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We analyze and compare three different strategies, all aimed at controlling and eventually halting decoher-
ence. The first strategy hinges upon the quantum Zeno effect, the second makes use of frequent unitary
interruptionss“bang-bang” pulses and their generalization, quantum dynamical decouplingd, and the third uses
a strong, continuous coupling. Decoherence is shown to be suppressed only if the frequencyN of the mea-
surements or pulses is large enough or if the couplingK is sufficiently strong. Otherwise, ifN or K is large, but
not extremely large, all these control procedures accelerate decoherence. We investigate the problem in a
general setting and then consider some practical examples, relevant for quantum computation.
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I. INTRODUCTION

Interactions with the environment deteriorate the purity of
quantum states. This general phenomenon, known as deco-
herencef1g, is a serious obstacle against the preservation of
quantum superpositions and entanglement over long periods
of time. Decoherence entails nonunitary evolutions, with se-
rious consequences, like a loss of information and/or prob-
ability leakage toward the environment.

This issue is recently attracting much attention in view of
interesting applications: for instance, the possibility of con-
trolling and eventually halting decoherence is a key problem
in quantum computationf2g, where several computational
states are simultaneously described by a single wave func-
tion and parallel information processing is carried out by
unitary operations. In such a situation, efficient quantum al-
gorithms need large scale computations, performed oversmi-
croscopicallyd long time spansf3g.

A number of interesting schemes have been proposed dur-
ing the last few years in order to counter the effects of de-
coherence. Among these, there are quantum error-correcting
codesf4g, schemes based on feedback or stochastic control
f5g, the use of decoherence-free subspaces and noiseless sub-
systemsf6g, and mechanisms based on frequent unitary
“bang-bang”sBBd pulses and their generalization, quantum
dynamical decouplingf7–11g. In this context, it was recently
proposedf12g that the method of dynamical decoupling can
be unified with the basic ideas underlying the quantum Zeno
effectsQZEd f13,14g sfor a review, seef15,16gd. In particular,
the decoherence-free subspace is one of the dynamically gen-
erated quantum Zeno subspacesf17g, within which the dy-
namics is not trivialf18g and whose subtle mathematical
aspects are still debatedf14,19–23g.

It is worth stressing that the “bang-bang” scheme is a
well-established “classical” control method, typically used in
engineering problems and in connection with spin-echo tech-
niques; see, for instance, Ref.f24g. Its revival in quantum-
information-related problems is only very recent. The key
ingredient of BB and dynamical decoupling is to apply fre-

quentsunitaryd interruptions during the evolution of the sys-
tem, in order to suppress the system-environment interaction.
There is a manifest similarity with the QZE. It is, however,
clear that the two procedures are physically equivalent, if one
adheres to the commonly accepted interpretation of the QZE
as abona fidedynamical process, that can be completely
explained in terms ofunitary evolutions f25g. One should
notice that this idea hinges upon a seminal remark by Wigner
f26g, who introduced in 1963 the notion of “spectral decom-
position,” namely, a dynamical process that associates a dif-
ferent wave packet with each eigenvalue of the observable to
be measured. For example, the interesting proposal by Cook
f27g and the subsequent experiment with Rabi oscillations
f28g can be easily interpreted in fully dynamical terms when
one observes that the “measurement” was realized as a dy-
namical processsoptical pulse irradiationd f16,25,29g.

Once this physical equivalence is appreciated, the next
logical step is a natural one: after having analyzed and un-
derstood the consequences of frequent unitary pulses, one
studies the effect of a strongsunitaryd continuous coupling.
The relationship between these two procedures can be made
mathematically precisessee Sec. IId and is of interest in it-
self: if an external field or “apparatus” is coupled to the
system in such a way that the state of the system is “moni-
tored” in some sensef30–33g, a Zeno-like dynamics takes
place in the strong coupling limit and once again one can
tailor decoherence-free subspacesf12g. This happens to be
one of the most efficient and convenient control procedures,
from a practical point of view.

The aim of this article is to investigate these different
physical proceduressZeno, BB dynamical decoupling, and
continuous couplingd and compare their effects. We will
study the dynamics generated by very frequent interruptions
sprojective measurements or unitary “kicks,” yielding dy-
namical decouplingd, or by very strong coupling, and inves-
tigate the possibility of designing decoherence-free sub-
spaces. The method is general and can be applied to diverse
situations of practical interest, such as atoms and ions in
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cavities, organic molecules, quantum dots, and Josephson
junctionsf34–37g.

Our main objective is to endeavor to understand whether
it is possible tocontrol decoherencef38–42g. Clearly, this
requires a thorough understanding of the physical mecha-
nisms that provoke decoherence and in general dissipative
phenomena. One finds that very frequent kicks or measure-
ments or very strong couplings can indeed control the evo-
lution of the system and suppress decoherence: The physical
mechanisms at the origin of this phenomenon are very close
to the quantum Zeno effect. However, if the kicks or mea-
surements are not extremely frequent or the coupling not
extremely strong, both controls mayacceleratedecoherence.
This extends the notion of the “inverse” quantum Zeno effect
sIZEd f43,44g to a wider frameworksnot necessarily based on
projection operators and nonunitary dynamicsd and entails a
deterioration of the performance of these schemes. We will
analyze this effect in great detail and see that in order to
avoid it, one must carefully design the control and study the
time scales involved. Our analysis is of general validity;
however, for the sake of definiteness, we will study in par-
ticular the control of thermal decoherencef45g.

This article is organized as follows. In Sec. II we briefly
review the main features of the different control procedures.
Our analysis is based on a master equation which is derived
in Sec. III, where the relevant time scales are emphasized
and the general type of interaction specified. We then con-
sider the case of thermal decoherence, discussing the Zeno
control, the control via dynamical decoupling, and the con-
trol by means of a strong continuous coupling in Secs. IV, V,
and VI, respectively. Some relevant examples are then con-
sidered in Sec. VII, where we focus on the primary role of
the form factors of the interaction in order to compare the
different control procedures. Section VIII is devoted to con-
clusions and perspectives. Four Appendixes A–D, containing
detailed calculations that are omitted in the text, are added
for clarity.

II. CONTROL PROCEDURES: GENERALITIES

Let the total system consist of a target system and a res-
ervoir and its Hilbert spaceHtot=HS^ HB be expressed as
the tensor product of the system Hilbert spaceHS and the
reservoir Hilbert spaceHB. The total Hamiltonian

Htot = H0 + HSB= HS ^ 1B + 1S ^ HB + HSB s1d

is the sum of the system HamiltonianHS^ 1B, the reservoir
Hamiltonian1S^ HB, and their interactionHSB, which is re-
sponsible for decoherence; the operators1S and 1B are the
identity operators in the Hilbert spacesHS andHB, respec-
tively, and the operatorsHS and HB act onHS andHB, re-
spectively.

The dynamics of the total system is conveniently ex-
pressed in terms of the Liouville operatorsLiouvilliand Ltot,
defined by

Ltotr ; − ifHtot,rg = − isHtotr − rHtotd, s2d

wherer is the density matrix. If the Hamiltonian is given by
Eq. s1d, the Liouvillian is accordingly decomposed into

Ltot = L0 + LSB= LS+ LB + LSB, s3d

where the meaning of the symbols is obvious. We will not
explicitly write the coupling constantl multiplying the in-
teraction LiouvillianLSB.

We focus on a proper subspaceHcomp,HS, in which
quantum computation is to be performed. For this reason we
will look in detail at the case

HS= Hcomp % Horth. s4d

In particular, when we look at some concrete examples, in
Sec. VII, the computation subspace will be a qubit,Hcomp
=C2.

Since, in general, the reservoir state is mixed, it is conve-
nient to describe the time evolution in terms of density ma-
trices. In the case of a quantum state manipulation, the initial
state of the total systemrs0d is set to be a tensor product of
the system initial statess0d and a reservoirsusually equilib-
riumd staterB,

rs0d = ss0d ^ rB. s5d

The derivation of the master equation from Eqs.s1d–s5d is
given in Appendix A. The validity of the assumptions5d,
usually taken for granted, is discussed in Appendix Bssee
also f46gd. The system statesstd at time t is given by the
partial trace of the staterstd of the whole system with respect
to the reservoir degrees of freedom:

sstd ; trBrstd. s6d

When sstd is not unitarily equivalent toss0d for a given
class of initial states, decoherence is said to occur. The pur-
pose of the control is to suppress such decoherence. Note
that, for the control of decoherence, it is not necessary to
look at all possible states: rather, it is sufficient to consider
only those initial states that are relevant to the quantum state
manipulation in question.

A. Quantum Zeno control

We first look at the Zeno control, by adapting the argu-
ment of Ref.f17g. The control is obtained by performing
frequent measurements of the system. The measurement is

described by a projection superoperatorP̂ acting on the den-
sity matrix

r → P̂r ; o
n

sPn ^ 1BdrsPn ^ 1Bd, s7d

wherehPnj is a set of orthogonal projection operators acting
on HS. In the following, we restrict our analysis to a mea-
suring apparatus that does not “select” the different outcomes
snonselective measurementd f47g, with a complete set of pro-
jection operatorsonPn=1S. The measurement is designed so
that

P̂HSB= o
n

sPn ^ 1BdHSBsPn ^ 1Bd = 0. s8d

In terms of the Liouvillian, this condition reads
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P̂LSBP̂ = 0. s9d

sWe will see in the next subsection that a similar requirement
is necessary for the BB control and for the control via a
continuous coupling.d The Zeno control consists in per-
forming repeated nonselective measurements at times
t=ktsk=0,1,2, . . .d swe include an initial “state preparation”
at t=0d. Between successive measurements, the system
evolves viaHtot. The density matrix afterN+1 measure-
ments, with an initial staters0d, is given by

rstd = rsNtd = sP̂eLtottP̂dNrs0d. s10d

We take the limitt→0 while keepingt=Nt constant and get

rstd = P̂f1 + P̂LtotP̂t + Ost2dgt/trs0d →
t→0

P̂eP̂LtotP̂trs0d.

s11d

Equations8d yields

P̂LtotP̂r = − iP̂fHtot,P̂rg = − iP̂fsP̂Htotd,rg

= − iP̂fHS8 ^ 1B + 1S ^ HB,rg, s12d

with HS8= P̂HS=onPnHSPn, whence

P̂eP̂LtotP̂trs0d = P̂eLtot8 trs0d = P̂fe−iH tot8 trs0deiH tot8 tg, s13d

where the controlled HamiltonianHtot8 and Liouvillian Ltot8
are given by

Htot8 ; P̂Htot = HS8 ^ 1B + 1S ^ HB, s14d

Ltot8 = P̂LtotP̂ = P̂LSP̂ + LBP̂ = LS8 + LBP̂, s15d

Hence, as a result of infinitely frequent measurements, the
system-reservoir coupling is eliminated and, thus, decoher-
ence is halted. We notice the formation of invariantZeno
subspacesf17g : in the limit of very frequent measurements,
the evolution is given by Eqs.s14d and s15d and transitions
among different sectors of the Hilbert space become forbid-
den, yielding a superselection rule. The subspaces are de-

fined by the superoperatorP̂ defining the measurement. The
“decoherence-free” subspace is one of these Zeno subspaces.

We will assume for simplicity thatP̂ commutes with the
system Liouvillian,

P̂LS= LSP̂, s16d

i.e., HS8= P̂HS=HS, because our purpose is to control deco-
herence and we are not interested in a QZE over the system
HamiltonianHS. The above assumption is equivalent to the
following hypothesis on the Hamiltonian:

fPn,HSg = 0, ∀ n. s17d

In such a case

Ltot8 = sLS+ LBdP̂. s18d

B. Control via quantum dynamical decoupling
and “bang-bang” pulses

We now turn our attention to the so-called quantum dy-
namical decouplingf8–10g, of which “bang-bang” pulses can
be viewed as a particular case. The control of decoherence is
achieved via a time-dependentsystemHamiltonianHcstd:

Hstd = Htot + Hcstd ^ 1B, s19d

whereHcstd is designed so that

Ucstd ; T expS− iE
0

t

HcssddsD s20d

sT denotes time orderingd satisfies

Ucst + td = Ucstd, s21d

E
0

t

dtfUc
†std ^ 1BgHSBfUcstd ^ 1Bg = 0. s22d

In the interaction picture in whichHcstd is unperturbed, the
density matrix at timet=Nt, with initial staters0d, is given
by rstd=UtotsNtdrs0dUtot

† sNtd where

UtotsNtd = T expS− iE
0

Nt

H̃totssddsD
= FT expS− iE

0

t

H̃totssddsDGN

s23d

and H̃totstd=fUc
†std ^ 1BgHtotfUcstd ^ 1Bg. The second equality

follows from the periodicity ofH̃totstd. A standard Magnus
expansion of the time-ordered exponentialf48g leads to

T expS− iE
0

t

H̃totssddsD = e−ifH̄s0d+H̄s1d+¯gt, s24d

where H̄s0d;s1/tde0
tH̃totssdds and the termH̄s jd is of order

t j s j =1,2, . . .d. By assumptions22d, one has

H̄s0d = HS8 ^ 1B + 1S ^ HB = Htot8 , s25d

which is formally identical to Eq. s14d, where HS8
;s1/tde0

tdt Uc
†stdHSUcstd=e0

1dx Uc
†sxtdHSUcsxtd is indepen-

dent of t becauseUcstd is t periodic by Eq.s21d and is
always written as a function oft /t : Ucstd=Vst /td. Therefore,
in the limit t→0 while keepingt=Nt constant, one obtains

Utotstd = f1 − iH tot8 t + Ost2dgt/t →
t→0

e−iH tot8 t = e−iHS8t
^ e−iHBt.

s26d

In short, as a result of the infinitely fast control, the system-
reservoir coupling is eliminated and, thus, decoherence is
halted. As we shall see in a while, this is a consequence of
the formation of invariantsZenod subspaces.

As is well known, dynamical decoupling is a generaliza-
tion of the evolution obtained by acting on the system with
“bang-bang” pulsesf8g. In the latter, particular case, one ap-
plies during a time intervalt two instantaneousunitary op-
eratorsUk andUk

† and getsf12g
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Htot8 = P̂Htot = o
n

sPn ^ 1BdHtotsPn ^ 1Bd s27d

fsee Eq.s14dg, where the projectionsPn arise from the spec-
tral decomposition

Uk = o
n

e−ilnPn sln Þ lmmod 2p for n Þ md. s28d

Notice that the mapP̂ is in this case the projection onto the
commutant

ZsUkd = hXufX,Ukg = 0j. s29d

Equations27d yields a convenient explicit expression of the
effective Hamiltonian. As in the case discussed in the previ-
ous subsection, one observes the formation of invariant Zeno
subspaces: transitions among different subspaces vanish in
the t→0 limit, yielding a superselection rule. In this case,
the subspaces are defined by Eqs.s27d ands28d and are noth-
ing but the ergodic sectors ofUk.

By assuming again, as in Eqs.s16d and s17d, that P̂HS

=HS and thatP̂HSB=0, as in Eqs.s8d and s9d, we get the
controlled evolution fort→0, given by

Utotstd = e−iH tot8 t = e−iHSt
^ e−iHBt s30d

or, in terms of Liouvillians, byeLtot8 t with Ltot8 = P̂LtotP̂=sLS

+LBdP̂, exactly as in Eq.s18d.
Moreover, in Ref.f12g it was shown that one can obtain

the same results27d by repeating a single “bang,” i.e., by
using a single instantaneous unitary operatorUk, without
closing the group withUk

†. For simplicity, in the following
we will always consider such a situation and will assume the
commutation propertys16d. In such a case, the evolution is
conveniently expressed in terms of the Liouvillian and den-
sity matrix,

rstd = feLkeLtottgt/tP̂rs0d → eLtot8 tP̂rs0d, t → 0, s31d

whereLk is the Liouvillian corresponding to the evolution
s28d and Ltot8 is given by Eq.s18d. Note that the controlled
Hamiltonians for bang-bang pulses, Eq.s27d, and for the
Zeno control, Eq.s14d, coincide when the set of orthogonal
projectionss7d is chosen equal to the sets28d of eigenprojec-
tions of Uk, namely,

LkP̂ = 0, sP̂1d = 1. s32d

Therefore, the two controls are equivalent in the idealslim-
itingd casef12g. However, throughout this article, by dynami-
cal decoupling we will refer to a situation where the evolu-
tion is coherentsunitaryd, while by Zeno control to a
situation where the evolution involves incoherentsnonuni-
taryd processes, such as quantum measurements.

The index “k” in the above expressions stands for “kicks.”
In the following, we shall use the expressions “bang-bang”
pulses and “kicks” interchangeably. The latter is reminiscent
of quantum chaosf49g. In fact, there is an interesting link
between quantum chaotic dynamics, quantum diffusion pro-
cesses, and thesinversed quantum Zeno effectf50g. We will
not elaborate on this issue in the present article.

C. Control via a strong continuous coupling

The formulation in the preceding sections hinges upon
instantaneous processes, which can be unitary or nonunitary.
However, as explained in the Introduction, the basic features
of the QZE can be obtained by making use of a continuous
coupling, when the external system takes a sort of steady
“gaze” at the system of interest. The mathematical formula-
tion of this idea is contained in a theoremf17g on theslarge-
Kd dynamical evolution governed by agenericHamiltonian
of the type

HK = Htot + KHc ^ 1B, s33d

which again need not describe abona fidemeasurement pro-
cess:Hc can be viewed as an “additional” interaction Hamil-
tonian performing the “measurement” andK is a coupling
constant.

Consider the time evolution operator

UKstd = exps− iHKtd. s34d

In the infinitely strong measurementsinfinitely quick detec-
tord limit K→`, the dominant contribution is exps−iKHctd.
One therefore considers the limiting evolution operator

Ustd = lim
K→`

expsiKHctdUKstd, s35d

which can be shown to have the form

Ustd = exps− iH tot8 td, s36d

where

Htot8 = P̂Htot = o
n

sPn ^ 1BdHtotsPn ^ 1Bd, s37d

Pn being the eigenprojection ofHc belonging to the eigen-
valuehn,

Hc = o
n

hnPn shn Þ hm for n Þ md. s38d

By designingHc so that P̂HSB=0, the system-reservoir
coupling is eliminated and, thus, decoherence is halted.
Equations37d, restricted to the system of interest, is formally
identical to Eqs.s27d and s14d.

In conclusion, the limiting evolution operator is

UKstd , exps− iKHctdUstd

= expF− iKto
n

hnPn ^ 1B − iP̂HtottG . s39d

The above statements can be proved by making use of the
adiabatic theoremf51g. It is worth noting that the evolution
in the strong coupling limit is known to force the system to
“cling” to the eigenstates of the interactionf52g. In this
sense, one expects the dynamics to be dominated byHc for K
large. The above theorem clarifies how the structure ofHc
determines the features of the dynamics. Once again, as in
the two previous subsections, one observes the formation of
invariant Zeno subspaces, which are in this case the eigens-
paces of the interactions37d and s38d: the block-diagonal
structure ofs39d is explicit. The links between the quantum
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Zeno effect and the notion of “continuous coupling” to an
external apparatus or environment has often been proposed
in the literature of the last 25 yearsf30,31,33,53g. However,
our interest here is focused on the gradual formation of the
Zeno subspaces asK becomes increasingly large. In such a
case, they are nothing but the adiabatic subspaces. In terms
of the Liouvillian,

rstd = esKLc+LtotdtP̂rs0d → eLtot8 tP̂rs0d, K → ` s40d

fsees31dg, where the notation is obvious, and

LcP̂ = 0, sP̂1d = 1 s41d

fsee s32dg. The Liouvillian Ltot8 = P̂LtotP̂ corresponds to

P̂Htot=Htot8 and, under the assumptionss16d ands9d, is again
given by s18d.

D. Controlled evolution and Zeno subspaces

The three different procedures described in this section
yield, by different physical mechanisms, the formation of
invariant Zeno subspaces. This is shown in Fig. 1. If one of
these invariant subspaces is the “computational” subspace
Hcomp introduced in Eq.s4d, the possibility arises of inhibit-
ing decoherence in this subspace.

Of course, in thet ,K−1→0 limit, decoherence can be
completelyhalted, according to Eqs.s13d–s15d, s26d, s27d,
s37d, and s38d. However, the objective of our study is to
understandhow the limit is attained and analyze the devia-
tions from the ideal situation. This will be done by studying
the transition ratesgn between different subspaces and in
particular theirt andK dependencessee Fig. 1d. We shall see
that in general this dependence can be complicated, leading
to enhancementof decoherence in some cases andsuppres-
sion in other cases. For this reason, thephysicalmeaning of
the expressionst ,K−1→0 in this section must be scrutinized
with great care.

III. FREE DYNAMICS

A. The general case

We consider the time evolution when the initial state is
factorized as in Eq.s5d sthis hypothesis is discussed in Ap-
pendix Bd and the reservoir equilibrium state has an inverse
temperatureb,

rB =
1

Z
exps− bHBd sLBrB = 0d s42d

whereZ=trBe−bHB is the normalization constant.
Assume that the interaction HamiltonianHSB in s1d can be

written asf54g

HSB= o
m

sXm ^ Am
† + Xm

†
^ Amd, s43d

where theXm are the eigenoperators of the system Liouvil-
lian, satisfying

LSXm = ivmXm svm Þ vn for mÞ nd s44d

andAm are the destruction operators of the bath,

Am = Asgmd =E d3k gm
* skdaskd, s45d

expressed in terms of bosonic operatorsaskd, with form fac-
tors gmskd. We are specifying our analysis to three dimen-
sionssalthough it is valid in any dimensiond. Incidentally, the
form of the Hamiltonians43d is of very general validitysand
is not limited, as one might naively think, to dipolelike ap-
proximationsd: the only assumption made is that the coupling
with the bath be linear, i.e., one is not considering terms of
the type a2, a†2, etc., which would only be relevant for
squeezed reservoirs. In practice, one determines the opera-
tors s44d, then finds the bath operators in order to write the
interaction in the forms43d, and neglects nonlinear terms.

In Eq. s44d we will identify v−m=−vm and will assume
thatX−m=Xm

† andgm=g−m, which is equivalent to the hypoth-
esis that the interaction Hamiltonian be the product of self-
adjoint operators acting on the system and the bath, namely,
HSB=oiHS

sid
^ HB

sid, with HS
sid and HB

sid self-adjoint. Notice,
therefore, that we arenot making any rotating-wave approxi-
mation, and the interaction HamiltonianHSB s43d contains
both rotating and counter-rotating terms.

Let us introduce the bare spectral density functionssform
factorsd

kmsvd =E d3kugmskdu2dsvk − vd, s46d

kmsvd=0, for v,0, and the thermal spectral density func-
tions fNsvd=1/sebv−1dg,

km
bsvd = kmsvdfNsvd + 1g + kms− vdNs− vd

=
1

1 − e−bv fkmsvd − kms− vdg, s47d

which extend along the whole real axis due to the counter-
rotating terms and satisfy the Kubo-Martin-Schwinger
sKMSd symmetryf55g

FIG. 1. The Zeno subspaces are formed when the frequencyt−1

of measurements or BB pulses or the strengthK of the continuous
coupling tends tò . The shaded region represents the “computa-
tional” subspaceHcomp,HS defined in Eq.s4d. The transition rates
gn depend ont or K.
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km
bs− vd =

Nsvd
Nsvd + 1

km
bsvd = exps− bvdkm

bsvd. s48d

Under the assumption that the bath is in a thermal state
s42d, in the Markov approximation the reduced state of the
systems6d satisfies the master equation

ṡstd = sLS+ Ldsstd, s49d

where, up to a renormalization of the free LiouvillianLS by
Lamb and Stark shift terms,L engenders the dissipation due
to the interaction with the bath,

Ls = g0SX0sX0 −
1

2
hX0X0,sjD + o

mù1
gmSXmsXm

†

−
1

2
hXm

† Xm,sjD + o
mù1

g−mSXm
† sXm −

1

2
hXmXm

† ,sjD ,

s50d

and

gm = 2pkm
bsvmd. s51d

The derivation of Eqs.s50d ands51d, although well known, is
given in Appendix A for self-consistency and in order to
introduce the notation and techniques that will be used in the
following.

It is useful to look at some concrete examples and scruti-
nize the modification of the form factors46d due to the pres-
ence of the thermal bath. Let us focus, for the sake of clarity,
on two particular Ohmic cases: an exponential form factor

km
sEdsvd = g2v exps− v/Ldusvd s52d

and a polynomial form factor

km
sPdsvd = g2 v

f1 + sv/Ld2gnusvd. s53d

In the latter case, we focus onn=2, which is typical of
quantum dotsf36g sthe casen=4 is also of interest, being the
nonrelativistic form factor of the 2P-1S transition of the hy-
drogen atomf56,57gd. In the above formulas,g is a coupling
constant,L a cutoff, andu the unit step function. In order to
properly compare these two cases, we will require that the
bandwidth be the same:

W=

E
−`

`

dvuvukm
sEdsvd

E
−`

`

dv km
sEdsvd

=

E
−`

`

dvuvukm
sPdsvd

E
−`

`

dv km
sPdsvd

, s54d

where the inverse square root of the denominator

FE
−`

`

dv kmsvdG−1/2

; tZ s55d

is the so-called Zeno time, characterizing the convexity of
the survival probability at the originf16,57,58g. Notice that a
finite natural cutoffL.8.49831018 rad/s and afinite Zeno
time tZ.3.593310−15 s can also be computed for the hy-

drogen atom in vacuumfpolynomial form factors53d with
n=4g, as well as for atomic and molecular systems whose
electronic wave functions are known. The conditions54d
whenn=2 yields the ratioLpol/Lexp=1.275 between the cut-
offs for the polynomial and exponential form factors, and
W=1.99Lexp. The two form factors are displayed in Fig. 2.

The thermal form factorss47d are displayed in Fig. 3 for
two different temperatures. Three features are apparent. The
form factor is an increasing function of the temperatureb−1.
Its value atv=0 is km

bs0d=km8 s0+d /b=g2/b, where the prime
denotes the derivative. Moreover, its derivative reads
km

b8s0±d=km8 s0+d /2±km9 s0+d / s2bd, whence it is continuous,
km

b8s0d=g2/2, in the polynomial casefbecausekm9 s0+d=0g,
and discontinuous,km

b8s0±d=g2/27g2/ sbLd, in the expo-
nential case; this is more apparent at higher temperatures.
Finally, the support of the thermal form factors is no longer
lower bounded, due to the effect of the counter-rotating
terms.

B. Two-level system

A particular case of the above is the qubit Hamiltonian

HSB= sz ^ fAsg0d + A†sg0dg + sx ^ fAsg1d + A†sg1dg,

H0 =
V

2
sz. s56d

This is of the forms43d, when one identifies

FIG. 2. The form factors at zero temperature,kmsvd vs v. Full
line, exponential form factors52d, dashed line, polynomial form
factor s53d.

FIG. 3. The thermal form factorskm
bsvd vs v. Full lines, expo-

nential form factorss47d and s52d; dashed lines, polynomial form
factorss47d ands53d. The form factor is larger at higher temperature
b−1. Note the discontinuity of the derivative in the exponential case
at v=0 smore apparent at higher temperatured.
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X0 = sz, X±1 = s7 =
sx 7 isy

2
,

v±1 = ± V, v0 = 0, s57d

hence

Lr = g0sszrsz − rd + g+1Ss−rs+ −
1

2
hs+s−,rjD

+ g−1Ss+rs− −
1

2
hs−s+,rjD , s58d

with

g0 = 2pk0
bs0d = 2p

k08s0
+d

b
, g±1 = 2pk1

bs±Vd, s59d

where we used Eq.s47d.

IV. QUANTUM ZENO CONTROL

Let us look at the quantum Zeno dynamics with afinite
interval t= t /N between measurements,

rstd = fP̂eLtottP̂gt/trs0d, s60d

whereLtot and P̂ are given by Eqs.s3d ands7d, respectively.
We will look at the subtle effects on the decay rate arising
from the presence of the short-time quadraticsZenod region.
Therefore the standard methodf59g is not applicable to the
present situation and the limit must be evaluated by a differ-
ent technique. We only sketch the main steps in the deriva-
tion and give more details in Appendix C. Second-order per-
turbation inLSB and the conditionss8d and s9d yield

P̂eLtottP̂ = P̂eL0tT expSE
0

t

dsLSBssdDP̂

. eL0tP̂F1 +E
0

t

dsLSBssd

+E
0

t

dsE
0

s

ds1LSBssdLSBss1dGP̂, s61d

whereLSBstd=e−L0tLSBe
L0t. In terms of the operatorGZstd,

defined as the solution of the operator equation

E
0

t

ds e−L0sGZstdeL0s

=P̂E
0

t

dsE
0

s

ds1LSBssdLSBss1dP̂

=E
0

t

ds e−L0sFE
0

s

ds1P̂LSBLSBs− s1dP̂GeL0s, s62d

one obtains

fP̂eLtottP̂gt/t . FP̂eL0tT expSE
0

t

ds e−L0sGZstdeL0sDP̂Gt/t

=P̂ exphfL0 + GZstdgtj. s63d

Under the assumption that the bath state can well be approxi-
mated by an equilibrium state at timet, the final reduced
statesstd is shown to satisfy the equation

ṡstd = fLS+ LZstdgsstd, s64d

with

LZstds = trBhGZstds ^ rBj. s65d

Note thatLZstd is the solution of the operator equation

E
0

t

dt e−LStLZstdeLSt=E
0

t

dtP̂LstdP̂

=E
0

t

dtE
0

t

dsP̂KIst,sdP̂, s66d

where

Lstd =E
0

t

ds KIst,sd,

KIst,sds = trBhLSBstdLSBssds ^ rBj s67d

fsee Eqs.sA8d andsA9d in Appendix Ag. The dissipative part
of s65d is found to have the explicit formfanalogous to Eq.
s50dg

LZstds = g0
ZstdP̂SX0P̂sX0 −

1

2
hX0X0,P̂sjD

+ o
mù1

gm
ZstdP̂SXmP̂sXm

† −
1

2
hXm

† Xm,P̂sjD
+ o

mù1
g−m

Z stdP̂SXm
† P̂sXm −

1

2
hXmXm

† ,P̂sjD ,

s68d

where the controlled decay rates read

gm
Zstd = tE

−`

`

dv km
bsvdsinc2Sv − vm

2
tD , s69d

with sincsxd=sinsxd /x. This yields Zeno and inverse Zeno
effects ast is changed, as we will see in Sec. VII. The key
issue, once again, is to understandhow smallt should be in
order to get suppressionscontrold of decoherencesQZEd,
rather than its enhancementsIZEd.

V. CONTROL VIA DYNAMICAL DECOUPLING

We can now investigate the nonideal bang-bang control of
decoherence. From Eq.s31d, describing a BB control with a
single kick f12g,
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rstd = feLkeLtottgt/trs0d, s70d

whereLtot is again given by Eq.s3d. As in the Zeno control,
we consider here the case wheret is finite, so that the effects
on the decay rate arising from the presence of a short-time
quadraticsZenod region play a fundamental role. Once again,
we only sketch the main steps in the derivation and give
more details in Appendix D. Second-order perturbation in
LSB yields

eLkeLtott = eLkeL0tT expSE
0

t

dsLSBssdD
. eLkeL0tF1 +E

0

t

ds LSBssd

+E
0

t

dsE
0

s

ds1 LSBssdLSBss1dG , s71d

whereLSBstd=e−L0tLSBe
L0t. In terms of the operatorsFkstd

andGkstd, defined as solutions of the operator equations

E
0

t

dse−LtsFkstdeLts =E
0

t

dsLSBssd, s72d

E
0

t

ds e−LtsGkstdeLts=E
0

t

dsE
0

s

ds1fLSBssdLSBss1d

− e−LtsFkstdeLtss−s1dFkstdeLts1g,

s73d

with

Lt =
Lk

t
+ L0, s74d

one has

feLkeLtottgN . FeLttT expSE
0

t

ds e−LtsfFkstd

+ GkstdgeLtsDGN

=expHFLk

t
+ L0 + Fkstd + GkstdGtJ . s75d

With the aid of Eq.s75d, the final reduced statesstd satisfies
the equation

ṡstd = FLk

t
+ LS+ LkstdGsstd s76d

with

Lkstds = trBhGkstds ^ rBj. s77d

The dissipative part of Eq.s77d has the explicit form

Lkstds = g0
kstdFX0stdsX0std −

1

2
hX0stdX0std,sjG

+ o
mù1

gm
k stdFXmstdsXm

† std −
1

2
hXm

† stdXmstd,sjG
+ o

mù1
g−m

k stdFXm
† stdsXmstd −

1

2
hXmstdXm

† std,sjG ,

s78d

where, in analogy with Eq.s44d, the Xmstd are the eigenop-
erators of the LiouvillianLk/t+LS, satisfying

SLk

t
+ LSDXmstd = ivmstdXmstd s79d

svmÞvn for mÞnd and the controlled decay rates read

gm
k std = 2pkm

b
„vmstd… = 2pkm

bS2pm

t
+ Os1dD . s80d

Notice that the mechanism of decoherence suppression

s80d is not fully determined byLtot and P̂, in contrast to the
Zeno case, and depends also on the details of the Liovillian
Lk throughvmstd. This is best clarified by explicitly looking
at a particular case: let us consider the two-level systems56d
with g0=0 sspin-flip decoherenced. We include an additional
third level—that performs the control—and add tos56d the
Hamiltoniansacting onHS% spanhuMljd

HM = −
V

2
uMlkMu, s81d

so thatuMl is degenerate withu↓ l. The control consists of a
sequence of 2p pulsesf60g betweenu↓ l and uMl, given by

Uk = expf− ipsu↓lkMu + uMlk↓ udg = P↑ − P−1, s82d

where

P↑ = u↑lk↑ u, P−1 = P↓ + PM = u↓lk↓ u + uMlkMu, s83d

are the eigenprojections ofUk sbelonging respectively to
e−il↑=1 ande−il−1=−1d which define two Zeno subspaces. In
the t→0 limit any decoherence between these two sub-
spaces is suppressed. In fact, the total decay rate of the upper
level readsf7,60g

g↑
kstd = lim

t→`
tE dv kbsvdsinc2Fv − V

2
tGtan2Fv − V

2
tG
s84d

and yields decoherence suppression for smallt. In addition,
it is worth noting that the function multiplying the thermal
form factor inside the integral can be explicitly evaluated and
has the interesting limit
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lim
t→`

t sinc2Svt

2
Dtan2Svt

2
D

=
2

p
o
j=0

`
1

S j +
1

2
D2FdSv −

2p

t
s j + 1/2dD

+ dSv +
2p

t
s j + 1/2dDG . s85d

The above limit is taken by keepingt fixed—finite and
nonvanishing—andt=Nt, with N integer and even. By plug-
ging Eq.s85d into Eq. s84d one gets

g↑
kstd =

2

p
o
j=0

`
1

s j + 1/2d2FkbSV +
2p

t
s j + 1/2dD

+ kbSV −
2p

t
s j + 1/2dDG , s86d

which is a sum of suitably weighted terms of the forms80d.
This yields again control of decoherence ast is varied, as we
will see in Sec. VII. The key issue, once again, is to under-
standhow smallt should be in order to get suppression of
decoherencescontrold, rather than its enhancement. Equation
s86d yields also a significant computational advantage, when
compared to Eq.s84d: for well-behaved form factorsswith-
out resonancesd the first few terms already provide a good
estimate of the controlled lifetime.

VI. CONTROL VIA A STRONG CONTINUOUS COUPLING

We can now analyze the last case, that of control by
means of a strong continuous coupling. Since the control of
decoherence is achieved by adding a control Hamiltonian
KHc acting on the Hilbert spaceHS, we begin with the study
of the spectral properties of the new “system” Hamiltonian
HSsKd;HS+KHc. By writing the spectral resolutions ofHS

andHc,

HS= o
n

EnQn, Hc = o
m

hmPm, s87d

with on Qn=om Pm=1, and by using the propertys17d we
see thatPmn=PmQn is a sfinerd orthogonal resolution of the
identity, i.e., om,n Pmn=1, with PmnPm8n8=dm,m8dn,n8Pmn.
Note that somePmn can vanish. In particularHSsKd can be
explicitly diagonalized,

HSsKd = o
m,n

sKhm + EndPmn, Pmn= PmQn. s88d

Equationss87d and s88d directly translate in terms of the
Liouvillian as

LS= − io
n

vnQ̃n, Lc = − io
m

VmP̃m, s89d

and

LSsKd = LS+ KLc = − io
m,n

vmnsKdP̃mn,

vmnsKd = KVm + vn, P̃mn= P̃mQ̃n. s90d

The conditions8d for a complete control of decoherence,

P̂HSB=0, leads to

0 = P̂HSB= o
m

PmHSBPm = P̃0HSB= o
n

P̃0Q̃nHSB

= o
n

P̃0nHSB, s91d

whence

P̃0nHSB= 0, ∀ n. s92d

Therefore, by following exactly the same steps of Sec. III A,
with HSsKd defined by Eq.s88d in place ofHS, one obtains
that the dissipative part of the LiouvillianLK governing the
slow evolution of the reduced density matrixs is given by

LKs = o
mù1,n

gmnsKdFXmnsXmn
† −

1

2
hXmn

† Xmn,sjG
+ o

mù1,n
g−m,nsKdFXmn

† sXmn−
1

2
hXmnXmn

† ,sjG ,

s93d

where

Xmn; P̃mXn, s94d

with Xn given by Eqs.s43d and s44d, and

gmnsKd = 2pkn
b
„vmnsKd…. s95d

All terms with m=0 identically vanish due to Eq.s92d. In the
K→` limit, because the thermal form factorkm

bsvd vanishes
asv→` scf. Fig. 2d, one has

gmnsKd = 2pkn
bsKVm + vnd , 2pkn

bsKVmd → 0. s96d

Hence, in theK→ +` limit, the dissipative part disappears,
LK→0, or decoherence is suppressed, as expected.

It is interesting to observe that, when the conditions17d is
not satisfied, the control via a strong continuous coupling
needs an additional argument. In such a case, the control
Hamiltonian Hc and the system HamiltonianHS cannot be
simultaneously diagonalized, butsfor a finite-dimensional
HSd, as a result of the analyticity of the eigenvalues and the
corresponding eigenprojections of the Hermitian operator
HSsKd /K=HS/K+Hc with respect to the perturbation param-
eter 1/K f61g, the eigenvaluesvmnsKd of the new system
Liouvillian LSsKd=KLc+LS and the corresponding eigen-

projectionsP̃mnsKd satisfy

vmnsKd = KVm + Vmn
s1d + OS 1

K
D , s97d

P̃mnsKd = P̃mn
s0d +

1

K
P̃mn

s1d + OS 1

K2D , s98d

whereVmn
s1d and P̃mn

s jd sj =0,1d do not depend onK. As in Eq.

s92d, one gets thatP̃0n
s0dHSB=0, but this does not imply that
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P̃0nsKdHSB=0. As a result, there appear dissipative terms
which tend to 0 via a different mechanism from the one
outlined above. This aspect will be discussed elsewhere, to-
gether with similar phenomena that occur also for the other
two control mechanismssBB and Zenod.

In general, as in the BB control but in contrast to the Zeno
case, the mechanism of decoherence suppressions96d is not
fully determined byHS and depends on the details of the
HamiltoniansHS and Hc. Once again, this can be clarified by
looking at a specific example: consider the two-level system
s56d with g0=0 sspin-flip decoherenced. We add tos56d the
Hamiltoniansacting onHS% spanhuMljd

HM = −
V

2
uMlkMu + KHc,

Hc = u↓lkMu + uMlk↓ u = P+ − P−, s99d

where

P± =
su↓l ± uMldsk↓ u ± kMud

2
; u ± lk± u. s100d

The third stateuMl is now “continuously” coupled to state
u↓ l, KPR being the strength of the coupling. AsK is in-
creased, stateuMl performs a better “continuous observation”
of u↓ l, yielding the Zeno subspacesf16g. In terms of its
eigenprojections,Hc readsfsee Eq.s38dg

Hc = h↑P↑ + h−P− + h+P+, s101d

with P↑= u↑ lk↑u and h↑=0,h±= ±1. In the Zeno limit
sK→`d the subspacesH↑, H+, and H− decouple due to
wildly oscillating phasesOsKd. We get

P̂HSB= P↑HSBP↑ + P−HSBP− + P+HSBP+ = 0. s102d

Therefore in the limitK→`, g±1=0, and decoherence is
halted.

We can diagonalize the new system Hamiltonian

HS8 =
V

2
sz −

V

2
uMlkMu + KHc

=
V

2
P↑ + S−

V

2
+ KDP+ + S−

V

2
− KDP−. s103d

The new system operatorss57d become

X± = P±sxP↑ =
1
Î2

u ± lk↑ u, X0 = u− lk+ u,

LS8X± = isV 7 KdX±, LS8X0 = 2iKX0, s104d

and

HSB= sX+ + X− + X+
† + X−

†d ^ fAsgd + A†sgdg; s105d

hence

LKr = g+sKdSX+rX+
† −

1

2
hX+

†X+,rjD + g−sKdSX−rX−
†

−
1

2
hX−

†X−,rjD + ḡ+sKdSX+
†rX+ −

1

2
hX+X+

†,rjD
+ ḡ−sKdSX−

†rX− −
1

2
hX−X−

†,rjD , s106d

where

g±sKd = 2pk1
bsV 7 Kd, ḡ±sKd = 2pk1

bs− V ± Kd.

s107d

For example, the decay rate out of stateu↑ l reads sthird
article in f43gd

g↑sKd =
g+sKd + g−sKd

2
=pfk1

bsV − Kd + k1
bsV + Kdg.

s108d

VII. THE ROLE OF THE FORM FACTORS

We can now test the general scheme described in the pre-
vious sections by looking in detail at some particular cases.
We will consider the two-level situation and compare the
three control methods with both exponentials52d and poly-
nomial form factorss53d. We will concentrate on the transi-
tion between a regime in which decoherence is partially sup-
presseds“controlled”d and a regime in which it is enhanced.
We shall work in the high-temperature case, which is rather
critical from an experimental point of view, because of
temperature-induced transitions in two-level systems. We
shall set V=0.01W and b=50W−1, so that temperature
=b−1=2V.

A. Quantum Zeno control

We first consider the Zeno control by projective measure-
ments. Dissipation and decoherence are characterized by the
decay rates69d:

gZstd = tE
−`

`

dv kbsvdsinc2Sv − V

2
tD ,

t

tZ
2 , s109d

for t→0, wheretZ,

tZ
−2 =E

−`

`

dv kbsvd =E
0

`

dv ksvdcothSbv

2
D

,
b→`E

0

`

dv ksvd + 2E
0

`

dv ksvdexps− bvd,

s110d

is the thermal Zeno time.sWe dropped the subscriptm for
simplicity.d Observe that, by making use of the limit

lim
t→`

t sinc2Svt

2
D = 2pdsvd, s111d

one gets

FACCHI et al. PHYSICAL REVIEW A 71, 022302s2005d

022302-10



gZstd → g, t → `, s112d

where

g = 2pkbsVd s113d

is the natural decay rates51d. The ratiogZstd /g is the key
quantity: decoherence is suppressed ifgZstd,g, and it is
enhanced otherwise. This ratio is shown in Fig. 4 as a func-
tion of t fin units ofW—the bandwidth defined in Eq.s54dg.
The transition between these two regimes takes place at
t=t* , wheret* is defined by the equationf44g

gZst*d = gZs`d = g. s114d

If t* belongs to the linear regions109d swhich is our case and
is true for sufficiently small energyV of the initial stated, one
gets

t* . gtZ
2 = 2p

kbsVd

E
−`

`

dv kbsvd
. s115d

The short-time region is displayed for clarity in Fig. 5.
It is useful to spend a few words on the physical meaning

of the expressionst→0, b→` in the abovesand followingd
formulas. Times and temperatures are to be compared with
the bandwidthW sor frequency cutoffLd. Times stempera-
turesd are “small” whent!W−1sb−1!Wd. sBut such tem-

peratures can still be “high” if compared toV.d For example,
when one considers short-time expansions in a Zeno context,
the relevant time scale ist* , f44,58g: the expansions109d is
valid for t&W−1 sand nott&tZ, as is sometimes errone-
ously assumedd.

B. “Bang-bang” control

We now discuss BB control. The decay rate is given by
Eq. s86d:

gkstd =
2

p
o
j=0

`
1

S j +
1

2
D2FkbSV +

p

t
s2j + 1dD

+ kbSV −
p

t
s2j + 1dDG

,
t→0 2

p
o
j=0

`
1

S j +
1

2
D2kbSp

t
s2j + 1dDs1 + e−bsp/tds2j+1dd

,
2

p
o
j=0

`
1

S j +
1

2
D2kSp

t
s2j + 1dD , s116d

where we made use of Eq.s48d in the first expansion and
assumed thatb is not too smallsas compared totd in the
second one. In the exponential cases52d one gets

ksEdSp

t
s2j + 1dD = g2p

t
s2j + 1de−sp/tLds2j+1d

= ksEdSp

t
Ds2j + 1de−2jsp/tLd, s117d

whence

gkstd ,
8

p
ksEdSp

t
D, t → 0, s118d

while in the polynomial cases53d one gets

ksPdSp

t
s2j + 1dD , g2 L

fsp/tLds2j + 1dg2n−1

, ksPdSp

t
D 1

s2j + 1d2n−1 , s119d

whence

gkstd ,
8

p
o
j=0

`
1

s2j + 1d2n+1ksPdSp

t
D

=
8

p
s1 − 2−2n−1dzs2n + 1dksPdSp

t
D s120d

for t→0, wherezsxd=ok=1
` k−x is the Riemann zeta function.

On the other hand, in both cases,

FIG. 4. Projective measurements:gZstd /g vs Wt. Full line, ex-
ponential form factors52d; dashed line, polynomial form factors53d
with n=2.

FIG. 5. Projective measurements:gZstd /g vs Wt, for small t.
Full line, exponential form factors52d; dashed line, polynomial
form factors53d with n=2. t* sindicatedd is defined by the equation
gZst*d /g=1. Decoherence is suppressed whengZstd,g; it is en-
hanced otherwise.

CONTROL OF DECOHERENCE: ANALYSIS AND… PHYSICAL REVIEW A 71, 022302s2005d

022302-11



gkstd → 4

p
kbsVdo

j=0

`
1

S j +
1

2
D2 = g, t → `, s121d

where we summed the series

o
j=0

`
1

S j +
1

2
D2 = 4o

j=0

`
1

s2j + 1d2 = 3zs2d =
p2

2
. s122d

The ratiogkstd /g is shown in Fig. 6 as a function oft. Once
again, the transition between the two regimes takes place at
t=t* wheret* is defined by the equation

gkst*d = gks`d = g. s123d

If t* is in the asymptotic regions118d one gets in the expo-
nential cases52d

ksEdS p

t* D .
p

8
g =

p2

4
kbsVd, s124d

which yields

t* . −
p

L
W−1S−

p

8

g

g2L
D−1

= −
p

L
W−1S−

p2

4

kbsVd
g2L

D−1

,

s125d

whereW is Lambert’sW function f62g, that is, the inverse of
the functionfsWd=WeW, and we have taken its −1 branch.

On the other hand, for the polynomial cases53d one gets
from s120d

ksPdS p

t* D .
p

8s1 − 2−2n−1dzs2n + 1d
g

=
p2

4s1 − 2−2n−1dzs2n + 1d
kbsVd s126d

and

t* .
p

L
S p

8s1 − 2−2n−1dzs2n + 1d
g

g2L
D1/s2n−1d

=
3p

L
S p2

4s1 − 2−2n−1dzs2n + 1d
kbsVd
g2L

D1/s2n−1d

. s127d

The short-time region is shown in Fig. 7. It is useful to

observe that the resultss124d–s127d bear an important depen-
dence oft* on the “tail” of the form factor. This is to be
sharply contrasted with the projective measurement situation
s115d, which yields a dependence of the transition timet* on
the “global” features of the form factor. This difference is
apparent if one compares Figs. 5 and 7 and shows that the
latter method offers important advantages if one aims at in-
hibiting decoherence, because of the largersand easier to
attaind value oft* .

C. Control by continuous coupling

Finally, we can look at continuous coupling. The time
scale for decoherence iss108d

gcsKd = pE dv kbsvdfdsv − V − Kd + dsv − V + Kdg

= pfkbsV + Kd + kbsV − Kdg , pksKds1 + e−bKd

, pksKd, s128d

for K→`. On the other hand,

gcsKd → g, K → 0. s129d

Notice that the role ofK in Eq. s128d and the role of 1/t in
Eqs. s118d and s120d are equivalentssee also Appendix Dd.
This yields a natural comparisonf12g between different time
scalesst for measurements and kicks, 1/K for continuous
couplingd.

The ratio gcsKd /g is shown in Fig. 8 as a function of
2p /K. The transition between these two regimes now takes
place atK=K* whereK* is defined by the equation

gcsK*d = gcs0d = g. s130d

If K* is in the asymptotic regions128d,

ksK*d .
g

p
= 2kbsVd. s131d

For the exponential form factors52d one gets

FIG. 6. BB kicks:gkstd /g vs Wt. Full line, exponential form
factor s52d; dashed line, polynomial form factors53d with n=2. FIG. 7. BB kicks:gkstd /g vs Wt for small t. Full line, expo-

nential form factors52d; dashed line, polynomial form factors53d
with n=2. Decoherence is suppressed whengkstd,g; it is en-
hanced otherwise.
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K* . − LW−1S−
1

p

g

g2L
D = − LW−1S− 2

kbsVd
g2L

D ,

s132d

while for the polynomial form factors53d one gets

K* . LS 1

p

g

g2L
D−1/s2n−1d

= LS2
kbsVd
g2L

D−1/s2n−1d

.

s133d

One observes a dependence ofK* on the tail of the form
factor. The strong coupling region is shown in Fig. 9.

D. Comparison among the three control strategies

There is a clear difference betweenbona fideprojective
measurements and the other two cases, BB kicks and con-
tinuous coupling. In the former case Eqs.s114d and s115d
yield a dependence oft* on the global features of the form
factor si.e., its integrald. By contrast, Eqs.s124d–s127d and
s131d–s133d “pick” some particular s“on-shell”d valuessd.
This important difference, due to the different features of the
evolution snonunitary in the first case, unitary in the latter
casesd, is graphically displayed in Figs. 10 and 11, where the
different mechanisms of control are compared. In Fig. 10,t
is “large” sin units of inverse bandwidthd and the three meth-

ods yield almost no control: one essentially reobtains the
Fermi golden ruleg=2pkbsVd, although in different ways.
In Fig. 11,t is “small” and the effective lifetime is sensibly
modified, although by different mechanisms.

The three control methods are graphically compared in
Figs. 12 and 13. The different features discussed in Figs. 10
and 11 yield very different outputs, clearly apparent in Fig.
13, which can be important in practical applications: deco-
herence can be more easily halted by applying BB and/or
continuous coupling strategies. These two methods yield val-
ues of t* sor K*d that are easier to attain. However, this
advantage has a price, because BB and continuous coupling
yield a larger enhancement of decoherence fort.t* , K
,K* . The two dynamical methods perform better only when
t&t* , K*K* . This is apparent in Fig. 12. We notice that a
strict comparison between continuous coupling and the other
two methods is difficult, as it would involve an analysis of
numerical factors of order 1 in the definition of the relevant
conversion factors between the frequency of interruptionst
and the couplingK fthis factor has been sensibly—but
arbitrarily—set equal to 2p in Figs. 12 and 13; see the sen-
tence after Eq.s129d and Appendix Dg.

VIII. SUMMARY AND CONCLUDING REMARKS

We have analyzed and compared three control methods
for combatting decoherence. The first is based on repeated

FIG. 9. Continuous coupling:gcsKd /g vs 2pW/K for large K.
Full line, exponential form factors52d; dashed line, polynomial
form factor s53d with n=2. Decoherence is suppressed when
gcsKd,g; it is enhanced otherwise.

FIG. 8. Continuous coupling:gcsKd /g vs 2pW/K. Full line,
exponential form factors52d; dashed line, polynomial form factor
s53d with n=2.

FIG. 10. Different features of the three control methods. Form factorspolynomial,n=2d kbsvd sdashed lined and form factor modulated
or multiplied by the control “response” functionsfull lined for sad pulsed measurements, Eq.s109d, with control response function
t sinc2fsv−Vdt /2g shere and in the other two cases,V=0.2Wd; sbd BB kicks, Eq. s116d, with control response functions2/pdo j=0

` s j
+1/2d−2fdsv−V−sp /tds2j +1dd+dsv−V+sp /tds2j +1ddg fsee Eq.s85d and notice that the first two or three terms of the series yield an
excellent approximationg; scd continuous measurement, Eq.s128d, with control response functionpfdsv−V−Kd+dsv−V+Kdg. The gray
line is a guide for the eye and interpolatess2/pds j +1/2d−2kbsvd in sbd andpkbsvd in scd. We sett=2p /K=50W−1 sa “large” valued: this
yields in all cases ascontrolledd decay rate that is very close to that obtained by the Fermi golden rule.
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quantum measurementssprojection operatorsd and involves a
description in terms of nonunitary processes. The second and
third methods are both dynamical, as they can be described
in terms of unitary evolutions. In all cases, decoherence can
be halted by very rapidly or strongly driving or very fre-
quently measuring the system state. However, if the fre-
quency is not high enough or the coupling not strong enough,
the controls may accelerate the decoherence process and de-
teriorate the performance of the quantum state manipulation.
The acceleration of decoherence is analogous to the inverse
Zeno effect, namely, the acceleration of the decay of an un-
stable state due to frequent measurementsf43,44g.

As a general rule, when one endeavors to control deco-
herence by suitably tailoring the coupling of the system of
interest to another systemssuch as an external field, or a
measuring apparatusd, one should carefully look at the rel-
evant time scales, as it is not true that repeated measurements
or interruptions always lead to a suppression of decoherence.

It is convenient to summarize the main results obtained in
this article in the particular case of a two-level systemsqubitd
with energy differenceV. If the frequencyt−1 of measure-
ments or BB kicks, or the strengthK of the coupling tends to
`, the two-dimensionalsZenod subspace defining the qubit

becomes isolated and decoherence is completely suppressed.
However, ift−1 andK are large, but not extremely large, the
transition sdecayd rates between the qubit subspace and the
remaining sector of the Hilbert space display a complicated
dependence ont−1 and K, and decoherence can be sup-
pressed or enhanced, depending on the situation.

At low temperaturesb−1!V!W, whereW is the band-
width of the form factor of the interaction, the decay rates
read, from Eqs.s109d, s110d, s118d, s120d, ands128d,

gZstd ,
t

tZ
2 , t → 0,

gkstd ,
8

p
kSp

t
D, t → 0,

gcsKd , pksKd, K → `, s134d

whereZ, k andc denotesZenod measurements,sBBd kicks,
and continuous coupling, respectively,k is the form factor,
and 1/tZ

2.edv ksvd the Zeno timesmore accurate defini-
tions were given in the preceding sectionsd. As we have
shown, there is a characteristic transition timet* scoupling
K*d, such that one obtains

FIG. 13. Comparison among the three control methods: small
times and strong coupling regions. The graphs of Figs. 5, 7, and 9
are displayed together.

FIG. 11. Same as in Fig. 10, but fort=2p /K=3W−1 sa “small” valued: this yields abona fidecontrol of the decay ratesin this particular
situation, decoherence is enhanced in the Zeno case and suppressed in the other two casesd. sad The control response functiont sinc2fsv
−Vdt /2g is very broad and the effective lifetime depends on the “global” features of the form factor.sbd For smallt all the arguments of the
d functions in Eq.s85d tend to`: for well-behaved form factorsslike that shown in the figured, only thefirst term contributes significantly;
the controlled lifetime depends on the local features of the “tail” of the form factor.scd For largeK the arguments of thed functions in Eq.
s128d tend to ±̀ and the controlled lifetime depends again on the local features of the “tail” of the form factor.

FIG. 12. Comparison among the three control methods. The
graphs of Figs. 4, 6, and 8 are displayed together. BB kicks and
continuous coupling are more effective thanbona fidemeasure-
ments for combatting decoherence, as the regime of “suppression”
is reached for larger values oft andK−1.
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for t , t* sK . K*d

⇒ decoherence suppression:gstd , g fgsKd , gg,

for t . t* sK , K*d

⇒ decoherence enhancement:gstd . g fgsKd . gg.

s135d

Therefore, in order to obtain a suppression of decoherence,
the interruptionsscouplingd must bevery frequentsstrongd.
Notice, in this context, that botht* and 2p /K* are not simply
related to the inverse bandwidth 2pW−1: they can be in gen-
eral smuchd shorter. For instance, in the Ohmic polynomial
cases53d, one easily gets from Eqs.s54d and s134d

tZ
* . 2pW−1S2sn − 1dan

2V

W
D ! 2pW−1,

tk
* . 2pW−1an

2
Sanp2

4

V

W
D1/s2n−1d

! 2pW−1,

K* . Wan
−1S 2

an

W

V
D1/s2n−1d

@ W, s136d

where an=sÎp /2dGsn−3/2d /Gsn−1døp /2 is a coefficient
of order 1 andn characterizes the polynomial falloff of the
form factor s53d. The above times and coupling may be
sveryd difficult to achieve in practice. In fact, we see here
that the relevant time scale is not simply the inverse band-
width 2pW−1, but can be much shorter ifV!W, as is typi-
cally the case. These conclusions, summarized here for the
simple case of a qubit, are validin general, when one aims at
protecting from decoherence anN-dimensional subspace.

An important example that we have not explicitly ana-
lyzed in this article is the case of 1/f noise, and its suppres-
sion by means of techniques like those discussed here. There
has recently been a surge of interest in this issue in quantum
information processing devices, where such noise is often
attributable tosbut certainly not limited tod charge fluctua-
tions in electrodes providing control voltagesf63g. Several
recent papers have dealt with suppression of this particular
kind of noise via BB decouplingf41,60,64g. The “bottom-
up” approach models 1/f noise as arising from a collection
of bistable fluctuatorsf41,63,64g. The alternative is to treat
1/ f noise as contributing a particular form factorf60,63g. We
will pursue these ideas as a future topic of investigation, but
we expect that the main results obtained in the present paper
will be applicable to this case as well.

The results obtained in this paper are of general validity
and bring to light the different features of the control proce-
dures as well as the crucial role played by the form factor of
the interaction. We do not expect any drastic change for dif-
ferent decoherence mechanisms and/or different physical
systems. The only somewhat delicate issue, in our opinion, is
to understand whether the system investigated can be consis-
tently described by means of a set of discrete levels.
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APPENDIX A

In this appendix we introduce notation and derive the
master equations49d. We also set up the techniques that are
necessary for the derivations of the “controlled” master equa-
tions given in the following appendixes. We will assume
throughout our analysis that the characteristic time scales of
quantum state manipulation in the spaceHcomp fsee Eq.s4dg
are much longer than any other time scales, so that the pro-
cess is well described by the van Hove “l2t” limit
f55,59,65,66g, wherel is the coupling constant between sys-
tem and reservoirfsee the comment after Eq.s3dg. For in-
stance, if we take the time scale of quantum state manipula-
tion to be of orderl−2 s, to a Rabi period inHcompd, then
the other energies involved are at mostOsl0d.

By following Gardiner and Zollerf54g, the starting point
is the decomposition of the Liouville equation with the aid of
the projection operators

Pr = trBhrj ^ rB = s ^ rB, Q = 1 −P, sA1d

where trB stands for the partial trace over the reservoir de-
grees of freedom andrB is the equilibrium reservoir state
s42d. Note thatP2=P andQ2=Q. Moreover,

PLS= LSP, PLB = LBP = 0, sA2d

and we assume that

PLSBP = 0, sA3d

which can always be satisfied by redefining the system Liou-
ville operatorLSr→LSr+trBhLSBrj ^ rB and the interaction
Liouville operatorLSBr→LSBr−trBhLSBrj ^ rB.

The evolution in the interaction picture reads

ṙIstd = LSBstdrIstd, LSBstd = e−L0tLSBe
L0t, sA4d

and by applying the projectionsA1d together with Eq.sA3d
one gets

PṙIstd = PLSBstdQrIstd,

QṙIstd = QLSBstdPrIstd + QLSBstdQrIstd. sA5d

By formally integrating the second equation and plugging
the result into the first one, one obtains to orderl2
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PṙIstd =E
0

t

ds PLSBstdQLSBssdPrIssd, sA6d

where the initial conditions5d, yieldingQrIs0d=0, was used.
By using the definitionssA1d and the conditionssA2d and
sA3d, Eq. sA6d yields

ṡIstd =E
0

t

ds KIst,sdsIssd, sA7d

where

KIst,sds = trBhLSBstdLSBssds ^ rBj. sA8d

By making use of the first Markov approximationsIssd
→sIstd f54g, which is motivated by the fact that the bath
correlation kernelKIst ,sd is different from zero only fors
. t−tc such thatsIst−tcd.sIstd, one gets

ṡIstd = LstdsIstd, Lstd =E
0

t

ds KIst,sd. sA9d

If the time t in Eqs.sA9d is much larger than the bath corre-
lation time, t@tc, one can safely replace the upper limit of
integration with`, getting a Markovian equation with the
time-independent Liouville operatorL=Ls`d.

We emphasize that this procedure can be rigorously justi-
fied in thesweak couplingd limit f65g

L = lim
l→0

E
0

t/l2

ds KIst/l2,sd, sA10d

which physically corresponds to a time coarse-graining an-
satz f67,68g. From Eqs.sA8d and sA10dd one getssby sup-
pressing, for simplicity, the subscriptI for the operators in
the interaction pictured

Ls = lim
l→0

trBHe−LSt/l2FE
−t/l2

0

ds LSBLSBssdGeLSt/l2
s ^ rBJ

= trBHo
v

Q̃vFE
−`

0

ds LSBLSBssdGQ̃vs ^ rBJ , sA11d

whereQ̃v are the eigenprojections of the LiouvillianLS,

LS= − io
v

vQ̃v, o
v

Q̃v = 1, Q̃vQ̃v8 = dv,v8Q̃v,

sA12d

and in the limit the off-diagonal termseisv−v8dt/l2
Q̃vf¯gQ̃v8

vanish due to the Riemann-Lesbegue lemma. Notice that the

superoperatorsQ̃v can be expressed in terms of the eigen-
projections of the HamiltonianHS as

Q̃vr = o
m,n

Em−En=v

QmrQn, HS= o
n

EnQn. sA13d

From a physical point of view, the resultsA11d hinges
upon a second-order perturbation expansion of the Liouvil-
lian s3d in the interaction picture,

e−L0teLtott = T expSE
0

t

ds LSBssdD
. 1 +E

0

t

ds LSBssd +E
0

t

dsE
0

s

ds1LSBssdLSBss1d.

sA14d

Indeed, the first-order term vanishes after the projection due
to sA3d, while the projected second-order term reads

trBHE
0

t

dsE
0

s

ds1LSBssdLSBss1ds ^ rBJ
=E

0

t

dstrBHe−LSsFE
−s

0

ds1LSBLSBss1dGeLSsrJ
. E

0

t

dstrBHe−LSsFE
−`

0

ds1LSBLSBss1dGeLSsrJ
. t trBHo

v

Q̃vFE
−`

0

dsLSBLSBssdGQ̃vs ^ rBJ = Lt s,

sA15d

wherer=s ^ rB. In the second equality we considered times
t much larger than the bath correlation timetc, so that the
integration range can be extended froms−s,0d to s−` ,0d,
while in the third equality we neglected the rapidly oscillat-
ing scompared with those responsible for decoherenced off-
diagonal terms. By combining Eqs.sA15d and sA14d we fi-
nally get

sIstd = trBhe−L0teLtottsIs0d ^ rBj . expsLtdsIs0d,

sA16d

which is nothing but sA9d, when one substitutes
Lstd→Ls`d=L.

Some of these ideas and techniques, at different levels of
rigor, have been investigated and applied in the literature of
the last four decadesf55,59,66g.

Assume now that the interaction HamiltonianHSB has the
form s43d. In the interaction representation we get

HSBstd = e−L0tHSB= o
m

fXm ^ Am
† std + Xm

†
^ Amstdg,

sA17d

where

Amstd = eivmte−LBtAm =E d3 k gm
* skde−isvk−vmdtaskd.

sA18d

If the bath is in the thermal states42d we obtain
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kAm
† stdAmssdl =E d3kugmskdu2Nsvkdeisvk−vmdst−sdkAmstdAm

† ssdl

=E d3kugmskdu2fNsvkd + 1ge−isvk−vmdst−sd,

sA19d

and kAmstdAmssdl=kAm
† stdAm

† ssdl=0, with Nsvd=1/sebv−1d.
From Eq.sA11d we get

Ls =E
−`

0

dstrBhQ̃vLSBLSBssdQ̃vs ^ rBj sA20d

and by using the property

o
v

Q̃vL1L2Q̃vr = − o
v

Q̃v†H1,fH2,Q̃vrg‡

= − o
v

†sQ̃vH1d,fsQ̃−vH2d,rg‡,

sA21d

which easily follows from the definitionsA12d, we get

Ls = − o
v
E

−`

0

dstrBhfsQ̃vHSBd,fsQ̃−vHSBssdd,s ^ rBggj.

sA22d

By using Eqs.sA13d and s43d one obtains

Q̃vm
HSB= HSB

smd = X−m ^ A−m
† + Xm

†
^ Am, sA23d

whence

Ls = − o
m
E

−`

0

ds trBh†HSB
smd,fHSB

s−mdssd,s ^ rBg‡j

= − o
m
E

−`

0

ds trBh†Xm
†

^ Am,fXm ^ Am
† ssd,rg‡

+ †X−m ^ A−m
† ,fX−m

†
^ A−mssd,rg‡j, sA24d

where r=s ^ rB. Notice that in the second equality, terms
containing two annihilation or creation operators identically
vanish after taking the trace over the thermal staterB and
have been dropped. EquationsA24d can be put in the form
f54g

Ls = − io
m

fdmXm
† Xm + emXmXm

† ,sg + o
m

KmSXmsXm
†

−
1

2
hXm

† Xm,sjD + o
m

GmSXm
† sXm −

1

2
hXmXm

† ,sjD
sA25d

with

1

2
Km − idm =E

0

`

dtkAms0dAm
† stdl,

1

2
Gm − iem =E

0

`

dtkAm
† s0dAmstdl. sA26d

The first line in Eq.sA25d is just the renormalization of the
free Liouvillian LS by Lamb and Stark shift terms. The dis-
sipative part is given by the second and third terms, which
appear in the Lindblad form, so that trLs=0.

By identifying v−m=−vm, and assuming thatX−m=Xm
† and

gm=g−m, the dissipative part of Eq.sA25d can now be rewrit-
ten as

Ls = g0SX0sX0 −
1

2
hX0X0,sjD + o

mù1
gmSXmsXm

†

−
1

2
hXm

† Xm,sjD + o
mù1

g−mSXm
† sXm −

1

2
hXmXm

† ,sjD ,

sA27d

where

gm = Km + G−m. sA28d

Equation sA27d is the sought master equations50d of the
text.

By introducing the thermal spectral density functionss47d
we explicitly get

Km = 2pkmsvmdfNsvmd + 1g,

Gm = 2pkmsvmdNsvmd, sA29d

which by Eq.sA28d yield

gm = 2 ReE
0

`

dtfkAmAm
† stdl + kA−m

† A−mstdlg = 2pkm
bsvmd,

sA30d

which are the desired decay ratess51d of the text.

APPENDIX B

In this appendix, the assumption of the factorized forms5d
of the initial density operator, which is usually taken for
granted, is shown to be justified in the weak couplingsscal-
ingd limit, provided rB is mixing. We only outline the main
derivation. Further details will be reported elsewheref46g.

Consider the initial-value problem

]

]t
r = Ltotr = sL0 + lLSBdr = sLS+ LB + lLSBdr,

rs0d = r0, sB1d

where the dependence on the coupling constantl of the in-
teraction Liouvillian LSB is made explicit. Notice that the
initial density operator can be of any form and isnot as-
sumed here to be factorized as ins5d. The projection opera-
torsP andQ, defined in Eq.sA1d, and the above Liouvillians
LS, LB, andLSB satisfy the same conditionssA2d and sA3d.
The projected density operatorsPr andQr satisfy
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]

]t
Pr = L0Pr + lPLSBQr,

]

]t
Qr = sL0 + lQLSBQdQr + lQLSBPr, sB2d

respectively. Following the same procedure as in Sec. III, we
arrive at the followingexact equation for theP-projected
operator in the interaction picture:

]

]t
se−L0tPrd = le−L0tPLSBe

sL0+lQLSBQdtQr0

+ l2E
0

t

dt8e−L0tPLSBe
sL0+lQLSBQdt8

3LSBPrst − t8d. sB3d

Notice that the first term on the right-hand side represents
the contribution arising from a possible initial correlation
between the system and reservoir. We now show that this
term dies out in the weak couplingsi.e., scalingd limit l
→0 with fixed t;l2t. For this purpose, define

rIst;ld ; e−L0t/l2Prst/l2d, sB4d

which satisfies

ṙIst;ld =
1

l
e−L0t/l2PLSBe

sL0+lQLSBQdt/l2Qr0

+E
0

t/l2

dt8e−L0t/l2PLSBe
sL0+lQLSBQdt8

3 LSBe
L0st/l2−t8dPrIst − l2t8;ld. sB5d

The first term vanishes in thel→0 limit f46g, since

E
0

`

dt
1

l
eAt/l2

Ystd = lE
0

`

dt eAtYsl2td → 0, sB6d

as l→0, for any superoperator such that the integral
e0

`dt eAt exists. This means that the contribution originating
from the initial correlation between the system and reservoir
disappears in the scaling limit and therefore we are allowed
to start from an initial density matrix in the factorized form
s5d.

Finally, the dynamics ofrIst ;0d is governed by

ṙIst;0d = o
v

Q̃vE
0

`

dt8PLSBs0dQLSBs− t8dQ̃vrIst;0d

sB7d

with the factorized initial conditions5d, where theQ̃v are the
eigenprojections of the LiouvillianLS defined insA12d.

From a physical point of view, the factorization ansatz
described in this appendix simply means that the “initial”
correlations between the system and its environment are
“forgotten” on a time scale of orderl2. We also note that
several authors have addressed the question of the modifica-
tions that arise when it is not permissible to assume initially
separable system and environment, e.g.,f69g.

APPENDIX C

We derive Eq.s63d. The first equality reads

fP̂eLtottP̂gt/t . fP̂VZstdP̂gt/t,

VZstd = eL0tT expSE
0

t

ds e−L0sGZstdeL0sD . sC1d

Let us writeVZstd=Vst ,td, where

Vst,ud = eL0tT expSE
0

t

ds e−L0sGZsudeL0sD . sC2d

By deriving with respect tot, we get

]tVst,ud = fL0 + GZsudgVst,ud, sC3d

so that

Vst,ud = exphfL0 + GZsudgtj, sC4d

where we usedVs0,ud=1. As a consequence,VZstd
=exphfL0+GZstdgtj and

fP̂eLtottP̂gt/t . fP̂ exphfL0 + GZstdgtjP̂gt/t

= P̂ exphfL0 + GZstdgtj, sC5d

becausefP̂,L0g=fP̂,GZg=0. This is Eq.s63d.
Let us now solve Eq.s65d:

E
0

t

dt e−LStLZstdeLSt =E
0

t

dtP̂LIstdP̂ =E
0

t

dtE
0

t

dsP̂KIst,sdP̂.

sC6d

By using Eqs.sA8d and sA4d,

KIst,sds = trBhLSBstdLSBssds ^ rBj,

LSBstd = e−sLS+LBdtLSBe
sLS+LBdt, sC7d

we get

E
0

t

dt e−LStLZstdeLSts

=E
0

t

dtE
0

t

ds trBhP̂LSBstdLSBssdP̂s ^ rBj

=E
0

t

dt e−LStE
−t

0

ds trBhP̂LSBLSBssdP̂eLStrj, sC8d

where r=s ^ rB. Let us rewrite the previous equation in

terms of the eigenprojectionsQ̃v of LS defined bysA12d:
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o
v,v8

E
0

t

dt eisv−v8dtQ̃vLZstdQ̃v8s

= o
v,v8

E
0

t

dt eisv−v8dt

3E
−t

0

dstrBhQ̃vP̂LSBLSBssdP̂Q̃v8rj. sC9d

Performing the first integral, we get

Q̃vLZstdQ̃v8s =
g„sv − v8dt…

t
E

0

t

dt eisv−v8dt

3 E
−t

0

dstrBhQ̃vP̂LSBLSBssdP̂Q̃v8rj,

gsxd =
ix

eix − 1
. sC10d

Sincegs0d=1, the diagonal terms yield

Q̃vLZstdQ̃vs =
1

t
E

0

t

dtE
−t

0

ds trBhQ̃vP̂LSBLSBssdP̂Q̃vrj.

sC11d

The off-diagonal terms do not contribute to the master equa-
tion, as explained in Appendix A, Eqs.sA10d–sA15d.

By using the propertysA21d and noting thatfP̂,Q̃vg=0 by
Eq. s16d, we get

LZstds = − o
v

1

t
E

0

t

dtE
−t

0

ds

3 trBhP̂fsQ̃vHSBd,fsQ̃−vHSBssdd,P̂rggj, sC12d

whence, by using Eq.sA23d,

LZstds = − o
m

1

t
E

0

t

dtE
−t

0

dstrBhP̂†HSB
smd,fHSB

s−mdssd,P̂rg‡j

= − o
m

1

t
E

0

t

dtE
−t

0

ds

3trBhP̂†Xm
†

^ Am,fXm ^ Am
† ssd,P̂rg‡

+ P̂†X−m ^ A−m
† ,fX−m

†
^ A−mssd,P̂rg‡j, sC13d

where, as in Eq.sA24d, in the second equality we dropped
terms containing two annihilation or creation operators.
From Eq.sC13d we get Eq.s68d with

gm
Zstd =

2

t
ReE

0

t

dtE
−t

0

dsfkAms0dAm
† ssdl + kA−m

† s0dA−mssdlg.

sC14d

By noticing that

kAmAm
† ssdl + kA−m

† A−mssdl =E
−`

`

dv km
bsvdeisv−vmds,

sC15d

we finally get

gm
Zstd =

2

t
E

−`

`

dv km
bsvd

1 − cossv − vmdt
sv − vmd2

= tE
−`

`

dv km
bsvd

sin2Sv − vm

2
tD

Sv − vm

2
tD2 , sC16d

which is Eq.s69d of the text.

APPENDIX D

We derive Eqs.s78d ands80d. We start from Eqs.s72d and
s73d:

E
0

t

ds e−LtsFkstdeLts =E
0

t

ds LSBssd, sD1d

E
0

t

ds e−LtsGkstdeLts =E
0

t

dsE
0

s

ds1fLSBssdLSBss1d

− e−LtsFkstdeLtss−s1dFkstdeLts1g,

sD2d

whereLt=Lk/t+L0, and by taking the trace over the bath
we get

E
0

t

dt e−LSstdLkstdeLSstds =E
0

t

dtE
−t

0

ds trBhfe−LStLSBLSBssd

− e−LSstdtFkstde−LtsFkstdeLtseLSstdtgrj,

sD3d

with r=s ^ rB and

LSstd =
Lk

t
+ LS. sD4d

EquationsD3d is similar to Eq.sC8d and, by projecting onto

the eigenprojectionsP̃vstd of LSstd and taking only the di-
agonal terms, one obtains Eq.s78d. However, in order to
compute the decay ratesgm

k std one can give an alternative,
more physical derivation by elaborating on the technique of
Ref. f12g. First notice that the BB dynamicss70d is generated
by the time-dependent Hamiltonian

Hst/td = Htot + HkdPst/td,dPsxd = o
nPZ

dsx − nd. sD5d

In the enlarged Hilbert spaceH ^ L2sTd we can consider the
stime-independentd Floquet Hamiltonian

HFloq = Hsud +
1

t
pu = Htot + HkdPsud +

1

t
pu, sD6d

where
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u P f− 1/2,1/2d, pu = − i]u, fu,pug = i . sD7d

We get

u̇ = − ifu,HFloqg = 1/t, ustd = t/t, sD8d

whence∀APH,

Ȧstd = − ifAstd,HFloqg = − ifAstd,Hst/tdg, sD9d

so that every observable inH evolves according to the origi-
nal HamiltoniansD5d. The eigenvalue equation forpu reads

puuml = 2pmuml, kuuml = ei2pmu, mP Z. sD10d

The HamiltoniansD6d in H ^ L2sTd represents a control by a
strong continuous coupling, analogous to that discussed in

Sec. VI, if one identifiesK=1/t andHc=pu. Therefore, from
Eqs.s97d and sD10d we obtain

vmnstd =
1

t
Vm + Vmn

s1d + Ostd =
2pm

t
+ Vmn

s1d + Ostd,

sD11d

and from Eq.s95d we get

gmn
k std = 2pkn

b
„vmnstd… = 2pkn

bS2pm

t
+ Vmn

s1d + OstdD ,

sD12d

which is Eq.s80d of the text.
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