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Non-Markovian qubit dynamics in a thermal field bath: Relaxation, decoherence, and
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We study the non-Markovian dynamics of a qubit made up of a two-level atom interacting with an electro-
magnetic field EMF) initially at finite temperature. Unlike most earlier studies where the bath is assumed to be
fixed, we study the complete evolution of the combined qubit-EMF system, thus allowing for the coherent
backaction from the bath on the qubit and the qubit on the bath in a self-consistent manner. In this way we can
see the development of quantum correlations and entanglement between the system and its environment, and
how that affects the decoherence and relaxation of the system. We find nonexponential decay for both the
diagonal and nondiagonal matrix elements of the qubit's reduced density matrix in the pointer basis. The
former shows the qubit relaxing to thermal equilibrium with the bath, while the latter shows the decoherence
rate beginning at the usually predicted thermal rate, but changing to the zero-temperature value as the qubit and
bath become entangled. The decoherence and relaxation rates are comparable, as in the zero-temperature case.
On the entanglement of a qubit with the EMF we calculated the fidelity and the von Neumann entropy, which
is a measure of the purity of the density matrix. The present more accurate non-Markovian calculations predict
lower loss of fidelity and purity as compared with the Markovian results. Generally speaking, with the inclu-
sion of quantum correlations between the qubit and its environment, the non-Markovian processes tend to slow
down the drive of the system to equilibrium, prolonging the decoherence and better preserving the fidelity and
purity of the system.
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I. INTRODUCTION on reduced system dynamics. Specifically, we study the re-

Interest in quantum entanglement has grown in recen&uced dynamics of a single qubit interacting with an initially
years motivated mainly by the attempt to understand and{'ermal bath in the multimode Jaynes-Cummings model. The
realize quantum information processing. An important aspecf’0de! is a well studied example of open system dynamics,
of quantum entanglement, which is unavoidable in quantunflOWeVver, prior analyses have focused on Markovian dynam-
information processing, is the entanglement of a system witfS by assuming no disturbance of the bath modes by the
its environment. This issue is especially important to the feafubit[14—-19. Although such a simplifying assumption does
sibility of quantum computation, as the error threshold forinclude a level of backaction, it neglects entanglement that
fault tolerant error correctiofwithout which quantum com- forms between the qubit and bath modes during the evolu-
putation is impossible is highly sensitive to the degree to tion. Earlier predictions based on simplified Markovian ap-
which the environment becomes correlated with the qubitproximations are thus unsuitable for studies of such en-
[1]. In many realistic quantum computing schemes the envitanglement, and should be scrutinized carefully before being
ronment includes an electromagnetic fiéEMF). Studies of — applied to quantum computaticisee, e.g., Refi20] for a
entanglement between multipartite systems epdsi6], but  discussion of this issue bearing on error corregtidviore
few have attempted to predict the effects on a qubit from itgealistic physical conditions are better served by non-
entanglement with the EME7-10]. We have addressed the Markovian treatments, which have begun to appear. How-
relaxation and decoherence issues in various contexts, fromeyer, many of them use approximations with limited short-
two-level atom in azero-temperatujeEMF [11] to moving  time validity [21-24] or unclear physical meaning such as in
atoms in a cavity12,13. Here we continue this study for non-Markovian stochastic Schroedinger equati@s-27.
these two issues and the issue of entanglement for a two- gy approach includes bath dynamics as well as qubit
level atom in a finite temperature EMF. dynamics, and the quantum correlations between them. Ana-
In this paper we aim at addressing the issue of systemytic expressions are derived for the qubit reduced density
environment entanglement by carefully analyzing its effectnatrix elements at low temperature, from which the fidelity
(defined as the overlap between the initial and evolved qubit
statg and von Neumann entropy are computed. Inspection of
*Present address: NIST, Atomic Physics Division, Gaithersburgthe matrix elements themselves show slowsabexponen-
MD 20899-8423. Email address: sanjiv.shresta@nist.gov tial) decoherence for the off-diagonal elements and slowed
"Present address: Department of Physics, University of Patrasglaxation to thermal asymptotes for the diagonal matrix el-
26500 Patras, Greece. Email address: anastop@physics.upatras.gments, as compared to Markovian predictions. Analysis of
*Present address: Constellation Energy Group, Baltimore, MDthe fidelity and von Neumann entropy similarly show slowed
21202. Email address: adrian.dragulesce@constellation.com loss of fidelity and purity in the case of non-Markovian dy-
SEmail address: hub@physics.umd.edu namics over Markovian dynamics. The overall picture which
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develops is of increased preservation of coherence in non- Il. MODEL
Markovian dynamics.

Following successive degradation from an exact solution
to a Markovian description of system-bath interactions, three The model used for atom-field interactions is the standard
distinct approximations are usually invoked. They @rethe  multimode Jaynes-Cummings model of a two-level system
second-order Born approximatio(®) the first Markov ap- interacting with a harmonic oscillator bath. The total Hamil-
proximation[19], and(3) the assumption of a bath which is tonian under the dipole, rotating wave and two-level approxi-
unaffected by its interaction with the systeft) The second- mations is given bye.g., Appendix A of Ref[11])
order Born approximation is an approximation in the

strength of the coupling constant, and applying it neglects H :thSﬁhE [wkblbw (}\kS+bk+:kS—bb] (1)
k

A. Hamiltonian

terms of higher than second order in the coupligg]. (2)
The first Markov approximation is an approximation in the
backaction correlation time. It is a Markov approximation here b

because it assumes that the backaction of the system on;f}\;l? 'Bk are the creation and annihilation operators for
itself through the bath at timewill depend only on the state e kth bath mode with frequency, andfw, is the energy

of the combined system-bath at timeand not on the past separation betyveen the two Ievells. The opgra‘.ﬁgr&, and.

history. It is called the first Markov approximation becauseS- &€ the qubit operators farprojection, spin up, and spin

although it depends only on the state of the system at time down, respectively. The couplings, and\,, have absorbed

it depends on the state of the bath as well as the system dependence on the spectral density of the fikth

(through the bath averageshus including the bath dynam-

ics[19]. (.3) The last of the abovge th_ree_ approximatipns is the B. Coherent states

assumption of a bath state which is fixed for all time. That

assumption expressly excludes any dynamical evolution of Coherent states are defined as any set of states generated

the bath. by the exponentiated operation of a creation operator and a
In the usual derivation of the Markovian master equationsuitable label on a chosen fiducial stgg2,33:

from the Schrédinger equation for the system-bath density

operator, all three approximations are made. In contrast, the |z) = exp(zkbl)|0k>, (2)

Heisenberg-Langevin approaches make only the first Markov

approximation. However, for spin-boson models such ap- _

proaches have focused on the reduced qubit dynamics in |7 = exp(7S,)[0). 3)

strictly vacuum EMF, although in the presence of a classic

source(e.g., resonance florescenc&he resulting equations a,n the case of the bosonic coherent states, defined ifZg.

for the qubit degrees of freedom are called the Bloch—the labelz is a complex numb(_ar, and in the case c_)f the
Langevin equation§17]. The Schrodinger-master equation Crassmann coherent states, defined in(Bx.the labely is

can be derived from the Heisenberg-Langevin equation aftef? anticommuting number. The chosen fiducial states are the
a perturbative expansion which imposes the first and thirdMF vacuum and the lower state of the two-level system,
approximations from the aboVi@9]. For a comparison of respectively. A state of the combined atom-field system can
these approximations see RER0]. Our path integral ap- be expanded in a direct product coherent state basis
proach to the reduced system dynamics uses only the first of

the above three approximations by allowing the combined Hzd, m =Had © |m), (4)

system-bath to evolve coherently throughout the interaction . . .
period. Only at the end of all coherent evolution will the bathin Which the bosonic coherent state bagi$ is used to rep-

variables be traced out to yield the reduced system evolutiof€Sent the EMF and a Grassmann coherent state ppsis
The approach we take is straightforward, although the acused to represent the two-level internal degrees of freedom

tual implementation includes some nonstandard techniqued the atom. _
involving Grassmann path integrals. In Sec. Il the Hamil- Grassmann and bosonic coherent states share well known

tonian and other important aspects of the model, includiniﬁrc’perties of general coherent states, such as being nonor-
the coherent state represenation, are reviewed. The transitidho9onal and eigenstates of the annihilator
amplitude is derived in Sec. lll A, utilizing the coherent state

representation for the bosonic degrees of freedom and Grass- (@70 = expza),  (nl7')=exp(n7), (5
mann states for the qubit degrees of freedom, following Ref.
[11]. Doing so will involve a recursive computation which bdzd =zdz), S.|7=75n, (6)

exploits the semigroup property of the transition matrix

(similar to a technique used in RdB1]). After evaluating where the overbar denotes conjugation. Despite their nonor-
the transition amplitudes in an intermediate form, we com-+thogonality, both types of coherent states @eencomplete
bine the forward and backward versions by tracing over theets and have a resolution of unity

final bosonic coherent states to construct the reduced propa-

gator in Sec. Il B. An initial thermal state for the oscillator _ _

bath is then introduced and the reduced dynamics of the 1= [ du@)|z0(@{ = | du(n)|m{7] ()
qubit are calculated in Sec. IIl C. Section IV gives discussion

and further analysis of the results. with the measures
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du(z) = exp- z2)dzdz, (8) In=(1=iw0€) Y1+ 2 (N bnri Y0= 7
k

du() = exd= pp)dndy. (9) (15

) . = (iNy € g + (1 —iwpe 1k =0,
That these measures are exponential functions makes the co- Pk = (ngee) -1+ ( € bt box

herent states a particularly suitable representation for transi- = (1-iwge) (N o) -0
tion amplitudes written as path integrals. For convenience k= @0€)Gn-1k nk€Tn-1k Gok=0Y,
the shorthand notation (16)

fok= (i:n,kf)z On-1+ L -l &f1p fox=2zk
T du(z) = du{zd) (10 !
K

The coupling constants in Eq&l5) and(16) have time indi-
is defined for the product of the measure of different modec€S because they are separated by complete sets of states at

coherent states. different time steps when the Hamiltonian is partitioned, thus
In the bosonic and Grassmann coherent stateQtrep-  they are separate sets of Grassmann pairs. The transition am-
D ZAH |7 A2 = hewony' + h% [z, + Nz, K(t,0) = exp[ () + % zyf(t) + % 79k(t) + % ka¢k(t)}-
— 1
+ Nz,

Since this equation is a function of Grassmann variables it is
in which the replacemer& — S,S_, correct up to an additive to be treated as a formal expression that has meaning only in
constant, was made. Th@ representation Hamiltonian will its polynomial expansion. In that polynomial expansion
participate prominently in the path integrals of the next secmany terms will be truncated due to the nilpotency of the
tion. Grassmann variables. Expanding out E4j7) and defining

the functionals

I1l. APPROACH
oA FL{mg ] = [T [fI™, (18)
A. Transition amplitude k
Here we construct and evaluate the transition amplitude "

K(t;,t,) of coherent states from an initial tintg=0 to coher- GI{mg1® = g1 [f®]™, (19

ent states at a final timg=t k
K(t,0) = (71, {znd ;| UL, 0)| 7:,{z} 0), (11 Wmg1t) = p T [F01™, (20

k

with U(t,0) being the time evolution operator

U(t,0) = e_(i/h)fBHdS. (12) q)L[{mg}](t) = (Zsp(t)l;[ [f()]™, (21)

Following the path integral methodology, we partition the

interval[0,t] into a large numbe(N) of time steps, such that DR = 9o a O T T [Fd)]™, (22)
t=Ne. The path integral is then calculated as a discrete func- k

tional. Doing so, then-step transition amplitude can be writ-

ten in a general form WIM® = gy w0 T [H0 1™ (23
k

K(ne,0) = exp{ Tt * % Zoifoic + % TnGnk Ek“ Z”k¢“k}' gives the following expanded expression for the transition
amplitude(with time dependence left implied for notational
(13 clarity):

By applying the semigroup property of the transition ampli- 7)) Mk _
tude Kt,0)= X [H (ka), }(F[{mg}] + 7 {mg]
mg [k Me
K[(n+1)€,0] = f du() f du({z)K[(n+ 1)e nelK (ne, 0) + El‘, HGHMI] + 2 ZpPH{my]
p
4 +> ﬁpcb.gp[{mg}]). (24)
pl

finite difference relations can be found for the coefficients in
the action. Settindi=1, and absorbing factors ofr2 they  The variablem; is the number of photons in thigh mode of
are the final EMF state. The transition amplitude as written
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ential equations for the functionals that appear in the transi-

tion amplitude can be found from the finite difference equa- _ _

tions of Egs.(15) and (16): + 20 [fi®) + GOt + ¢k(t)]}- (33
k

FI{MA] = - myoFlimJ]+ i; Gol{m; — 8},
q p

above is a functional sum over all distributiofra,}. Differ- Jn(t,0) = exp{ﬁfw(t) +Z'(t) 7+ S e + S G 7!
k k

(25) C. Initial thermal state

For thermal vacuum the initial state in the coherent state
representation and in units such that Boltzmann’s constant is

Gylimg] = =i o0 +2 Mo | Golmd] + INFLim+ 53], (BRI

26 B
28 RO) =| T exple*zz}
k
i — i f i f _ —
Wimg] = |<w0+ % mqwq>‘lf [{mgt] + I% Ap®pl{mg}] X[poo+ mp10+ 1 por+ 77 pal- (34)
+i> mﬂ\l‘l’%[{mg‘ Sall, (27) Evaluating Eq(32) with substitutions from Eq(33) _and Eq.
Ip (34) one may obtain the evolved reduced density operator.

After expanding completely, the reduced density matrix ele-
ments become, for the upper state population,

VY {mg] =i (Zwo £ mqwq)wg[{mg}] - i? NDE[{M]
‘ p11() = poo > X MGI[{m; = 811G/ [{m; = 84} ]e =™

+iNg WM, + 5}, (28) g 1
- | | Y (wf[{m 1+ maf[im- 5 }])
DM =1 ap+ X mog | OHm] + ¥ [{mel) i\ T TR 6
q _ _
. X (UM + D m®{m; - 54}] |e F=dM,
S @ 5] 29 (a1 + 2 maifTim, o)1)
|
i (35)
d[{m] = - i(ﬂ)o + o+ 2 mqwq>q)lgp[{m§}] —-iNPI{md]  for the lower state population,
q
+iNp®{[{m + S} ] (30) poot) = p11 > 2 (M + DO[{m D/ T{m,} e e
{mg |
Although the transition amplitude of E¢R4) and the differ- ‘ _
ential equations with all Grassmann variables removed of + poo>, FI{MIF'[{m,} e P=amsea, (36)
Egs. (25—30) can be used from this point onward, it is {mg}
simpler instead to work with Eq17) during the trace over d for the off di |
final EMF states. In the next section we shall combine for-2N¢ fOr the off diagona
ward and backward versions of the transition amplitude to
construct the reduced propagator. p1olt) = PlO{E} (‘Pf[{mé}] + ; m®i{m; - 5§I}]>
My
B. Reduced propagator XF'[{mg]e#*dmaea (37

The evolution of the reduced system with an initial atomicin terms of the definitions of Eqgs.(18—(23), with

state is given by {p11, P10, Po1, Poo} DEING the initial qubit density matrix ele-
ments.
p(t) = f da(m)du(n) I T [di(zi)dus(Z) 1IR(t, O)R(0),
K 1. Low temperature
(31 The computation of the reduced density matrix elements

involves the calculation of the functionals of Eq$8)—(23)
and the evaluation of the functional summations in Egs.
(35—(37). In order to calculate the functionals, a low tem-
_ perature and a weak coupling approximation are applied to
Jr(t,0) =fdM({ka})K(t,0)K'(t,0)- (32)  Egs.(25—30). Details of the calculation are shown in the
Appendix. The resulting expressions for the reduced density
Carrying out the integration with Eq17) and its barred matrix elements, valid at low temperatute” o <1) and
conjugate, one finds weak coupling(A\®><1), are

in which R(0) is the combined initial system-bath density
operator andk(t,0) is the propagator for the reduced system
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0.5 0.5 3. The Markov approximation limit
0.4 0.4 . .
$0.3 v0.3 For reference purposes we also include the results in the
0.2 0.2 Markov approximation, which are valid in the regime of high
0.1 Q0.1 temperature
= 1 % s 10 %23 ¢ s 10 ~Bw
T t .t t) = 0 —I'g coth(Bwy/2)t + € 0 1- —I'p coth(Bwg/2)t
° ° p1a(t) = p11(O)e 1 +e‘5“’0( € ),
0.5 1
0.4 0.9 (48)
£0.3 £0.8
20.2 20.7 —
S S poo(t) =1 =p1s(t), (49
0 0.5 _
0 2 4Fo t6 8 10 0 2 41"0 t6 8 10 Plo(t) — plo(O)e"'“’Ot"(rotlz)c"t“ﬂ“’o’z). (50)

Derivations of the Markovian behavior can be found in Refs.
t[14—19}. Alternatively, the Markovian behavior can be de-
rived from the non-Markovian behavior by integrating a
coarse grained rate of variationtatO, computed from Egs.

a(@8)—(40), which will reimpose the fixed bath assumption

FIG. 1. These plots illustrate the non-Markovian reduced qubi
matrix elements from Eqg38)—41) for the case of an initiaby
eigenstate]0)+|1))/\2 at low temperaturé¢e #*0=0.05, versus a
dimensionless time in units (ﬁal wherel’, is the zero temperature
spontaneous emission rate. The diagonal matrix elements therm

ize to the low temperature values of Eq42) and (43), and the
off-diagonal matrix elements decohere nonexponentially.

1-¢gTot
p11(t) =[1 =Y (1) ]pgo + [1 - (m)\f(t)}ﬂu,

(38)

1-¢eld
pod®) =Y (M poo+ | 7= pagret ) YOP1 (39

p1o(t) = e T2ty (1) py (40)
with the definition
1-e P
YO = T e (41)

(see Chap. IV B. 31 in Ref[17]). This correspondence
comes from the fact that the Markovian time variations
match the non-Markovian time variations &0, as dis-
cussed in the next sections. The asymptotic Markovian val-
ues are

g Pwo ~ ~
p1a(t — ) = 1+ P ~ e P+ 0((eP™)?), (51
()= — =~ 1-eBo+ O((eP)?) (52)
Poo = 1 +e B

and the off-diagonal coherence decays completely
(53

The thermal populations in the non-Markovian low-
temperature approximation match the Markovian thermal
populations up ta@((e7A«0)?).

pro(t — ) =0.

and I'y=2\%wy/ 7 being the zero-temperature spontaneous
emission rate. These reduced density matrix elements are

illustrated in Fig. 1.

In the long time limit the populations tend to the follow-

ing thermal values valid at low temperature,

pu(t — =) =€, (42)
poo(t — ) =1 —e™Peo (43)

and the off-diagonal coherence decays completely
pio(t — ) =0. (44)

2. Zero-temperature limit

At zero temperatur@=o and Eqs.(38)—(40) become

p1a(t) = pre7', (45)
poo(t) = poo+ p1a(1 —€79Y), (46)
poft) = pyoe™ V2Tt (47)

which is the expected result from RéfL1].

IV. DISCUSSION
A. Decoherence

The decoherence rate is found by computing the off-
diagonal elements of the reduced density mdeig.,p,¢(t)].
The inclusion of bath as well as system dynamics causes the
fall off of the off-diagonal matrix elements to become
slightly subexponential. From previous workl] we know
that at zero temperature the decoherence ratd &2
=N\2wy/ . Markovian approacheg.g., Ref.[14]) predict a
decoherence rate dfycoth(Bwy/2)/2, valid at high tem-
peratures. The present calculation shows that the decoher-
ence ratd 4 {t) := —p1g(t)/ p1o(t), actually changes as the to-
tal system evolves. As shown in Fig. 2 the decoherence rate
at t=0, when the bath is by assumption in a thermal state
uncorrelated with the qubit, agrees with the prediction of
Markovian approaches. As the system and bath evolve to-
gether the decoherence rate falls back down to the zero-
temperature value. The interpretation of this is: initially the
two cases have the same decoherence rate because by ar-
rangement the combined system is a product state of qubit
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FIG. 2. This plot shows the quantifyye{t)/T'o/2 (the ratio of FIG. 3. ThiSMgL% shows the difference in the upper state popu-
) " . "
the non-Markovian decoherence rate defined Hyedt) lations pa1(t)—py7 (1), between the non-Markovian prediction

:=—p1o(t)/ p1o(t), Over the zero temperature decoherencelrgt®)  P1(t) and the Markovian predictiop)?™*(t), given that the qubit
versus the dimensionless tinfat in the low-temperature regime IS initially in the upper statéi.e., p14(0)=1]. The difference is plot-
eP*0=0.05. The dotted line is the value of the Markovian predic- ted versus dimensionless tinigt and in the low-temperature re-
tion at finite temperature coffiwy/2). Initially the non-Markovian ~ gime €#°0=0.05. Inspection of the plot shows that in non-
prediction matches the Markovian res(at the dotted ling As the ~ Markovian dynamics the upper state decays more slowly than in
qubit and EMF become correlated the reduced dynamics deviatddarkovian dynamics. At long times the difference in the popula-
from the Markovian prediction and the decoherence rate asymptotdins is zero up td((e”#*)?) [see Eq(51)]. The inset shows that

to the zero temperature valalong the dashed-dotted line the non-Markovian and Markovian predictions agree initially.

decoherence behavior from quantum Brownian motion

and thermal bathZ which_is the statg assumed in Markovia@QBM) models[11]. One way to visualize the distinction is
approachegthere is no prior correlationAs the system and e reajization that in QBM the couplings allow the interac-

bath interact, the correlations that arise alter the reduced sY§yn of the system with the far-infrared modes of the envi-
tem dynamics and the combined state evolves away froynment. The system then loses the phase information

that initial factorizable state. The overall effect is that the thethrough soft photons which, however, carry very little en-
qubit decoheres more slowly in non-Markovian dynamlcsergy_ Hence in QBM systems, the relaxation time is much

than in Markovian dynamics. longer than the decoherence time. However, in resonant sys-
tems, such as being studied here and in Ref], the system
B. Relaxation interacts primarily with the modes of the environment near

The relaxation time scale is measured by the value 0[he resonance frequency. Consequently, the phase informa-

pui(t), assuming thap,,(0)=1. Similar to the case of deco- ion escapes through photons of energy equal to that of the
herence, because the initial state of the combined syste

rTeil_tom and the decoherence rate is essentially the same with
: . relaxation rate. We should remark that although the present

bath is taken to be a product state of qubit and thermal bath

as it is in Markovian approaches, the dynamics for the popu-

results only hold for the low-temperature limit the near
lations initially agree in non-Markovian and Markovian dy- 0.5f
namics(see the inset of Fig.)3Then as the system and bath
interact, the non-Markovian result for the dynamics of the 0-4998¢
reduced system, which takes into consideration the dynamic_
of both the bath and the qubit, deviates from the Markovian
prediction, as shown in Fig. 3. However, the long time be- & 0.4994}
havior of our prediction matches the thermalization predic- &
tion of the Markovian prediction up t®((e”#*)2). Most = 0-4992¢
importantly, Fig. 3 shows that the upper state population re-

0.4996¢

laxes more slowly in non-Markovian dynamics than in Mar- 0499
kovian dynamics. 0.4988}

We may define the relaxation raféor the case that 0 2 4 6 8 10
p11(0)=1] @sT'¢((t) := =p11(t)/ p11(t) — p1a(=). The plot of Fig. Fot

4 shows the dependence of th_e rdfigdt) /T're(t) on time. It FIG. 4. This plot shows the ratio of the non-Markovian deco-
demonstrates that the relaxation and decoherence rate areyfrence rate to the non-Markovian relaxation rate as a function of
the same order of magnitude. In other words, the rate Ofimensionless tim& gt in the low-temperature regime#<o=0.05.
guantum phase information escaping from the system to thghe value is approximately constant at 0.5, which is also the ratio
environment is the same as the rate of energy flow. Thigetween the Markovian decoherence and relaxation rates. This be-
property is characteristic of theesonantcoupling between cause both cases share the same physical determining factor, i.e.,
the two-level atom and the EMF, which leads to a differentthat the resonant type of coupling is at work in this model.
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1 0.8
n 0.7t
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FIG. 5. This plot shows the quantitfy:Tr[p(t)Uo(t)p(O)Ug(t)] FIG. 6. This plot shows the von Neumann entrogit)
as a function of the dimensionless tirhigt and at low temperature =-Tr ploge(p) of the reduced qubit density matrix versus the di-

(e7F0=0.05 for an initial o, eigenstate(|0)+|1))/12), with Uy(t) mensionless timd gt for low temperaturge#“0=0.05. The von
being the free evolution operator. Being a measure of the persisfNeumann entropy is a measure of herity of a density operator.
tence of the initial qubit state after interaction with the environment,Both the non-Markovian and Markovian von Neumann entropies
it can be considered as tffielelity of the qubit in its environment.  are plotted, as solid and dashed lines, respectively. Inspection of the
The non-Markovian fidelity is plotted as a solid line and the Mar- plot shows that as the qubit interacts with the environment it be-
kovian fidelity is plotted as a dashed line. The inset is the noncomes more mixed, but as the qubit equilibrates with the environ-
Markovian fidelity minus the Markovian fidelity. Inspection of it ment (after a time on the order of the relaxation tiniebecomes
shows that in the non-Markovian dynamics the EMF bath degradekess mixed due to the low temperature. In the inset the difference of
the fidelity of the qubit more slowly than in the Markovian the non-Markovian von Neumann entropy minus the Markovian
dynamics. von Neumann entropy is plotted. It shows that during the initial
period of mixing non-Markovian dynamics predicts less mixing

equality of decoherence and relaxation rate is valid even ithan does Markovian dynamics. Then, during the later equilibration

the high-temperature limit as can be seen already from thgeriod Markovian dynamics predicts a less mixed state. Finally,
Markov approximation both dynamics reach a low temperature equilibrium state which is

less mixed than at intermediate times. As in Fig. 3, the non-
Markovian dynamics asymptotes to thermal equilibrium more
C. Entanglement slowly than the Markovian dynamics.

There exists no computable measure of entanglement be- ) )
tween a qubit and an infinite continuous bath such as th@réater loss of purity, but after a time on the order of the
electromagnetic field. However, since Markovian predictions1€c@y timescale, it predicts less loss of purity than the non-
explicitly exclude system-bath entanglement, comparison O!}/Iarkowan result. The reason for this seeming contradiction
those predictions with the present results can reveal the ef$ that at low temperature, the system in its approach to ther-
fects of system-bath entanglement. First is the decoherendB@l equilibrium, is driven to a less mixed state. Since corre-
rate discussed previousigee Fig. 2 Its evolution from the lations with t.he bath slpw the drive to' the'rmal eq.umbrlum in
thermal to the zero-temperature value shows that the conflon-Markovian dynamics, as shown in Fig. 3, this process is
bined system-bath reaches and holds at some state in whiS{PWer in the non-Markovian regime. Comparison of these
the off-diagonal elements of the qubit are no longer affectedree quantitie¢decoherence rate, fidelity, and von Neumann
by the thermal nature of the bath. No product state Cou|dantrop3_; sh.ows a consistent picture in which _non—Markowan
give such behavior and cause thermalization of the popu|ac_iynam|cs is characterized by the preservation of coherence
tions. Second is the fidelit§=Tr[p(t)Uq(t) p(0)U(1)], of the for longer time.
(|0)+|1))/+2 state shown in Fig. 5, withl,(t) being the free
evolution operator. The fidelity in this case is a measure of
the persistence of the initial qubit state after interaction with  We have studied a two level atom coupled to an electro-
the environment. Inspection of the difference between thenagnetic field EMF) at finite temperature in the multimode
non-Markovian and Markovian predictions for fideliipset ~ Jaynes-Cummings model. We have computed the reduced
of Fig. 5 shows that non-Markovian dynamics predicts aevolution of the two level system and addressed the issues of
slower loss of fidelity than Markovian dynamics, although decoherence, relaxation, and entanglement from its interac-
with continued interaction both dynamics predict completetion with the EMF bath. Our approach makes use of a modi-
loss of fidelity. Third is the von Neumann entrot)  fied influence functional technique, which enables one to
=-Tr ploge(p) for the initial qubit statél), shown in Fig. 6. compute the reduced system dynamics while including the
The von Neumann entropy is a measure of the purity of @&ntangled evolution of the bath and qubit degrees of free-
density matrix. Inspection of the difference in this césset dom. That is in contrast to Markovian approaches, which
of Fig. 6) shows that the Markovian result initially predicts a assume a fixed bath and hence neglect any dynamics in the

D. Conclusion
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bath. We adopt a Grassmann coherent state path integral repeak-coupling limits will be sketched out in this appendix.

resentation for the atom degrees of freedom and bosonic cd+e solutions for the other set in the same limits will follow

herent state path integral representation for the electromagr similar sequence. First, given the initial conditions

netic field, and assume a weak coupliisgcond-order Bonn

approximation under low-temperature conditions. Flimg](t=0)=1, (A3)
We find nonexponential decay for both the diagonal and

off-diagonal matrix elements of the qubit's reduced density G l{im}](t=0)=0 (A4)

matrix. From the diagonal elements we see the qubit relax t

thermal equilibrium with the bath. From the off-diagonal el-

ements, we see the decoherence rate beginning at the rate zT:{{mg}](z) -1=-i> mqwqrz[{mg}](z)

usually predicted for a thermal bath, but evolving to the zero q

temperature decoherence rate as the qubit and bath become —_

entangled. Comparison of the relaxation and decoherence +i 2 mNG{m: - 841(2), (A5)

rates, shown in Fig. 4, reveals that as in the zero-temperature Ip

case, both rates are comparable. At short times the ratio of 5 5

the decoherence to the relaxation rate is initially smaller, but zG[{mg](2) = —i(w0+ > mqwq) G [{mg](2)

only by a small amount. At higher temperatures the initial q

difference between the two does increase, but that regime o~

reaches the limits of validity of the present results. We can +iINFL{Me + 8pt](2). (AB)

see why at low temperatures both rates are related to thehe second equation can be rearranged into

atomic transition rate, because it is the only relevant physical

scale presenfunlike at finite temperature where the thermal

fhe Laplace transforms of the above equations are

iNFL{M, + 8:,11(2)

scale is also at wodk This, in turn, is a consequence of the Gplimgl(2) = — ' (A7)
particular resonant coupling between the two-level atom and z* |(w0 * 2q mqwq)
the EMF, as explained earlier in R¢f.1]. . : . .
On the entanglement of a qubit with the ENihder reso- which can be substituted back into H#S) to give
nant coupling we calculated the qubit’s fidelity and the von <z+ » My )I~:[{m 12)
Neumann entropy. The Markovian result predicts higher loss q q )
of fidelity and purity as compared with the more accurate _
non-Markovian calculations. Qualitatively, with the inclusion S14iS IMNAF{M, = 34 + 95t (2) (A8)

of quantum correlations between the qubit and its environ- ( )
. p Z+ilwg— o +
ment, the non-Markovian processes tend to slow down the P @o~ @ Eq Mqq

drive of the system to equilibrium, prolonging the decoher-| the expression above the low-temperature approximation

ence and better preserving the fidelity and purity of the sys;g applied by setting= in the summation of the right-hand

tem. side. The justification is that the summation on the right-hand
side will be peaked about,=wq such that the greatest con-

ACKNOWLEDGMENTS tribution from |~:[{m§— 8+ Ogpt](2) will be for w;=w,. How-

This work is supported in part by ARDA Contract No. €ver, at low temperatures those frequencies will not be popu-

MDA90401/C0903, a NSF and a NIST grant to the Univer-lated. As a result the vacuum will be annihilated, unless
sity of Maryland. O¢p= 0y, Which will cause the major contribution from tipe

summation to be fronp=I. The low temperature approxima-
tion is thus that the temperature is low enough that the modes
with frequencyw, are unoccupied, i.ee?0< 1. Applying

this approximation, Eq(A8) can be rewritten as

APPENDIX: CALCULATIONAL DETAILS OF QUBIT IN A
THERMAL BATH

1. Approximated functional solutions

Equations(25)—(30) are two sets of coupled differential |~:[{mg}](z) = (Z+ i > Mg
equations. One set being the pair of equations q
. . . — 2 -1
F{mg] = =12 myogF[{md] +i2 maG{m, - 54}], +S MA] . (A9)
q Ip I z+i(w0—w|+2q mqwq)

(A1)
The zeroth order pole df[{m.}](2) is atz=-i2;myw,. The
' =il wn+ +i + reaction term at this point is found equalltgmy/2 +iA, with
Golimg] |(w0 % mqwq>Gp[{m§}] LM+ O] I'o=N2w,/ 7, which shows that the second order shift in the
(A2) pole includes both a real and an imaginary part. After absorb-
ing the imaginary part in a renormalization of the frequency,
and the remaining four equations comprising the other sethe second order pole -2 mywq—1'gMy/2 with the defi-
The solution method for this pair in the low-temperature anditions
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mp = E m. (A10) 2. Computation of density matrix elements

w=wy The solutions of Eq9A11)—(A16) can be substituted into
] ) o Egs. (35—(37) to evaluate the reduced density matrix ele-

The desired functional can be calculated as in inversgnents in the limits of low temperature and weak coupling.
Laplace transform of Eq(A9) at the second order pole t0 The reduced density matrix elements in that form are sum-
give mations over all distributionfmg. The p;(t) matrix element
will be demonstrated below as a representative calculation.
The evaluation of the other summations follow along similar
lines. From Eq(37), the off-diagonal density matrix element
is
The inverse Laplace transform contains a contribution of a
branch cut as well as a pdl@4,35. We ignore the contribu- p1o(t) = P10 (‘I’f[{mg}] + > mdf[{m, - 5§|}]>
tion of the branch cut, which is negligible at all but very late {mg) !
times such that'ot>20 and very early times such thBgt Pl - My,
<102 [see Eq(3.20 of Ref.[34]]. In all cases, we assume XFlimg e e, (AL7)
that time is much later than the inverse cutoff time. FurtherFirst, from Egs.(A11)—(A16) the functional in parentheses
comparison between the branch cut and the non-Markoviapan be determined to be
correction over Markovian dynamics shows that the branch _ i(o "
cut contribution is smaller by greater than three orders of‘l'f[{mé}] +2 mﬁI)ﬁ[{mg— dai]=e ol D/2JH g 2w,
magnitude fol'gt>0.1. The other functional in the pair can '
be calculated by integrating E¢R6)

G[{m, - 84}1(t)
DY 1- e—(FOH'IO/Z)t—iEqmqa)qt

FLimg( = exp{— ok

t-i> mqwqt}. (A11)
q

(A18)
so that the off-diagonal matrix element becomes

[o(2mp+ 1)
2

= i ~ B2 My,
gl (w-wg~Zgmyog)t po(t) = p1o> exp) = t—lwot}e BqMgeq

oy Tomy/2 +i(w; — o) tme}

(A12) (A19)

Denoting by primes those terms for which,=w, and
Following similar calculations the rest of the functionals aredouble primes those for which; # wp, the summand can be

found to be rewritten with the substitutiomy=X;m,
f — o [To(mg#1)/2]t-i (0o Eqmgog)t ! "
W{mg](t) = e Moo Di2l-ilooSgmpoqt - (A13) proft) = proe 02t S T & TotBuome[ ] gBoeme,
{mg ¢ &
)\e—(FO/Z)t—i(w0+Eqmqwq)t .
\pg[{mg_ 5§p}](t) - r [el(wp—wo)t (AZO)
\u;p<wp_ W= oMo The summation over distributions can be more clearly writ-
2 ten as
- —(1"of’”o/2)t:|7 (A14)

—(I'gmy/2)t=i(wg+Z mgw)t
\e Vo 0+2qMg®q [e_(ro/z)t_ei(wp—wo)tL

im0 =

r/_ — __0
\‘(l)p (.l)p wo— 1 2

(A15)

(Dlgp[{mg - 5§p}] (t)
)\Ze—i(wo+w|—wp+2qmqwq)t
= ’r'_ I
VN wy
(e—(FO/Z)’[+i(w|—wo)t _ 1)(1 _ e—(FOmO/Z)t—i(wp—wo)’[)

X
r I
{(wrwo)ﬂ;oH(wp—wO)—i °2m°J

(A16)

2 :[H ) HH ) ”H ) } (n21)
{mg} & ms=0 & mg=0 & m§:0
which allows us to bring EqA20) into the form
- —iwy l B e_BwO _ _a—Bo,
p1olt) = pyoe” VA Ot<m)e Zq In[1-e77q]
(A22)

The factor at the end is removed by normalization of the
reduced matrix element by its valuelif=0. The final result
for the off-diagonal matrix element is

— @ Bwg

Cryiog( 1
p1oft) = prge /A °t(m) (A23)

with T’y being the zero temperature spontaneous emission
rate. The other reduced density matrix elements are given in
the text.
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