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We study the non-Markovian dynamics of a qubit made up of a two-level atom interacting with an electro-
magnetic fieldsEMFd initially at finite temperature. Unlike most earlier studies where the bath is assumed to be
fixed, we study the complete evolution of the combined qubit-EMF system, thus allowing for the coherent
backaction from the bath on the qubit and the qubit on the bath in a self-consistent manner. In this way we can
see the development of quantum correlations and entanglement between the system and its environment, and
how that affects the decoherence and relaxation of the system. We find nonexponential decay for both the
diagonal and nondiagonal matrix elements of the qubit’s reduced density matrix in the pointer basis. The
former shows the qubit relaxing to thermal equilibrium with the bath, while the latter shows the decoherence
rate beginning at the usually predicted thermal rate, but changing to the zero-temperature value as the qubit and
bath become entangled. The decoherence and relaxation rates are comparable, as in the zero-temperature case.
On the entanglement of a qubit with the EMF we calculated the fidelity and the von Neumann entropy, which
is a measure of the purity of the density matrix. The present more accurate non-Markovian calculations predict
lower loss of fidelity and purity as compared with the Markovian results. Generally speaking, with the inclu-
sion of quantum correlations between the qubit and its environment, the non-Markovian processes tend to slow
down the drive of the system to equilibrium, prolonging the decoherence and better preserving the fidelity and
purity of the system.
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I. INTRODUCTION

Interest in quantum entanglement has grown in recent
years motivated mainly by the attempt to understand and
realize quantum information processing. An important aspect
of quantum entanglement, which is unavoidable in quantum
information processing, is the entanglement of a system with
its environment. This issue is especially important to the fea-
sibility of quantum computation, as the error threshold for
fault tolerant error correctionswithout which quantum com-
putation is impossibled, is highly sensitive to the degree to
which the environment becomes correlated with the qubits
f1g. In many realistic quantum computing schemes the envi-
ronment includes an electromagnetic fieldsEMFd. Studies of
entanglement between multipartite systems existf2–6g, but
few have attempted to predict the effects on a qubit from its
entanglement with the EMFf7–10g. We have addressed the
relaxation and decoherence issues in various contexts, from a
two-level atom in aszero-temperatured EMF f11g to moving
atoms in a cavityf12,13g. Here we continue this study for
these two issues and the issue of entanglement for a two-
level atom in a finite temperature EMF.

In this paper we aim at addressing the issue of system-
environment entanglement by carefully analyzing its effect

on reduced system dynamics. Specifically, we study the re-
duced dynamics of a single qubit interacting with an initially
thermal bath in the multimode Jaynes-Cummings model. The
model is a well studied example of open system dynamics,
however, prior analyses have focused on Markovian dynam-
ics by assuming no disturbance of the bath modes by the
qubit f14–19g. Although such a simplifying assumption does
include a level of backaction, it neglects entanglement that
forms between the qubit and bath modes during the evolu-
tion. Earlier predictions based on simplified Markovian ap-
proximations are thus unsuitable for studies of such en-
tanglement, and should be scrutinized carefully before being
applied to quantum computationssee, e.g., Ref.f20g for a
discussion of this issue bearing on error correctiond. More
realistic physical conditions are better served by non-
Markovian treatments, which have begun to appear. How-
ever, many of them use approximations with limited short-
time validity f21–24g or unclear physical meaning such as in
non-Markovian stochastic Schroedinger equationsf25–27g.

Our approach includes bath dynamics as well as qubit
dynamics, and the quantum correlations between them. Ana-
lytic expressions are derived for the qubit reduced density
matrix elements at low temperature, from which the fidelity
sdefined as the overlap between the initial and evolved qubit
stated and von Neumann entropy are computed. Inspection of
the matrix elements themselves show slowedssubexponen-
tiald decoherence for the off-diagonal elements and slowed
relaxation to thermal asymptotes for the diagonal matrix el-
ements, as compared to Markovian predictions. Analysis of
the fidelity and von Neumann entropy similarly show slowed
loss of fidelity and purity in the case of non-Markovian dy-
namics over Markovian dynamics. The overall picture which
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develops is of increased preservation of coherence in non-
Markovian dynamics.

Following successive degradation from an exact solution
to a Markovian description of system-bath interactions, three
distinct approximations are usually invoked. They ares1d the
second-order Born approximation,s2d the first Markov ap-
proximationf19g, ands3d the assumption of a bath which is
unaffected by its interaction with the system.s1d The second-
order Born approximation is an approximation in the
strength of the coupling constant, and applying it neglects
terms of higher than second order in the couplingf28g. s2d
The first Markov approximation is an approximation in the
backaction correlation time. It is a Markov approximation
because it assumes that the backaction of the system onto
itself through the bath at timet will depend only on the state
of the combined system-bath at timet, and not on the past
history. It is called the first Markov approximation because
although it depends only on the state of the system at timet,
it depends on the state of the bath as well as the system
sthrough the bath averagesd, thus including the bath dynam-
ics f19g. s3d The last of the above three approximations is the
assumption of a bath state which is fixed for all time. That
assumption expressly excludes any dynamical evolution of
the bath.

In the usual derivation of the Markovian master equation
from the Schrödinger equation for the system-bath density
operator, all three approximations are made. In contrast, the
Heisenberg-Langevin approaches make only the first Markov
approximation. However, for spin-boson models such ap-
proaches have focused on the reduced qubit dynamics in
strictly vacuum EMF, although in the presence of a classical
sourcese.g., resonance florescenced. The resulting equations
for the qubit degrees of freedom are called the Bloch-
Langevin equationsf17g. The Schrödinger-master equation
can be derived from the Heisenberg-Langevin equation after
a perturbative expansion which imposes the first and third
approximations from the abovef29g. For a comparison of
these approximations see Ref.f30g. Our path integral ap-
proach to the reduced system dynamics uses only the first of
the above three approximations by allowing the combined
system-bath to evolve coherently throughout the interaction
period. Only at the end of all coherent evolution will the bath
variables be traced out to yield the reduced system evolution.

The approach we take is straightforward, although the ac-
tual implementation includes some nonstandard techniques
involving Grassmann path integrals. In Sec. II the Hamil-
tonian and other important aspects of the model, including
the coherent state represenation, are reviewed. The transition
amplitude is derived in Sec. III A, utilizing the coherent state
representation for the bosonic degrees of freedom and Grass-
mann states for the qubit degrees of freedom, following Ref.
f11g. Doing so will involve a recursive computation which
exploits the semigroup property of the transition matrix
ssimilar to a technique used in Ref.f31gd. After evaluating
the transition amplitudes in an intermediate form, we com-
bine the forward and backward versions by tracing over the
final bosonic coherent states to construct the reduced propa-
gator in Sec. III B. An initial thermal state for the oscillator
bath is then introduced and the reduced dynamics of the
qubit are calculated in Sec. III C. Section IV gives discussion
and further analysis of the results.

II. MODEL

A. Hamiltonian

The model used for atom-field interactions is the standard
multimode Jaynes-Cummings model of a two-level system
interacting with a harmonic oscillator bath. The total Hamil-
tonian under the dipole, rotating wave and two-level approxi-
mations is given byse.g., Appendix A of Ref.f11gd

H = "v0Sz + "o
k

fvkbk
†bk + slkS+bk + l̄kS−bk

†dg, s1d

where b̂k
†,b̂k are the creation and annihilation operators for

the kth bath mode with frequencyvk and"v0 is the energy
separation between the two levels. The operatorsSz, S+, and
S− are the qubit operators forz projection, spin up, and spin

down, respectively. The couplings,lk andl̄k, have absorbed
a dependence on the spectral density of the bathf11g.

B. Coherent states

Coherent states are defined as any set of states generated
by the exponentiated operation of a creation operator and a
suitable label on a chosen fiducial statef32,33g:

uzkl = expszkbk
†du0kl, s2d

uhl = expshS+du0l. s3d

In the case of the bosonic coherent states, defined in Eq.s2d,
the labelzk is a complex number, and in the case of the
Grassmann coherent states, defined in Eq.s3d, the labelh is
an anticommuting number. The chosen fiducial states are the
EMF vacuum and the lower state of the two-level system,
respectively. A state of the combined atom-field system can
be expanded in a direct product coherent state basis

uhzkj,hl = uhzkjl ^ uhl, s4d

in which the bosonic coherent state basisuzkl is used to rep-
resent the EMF and a Grassmann coherent state basisuhl is
used to represent the two-level internal degrees of freedom
of the atom.

Grassmann and bosonic coherent states share well known
properties of general coherent states, such as being nonor-
thogonal and eigenstates of the annihilator

kz̄kuzk8l = expsz̄kzk8d, kh̄uh8l = expsh̄h8d, s5d

bkuzkl = zkuzkl, S−uhl = huhl, s6d

where the overbar denotes conjugation. Despite their nonor-
thogonality, both types of coherent states aresoverdcomplete
sets and have a resolution of unity

1 =E dmszkduzklkz̄ku =E dmshduhlkh̄u s7d

with the measures
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dmszkd = exps− z̄kzkddz̄kdzk, s8d

dmshd = exps− h̄hddh̄dh. s9d

That these measures are exponential functions makes the co-
herent states a particularly suitable representation for transi-
tion amplitudes written as path integrals. For convenience
the shorthand notation

p
k

dmszkd = dmshzkjd s10d

is defined for the product of the measure of different mode
coherent states.

In the bosonic and Grassmann coherent states, theQ rep-
resentation of the Hamiltonians1d is

kh̄,hz̄kjuHuh8,hzk8jl = "v0h̄h8 + "o
k

fvkz̄kzk8 + slkh̄zk8

+ l̄kz̄kh8dg,

in which the replacementSz→S+S−, correct up to an additive
constant, was made. TheQ representation Hamiltonian will
participate prominently in the path integrals of the next sec-
tion.

III. APPROACH

A. Transition amplitude

Here we construct and evaluate the transition amplitude
Kstf ,tid of coherent states from an initial timeti =0 to coher-
ent states at a final timetf = t

Kst,0d = kh̄ f,hz̄fkj;tuUst,0duhi,hzikj;0l, s11d

with Ust ,0d being the time evolution operator

Ust,0d = e−si/"de0
t Hds. s12d

Following the path integral methodology, we partition the
intervalf0,tg into a large numbersNd of time steps, such that
t=Ne. The path integral is then calculated as a discrete func-
tional. Doing so, then-step transition amplitude can be writ-
ten in a general form

Ksne,0d = expHh̄ncn + o
k

z̄nkfnk + o
k

h̄ngnk + o
k

z̄nkfnkJ .

s13d

By applying the semigroup property of the transition ampli-
tude

Kfsn + 1de,0g =E dmshnd E dmshzkjdKfsn + 1de,negKsne,0d

s14d

finite difference relations can be found for the coefficients in
the action. Settingh=1, and absorbing factors of 2p, they
are

cn = s1 − iv0edcn−1 + o
k

siln,kedfn−1,k, c0 = hi ,

s15d
fn,k = sil̄n,kedcn−1 + s1 − ivkedfn−1,k, f0,k = 0,

gn,k = s1 − iv0edgn−1,k + siln,kedfn−1,k, g0,k = 0,
s16d

fn,k = sil̄n,kedo
l

gn−1,l + s1 − ivkedfn−1,k, f0,k = zi,k.

The coupling constants in Eqs.s15d ands16d have time indi-
ces because they are separated by complete sets of states at
different time steps when the Hamiltonian is partitioned, thus
they are separate sets of Grassmann pairs. The transition am-
plitude at timets=Ned can be written

Kst,0d = expHh̄ fcstd + o
k

z̄fkfkstd + o
k

h̄ fgkstd + o
k

z̄fkfkstdJ .

s17d

Since this equation is a function of Grassmann variables it is
to be treated as a formal expression that has meaning only in
its polynomial expansion. In that polynomial expansion
many terms will be truncated due to the nilpotency of the
Grassmann variables. Expanding out Eq.s17d and defining
the functionals

Ffhmjjgstd = p
k

ffkstdgmk, s18d

Glfhmjjgstd = glstdp
k

ffkstdgmk, s19d

C ffhmjjgstd = cstdp
k

ffkstdgmk, s20d

Fp
f fhmjjgstd = fpstdp

k

ffkstdgmk, s21d

Flp
g fhmjjgstd = gpstdflstdp

k

ffkstdgmk, s22d

Cp
gfhmjjgstd = gpstdcstdp

k

ffkstdgmk s23d

gives the following expanded expression for the transition
amplitudeswith time dependence left implied for notational
clarityd:

Kst,0d = o
hmjj

Fp
k

sz̄fkdmk

mk!
GSFfhmjjg + h̄ fC

ffhmjjg

+ o
l

h̄ fGlfhmjjg + o
p

z̄fpFp
f fhmjjg

+ o
pl

h̄ fz̄fpFlp
g fhmjjgD . s24d

The variablemj is the number of photons in thejth mode of
the final EMF state. The transition amplitude as written
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above is a functional sum over all distributionshmjj. Differ-
ential equations for the functionals that appear in the transi-
tion amplitude can be found from the finite difference equa-
tions of Eqs.s15d and s16d:

Ḟfhmjjg = − io
q

mqvqFfhmjjg + io
lp

Gpfhmj − djljg,

s25d

Ġpfhmjjg = − iSv0 + o
q

mqvqDGpfhmjjg + ilpFfhmj + djpjg,

s26d

Ċ ffhmjjg = − iSv0 + o
q

mqvqDC ffhmjjg + io
p

lpFp
f fhmjjg

+ io
lp

mlllCp
gfhmj − djljg, s27d

Ċp
gfhmjjg = − iS2v0 + o

q

mqvqDCp
gfhmjjg − io

l

llFlp
g fhmjjg

+ ilpC ffhmj + djpjg, s28d

Ḟp
f fhmjjg = − iSvp + o

q

mqvqDFp
f fhmjjg + ilpC ffhmjjg

+ io
ql

mqlqFpl
g fhmj − djqjg, s29d

Ḟlp
g fhmjjg = − iSv0 + vl + o

q

mqvqDFlp
g fhmjjg − illCp

gfhmjjg

+ ilpFl
ffhmj + djpjg. s30d

Although the transition amplitude of Eq.s24d and the differ-
ential equations with all Grassmann variables removed of
Eqs. s25d–s30d can be used from this point onward, it is
simpler instead to work with Eq.s17d during the trace over
final EMF states. In the next section we shall combine for-
ward and backward versions of the transition amplitude to
construct the reduced propagator.

B. Reduced propagator

The evolution of the reduced system with an initial atomic
state is given by

rstd =E dmshiddmshi8dp
k

fdmszikddmszik8 dgJRst,0dRs0d,

s31d

in which Rs0d is the combined initial system-bath density
operator andJRst ,0d is the propagator for the reduced system

JRst,0d =E dmshzfkjdKst,0dK̄8st,0d. s32d

Carrying out the integration with Eq.s17d and its barred
conjugate, one finds

JRst,0d = expHh̄ fcstd + c̄8stdh f8 + o
k

h̄ fgkstd + o
k

ḡk8stdh f8

+ o
k

f f̄ k8std + f̄k8stdgffkstd + fkstdgJ . s33d

C. Initial thermal state

For thermal vacuum the initial state in the coherent state
representation and in units such that Boltzmann’s constant is
unity skb=1d is

Rs0d = Fp
k

exphe−bvkz̄ikzik8 jG
3fr00 + h̄ir10 + hi8r01 + h̄ihi8r11g. s34d

Evaluating Eq.s31d with substitutions from Eq.s33d and Eq.
s34d one may obtain the evolved reduced density operator.
After expanding completely, the reduced density matrix ele-
ments become, for the upper state population,

r11std = r00o
hmjj

o
l

mlGlfhmj − djljgḠl8fhmj − djljge−boqmqvq

+ r11o
hmjj

SC ffhmjjg + o
l

mlFll
gfhmj − djljgD

3 SC̄8ffhmjjg + o
l

mlF̄ll8
gfhmj − djljgDe−boqmqvq,

s35d

for the lower state population,

r00std = r11o
hmjj

o
l

sml + 1dFl
ffhmjjgF̄l8

ffhmjjge−boqmqvq

+ r00o
hmjj

FfhmjjgF̄8fhmjjge−boqmqvq, s36d

and for the off diagonal

r10std = r10o
hmkj

SC ffhmjjg + o
l

mlFll
gfhmj − djljgD

3F̄8fhmjjge−boqmqvq s37d

in terms of the definitions of Eqs.s18d–s23d, with
hr11,r10,r01,r00j being the initial qubit density matrix ele-
ments.

1. Low temperature

The computation of the reduced density matrix elements
involves the calculation of the functionals of Eqs.s18d–s23d
and the evaluation of the functional summations in Eqs.
s35d–s37d. In order to calculate the functionals, a low tem-
perature and a weak coupling approximation are applied to
Eqs. s25d–s30d. Details of the calculation are shown in the
Appendix. The resulting expressions for the reduced density
matrix elements, valid at low temperaturese−bv0!1d and
weak couplingsl2!1d, are
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r11std = f1 − Ystdgr00 + F1 −S 1 − e−G0t

1 − e−bv0−G0tDYstdGr11,

s38d

r00std = Ystdr00 + S 1 − e−G0t

1 − e−bv0−G0tDYstdr11, s39d

r10std = e−G0t/2−iv0tYstdr10 s40d

with the definition

Ystd =
1 − e−bv0

1 − e−bv0−G0t s41d

and G0=2l2v0/p being the zero-temperature spontaneous
emission rate. These reduced density matrix elements are
illustrated in Fig. 1.

In the long time limit the populations tend to the follow-
ing thermal values valid at low temperature,

r11st → `d = e−bv0, s42d

r00st → `d = 1 −e−bv0 s43d

and the off-diagonal coherence decays completely

r10st → `d = 0. s44d

2. Zero-temperature limit

At zero temperatureb=` and Eqs.s38d–s40d become

r11std = r11e
−G0t, s45d

r00std = r00 + r11s1 − e−G0td, s46d

r10std = r10e
−G0t/2−iv0t s47d

which is the expected result from Ref.f11g.

3. The Markov approximation limit

For reference purposes we also include the results in the
Markov approximation, which are valid in the regime of high
temperature

r11std = r11s0de−G0 cothsbv0/2dt +
e−bv0

1 + e−bv0
s1 − e−G0 cothsbv0/2dtd,

s48d

r00std = 1 −r11std, s49d

r10std = r10s0de−iv0t−sG0t/2dcothsbv0/2d. s50d

Derivations of the Markovian behavior can be found in Refs.
f14–19g. Alternatively, the Markovian behavior can be de-
rived from the non-Markovian behavior by integrating a
coarse grained rate of variation att=0, computed from Eqs.
s38d–s40d, which will reimpose the fixed bath assumption
ssee Chap. IV B. 31 in Ref.f17gd. This correspondence
comes from the fact that the Markovian time variations
match the non-Markovian time variations att=0, as dis-
cussed in the next sections. The asymptotic Markovian val-
ues are

r11st → `d =
e−bv0

1 + e−bv0
< e−bv0 + O„se−bv0d2

…, s51d

r00st → `d =
1

1 + e−bv0
< 1 − e−bv0 + O„se−bv0d2

… s52d

and the off-diagonal coherence decays completely

r10st → `d = 0. s53d

The thermal populations in the non-Markovian low-
temperature approximation match the Markovian thermal
populations up toO(se−bv0d2).

IV. DISCUSSION

A. Decoherence

The decoherence rate is found by computing the off-
diagonal elements of the reduced density matrixfe.g.,r10stdg.
The inclusion of bath as well as system dynamics causes the
fall off of the off-diagonal matrix elements to become
slightly subexponential. From previous workf11g we know
that at zero temperature the decoherence rate isG0/2
=l2v0/p. Markovian approachesse.g., Ref.f14gd predict a
decoherence rate ofG0 cothsbv0/2d /2, valid at high tem-
peratures. The present calculation shows that the decoher-
ence rateGdecstdª−ṙ10std /r10std, actually changes as the to-
tal system evolves. As shown in Fig. 2 the decoherence rate
at t=0, when the bath is by assumption in a thermal state
uncorrelated with the qubit, agrees with the prediction of
Markovian approaches. As the system and bath evolve to-
gether the decoherence rate falls back down to the zero-
temperature value. The interpretation of this is: initially the
two cases have the same decoherence rate because by ar-
rangement the combined system is a product state of qubit

FIG. 1. These plots illustrate the non-Markovian reduced qubit
matrix elements from Eqs.s38d–s41d for the case of an initialsx

eigenstatesu0l+ u1ld /Î2 at low temperaturese−bv0=0.05d, versus a
dimensionless time in units ofG0

−1 whereG0 is the zero temperature
spontaneous emission rate. The diagonal matrix elements thermal-
ize to the low temperature values of Eqs.s42d and s43d, and the
off-diagonal matrix elements decohere nonexponentially.
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and thermal bath, which is the state assumed in Markovian
approachessthere is no prior correlationd. As the system and
bath interact, the correlations that arise alter the reduced sys-
tem dynamics and the combined state evolves away from
that initial factorizable state. The overall effect is that the the
qubit decoheres more slowly in non-Markovian dynamics
than in Markovian dynamics.

B. Relaxation

The relaxation time scale is measured by the value of
r11std, assuming thatr11s0d=1. Similar to the case of deco-
herence, because the initial state of the combined system-
bath is taken to be a product state of qubit and thermal bath,
as it is in Markovian approaches, the dynamics for the popu-
lations initially agree in non-Markovian and Markovian dy-
namicsssee the inset of Fig. 3d. Then as the system and bath
interact, the non-Markovian result for the dynamics of the
reduced system, which takes into consideration the dynamics
of both the bath and the qubit, deviates from the Markovian
prediction, as shown in Fig. 3. However, the long time be-
havior of our prediction matches the thermalization predic-
tion of the Markovian prediction up toO(se−bv0d2). Most
importantly, Fig. 3 shows that the upper state population re-
laxes more slowly in non-Markovian dynamics than in Mar-
kovian dynamics.

We may define the relaxation rateffor the case that
r11s0d=1g asGrelstdª−r11std /r11std−r11s`d. The plot of Fig.
4 shows the dependence of the ratioGdecstd /Grelstd on time. It
demonstrates that the relaxation and decoherence rate are of
the same order of magnitude. In other words, the rate of
quantum phase information escaping from the system to the
environment is the same as the rate of energy flow. This
property is characteristic of theresonantcoupling between
the two-level atom and the EMF, which leads to a different

decoherence behavior from quantum Brownian motion
sQBMd modelsf11g. One way to visualize the distinction is
the realization that in QBM the couplings allow the interac-
tion of the system with the far-infrared modes of the envi-
ronment. The system then loses the phase information
through soft photons which, however, carry very little en-
ergy. Hence in QBM systems, the relaxation time is much
longer than the decoherence time. However, in resonant sys-
tems, such as being studied here and in Ref.f11g, the system
interacts primarily with the modes of the environment near
the resonance frequency. Consequently, the phase informa-
tion escapes through photons of energy equal to that of the
atom and the decoherence rate is essentially the same with
relaxation rate. We should remark that although the present
results only hold for the low-temperature limit the near

FIG. 2. This plot shows the quantityGdecstd /G0/2 sthe ratio of
the non-Markovian decoherence rate defined byGdecstd
ª−ṙ10std /r10std, over the zero temperature decoherence rateG0/2d
versus the dimensionless timeG0t in the low-temperature regime
e−bv0=0.05. The dotted line is the value of the Markovian predic-
tion at finite temperature cothsbv0/2d. Initially the non-Markovian
prediction matches the Markovian resultsat the dotted lined. As the
qubit and EMF become correlated the reduced dynamics deviates
from the Markovian prediction and the decoherence rate asymptotes
to the zero temperature valuesalong the dashed-dotted lined.

FIG. 3. This plot shows the difference in the upper state popu-
lations r11std−r11

Markovstd, between the non-Markovian prediction
r11std and the Markovian predictionr11

Markovstd, given that the qubit
is initially in the upper statefi.e., r11s0d=1g. The difference is plot-
ted versus dimensionless timeG0t and in the low-temperature re-
gime e−bv0=0.05. Inspection of the plot shows that in non-
Markovian dynamics the upper state decays more slowly than in
Markovian dynamics. At long times the difference in the popula-
tions is zero up toO(se−bv0d2) fsee Eq.s51dg. The inset shows that
the non-Markovian and Markovian predictions agree initially.

FIG. 4. This plot shows the ratio of the non-Markovian deco-
herence rate to the non-Markovian relaxation rate as a function of
dimensionless timeG0t in the low-temperature regimee−bv0=0.05.
The value is approximately constant at 0.5, which is also the ratio
between the Markovian decoherence and relaxation rates. This be-
cause both cases share the same physical determining factor, i.e.,
that the resonant type of coupling is at work in this model.
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equality of decoherence and relaxation rate is valid even in
the high-temperature limit as can be seen already from the
Markov approximation.

C. Entanglement

There exists no computable measure of entanglement be-
tween a qubit and an infinite continuous bath such as the
electromagnetic field. However, since Markovian predictions
explicitly exclude system-bath entanglement, comparison of
those predictions with the present results can reveal the ef-
fects of system-bath entanglement. First is the decoherence
rate discussed previouslyssee Fig. 2d. Its evolution from the
thermal to the zero-temperature value shows that the com-
bined system-bath reaches and holds at some state in which
the off-diagonal elements of the qubit are no longer affected
by the thermal nature of the bath. No product state could
give such behavior and cause thermalization of the popula-
tions. Second is the fidelityf =TrfrstdU0stdrs0dU0

†stdg, of the
su0l+ u1ld /Î2 state shown in Fig. 5, withU0std being the free
evolution operator. The fidelity in this case is a measure of
the persistence of the initial qubit state after interaction with
the environment. Inspection of the difference between the
non-Markovian and Markovian predictions for fidelitysinset
of Fig. 5d shows that non-Markovian dynamics predicts a
slower loss of fidelity than Markovian dynamics, although
with continued interaction both dynamics predict complete
loss of fidelity. Third is the von Neumann entropysstd
=−Tr r logesrd for the initial qubit stateu1l, shown in Fig. 6.
The von Neumann entropy is a measure of the purity of a
density matrix. Inspection of the difference in this casesinset
of Fig. 6d shows that the Markovian result initially predicts a

greater loss of purity, but after a time on the order of the
decay timescale, it predicts less loss of purity than the non-
Markovian result. The reason for this seeming contradiction
is that at low temperature, the system in its approach to ther-
mal equilibrium, is driven to a less mixed state. Since corre-
lations with the bath slow the drive to thermal equilibrium in
non-Markovian dynamics, as shown in Fig. 3, this process is
slower in the non-Markovian regime. Comparison of these
three quantitiessdecoherence rate, fidelity, and von Neumann
entropyd shows a consistent picture in which non-Markovian
dynamics is characterized by the preservation of coherence
for longer time.

D. Conclusion

We have studied a two level atom coupled to an electro-
magnetic fieldsEMFd at finite temperature in the multimode
Jaynes-Cummings model. We have computed the reduced
evolution of the two level system and addressed the issues of
decoherence, relaxation, and entanglement from its interac-
tion with the EMF bath. Our approach makes use of a modi-
fied influence functional technique, which enables one to
compute the reduced system dynamics while including the
entangled evolution of the bath and qubit degrees of free-
dom. That is in contrast to Markovian approaches, which
assume a fixed bath and hence neglect any dynamics in the

FIG. 5. This plot shows the quantityf =TrfrstdU0stdrs0dU0
†stdg

as a function of the dimensionless timeG0t and at low temperature
se−bv0=0.05d for an initial sx eigenstatessu0l+ u1ld /Î2d, with U0std
being the free evolution operator. Being a measure of the persis-
tence of the initial qubit state after interaction with the environment,
it can be considered as thefidelity of the qubit in its environment.
The non-Markovian fidelity is plotted as a solid line and the Mar-
kovian fidelity is plotted as a dashed line. The inset is the non-
Markovian fidelity minus the Markovian fidelity. Inspection of it
shows that in the non-Markovian dynamics the EMF bath degrades
the fidelity of the qubit more slowly than in the Markovian
dynamics.

FIG. 6. This plot shows the von Neumann entropysstd
=−Tr r logesrd of the reduced qubit density matrix versus the di-
mensionless timeG0t for low temperaturese−bv0=0.05d. The von
Neumann entropy is a measure of thepurity of a density operator.
Both the non-Markovian and Markovian von Neumann entropies
are plotted, as solid and dashed lines, respectively. Inspection of the
plot shows that as the qubit interacts with the environment it be-
comes more mixed, but as the qubit equilibrates with the environ-
ment safter a time on the order of the relaxation timed it becomes
less mixed due to the low temperature. In the inset the difference of
the non-Markovian von Neumann entropy minus the Markovian
von Neumann entropy is plotted. It shows that during the initial
period of mixing non-Markovian dynamics predicts less mixing
than does Markovian dynamics. Then, during the later equilibration
period Markovian dynamics predicts a less mixed state. Finally,
both dynamics reach a low temperature equilibrium state which is
less mixed than at intermediate times. As in Fig. 3, the non-
Markovian dynamics asymptotes to thermal equilibrium more
slowly than the Markovian dynamics.
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bath. We adopt a Grassmann coherent state path integral rep-
resentation for the atom degrees of freedom and bosonic co-
herent state path integral representation for the electromag-
netic field, and assume a weak couplingssecond-order Bornd
approximation under low-temperature conditions.

We find nonexponential decay for both the diagonal and
off-diagonal matrix elements of the qubit’s reduced density
matrix. From the diagonal elements we see the qubit relax to
thermal equilibrium with the bath. From the off-diagonal el-
ements, we see the decoherence rate beginning at the rate
usually predicted for a thermal bath, but evolving to the zero
temperature decoherence rate as the qubit and bath become
entangled. Comparison of the relaxation and decoherence
rates, shown in Fig. 4, reveals that as in the zero-temperature
case, both rates are comparable. At short times the ratio of
the decoherence to the relaxation rate is initially smaller, but
only by a small amount. At higher temperatures the initial
difference between the two does increase, but that regime
reaches the limits of validity of the present results. We can
see why at low temperatures both rates are related to the
atomic transition rate, because it is the only relevant physical
scale presentsunlike at finite temperature where the thermal
scale is also at workd. This, in turn, is a consequence of the
particular resonant coupling between the two-level atom and
the EMF, as explained earlier in Ref.f11g.

On the entanglement of a qubit with the EMFsunder reso-
nant couplingd we calculated the qubit’s fidelity and the von
Neumann entropy. The Markovian result predicts higher loss
of fidelity and purity as compared with the more accurate
non-Markovian calculations. Qualitatively, with the inclusion
of quantum correlations between the qubit and its environ-
ment, the non-Markovian processes tend to slow down the
drive of the system to equilibrium, prolonging the decoher-
ence and better preserving the fidelity and purity of the sys-
tem.
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APPENDIX: CALCULATIONAL DETAILS OF QUBIT IN A
THERMAL BATH

1. Approximated functional solutions

Equationss25d–s30d are two sets of coupled differential
equations. One set being the pair of equations

Ḟfhmjjg = − io
q

mqvqFfhmjjg + io
lp

mll̄lGpfhmj − djljg,

sA1d

Ġpfhmjjg = − iSv0 + o
q

mqvqDGpfhmjjg + ilpFfhmj + djpjg

sA2d

and the remaining four equations comprising the other set.
The solution method for this pair in the low-temperature and

weak-coupling limits will be sketched out in this appendix.
The solutions for the other set in the same limits will follow
a similar sequence. First, given the initial conditions

Ffhmjjgst = 0d = 1, sA3d

Gpfhmjjgst = 0d = 0 sA4d

the Laplace transforms of the above equations are

zF̃fhmjjgszd − 1 = − io
q

mqvqF̃fhmjjgszd

+ io
lp

mll̄lG̃pfhmj − djljgszd, sA5d

zG̃pfhmjjgszd = − iSv0 + o
q

mqvqDG̃pfhmjjgszd

+ ilpF̃fhmj + djpjgszd. sA6d

The second equation can be rearranged into

G̃pfhmjjgszd =
ilpF̃fhmj + djpjgszd

z+ isv0 + oq
mqvqd

, sA7d

which can be substituted back into Eq.sA5d to give

Sz+ io
q

mqvqDF̃fhmjjgszd

= 1 + io
lp

imll̄llpF̃fhmj − djl + djpjgszd

z+ isv0 − vl + oq
mqvqd

. sA8d

In the expression above the low-temperature approximation
is applied by settingp= l in the summation of the right-hand
side. The justification is that the summation on the right-hand
side will be peaked aboutvl =v0 such that the greatest con-

tribution from F̃fhmj−djl +djpjgszd will be for vl =v0. How-
ever, at low temperatures those frequencies will not be popu-
lated. As a result the vacuum will be annihilated, unless
djp=djl, which will cause the major contribution from thep
summation to be fromp= l. The low temperature approxima-
tion is thus that the temperature is low enough that the modes
with frequencyv0 are unoccupied, i.e.,e−bv0!1. Applying
this approximation, Eq.sA8d can be rewritten as

F̃fhmjjgszd = Sz+ io
q

mqvq

+ o
l

mlll
2

z+ isv0 − vl + oq
mqvqdD

−1

. sA9d

The zeroth order pole ofF̃fhmjjgszd is at z=−ioqmqvq. The
reaction term at this point is found equal toG0m0/2+iD, with
G0=l2v0/p, which shows that the second order shift in the
pole includes both a real and an imaginary part. After absorb-
ing the imaginary part in a renormalization of the frequency,
the second order pole isz=−ioqmqvq−G0m0/2 with the defi-
nitions
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m0 = o
vl=v0

ml . sA10d

The desired functional can be calculated as in inverse
Laplace transform of Eq.sA9d at the second order pole to
give

Ffhmjjgstd = expH−
G0m0

2
t − io

q

mqvqtJ . sA11d

The inverse Laplace transform contains a contribution of a
branch cut as well as a polef34,35g. We ignore the contribu-
tion of the branch cut, which is negligible at all but very late
times such thatG0t.20 and very early times such thatG0t
,10−21 fsee Eq.s3.20d of Ref. f34gg. In all cases, we assume
that time is much later than the inverse cutoff time. Further
comparison between the branch cut and the non-Markovian
correction over Markovian dynamics shows that the branch
cut contribution is smaller by greater than three orders of
magnitude forG0t.0.1. The other functional in the pair can
be calculated by integrating Eq.s26d

Glfhmj − djljgstd

= i
l

Îvl

1 − e−sG0m0/2dt−ioqmqvqt

G0m0/2 + isvl − v0d
eisvl−v0−oqmqvqdt.

sA12d

Following similar calculations the rest of the functionals are
found to be

C ffhmjjgstd = e−fG0sm0+1d/2gt−isv0+oqmqvqdt, sA13d

Cp
gfhmj − djpjgstd =

le−sG0/2dt−isv0+oqmqvqdt

ÎvpSvp − v0 − i
G0m0

2
D feisvp−v0dt

− e−sG0m0/2dtg, sA14d

Fp
f fhmjjgstd =

le−sG0m0/2dt−isv0+oqmqvqdt

ÎvpSvp − v0 − i
G0

2
D fe−sG0/2dt − eisvp−v0dtg,

sA15d

Flp
g fhmj − djpjgstd

=
l2e−isv0+vl−vp+oqmqvqdt

Îvl
Îvp

3
se−sG0/2dt+isvl−v0dt − 1ds1 − e−sG0m0/2dt−isvp−v0dtd

Fsvl − v0d + i
G0

2
GFsvp − v0d − i

G0m0

2
G .

sA16d

2. Computation of density matrix elements

The solutions of Eqs.sA11d–sA16d can be substituted into
Eqs. s35d–s37d to evaluate the reduced density matrix ele-
ments in the limits of low temperature and weak coupling.
The reduced density matrix elements in that form are sum-
mations over all distributionshmjj. Ther10std matrix element
will be demonstrated below as a representative calculation.
The evaluation of the other summations follow along similar
lines. From Eq.s37d, the off-diagonal density matrix element
is

r10std = r10o
hmjj

SC ffhmjjg + o
l

mlFll
gfhmj − djljgD

3F̄8fhmjjge−boqmqvq. sA17d

First, from Eqs.sA11d–sA16d the functional in parentheses
can be determined to be

C ffhmjjg + o
l

mlFll
gfhmj − djljg = e−fG0sm0+1d/2gt−isv0+oqmqvqdt,

sA18d

so that the off-diagonal matrix element becomes

r10std = r10o
hmjj

expH−
G0s2m0 + 1d

2
t − iv0tJe−boqmqvq.

sA19d

Denoting by primes those terms for whichvj=v0 and
double primes those for whichvjÞv0, the summand can be
rewritten with the substitutionm0=oj8mj,

r10std = r10e
−sG0/2dt−iv0to

hmjj
p

j

8
e−sG0t+bv0dmjp

j

9
e−bvjmj.

sA20d

The summation over distributions can be more clearly writ-
ten as

o
hmjj

= Fp
j

o
mj=0

` G = Fp
j

8
o

mj=0

` GFp
j

9
o

mj=0

` G , sA21d

which allows us to bring Eq.sA20d into the form

r10std = r10e
−sG0/2dt−iv0tS 1 − e−bv0

1 − e−sG0t+bv0dDe−oq lnf1−e−bvqg.

sA22d

The factor at the end is removed by normalization of the
reduced matrix element by its value ifG0=0. The final result
for the off-diagonal matrix element is

r10std = r10e
−sG0/2dt−iv0tS 1 − e−bv0

1 − e−sG0t+bv0dD sA23d

with G0 being the zero temperature spontaneous emission
rate. The other reduced density matrix elements are given in
the text.
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