4)
to the quantum Zeno effect. However, if the kicks or mea-n particular, when we look at some concrete examples, in

surements are not extremely frequent or the coupling nokec v, the computation subspace will be a quBitomp
extremely strong, both controls magceleratedecoherence. -2

This extends the notion of the “inverse” quantum Zeno effect  gince, in general, the reservoir state is mixed, it is conve-
(IZE) [43,44 to a wider frameworKnot necessarily based on pjent to describe the time evolution in terms of density ma-
projection operators and nonunitary dynamiaed entails a = trices. In the case of a quantum state manipulation, the initial
deterioration of the performance of these schemes. We Wiliiate of the total system(0) is set to be a tensor product of

analyze this effect in great detail and see that in order {qne system initial state(0) and a reservoifusually equilib-
avoid it, one must carefully design the control and study therium) statepg

time scales involved. Our analysis is of general validity;
however, for the sake of definiteness, we will study in par- p(0) = 0(0) ® pg. (5)
ticular the control of thermal decohereneks). o ) )
This article is organized as follows. In Sec. Il we briefly The derivation of the master equation from E¢B—(5) is
review the main features of the different control proceduresgiven in Appendix A. The validity of the assumptidb),
Our analysis is based on a master equation which is derivedsually taken for granted, is discussed in AppendixsBe
in Sec. Ill, where the relevant time scales are emphasize@lS0 [46)). The system state(t) at timet is given by the
and the general type of interaction specified. We then conpartial trace of the state(t) of the whole system with respect
sider the case of thermal decoherence, discussing the Zeit® the reservoir degrees of freedom:
control, the control via dynamical decoupling, and the con- .
trol by means of a strong continuous coupling in Secs. IV, V, a(t) = trgp(t). 6)
and VI, respectively. Some relevant examples are then conyhen ¢(t) is not unitarily equivalent tar(0) for a given
sidered in Sec. VI, where we focus on the primary role of¢|ass of initial states, decoherence is said to occur. The pur-
the form factors of the interaction in order to compare theyose of the control is to suppress such decoherence. Note
different control procedures. Section Vlll is devoted to con-that for the control of decoherence, it is not necessary to
clusions and perspectives. Four Appendixes A-D, containingyok at all possible states: rather, it is sufficient to consider
detailed calculations that are omitted in the text, are addegny those initial states that are relevant to the quantum state
for clarity. manipulation in question.

II. CONTROL PROCEDURES: GENERALITIES
A. Quantum Zeno control

Lgt the tptal system consist of a target system and a res- \ye first look at the Zeno control, by adapting the argu-
ervoir and its Hilbert spacet,=Hs® Hg be expressed as ment of Ref.[17]. The control is obtained by performing
the tensor product of the system Hilbert spd¢g and the  frequent measurements of the system. The measurement is

reservoir Hilbert spacé{gz. The total Hamiltonian described by a projection superoper 7 cting on the den-
Hiot=Ho+Hsp=Hs® lg+1s® Hg + Hsp (1) sity matrix

is the sum of the system Hamiltoniats® 1g, the reservoir p—Pp=> (P, ® lg)p(P, ® lg), (7)
Hamiltonianls® Hg, and their interactiotdsg, which is re- n

sponsible for decoherence; the operatbysand 1g are the ) o .
identity operators in the Hilbert spacess and Mg, respec- where{P,} is a set of orthogonal projection operators acting

tively, and the operatorsls andHg act onHg and Hg, re- N Hs. In the following, we restrict our analysis to a mea-
spectively. suring apparatus that does not “select” the different outcomes

The dynamics of the total system is conveniently ex-(nonselective measuremgp47], with a complete set of pro-
pressed in terms of the Liouville operatgriouvillian) £, J€ction operator£,P,=ls. The measurement is designed so

defined by that

Ligp = = i[Hioup] = = 1(Hiop = pHop), 2 PHgs= 2 (P, ® lg)HsgP, ® 1) = 0. (8)
wherep is the density matrix. If the Hamiltonian is given by "
Eq. (1), the Liouvillian is accordingly decomposed into In terms of the Liouvillian, this condition reads
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B. Control via quantum dynamical decoupling
and “bang-bang” pulses

(We will see in the next subsection that a similar requirement \We now turn our attention to the so-called quantum dy-
is necessary for the BB control and for the control via anamical decoupling8—10], of which “bang-bang” pulses can
continuous coupling. The Zeno control consists in per- pe viewed as a particular case. The control of decoherence is
forming repeated nonselective measurements at timegchieved via a time-dependesysterrtHamiltonianH(t):
t=kr(k=0,1,2,..) (we include an initial “state preparation”

at t=0). Between successive measurements, the system H(t) =Hior + He(t) ® lg, (19)
evolves viaH. The density matrix afteN+1 measure- \yhereH,(t) is designed so that

ments, with an initial statg(0), is given by

PLsP =0. (9)

t
p(1) = p(N7) = (PecerP)Ny(0). (10) Uy = TeXp<_ ' f . HC(S)dS) (20
We take the limitr— O while keeping=Nr constant and get (7 denotes time orderingsatisfies
- .~ A =0, .. U (t+7)=U1), (21
p(t) = P[1 + PLP7+0(79)]/"p(0) — PeoPp(0). ¢ ¢
) J dULD) ® IgHsdU D © 15]=0.  (22)
0

Equation(8) yields
In the interaction picture in whichl(t) is unperturbed, the

PL1oiPp = = iP[Hio, Pp] = —iP[(PHiay), o] density matrix at time=N7, with initial statep(0), is given
3 = T
— IP[H/S® lB + 15@ HB,p], (12) by p(t)_UIOt(NT)p(O)Utot(NT) where
N7
with H4=PH¢=3,P,HsP,, whence Ut(NT) =T exp<- [ f Htot(s)ds>
0
PeP‘iop(0) = Petolp(0) = PleMotp(0)eMof],  (13) . N
=| Texp - if Hioi(S)ds (23)
where the controlled HamiltoniaHl;,, and Liouvillian £/ 0
are given by ~ + )
andH(t) =[U(t) ® 1g]H;o Uc(t) @ 1g]. The second equality
Hiy = ISHtotz Hs® g+ 1s® Hg, (14)  follows from the periodicity ofH,,(t). A standard Magnus
expansion of the time-ordered exponenfi4] leads to
Lio™PLoP =PLP + LeP= Lo+ LgP, (19 TeXp<_ i f "Hmt(s)ds) =g O (24
0

Hence, as a result of infinitely frequent measurements, the
system—reservoir coupling is eliminatgd and,.thus_, deCOhe'iivhereﬁ(o)E(l/r)fgﬁtot(s)ds and the termHY is of order
ence is halted. We notice the formation of invariaténo (i=1,2,..). By assumptior(22), one has
subspace$l7] : in the limit of very frequent measurements, U '
the evolution is given by Eqs14) and (15) and transitions - HO=HL® Ig+1s® Hg = Hyy, (25)
among different sectors of the Hilbert space become forbid- . . ' )
den, yielding a superselection rule. The subspaces are déhich s forrmally |dent|lcal to Eq. (14), where Hg
fined by the superoperatét defining the measurement. The = (1/0Jodt Uc(DHU(t)=/gdx Uz(xn)HsUc(x7) is indepen-
“decoherence-free” subspace is one of these Zeno subspac8€nt of 7 becauseU(t) is = periodic by Eq.(21) and is
. . -~ . always written as a function af 7: U(t)=V(t/ 7). Therefore,

We will assume for simplicity thaP commutes with the . he limi hile Keepindt= .

system Liouvillian, in the limit 7— O while keepingt=N7 constant, one obtains
7—0

PLs=LP 16 Yal®=[L-iHr+O(2)]"— e Mol = sl o e7Mal,
(26)

short, as a result of the infinitely fast control, the system-
reservoir coupling is eliminated and, thus, decoherence is
halted. As we shall see in a while, this is a consequence of
the formation of invarian{Zeno subspaces.

i.e., H5=PHs=Hs, because our purpose is to control deco-
herence and we are not interested in a QZE over the syste
HamiltonianHs. The above assumption is equivalent to the
following hypothesis on the Hamiltonian:

[P, Hs]=0, 0On. (17) As is well known, dynamical decoupling is a generaliza-
tion of the evolution obtained by acting on the system with
In such a case “bang-bang” pulse§8]. In the latter, particular case, one ap-
~ plies during a time intervat two instantaneousinitary op-
L= (Ls+ Lp)P. (18)  eratorsU, andU] and getd12]
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HL, = IsHtoF 2 (P, ® Ig)Ho (P ® 1g) (27) C. Control via a strong continuous coupling
n

The formulation in the preceding sections hinges upon
instantaneous processes, which can be unitary or nonunitary.
However, as explained in the Introduction, the basic features
of the QZE can be obtained by making use of a continuous

Uk:E e™P, (A, # A\ymod 27 for n # m). (28) coupling, when the external system takes a sort of steady
n “gaze” at the system of interest. The mathematical formula-
) N o tion of this idea is contained in a theord7] on the(large-
Notice that the ma® is in this case the projection onto the ) dynamical evolution governed bygenericHamiltonian
commutant Of the type

Z(Up ={X|[X,Ui] = 0}. (29) Hy = Hye + KH, ® g, (33

Equation(27) yields a convenient explicit expression of the |, ... again need not describebana fidemeasurement pro-
effective Hamiltonian. As in the case discussed in the previcaqssH can be viewed as an “additional” interaction Hamil-
ous subsection, one observes the formation of invariant Zenﬁ)nian Cperforming the “measurement” akdis a coupling
subspaces: transitions among different subspaces vanish Wnstant.

the 7— 0 limit, yielding a superselection rule. In this case,  ~gnsider the time evolution operator

the subspaces are defined by E@F) and(28) and are noth-

ing but the ergodic sectors &fy. Uk(t) = exp(— iHkt). (34)

By assuming again, as in EqEl6) and (17), that PHs | the infinitely strong measuremefinfinitely quick detec-
=Hg and thatPHsg=0, as in Eqs(8) and (9), we get the tor) limit K—c, the dominant contribution is ekpiKH_t).
controlled evolution forr— 0, given by One therefore considers the limiting evolution operator

U(t) = Mot = g7Hst @ g7iHat (30) Ut = lim exp(iKH ) Uk(t), (35)
K—o

[see Eq(14)], where the projectionB, arise from the spec-
tral decomposition

or, in terms of Liouvillians, byeﬁt'ott with £{,=PLP=(Ls
+Lg)P, exactly as in Eq(18). .
Moreover, in Ref[12] it was shown that one can obtain U(t) = exp(=iH ), (36)
the same resul(27) by repeating a single “bang,” i.e., by
using a single instantaneous unitary operdtlr without
closing the group withJ]!. For simplicity, in the following Hyo = ﬁ)Htotzz (Pn ® 1g)Hiol( Py © 1g), (37)
we will always consider such a situation and will assume the n
commutation property16). In such a case, the evolution is
conveniently expressed in terms of the Liouvillian and den
sity matrix,

p(t) = [eSelor ]V Pp(0) — eColPp(0), 7—0, (31) He= En mPn - (m # 7w forn# m. (38)

where £, is the Liouvillian corresponding to the evolution
(28) and L is given by Eq.(18). Note that the controlled
Hamiltonians for bang-bang pulses, E&7), and for the
Zeno control, Eq(14), coincide when the set of orthogona
projections(7) is chosen equal to the sgt8) of eigenprojec-
tions of Uy, namely,

which can be shown to have the form

where

P, being the eigenprojection dfi, belonging to the eigen-
value 7,

By designingH. so thatPHgg=0, the system-reservoir
coupling is eliminated and, thus, decoherence is halted.
| Equation(37), restricted to the system of interest, is formally
identical to Eqs(27) and (14).
In conclusion, the limiting evolution operator is
Ekls -0, (|51) -1 (32) Uk(t) ~ exp(— iKHt)U(t)
Therefore, the two controls are equivalent in the idéai- = exp[— KL Pn @ 1g=1PHt | (39
iting) casg 12]. However, throughout this article, by dynami- "
cal decoupling we will refer to a situation where the evolu-The above statements can be proved by making use of the
tion is coherent(unitary), while by Zeno control to a adiabatic theorem51]. It is worth noting that the evolution
situation where the evolution involves incoherénbnuni-  in the strong coupling limit is known to force the system to
tary) processes, such as quantum measurements. “cling” to the eigenstates of the interactid®2]. In this
The index k" in the above expressions stands for “kicks.” sense, one expects the dynamics to be dominated}. tigr K
In the following, we shall use the expressions “bang-banglarge. The above theorem clarifies how the structuréd of
pulses and “kicks” interchangeably. The latter is reminiscentletermines the features of the dynamics. Once again, as in
of quantum chao$49]. In fact, there is an interesting link the two previous subsections, one observes the formation of
between quantum chaotic dynamics, quantum diffusion proinvariant Zeno subspaces, which are in this case the eigens-
cesses, and th@nverse quantum Zeno effedit0]. We will paces of the interactiof37) and (38): the block-diagonal
not elaborate on this issue in the present article. structure 0of(39) is explicit. The links between the quantum
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Ill. FREE DYNAMICS

A. The general case

We consider the time evolution when the initial state is
factorized as in Eq(5) (this hypothesis is discussed in Ap-
pendix B and the reservoir equilibrium state has an inverse
temperatures,

1
ps= zeXF(‘ BHe) (Lgpg=0) (42

whereZ=trge#8 is the normalization constant.
Assume that the interaction Hamiltoniatzgin (1) can be
written as[54]

FIG. 1. The Zeno subspaces are formed when the frequericy Hsg= E (X @ A'J”rﬂ+ X:rn ® A, (43
of measurements or BB pulses or the strerigtbf the continuous m
coupling tends toe. The shaded region represents the “computa-where theX,, are the eigenoperators of the system Liouvil-
tional” subspacé c,m,C Hs defined in Eq(4). The transition rates  |ian, satisfying

v, depend onr or K. .
LXn=iopXn (on# o, for m# n) (44)

Zeno effect and the notion of “continuous coupling” to anandA,, are the destruction operators of the bath,
external apparatus or environment has often been proposed

in the literature of the last 25 yeaf80,31,33,5% However, An=AlGn) = f &’k g(k)ak), (45)
our interest here is focused on the gradual formation of the

Zeno subspaces &S becomes increasingly large. In such a
case, they are nothing but the adiabatic subspaces. In ter
of the Liouvillian,

expressed in terms of bosonic operatafls), with form fac-
Trs (k). We are specifying our analysis to three dimen-
sions(although it is valid in any dimensignincidentally, the
(KL LtE e form of the Hamiltonian(43) is of very general validitfand
p(t) = e bol'Pp(0) — e70tPp(0), K—= (40) s not limited, as one might naively think, to dipolelike ap-
proximations: the only assumption made is that the coupling
with the bath be linear, i.e., one is not considering terms of
R R the type a? a'? etc., which would only be relevant for
LP=0, (Ph)=1 (41)  squeezed reservoirs. In practice, one determines the opera-
A . tors (44), then finds the bath operators in order to write the
[see (32)]. The Liouvilian £/ ,=PLP corresponds to interaction in the form43), and neglects nonlinear terms.
PH.=H{.; and, under the assumptiofs) and(9), is again In Eq. (A;4) we will identify w_n=-wp and will assume
given by (19). th;_atx_mzxm qndgng_m, whlch is (_equwalent to the hypoth-
esis that the interaction Hamiltonian be the product of self-
adjoint operators acting on the system and the bath, namely,
D. Controlled evolution and Zeno subspaces HSB:EiH(SI)®H(I)! with H(S') and Hg) self-adjoint. Notice,
The three different procedures described in this sectiofherefore, that we aneot making any rotating-wave approxi-
yield, by different physical mechanisms, the formation of Mation, and the interaction Hamiltoniatisg (43) contains
invariant Zeno subspaces. This is shown in Fig. 1. If one offOthrotating and counter-rotating terms. ,
these invariant subspaces is the “computational” subspace L€t Us introduce the bare spectral density functiiosm
Heomp iNtroduced in Eq(4), the possibility arises of inhibit- factorg
ing decoherence in this subspace.
Of course, in ther,K*—0 limit, decoherence can be Km(w)=fd3k|gm(k)|25(wk—w), (46)
completelyhalted according to Eqs(13)—(15), (26), (27),
(37), and (38). However, the objective of our study is t0 «(w)=0, for ®<0, and the thermal spectral density func-
understanchow the limit is attained and analyze the devia- tions[N(w)=1/(ef*-1)],
tions from the ideal situation. This will be done by studying B\ _
the transition ratesy, between different subspaces and in Kin(@) = k(@) [N(@) + 1] + k(= @0)N(= @)
particular theirr andK dependencésee Fig. 1 We shall see
that in general this dependence can be complicated, leading = 1_—e_ﬁw['<m(w) - k(= ©)], (47)
to enhancemendf decoherence in some cases augpres-
sionin other cases. For this reason, fiigysicalmeaning of  which extend along the whole real axis due to the counter-
the expressions,K™1— 0 in this section must be scrutinized rotating terms and satisfy the Kubo-Martin-Schwinger
with great care. (KMS) symmetry[55]

[see(31)], where the notation is obvious, and
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N(w) ip(w)
k(= @) = ———— Kli(w) = expl~ Bw)k(w). (48) oW
N(w) +1 i 5l B
Under the assumption that the bath is in a thermal state
(42), in the Markov approximation the reduced state of the
system(6) satisfies the master equation

o(t) = (Ls+ L)o(t), (49)

where, up to a renormalization of the free Liouvillidly by .
Lamb and Stark shift termg, engenders the dissipation due 1 2 3 1w
to the interaction with the bath,

FIG. 2. The form factors at zero temperatukg ) vs w. Full
line, exponential form factof52), dashed line, polynomial form

1
Lo= Yo(xoo'xo - E{X0X010}> +2 ym<Xm0'XI1 factor (53).

m=1

1 1 drogen atom in vacuurfpolynomial form factor(53) with
- E{XLX”" ‘T}) +m2>17"m<me‘7xm_ E{mejn’ ‘T}>’ n=4], as well as for atomic and molecular systems whose
- electronic wave functions are known. The conditi(G¥)
(50) whenn=2 yields the ratio\ p,// Aexp=1.275 between the cut-
offs for the polynomial and exponential form factors, and
W=1.990,,, The two form factors are displayed in Fig. 2.
Y= waﬁ(wm). (51 The thermal form factor$47) are displayed in Fig. 3 for
o . two different temperatures. Three features are apparent. The
The dgnvauon of _Eqs(.50) and(51), a.lthOUQh well I_<nown, 'S form factor is an increasing function of the temperatgré.
given in Appendix A for self-consistency and in order to Its value atw=0 is Kﬁ(o)zk(n(m)/ﬁzgz/ﬁ, where the prime

introduce the notation and techniques that will be used in th%enotes the derivative. Moreover, its derivative reads

following. Br (i — 1t " L .
It is useful to look at some concrete examples and scruti‘m (0%)=(07)/2241(07)/(2p), whence it is continuous,

B —~2 H : " A+ —
nize the modification of the form fact¢46) due to the pres- “m (O).—g /21 in the Beolxngnyal Easzébecau§exm(0 )=0],
ence of the thermal bath. Let us focus, for the sake of clarity@d discontinuous(0%)=g/25 g/ (BA), in the expo-

on two particular Ohmic cases: an exponential form factor Nential case; this is more apparent at higher temperatures.
Finally, the support of the thermal form factors is no longer

D) = PPw exp(— w/A) f(w) (52)  lower bounded, due to the effect of the counter-rotating
terms.

and

and a polynomial form factor
B. Two-level system

KP(w) = P Bw). (53 A particular case of the above is the qubit Hamiltonian
" [1+ (/A"
- U U
In the latter case, we focus am=2, which is typical of Hse=0; @ [Alg) + A(Go) ]+ o @ [Alg) + Allgy) ],
guantum dot$36] (the casen=4 is also of interest, being the Q
nonrelativistic form factor of the R-1S transition of the hy- Ho=—0y. (56)

drogen aton}56,57). In the above formulag is a coupling 2
constantA a cutoff, andg the unit step function. In order to Thjs s of the form(43), when one identifies
properly compare these two cases, we will require that the

bandwidth be the same: g

Iilgiw!

o) 0 g w

J do|w| P (w) f do|w| <P (w) 0.5

W= _D; = _Cooo , (54) 0.4

f dw Kfﬁ)(w) J dw K(n':)(w) 0.3

e - 0.2

where the inverse square root of the denominator 0.1
% -112 0 w
f do k() =715 (55) -1 iw

FIG. 3. The thermal form factorsﬁ(w) vs w. Full lines, expo-
is the so-called Zeno time, characterizing the convexity ofential form factors47) and (52); dashed lines, polynomial form
the survival probability at the origifiL6,57,58. Notice that a  factors(47) and(53). The form factor is larger at higher temperature
finite natural cutoffA =8.498x 10'8 rad/s and dinite Zeno 3. Note the discontinuity of the derivative in the exponential case
time 7,=3.593x 101 s can also be computed for the hy- at w=0 (more apparent at higher temperaure
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Xo=07 Xu=0% :O-X—zmx,
w =120, wy=0 (57)
hence
1
Lp = yo(o,p0,= p) + V41| 0_pos — E{Uw'_,p}
1
+ Y-1\ O+pO-— E{O-—O-+!p} 1 (58)
with
5 Kko(0) s
Yo= 2’7TK0(0) =27 ﬁ y o Vel = 2’7TK1('_|'Q), (59)

where we used Eq47).

IV. QUANTUM ZENO CONTROL

Let us look at the quantum Zeno dynamics witlfirgte
interval 7=t/N between measurements,

p(t) = [Pe‘erP]V7p(0), (60)

where L,,; and P are given by Eqs(3) and(7), respectively.
We will look at the subtle effects on the decay rate arisin
from the presence of the short-time quadré&fieng region.
Therefore the standard meth@809] is not applicable to the
present situation and the limit must be evaluated by a diffe

turbation inLgg and the condition$8) and (9) yield
PeforP = PeforT exp< J dsCSB(s)> P
0
o eﬁofl{ﬂ +f dsCsy(s)
0

+ f dsf dslasaswsg(sl)}ﬁ, (61)
0 0

where Lgg(t) =€ 0 Lo, In terms of the operato§z(7),
defined as the solution of the operator equation

fT ds €£05G,(7)efos

0

:ﬁ’fr de dSlACSB(S)ACSB(Sl)I’:\)
0 0

fo fO

one obtains

ds e‘LO{ ds,PLsple~ sl)ﬁ]eﬂoi (62)

PHYSICAL REVIEW A 71, 022302(2005

T tir
[Peforp]ir = lﬁe‘ﬂ'exp( J ds e-ﬂong(T)eﬁoS) ﬁ]
0

=P expl[ Lo+ (D1t}

Under the assumption that the bath state can well be approxi-
mated by an equilibrium state at time the final reduced
stateo(t) is shown to satisfy the equation

(63

o(t) =[Ls+ LAD]a(t), (64)
with

Ly(7)o =trg{Gz(7)o ® pg}. (65
Note that£,(7) is the solution of the operator equation

[

T

dt e~ L, (nefs= f dtPL(HP

0
T t

:f dtf dsPC,(t,9)P, (66)
0 0

where

t
L(t) = f ds K,(t,9),
0

Ki(t,s)o = trg{ Lsg(t) LseS) o @ pg} (67)

g[see Eqs(A8) and(A9) in Appendix A]. The dissipative part

of (65) is found to have the explicit forrfanalogous to Eq.

(50
ent technique. We only sketch the main steps in the deriva-
tion and give more details in Appendix C. Second-order per-

Ly(1o= yg(r) IS(XOISO'XO - %{XOXO, ISO'})

+> yrzn(r)ls<Xmlso'XTm - %{xlnxm, ﬁw})

m=1

+> y%m(r)ﬁ<x;ﬁ>axm - %{me;, ﬁw}) ,

m=1
(68)
where the controlled decay rates read
)/,Zn(r) = Tf dow Kﬁ(m)Sih(?( @ _zwmf), (69)

with singx)=sin(x)/x. This yields Zeno and inverse Zeno
effects asr is changed, as we will see in Sec. VII. The key
issue, once again, is to understamav smallr should be in
order to get suppressiofcontrol) of decoherencdQZE),
rather than its enhancemefZE).

V. CONTROL VIA DYNAMICAL DECOUPLING

We can now investigate the nonideal bang-bang control of
decoherence. From E¢B1), describing a BB control with a
single kick[12],
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= keltot™ |t/
)= [BT(0). T o= }}S(T)[XO(T)UXO(T) - %{xf)(r)xo(ﬁ,o}]
where L, is again given by Eq(3). As in the Zeno control,
we consider here the case whertis finite, so that the effects
on the decay rate arising from the presence of a short-time +2 7};1(7)
quadratioZeno region play a fundamental role. Once again,
we only sketch the main steps in the derivation and give
more details in Appendix D. Second-order perturbation in +2 %—m(T)
Lggyields

{xmw)axln( - S r)xm(ﬂ,a}}

m=1

[x:nw)oxm(r) - %{xm(ﬂxm),o}} ,

m=1

(78)

efhefuor = eﬁkeﬁoTTeXP< f d5538(5)) where, in analogy with Ec(44), the X.,(7) are the eigenop-
0 erators of the Liouvillianl,/ 7+ L, satisfying

= eﬁkeco{l + f " ds Lsd9) Ly
0 (7 + Es) Xm(7) = l0m(7) Xn(7) (79

+ fT dSJs ds, 553(3)555(31)} (71)
0 0

(wm# oy, for m#n) and the controlled decay rates read

where Lggt) =e %0 L0 In terms of the operator,(7) ; 5 2mm
andGy(7), defined as solutions of the operator equations V() = 2k (wr(7)) = 27l -t o |]. (80

JT dse_ﬁﬁ}_k(r)eﬁﬁij dSCeds), (72) Ngtice that the mefzhanism of degoherence suppression
0 0 (80) is not fully determined by ,,; and P, in contrast to the
Zeno case, and depends also on the details of the Liovillian
. . S L, throughw,(7). This is best clarified by explicitly looking
f ds e—liégk(q-)eﬁfs:f dsf ds|[ Lsy(9) Lsy(Sy) at a particular case: let us consider the two-level systsh
0 0 0 with go=0 (spin-flip decoherengeWe include an additional
third level—that performs the control—and add (&6) the

_eaL As—s9)
& AR e TR (e, Hamiltonian(acting onHs® spad|M)})

(73
. QO
with HM=‘E|M><M|- (81)
L
L=+, (74 so that|M) is degenerate with| ). The control consists of a
T sequence of # pulses[60] between| | ) and|M), given by
one has .
Ue=exd-ia(IXM[+[MX|)]=P,-P_y, (82
[efrkeltor|N = {eﬁTTT exp( f ds €5 F(7) Where
0
N _ _ _
+gk(7)]eﬁ,ﬂ Pr=IDIl, Poy=P+ Py =L+ MYV, (83

are the eigenprojections df, (belonging respectively to
_ Ly eM=1 ande™™-1=-1) which define two Zeno subspaces. In
_eXpHT+£°+7K(T)+gk(7)}t}' (75 the 7—0 limit any decoherence between these two sub-
spaces is suppressed. In fact, the total decay rate of the upper
With the aid of Eq.(75), the final reduced staig(t) satisfies level readq7,60|
the equation

-Q -Q
s F(=lmt f do Kﬁ(w)sincz[w—t}tanz[w T}
a(t)=| — +Ls*+ LD |o() (76) e 2 2
T (84)
with
and yields decoherence suppression for smalh addition,
Lo =trg{G(7)o ® pg}. (77) it is worth noting that the function multiplying the thermal
form factor inside the integral can be explicitly evaluated and
The dissipative part of Eq77) has the explicit form has the interesting limit
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limt siné(%)tar?(%) oK) = KQp + @y, E’ng ismén- (90)
i The condition(8) for a complete control of decoherence,
-2y %{i(w—z—w(j +1/2)> PHs=0, leads to
Tizo [ . T ~ ~ ~ ~
=0 (J + 5) 0=PHsg= >, PHsgPm=PoHsg= > PoQuHss
m n

+ §<w + 2—77(1' + 1/2))] . (85) =2 PorHss (91
T n

The above limit is taken by keeping fixed—finite and whence
nonvanishing—and=Nr, with N integer and even. By plug-

ging Eq.(85) into Eq.(84) one gets PonHsg=0, 0n. (92
o Therefore, by following exactly the same steps of Sec. Il A,
VF(T) - EE _;2|:K'B<Q + 2_77(1- + 1/2)) with HS(K? dngingd by Eq(88) in-plage_ ofHg, one pbtains
=0 (j+1/2) T that the dissipative part of the Liouvilliad governing the

o slow evolution of the reduced density matixis given by
+ K‘8<Q -—(+ 1/2))} , (86) 1
T Lo = E 'Ymn(K)|:an0'X:nn_ E{XTmnanv 0'}:|

which is a sum of suitably weighted terms of the fo(80). m=1.n

This yields again control of decoherencerds varied, as we N 1 t

will see in Sec. VII. The key issue, once again, is to under- + 2 VoK) | X0 Xin = E{anxmnaff} ,
standhow smallr should be in order to get suppression of m=1.n

decoherencécontrol), rather than its enhancement. Equation (93

(86) yields also a significant computational advantage, wher\1Nh ere
compared to Eq(84): for well-behaved form factoréwith-
out resonanceshe first few terms already provide a good X = PuXos (94)

estimate of the controlled lifetime.
with X, given by Egs.(43) and(44), and

VI. CONTROL VIA A STRONG CONTINUOUS COUPLING Y K) = 27 kB (0 K)). (95)

We can now analyze the last case, that of control byAll terms withm=0 identically vanish due to E492). In the
means of a strong continuous coupling. Since the control oK — = limit, because the thermal form factef(w) vanishes
decoherence is achieved by adding a control Hamiltoniams w— o« (cf. Fig. 2), one has
KH, acting on the Hilbert spacks, we begin with the study _
of the spectral properties of the new “system” Hamiltonian n(K) = 275/ (K Qe + ) ~ 273 (K Q) — 0. (96)
Hg(K) =Hgs+KH,. By writing the spectral resolutions ¢fs  Hence, in theK — + limit, the dissipative part disappears,
andH,, Lx—0, or decoherence is suppressed, as expected.

It is interesting to observe that, when the conditia) is
Hs= 2 E\Qn  He=2 7P, (87)  not satisfied, the control via a strong continuous coupling
" m needs an additional argument. In such a case, the control
with =, Q,==,, P,=1, and by using the propert{17) we HamiltonianH. and the system HamiltoniaHg cannot be
see thatP,,,=P,Q, is a (finer) orthogonal resolution of the simultaneously diagonalized, byfor a finite-dimensional
identity, i.e., Spnn Pmn=l, With PP = 8mm Snn P Hg), as a result of the analyticity of the eigenvalues and the
Note that someP,,, can vanish. In particulaHg(K) can be  corresponding eigenprojections of the Hermitian operator
explicitly diagonalized, H¢(K)/K=Hg/K+H, with respect to the perturbation param-
eter 1K [61], the eigenvaluesy,(K) of the new system
Ho(K) =, (Kgm+ E)Prmm Prn= PQn. (88)  Liouvillian L£4K)=KL +Lg and the corresponding eigen-
mh projectionsP,,(K) satisfy
Equations(87) and (88) directly translate in terms of the

Liouvillian as omi(K) =KQm+ QY + O(%) , (97)
Ls=- iEn o0 Qn  Le=- i}m‘, QP (89) i L .
o Prr(K) = PO + Rpg}p o(ﬁ>, (98)
LK) = Lo+ KL= - » wmn(K)E,mn, Whereﬂgzl andﬁg)m(j =0,1) do not depend oK. As in Eq.
m,n (92), one gets thaP(()?fHSB:O, but this does not imply that
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Pon(K)Hgg=0. As a result, there appear dissipative terms
which tend to O via a different mechanism from the one
outlined above. This aspect will be discussed elsewhere, to-
gether with similar phenomena that occur also for the other
two control mechanism&éB and Zeng.

In general, as in the BB control but in contrast to the Zeno

PHYSICAL REVIEW A 71, 022302(2005

1
Lyp= 7+(K)(X+PXI - E{XIX+,p}) + 7_(K)<X-pXT

- %{xix_,p}) +7+(K)<XIpx+ - %{X+XI,p})

case, the mechanism of decoherence suppre$8&)ris not
fully determined byHg and depends on the details of the

+7_(K)<x1px_ - %{x_xi, p}) , (106)

HamiltoniansHg and H.. Once again, this can be clarified by \where
looking at a specific example: consider the two-level system

(56) with gy=0 (spin-flip decoherengeWe add to(56) the
Hamiltonian(acting onHs® spaf|M)})

== S IMYM] + KH,,
He=[IX{M[+[MX|[=P.-P_, (99
where
o, < (DEMICUEMD _ 0

2

The third statdM) is now “continuously” coupled to state
[1), KeR being the strength of the coupling. A is in-
creased, stat®) performs a better “continuous observation”
of ||), yielding the Zeno subspac¢46]. In terms of its
eigenprojectionsH. reads[see Eq.(38)]

He= 7P+ n-P_+ n,P,, (101

with P,;=|1X1| and 7,=0,7.=+1. In the Zeno limit
(K— ) the subspace$t;, H,, and H_ decouple due to
wildly oscillating phase©(K). We get

ISHSB: P HggP; + P_.HggP_+ P,HggP. =0. (102

Therefore in the limitK—o, y,,=0, and decoherence is
halted.
We can diagonalize the new system Hamiltonian

Q Q0
Hs= —o,— —IM)XM| +KH,
ST 2 2

Q Q Q
=—P+|- - +K|P,+|-—-K]|P_. (103
2 2 2
The new system operato(57) become
1
Xs=ProyP; = _5| X Xo=[= X+,
v
LXK =i(Q F KX, LXo=2iKX, (104)
and
Hee= (X, +X_+ X[+ X)) ® [A(g) + A'(@)]; (105
hence

y:(K) = 2mkB(Q F K), 7:(K) = 2mB(- Q £ K).
(107

For example, the decay rate out of state reads third
article in[43))
y+(K) + y-(K) _

yi(K) = f—w[xf(ﬂ -K) + K (Q+K)].

(109

VIl. THE ROLE OF THE FORM FACTORS

We can now test the general scheme described in the pre-
vious sections by looking in detail at some particular cases.
We will consider the two-level situation and compare the
three control methods with both exponenti&R) and poly-
nomial form factorg53). We will concentrate on the transi-
tion between a regime in which decoherence is partially sup-
pressed“controlled”) and a regime in which it is enhanced.
We shall work in the high-temperature case, which is rather
critical from an experimental point of view, because of
temperature-induced transitions in two-level systems. We
shalll set 0=0.0W and B=50W"1, so that temperature
= +=2Q).

A. Quantum Zeno control

We first consider the Zeno control by projective measure-
ments. Dissipation and decoherence are characterized by the
decay ratg69):

(D=1 fi dw Kﬂ(w)sinc2<“’;ﬂr> ~ é

(109

for 7— 0, wherer,

T£2=f_x dow K'B(w)=f: dw K(w)Cotl‘<'B—2w>

BHOCJOO o]
0
(110)

is the thermal Zeno timgWe dropped the subscriph for
simplicity.) Observe that, by making use of the limit

do x(w) + ZJ do k(w)exp- Bw),

0

lim sinc2<“’77> = 278(w), (111)

T—®

one gets
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10 20 30 10 50 Wr

FIG. 4. Projective measurementg(7)/y vs Wr. Full line, ex-
ponential form factof52); dashed line, polynomial form fact¢s3)
with n=2.

V(D =y 10, (112
where
v=2mwkP(Q) (113

is the natural decay ratg1). The ratioy*(7)/y is the key
quantity: decoherence is suppressedytr) <y, and it is

PHYSICAL REVIEW A 71, 022302(2005

peratures can still be “high” if compared €.) For example,
when one considers short-time expansions in a Zeno context,
the relevant time scale i8, [44,58: the expansior{109) is
valid for =W (and notr=<r, as is sometimes errone-
ously assumed

B. “Bang-bang” control

We now discuss BB control. The decay rate is given by
Eq. (86):

o)

Y7 = EE %[Kﬂ(ﬂ + z(2j + 1))
7Tj:0 (J + _) T
2

+ K'B<Q - 7—T(2j + 1))]
T

0o ~
~ g 2Kﬁ(7_T(2j + 1))(1 + e—ﬁ(wlf)(21'+1))
T

1
]
2

enhanced otherwise. This ratio is shown in Fig. 4 as a func- 5" 1 -

tion of 7 [in units of W—the bandwidth defined in E@54)]. ~ —E —2K(—(2j + 1)>, (116
The transition between these two regimes takes place at Ti=0 (j }) T

=7, wherer is defined by the equatig@4] 2

YAT) = Y(=) = .

If 7 belongs to the linear regioi09) (which is our case and
is true for sufficiently small energ§) of the initial statg, one

gets
_ fo

The short-time region is displayed for clarity in Fig. 5.

(114

B
() (115

do «P(w)

where we made use of E¢48) in the first expansion and
assumed thap is not too small(as compared ta) in the
second one. In the exponential c458) one gets

K(E)(I(zj + 1)> - gzz(Zj + 1)e (TN@i+D)
T T
= K<E><f)(2j +1)e A - (117)
T

whence

It is useful to spend a few words on the physical meaning

of the expressions— 0, 83— = in the aboveand following

formulas. Times and temperatures are to be compared with

the bandwidthW (or frequency cutoffA). Times (tempera-
tureg are “small” whenr<W(g1<W). (But such tem-

3

e

enhancement

suppression

[ SER- NE  CHI

o o o o

s Wr

0.2 0.4 0.6, 0.8.x
Texp T

pol

FIG. 5. Projective measurementg()/y vs Wr, for small 7.
Full line, exponential form factof52); dashed line, polynomial
form factor(53) with n=2. 7 (indicated is defined by the equation
Y4(7)1y=1. Decoherence is suppressed whéfr) <y; it is en-
hanced otherwise.

8
() ~ —K(E)<7—T>, 7—0, (118
ar T
while in the polynomial casé3) one gets
A
@ Tigj+1 ) ~¢?
“ ( AAD ) G 0
1
~ P Ty + 119
“ (r)(ZJ rpo 9

whence

-8y L <p>(7_;)

7Tj=0 (2] + 1)2n+1K
= %(1 -2 hr2n+ 1)K<P><7—TT> (120

for 7—0, where{(x)=2,_; k™ is the Riemann zeta function.
On the other hand, in both cases,
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1](!7'!
5
3.5
3
2.5
2
1.5
i enhancement
suppression
0.5
10 20 30 10 soWr

FIG. 6. BB kicks: ¥ (n)/y vs Wr. Full line, exponential form
factor (52); dashed line, polynomial form fact@¢63) with n=2.

YD) — —K (Q)E< =" 7o (12)
=l
2

where we summed the series

o oo

j§<’+2>2 120(2 v

The ratioy*(7)/y is shown in Fig. 6 as a function of Once

7],2
=30(2) = Py (122
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y
<

PR

enhancement

suppression

o O © o
N B> O 0O NSO

Wr

0.5 1 1.5 . *x2.% 2.5

Texp Tpol

FIG. 7. BB kicks: ¥%(7)/y vs Wr for small . Full line, expo-
nential form factor(52); dashed line, polynomial form factdb3)
with n=2. Decoherence is suppressed whgiir)<7y; it is en-
hanced otherwise.

observe that the resul($24)—(127) bear an important depen-
dence of7 on the “tail” of the form factor. This is to be
sharply contrasted with the projective measurement situation
(115, which yields a dependence of the transition timen

the “global” features of the form factor. This difference is
apparent if one compares Figs. 5 and 7 and shows that the
latter method offers important advantages if one aims at in-
hibiting decoherence, because of the lar¢@nd easier to
attain value of 7.

again, the transition between the two regimes takes place at

=7 wherer is defined by the equation

Y=/ ) =y. (123

If 7 is in the asymptotic regiofl18) one gets in the expo-
nential cas€52)

(5] I I :12 B(Q) 124
« () S 7= @), (124
which yields
Y <_fl> 1——EW ( 772K'B(Q)>
TTTATN T 8gA) T AN 4 @A )
(125

whereW is Lambert’sW function[62], that is, the inverse of
the functionf(W)=We", and we have taken its -1 branch.

On the other hand, for the polynomial ca&8) one gets
from (120

<P>( ) m
r) 81-22" 1)§(Zn+1)

71_2

= 4(1 _ 2—2n—1)§(2n + 1) KB(Q) (126)
and
_m ( - y )1/(2n—1)
d A\8(L =22 z(2n+ 1) ?A
~ 3_77 77,2 KB(Q) )1/(2n—1)
A (4(1 -2 h2n+1) g2A - (127

C. Control by continuous coupling

Finally, we can look at continuous coupling. The time
scale for decoherence {308

Y (K) = 7TJ do A(0)[8w-Q-K)+ 8w-Q+K)]

= kB(Q +K) + kP(Q - K)] ~ mx(K)(1 +e )
~ wk(K), (128

for K— . On the other hand,

Y(K)— 17y, K—=0. (129
Notice that the role oK in Eq. (128 and the role of 1#in
Egs. (118 and (120 are equivalentsee also Appendix D
This yields a natural comparis¢@2] between different time
scales(r for measurements and kicks, KLfor continuous
coupling.

The ratio y*(K)/y is shown in Fig. 8 as a function of
27/K. The transition between these two regimes now takes
place atk=K" whereK" is defined by the equation

YK =%0) = . (130
If K" is in the asymptotic regiofil28),
K(K') = 7—77 = 2kP((Q)). (131)

The short-time region is shown in Fig. 7. It is useful to For the exponential form factdb2) one gets
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suppression

1/,'

10 20

2rW.

40 50 K

FIG. 8. Continuous couplingy*(K)/y vs 2aW/K. Full line,

exponential form factof52); dashed line, polynomial form factor

(53) with n=2.

. 1
K = —AW_1<—— Y

mPA

while for the polynomial form factof53) one gets

1 y -1/(2n-1)
K' = A<_2_) =A(2
mgA

AQ)
_AW_]_(_ ZKQZA ) 1l
(132
KB(Q) )—l/(2n—l)
g’A '
(133

One observes a dependencekdf on the tail of the form
factor. The strong coupling region is shown in Fig. 9.

D. Comparison among the three control strategies

There is a clear difference betwebnna fideprojective
measurements and the other two cases, BB kicks and cobwo methods is difficult, as it would involve an analysis of
tinuous coupling. In the former case Ed414) and (115
yield a dependence af on the global features of the form conversion factors between the frequency of interruptions
factor (i.e., its integral. By contrast, Eqs(124—127) and
(131)—(133 “pick” some particular (“on-shell”) valugs).
This important difference, due to the different features of theence after Eq(129 and Appendix D.

evolution (nonunitary in the first case, unitary in the latter
casey, is graphically displayed in Figs. 10 and 11, where the
different mechanisms of control are compared. In Fig. 40,
is “large” (in units of inverse bandwidjrand the three meth-

K (w)/ W
0.6 (a)
0.4
0.2
=% 1

—(7)
2 W

0.

0.

0.
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enhancement

suppression

2rW
6 K

3 5
3 Koo' Koo

FIG. 9. Continuous couplingy*(K)/y vs 2aWI/K for large K.
Full line, exponential form factok52); dashed line, polynomial
form factor (53) with n=2. Decoherence is suppressed when
7¥*(K) < ; it is enhanced otherwise.

ods yield almost no control: one essentially reobtains the
Fermi golden ruley=27«P((), although in different ways.

In Fig. 11, 7 is “small” and the effective lifetime is sensibly
modified, although by different mechanisms.

The three control methods are graphically compared in
Figs. 12 and 13. The different features discussed in Figs. 10
and 11 yield very different outputs, clearly apparent in Fig.
13, which can be important in practical applications: deco-
herence can be more easily halted by applying BB and/or
continuous coupling strategies. These two methods yield val-
ues of 7 (or K") that are easier to attain. However, this
advantage has a price, because BB and continuous coupling
yield a larger enhancement of decoherence for7, K
<K". The two dynamical methods perform better only when
7=, K=K". This is apparent in Fig. 12. We notice that a
strict comparison between continuous coupling and the other

numerical factors of order 1 in the definition of the relevant

and the couplingK [this factor has been sensibly—but
arbitrarily—set equal to 2 in Figs. 12 and 13; see the sen-

VIlIl. SUMMARY AND CONCLUDING REMARKS

We have analyzed and compared three control methods
for combatting decoherence. The first is based on repeated

P (w)/g*W P (w)/g*W
6 (b) 0.6 (C)
4 0.4
2 ' 0.2
. _Jk‘_ W \_* w
0 1 2 3SW 0 1 2 3SW

FIG. 10. Different features of the three control methods. Form faginlynomial,n=2) «?(w) (dashed lingand form factor modulated
or multiplied by the control “response” functioffull line) for (a) pulsed measurements, E(L09), with control response function
7sinc(w—-Q)7/2] (here and in the other two case®=0.2W); (b) BB kicks, Eq.(116), with control response functiotQ/vr)EJiO(j
+1/2 8-~ (7l (2] +1))+ 8w—-Q+ (7 7)(2j +1))] [see Eq.(85) and notice that the first two or three terms of the series yield an
excellent approximatiojp (¢) continuous measurement, Ed28), with control response function]{ S(w-Q—-K)+ 8 w-Q+K)]. The gray
line is a guide for the eye and interpolat@d m)(j +1/2)%«f(w) in (b) and wxP(w) in (c). We setr=27/K=50W"" (a “large” valug: this
yields in all cases &controlled decay rate that is very close to that obtained by the Fermi golden rule.
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kP (w)/g*W kP (w)/g*W P (w)/g*W
0.2 (a) 0.2 . (b) 0.2 (C)
/ / /
0.1 ,]’ 0.1 ’[’ 0.1 i
0 ! w | W 9 | W
0 i 2 W 0 T ) W 0 1 ) W

FIG. 11. Same as in Fig. 10, but for 277/K=3W"! (a “small” valug: this yields abona fidecontrol of the decay ratén this particular
situation, decoherence is enhanced in the Zeno case and suppressed in the other weac@bescontrol response functionsinc (o
-Q)7/2] is very broad and the effective lifetime depends on the “global” features of the form fémt&ior smallr all the arguments of the
8 functions in Eq.(85) tend to: for well-behaved form factorflike that shown in the figupe only thefirst term contributes significantly;
the controlled lifetime depends on the local features of the “tail” of the form fa@pbFor largeK the arguments of thé functions in Eq.
(128 tend to +0 and the controlled lifetime depends again on the local features of the “tail” of the form factor.

guantum measuremer(jgrojection operatojsand involves a  becomes isolated and decoherence is completely suppressed.
description in terms of nonunitary processes. The second artdowever, if 7! andK are large, but not extremely large, the
third methods are both dynamical, as they can be describedansition (decay rates between the qubit subspace and the
in terms of unitary evolutions. In all cases, decoherence caremaining sector of the Hilbert space display a complicated
be halted by very rapidly or strongly driving or very fre- dependence om™! and K, and decoherence can be sup-
quently measuring the system state. However, if the frepressed or enhanced, depending on the situation.

quency is not high enough or the coupling not strong enough, At low temperatureg3 < Q) <W, whereW is the band-

the controls may accelerate the decoherence process and aédth of the form factor of the interaction, the decay rates
teriorate the performance of the quantum state manipulationead, from Eqs(109), (110), (118), (120), and(128),

The acceleration of decoherence is analogous to the inverse

Zeno effect, namely, the acceleration of the decay of an un- V(1) ~ Z .0

stable state due to frequent measurempesa4. 2’ ’
As a general rule, when one endeavors to control deco-

herence by suitably tailoring the coupling of the system of 8 [

interest to another systeifsuch as an external field, or a V(1) ~ ;K(;) T— 0,

measuring apparatysone should carefully look at the rel-
evant time scales, as it is not true that repeated measurements
or interruptions always lead to a suppression of decoherence. Y(K) ~ mk(K), K— =, (139

It is convenient to summarize the main results obtained in hereZ k andc d 7 B) kick
this article in the particular case of a two-level systmubit) whereZ, k andc denote(Zeng measurementsBB) kicks,

with energy difference. If the frequencys" of measure- and continuous coupling, respgctiveky,is the form fact(.)r,.
ments or BB kicks, or the strengthof the coupling tends to  2"d 17z~ [dw (w) the Zeno time(more accurate defini-

%, the two-dimensionaiZeno subspace defining the qubit tONS were given in the preceding sectipnds we have
shown, there is a characteristic transition time(coupling

Yok K"), such that one obtains
#
4 O eeas
7, ’ ke
00744 7
3 2
1.75 ok
2 1.5 ,.yZ /’,.YZ 70 ,.yc
1.25 y
1 |/  enhancement ) . enhanc.
/ i suppression 0.75 / i Suppr.
10 20 30 20 50 0.5¢ /
0.25}/
W, 2rW 17
K 1 2 3 4 5 6
FIG. 12. Comparison among the three control methods. The TW,%’}VZ
graphs of Figs. 4, 6, and 8 are displayed together. BB kicks and
continuous coupling are more effective thhona fidemeasure- FIG. 13. Comparison among the three control methods: small
ments for combatting decoherence, as the regime of “suppressioriimes and strong coupling regions. The graphs of Figs. 5, 7, and 9
is reached for larger values efand K2, are displayed together.
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Q APPENDIX A
=2 V\rl<2n—1 2—><2 W, . . : : :
TZ=em ( )a”W m In this appendix we introduce notation and derive the
master equatiof49). We also set up the techniques that are
Uen-1) necessary for the derivations of the “controlled” master equa-
« an [ anm Q n . . : X . .
rk:ZTrV\rl—n St 27 < 27wt tions given in the following appendixes. We will assume
2\ 4 W throughout our analysis that the characteristic time scales of
quantum state manipulation in the spa¢g,m,[see Eq(4)]

5 W\ Ve are much longer than any other time scales, so that the pro-
K" = Weall == =W 136 cess is well described by the van Hove?t” limit
a, : (136) . .
a, Q) [55,59,65,66 where\ is the coupling constant between sys-

_ tem and reservoifsee the comment after E¢B)]. For in-
where a,=(V7/2)I'(n-3/2)/T(n-1)<7/2 is a coefficient stance, if we take the time scale of quantum state manipula-
of order 1 andh characterizes the polynomial falloff of the tion to be of ordem™2 (~ to a Rabi period ifHcomy, then
form factor (53). The above times and coupling may be the other energies involved are at maxi°).

(very) difficult to achieve in practice. In fact, we see here By following Gardiner and Zollef54], the starting point
that the relevant time scale is not simply the inverse bandis the decomposition of the Liouville equation with the aid of
width 27W™1, but can be much shorter § <W, as is typi-  the projection operators

cally the case. These conclusions, summarized here for the

simple case of a qubit, are valid general when one aims at Pp=trg{pt ® pg=0® pg, Q=1-P, (AL)
protecting from decoherence &hdimensional subspace.

An important example that we have not explicitly ana-
lyzed in this article is the case of fL hoise, and its suppres-
sion by means of techniques like those discussed here. The
has recently been a surge of interest in this issue in quantum PLs=LP, PLg=LgP=0, (A2)
information processing devices, where such noise is often
attributable to(but certainly not limited tp charge fluctua- and we assume that
tions in electrodes providing control voltages3]. Several -
recent papers have dealt with suppression of this particular PLsgP=0, (A3
kind of noise via BB decoupling41,60,64. The “bottom-  which can always be satisfied by redefining the system Liou-
up” approach models f/noise as arising from a collection Vville operatorLgp— Lgp+tre{Lspp} ® pg and the interaction
of bistable fluctuator$41,63,64. The alternative is to treat Liouville operatorLggo— Lgpo—trg{Lspo} ® pg.

where tg stands for the partial trace over the reservoir de-
grees of freedom angg is the equilibrium reservoir state
(rgZ). Note thatP?=P and Q?=Q. Moreover,

1/f noise as contributing a particular form fac{60,63. We The evolution in the interaction picture reads
will pursue these ideas as a future topic of investigation, but , ot X
we expect that the main results obtained in the present paper pi(t) = LsgOp (1), Lsglt) = o' Lsgetd,  (A4)

will be applicable to this case as well. and by applying the projectiofAl) together with Eq(A3
The results obtained in this paper are of general validity, o ggtsppy g prol 1) tog AUA3)

and bring to light the different features of the control proce-

dures as well as the crucial role played by the form factor of Ppy(t) = PLt) Op (1),
the interaction. We do not expect any drastic change for dif-
ferent decoherence mechanisms and/or different physical Opy(t) = QL Pp () + QLD Opy(B). (A5)

systems. The only somewhat delicate issue, in our opinion, is
to understand whether the system investigated can be consBy formally integrating the second equation and plugging
tently described by means of a set of discrete levels. the result into the first one, one obtains to oraér
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t
Ppi(t) = fo ds PLst) QLse(S)Ppy(S), (A6)

where the initial conditiort5), yielding Qp,(0)=0, was used.
By using the definitiongAl) and the conditiongA2) and
(A3), Eq. (A6) yields

t
b’|(t)=f
0

Ki(t,9)0 = trg{ Lsgt) Lsi(S) o @ pg}-

By making use of the first Markov approximatiodm(s)

— o(t) [54], which is motivated by the fact that the bath
correlation kernelC,(t,s) is different from zero only fors
=t- 7, such thato|(t— 7)) = oy(t), one gets

ds K,(t,9)0y(s), (A7)

where

(A8)

t
a(t) = L(t)ay(b), E(t):f ds K(t,9). (A9)
0

If the timet in Egs.(A9) is much larger than the bath corre-
lation time,t> 7., one can safely replace the upper limit of
integration withoe, getting a Markovian equation with the
time-independent Liouville operatdt=L().

We emphasize that this procedure can be rigorously justi-

fied in the(weak coupling limit [65]

L=1im
A—0

t/\2
f ds K,(t/\2%,s), (A10)
0
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t

g Lotebolt = T exp( f ds ESB(S)>
0

t S
J dsf ds; Lsg(S) Lsg(Sy)-
0 0

(A14)

t
21+J ds Lgg(s) +
0

Indeed, the first-order term vanishes after the projection due
to (A3), while the projected second-order term reads

=

dS.LLSBCSB(Sl):| ecssp}

t s
trs{f dsf ds LsdS) Lse(s) o ® PB}
0 0

t
f dstrg
0
t 0
f dstrg e‘ﬁssl f
0 —o

0
=t trB{E Qw|:J dSﬁsaﬁss(S)} Quo® PB} =Lto,

(A15)

0
e_ﬁsslf ds Lsplse(S1)

wherep=0® pg. In the second equality we considered times
t much larger than the bath correlation timg so that the
integration range can be extended frgas,0) to (—«,0),
while in the third equality we neglected the rapidly oscillat-
ing (compared with those responsible for decohergnde

which physically corresponds to a time coarse-graining andiagonal terms. By combining EqeA15) and (A14) we fi-

satz[67,68. From Eqgs.(A8) and (A10)) one gets(by sup-
pressing, for simplicity, the subscriptfor the operators in
the interaction pictune

0
Lo=limtrg) e’ J
A—0 -t\?

~ 0 ~
= trB{E Qw|:f_ ds /353555(5)]@”0@ PB}a (A11)

ds cSBCSB(s>} g g pB}

whereéw are the eigenprojections of the Liouvilliaf,
[’S: - IE wéwi 2 éw = 11 éwé(u’ = 5w,w’6w1
(A12)

and in the limit the off-diagonal term(©=""\Q [---]Q,,

vanish due to the Riemann-Lesbegue lemma. Notice that the
superoperator),, can be expressed in terms of the eigen-

projections of the Hamiltoniaklg as

Q= > QuwQn Hs=ZEQ, (A13)
Em—EnZw

From a physical point of view, the resuld1l) hinges

nally get

(1) = trg{e™“o'elrotay (0) ® pg} = exp(Lt)ay(0),
(A16)

which is nothing but (A9), when one substitutes

L(t)— L(o)=L.

Some of these ideas and techniques, at different levels of
rigor, have been investigated and applied in the literature of
the last four decadd$5,59,64.

Assume now that the interaction Hamiltoniklag has the
form (43). In the interaction representation we get

Hse(t) = € C0Hgp= > [Xy ® AL(D) + XI ® A(D)],
(A17)

where

An(t) = donte oA, = f d®k gp(k)e e emta(k).

(A18)

upon a second-order perturbation expansion of the Liouvil-

lian (3) in the interaction picture,

If the bath is in the thermal statéd2) we obtain
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(ALDA(S) = f Kl gn(K) PN(wy) € CIALAT(S))

i J APKIgr(K)PIN(@y) + e em ),

(A19)

and (An(DAL(S)=(Al (AT (9))=0, with N(w)=1/(ef*-1).
From Eq.(Al11) we get

Lo= f OOC dstrg{Q,Lselse9Qu0 ® ps}  (A20)
and by using the property
2 QuL1L2Qup= = 2 QulH1 H2 Qup]
== 2 [QuHD.[(Q-uHa).pll,
’ (A21)
which easily follows from the definitiofA12), we get

0 ~ ~
Lo=-2 f_ dstre{[(Q,Hse),[(Q-,Hsg(s)), 0 pgll}.

(A22)

By using Eqs(A13) and(43) one obtains
Qu Hse=HE =X m@ Al + Xl ® A, (A23)

whence
0
Lo=-2 f dstrgf[HER,[H5"(9), 0 ® pgll}
m —0

0
== f ds trg{[X}, ® A [Xm ® AL(9),p]]

+[Xm@ Al LIXE L ® AL(9), 1) (A24)

PHYSICAL REVIEW A 71, 022302(2005

lem— i€n= f ’ dt(AT (0)A(D)). (A26)

2 0

The first line in Eq.(A25) is just the renormalization of the
free Liouvillian L5 by Lamb and Stark shift terms. The dis-
sipative part is given by the second and third terms, which
appear in the Lindblad form, so thatis=0.

By identifying w_,=—w,, and assuming thatmzx;rn and
Om=9-m, the dissipative part of E§A25) can now be rewrit-
ten as

1
Lo= 70<X00'Xo - 5{X0X0,0}> +> 7m<XmU'X$1

m=1

- %{xgxm, o}) +> y_m(xgoxm— %{meIn, a}) :

m=1

(A27)
where
Ym=Kn+ G, (A28)

Equation (A27) is the sought master equatidb0) of the
text.

By introducing the thermal spectral density functi¢ag)
we explicitly get

Km = 27 km(wm) [N(0p) + 1],

G = 27Kk @wm)N(wp)
which by Eq.(A28) yield

(A29)

Ym=2 Re f d(AAL D) + (AL A ()] = 2k (@),
0

(A30)
which are the desired decay raiéd) of the text.

APPENDIX B

In this appendix, the assumption of the factorized f@&n

where p=o® pg. Notice that in the second equality, terms of the initial density operator, which is usually taken for
containing two annihilation or creation operators identicallygranted, is shown to be justified in the weak coupl{sgal-

vanish after taking the trace over the thermal sigieand

ing) limit, provided pg is mixing. We only outline the main

have been dropped. EquatioA24) can be put in the form derivation. Further details will be reported elsewhet6].

[54]
Lo==12 [5XIXm+ enXenXT o]+, Km(xmax;
1 1
- E{X;va 0'}) + 2 Gm<XTma'Xm - E{me;rni 0'}>

(A25)
with

}Km—iém: J ’ diALOAL(D),
2 0

Consider the initial-value problem

d
Pl Ligp = (Lo+ NLsglp=(Ls+ Lg+ NLspp,

p(0) = po, (B1)

where the dependence on the coupling constaot the in-
teraction Liouvillian Lgg is made explicit. Notice that the
initial density operator can be of any form andriet as-
sumed here to be factorized as(B). The projection opera-
tors’P and Q, defined in Eq(Al), and the above Liouvillians
Ls, Lg, and Lgg satisfy the same conditior®2) and (A3).
The projected density operatoPp and Qp satisfy
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J APPENDIX C
—Pp=LoPp+NPLspQp,
ot We derive Eq(63). The first equality reads

%Qp = (Lo+\QLsgQ)Qp +NQLsgPp,  (B2) [PefrP]! = [PV,(n)P]"",

respectively. Following the same procedure as in Sec. Ill, we T i .
arrive at the followingexact equation for theP-projected V(1) = e“0"T ex f ds €40°%G,(r)ec°|.  (C1)
operator in the interaction picture: 0

d Let us writeV,(7)=V(7,7), where
a(e—gotpp) — )\e_ﬁotpﬁsBe(LOH‘Q‘CSBQ)tQpO z(T) (T T)

t
N )\Zf V(t,u) = eﬁotTexp< J:) ds e“osgz(u)eﬁos> . (C2

dt' e o PLggel 0 L se!
0

X LsgPp(t—t'). (B3) By deriving with respect td, we get

Notice that the first term on the right-hand side represents AV(t,u) =[ Lo+ Gz(u)]V(t,u), (CY
the contribution arising from a possible initial correlation
between the system and reservoir. We now show that thiso that
term dies out in the weak couplin@.e., scaling limit \

— 0 with fixed 7=\?. For this purpose, define V(t,u) = expl[ Lo + G-(W) It} (C4
) — aLoTA2 2
p(TN) = e Pp(e\), (B4) where we usedV(0,u)=1. As a consequenceYyx(7)
which satisfies =expg[Lo+Gz(7)]7} and
. 1 . . . . A
pi(TN) = Xe ﬁor/)\szESBe(Eo AQLspQ) /)\ZQPO [PeﬁtotTP]t/T: [P expl[£o+ gZ(T)]T}P]t/T

. sz e ot =P expllLo+ D1, (5)

° becausdP, £o]=[P,G,]=0. This is Eq.(63).

X L MNPy (7= N2, (B5) Let us now solve Eq(65):

The first term vanishes in the— 0 limit [46], since T T A ot R
= 1, * J dt e‘ﬁstcz(r)eﬁstzj dtP£|(t)P:J dtf dsPKC,(t,5)P.
f dr—e*™Y(7) = )\f dr e Y(\?>7) — 0, (B6) 0 0 o Jo
0 A 0 (CG)
as \—0, for any superoperator such that the integral i
JZdr e exists. This means that the contribution originatingBY USing Egs(A8) and(A4),
from the initial correlation between the system and reservoir

disappears in the scaling limit and therefore we are allowed Ki(t,9)o = trg{Lsg(t) Ls() o © pe},
to start from an initial density matrix in the factorized form
(5) Lon(t) = e—(£s+EB)t£ (LstLp)t Cc7
Finally, the dynamics op,(7;0) is governed by sell) se ' €7
_ - (" - we get
p(1;00=2> wa dt'PLse0) QLgg—1')Q,pi(7;0)
w 0 T
(B7) f dt e_EStEZ(T)e'CStO'
0
with the factorized initial conditiont5), where th@w are the Tt . .
eigenprojections of the Liouvillia 5 defined in(A12). =J dtj dstrg{PLsgt) Lsg(S)Po ® pg}
From a physical point of view, the factorization ansatz 0 0
described in this appendix simply means that the “initial” T 0 R R
correlations between the system and its environment are =f dt e“S‘f dstrg{PLsslsgS)Pe*Sp}, (CY)
0 -t

“forgotten” on a time scale of ordex?. We also note that
several authors have addressed the question of the modifica- ) ) o
tions that arise when it is not permissible to assume initiallyWhere p=o®pg. Let us rewrite the previous equation in
separable system and environment, €89]. terms of the eigenprojectior@, of Lg defined by(A12):
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T . ~ ~
> f dt €@ 'Q,LANQ, o
w w' 0

3 [
0,0" 0

<[

Performing the first integral, we get

dstrg{Q,PLspLsdSPQup}.  (C9)

t

Qua0y = =D [ g gt
T 0
0

x f dstrg{Q,PLsslsyS)PQ, o},
-t

iX
& -

g(x) = (C10

1
Sinceg(0)=1, the diagonal terms yield
- - 1(7 (© - n .
QuLzmQuor==~ f dt f dstr{Q,PLseL sl 9 PQup}-
0 -t

(C1)

The off-diagonal terms do not contribute to the master equa-

tion, as explained in Appendix A, EqEA10)—(A15).
By using the propertyA21) and noting thafP,Q,]=0 by
Eq. (16), we get

1(7 0
EZ(T)U=—2 —f dtf ds
o TJo -t

X trg{P{(Q,Hs).[(Q-,Hse(s)), P},
whence, by using EqA23),

(C12)

(m)

1 T 0 N "
L‘z(r)o:—z; dtf dstrg{P[HIY, [HS(s), Pp]]}
m 0 -t

1 T 0
=-> = dt f ds
m TJo -t
Xtrg{P[X! ® A [Xm® AlL(s),Pp]]
+P[X @ AL X ® Ay(s),Ppll},  (C13)
where, as in Eq(A24), in the second equality we dropped

terms containing two annihilation or creation operators.
From Eq.(C13 we get Eq.(68) with

2 T 0
Vol 1) = _Re f dt f dS(An(0)AL(s)) + (Al (0)A_(s))].
0 -t

(C14)

By noticing that

PHYSICAL REVIEW A 71, 022302(2005

(AL + (AT A () = f " oo B(a)lomoms,

(C19
we finally get
2(~ 1- ®= 0T
V=S f P L
T) (w wm)
- sir12< @ _Zme>
= Tf dw Kﬁ(w)—< o 2 (C1e
o m_
)

which is Eq.(69) of the text.

APPENDIX D

We derive Eqs(78) and(80). We start from Eqs(72) and
(73):

ffds erSF(rels= ffds Lsg(9), (D1)
0 0

f "ds 6£aG,(net = f "ds f s Led9)Lsds)
0 0 0

- LR (e Fy(met ),
(D2)

where £, =L,/ m+ Ly, and by taking the trace over the bath
we get

T T 0
fdt e‘ﬁs“)ﬁk(r)eﬁs“)a:f dtJ dstrg{[e“LspLsyS)
0 o Ja

- SR (e AT (el o),
(D3)
with p=0® pg and

Ly
;Cs(T) =—+ ‘CS' (D4)

T
Equation(D3) is similar to Eq.(C8) and, by projecting onto
the eigenprojection®,(7) of Lg7) and taking only the di-
agonal terms, one obtains E(/8). However, in order to
compute the decay rateﬁ(r) one can give an alternative,
more physical derivation by elaborating on the technique of
Ref.[12]. First notice that the BB dynami¢30) is generated
by the time-dependent Hamiltonian

H(t/7) = Hygp + Hi8p(t/7), 5p(X) = >, 8(x = ).

ne’Z

(D5)

In the enlarged Hilbert spadé ® L%T) we can consider the
(time-independentFloquet Hamiltonian

1 1
Heioq=H(6) + ;pe: Hiot + Hidp(0) + ;pg, (D6)

where
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0e[-1/2,112, py,=—id, [6,py]=i. (D7) Sec. VI, if one identifieX=1/7andH.=p,. Therefore, from
Eqgs.(97) and (D10) we obtain
We get
. ) 1 (1) 27m o
0=-i[6,Hgog) =1/7,  6(1) =t/7, (D8) wmn(7) = ;Qm+an+ O(7) = T+an+ O(7),
whencellA e H, (D11)

A(t) = =i[A(t),Heogl = —I[A®),HED], (DY)
so that every observable #i evolves according to the origi- )
nal Hamiltonian(D5). The eigenvalue equation fqy, reads K () = 2B (7) = 2m<5< ™ W, O(T))

i mn n\®Wmn n mn ’
pJdm = 2rmim),  (Gm)=€?™ me Z. (D10) T

and from Eq.(95) we get

(D12
The HamiltonianD6) in H ® L%(T) represents a control by a

strong continuous coupling, analogous to that discussed iwhich is Eq.(80) of the text.
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