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We present an alternative way to compute and interpret quantum tunneling in a one-dimensional double-well
potential. For large transition time we show that the quantum action functional gives an analytical expression
for tunneling amplitudes. This has been confirmed by numerical simulations giving relative errors in the order
of 1075, In contrast to the classical potential, the quantum potential has a triple well if the classical wells are
deep enough. Its minima are located at the positions of extrema of the ground state wave function. The striking
feature is that a single trajectory with a double instanton reproduces the tunneling amplitude. This is in contrast
to the standard instanton approach, where infinitely many instantons and anti-instantons have to be taken into
account. The quantum action functional is valid in the deep quantum regime in contrast to the semiclassical
regime where the standard instanton approach holds. We compare both approaches via numerical simulations.
While the standard instanton picture describes only the transition between potential minima of equal depth, the
guantum action may give rise to instantons also for asymmetric potential minima. Such a case is illustrated by

an example.
DOI: 10.1103/PhysRevA.71.022106 PACS nuntber03.65.Xp, 73.43.Jn
[. INTRODUCTION barriers. In contrast to that, the quantum action approach

o o .~ holds when the potential is shallow and the physics is domi-
Tunneling is a characteristic feature of quantum physicsy5teq by the ground state properti@eynman-Kac limi,
having no counterpart in classical physics. Instantons e in the deep quantum regime. In this sense the quantum
known to be intimately connected to tunneling. The physicS,ction functional is a method complementary to the semi-
of instantons and its relation to tunneling have been disg|assical instanton approach.
cussed in Refg.1,2] and the role of instantons in QCD has  another approach in constructing an effective classical

_been reviewed in Re[.S]. Tur_meling effects and th_e use of potential has been proposed by Feynman and Kle[i@it
instantons appear in many different areas of physics, such ag,qugh similar to the quantum action in its physical goal and
inflationary scenarios and formation of galaxjgs-7, hot  qtivation, it differs by its definition. When applied to a

and dense nuclear mattg8], neutrino oscillationd9-11,  ¢jassical double-well potentigl9] it gives an effective po-
condensed matter physi¢Superconducting quantum inter- (eniia| different from the quantum potential. In particular, the
ference devices(SQUIDS] [12,13, quantum computers g antum action generates a triple-well potential with degen-
based on superconductofd4,15, dynamical tunneling erate minima(all of equal depth which is not the case for
[16,17, and chemistrychemical bindings the effective classical potential.

The standard instanton picture is valid in the semiclassical |4 sec. || we present the tunneling model and the con-
regime. Infinitely many instantons and anti-instantons consyyction of the quantum action functional. Section Il pre-

tribute to give the tunneling amplitude. In this work we con- sents numerical results on how the quantum action functional
sider the opposite regime, i.e., the deep quantum regime. We g heen calculated and how well it fits the transition ampli-
use the concept of the quantum action, being a kind of effecy,ge. 1n Sec. IV we compare numerical results from the stan-
tive action, which takes into account quantum effects vigyarq instanton approach with those from the quantum action
tuned action parameters. The action is computed from thg,nctional. We briefly discuss the use of the quantum action
ground state of the system. In the limit of large imaginarymethod for asymmetric double-well potentials in Sec. V. Fi-

time, the ground state wave function determines the shape ?lfally Sec. VI gives a discussion and Sec. VIl a summary.
the quantum potential, which together with a corresponding

quantum mass determines the quantum action. The quantum

action functional then gives the exact tunneling amplitudes. Il. MODEL AND ITS QUANTUM ACTION
The shape of the resulting quantum potential is different
from the classical double-well potential, i.e., it exhibits a
triple-well structure. We find that a double instant@mti- Let us consider in one dimensighD) a classical Hamil-
instanton is necessary and sufficient to reproduce exactlytonian system

the tunneling amplitude. The standard instanton approach

holds for oscillatorlike potentials with deep wells and high p?
H=o—+ V(x), (1)

A. Quantum mechanical tunneling model

*Corresponding author. Email address: hkroger@phy.ulaval.ca with a potential of double-well shape given by
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! wherem is called the quantum mass aﬂcﬂx) the quantum
’ potential. The quantum action functional is defined as a pa-
/ . o .
| rametrization of the quantum transition amplitu@x;,t
=T;xy,t=0) for arbitrary transition timeT in the following
/ way:

/
/

3

GO t=TiXpt=0)= > Z exmiéﬁ(traj]/ﬁ}a

trajectories

y(traj: mtraj] =0. ©)
FIG. 1. Classical double-well potential far=1/32 (minima at - . . . .
—a, +a), the ground state wave function, and two lowest energy/1€7€Xirsj deNotes a trajectorgstationary pointof the action

levels. The quantum potentisi-V, (multiplied by a scale factor S going from boundary pointx;,,t=0) to (x;,t=T). There
1.7331 displays triple wells(minima at -b, 0, +b). All quantites ~May be several such trajectories.
are in dimensionless units. Tunneling involves imaginary timét— —it). Moreover,

the instanton picture of tunneling is usually considered in the
1\2 21 limit of large transition timg(T— o). Hence let us consider
V(X) = 7\(x2 - —) =G - = —, (2) from now on time to be imaginary and the transition tifhe
8\ to become largéFeynman-Kac limit. In this limit the quan-
For simplicity, we use throughodt=c=m=1, which makes tum action functional has been proven to exist, and to give
all physical units dimensionless. The potential minima are2n exact parametrization of transition amplitudes by taking
located at &, a=1/\8\. A potential barrier of heigh®  into account only a single trajectof1]
=1/64\ is located ax=0 (see Fig. 1 The potential param- ~ ~ i
eters were chosen such that the natural frequency of the os- Geucl(Xqi,t=T:Xin,t = O)T—;ZEud exp{— SeuclXeucl/7i},
cillations at the bottom of each well is=1 for all A. The -
potential is of confinement type, i.e., tends to infinity for (6)
large |x|. Hence the quantum system has a discrete bounghere
state spectrum(no scattering statgsof energiesE,, n
=0,1,2... . Depending on the height of the potential barrier ~ T W, ~
B, the following physical situations may occ(iy B< E,, SEucI[X]:f thXZJfV(X) (7)
The barrier is lower than the ground state energy. Then the 0
ground state wave function has a single hump at the centegienotes the Euclidean actiotfollowing physics conven-
(i) Ep<<B. The ground state energy is lower than the barriettions, we dropped the overall minus sign occurring in the

and the ground state wave function displays a double hump, .. . : : : : =
This case is sketched in Fig. (i) Eg<E;<---<E,<B. %"“Oﬂtr:t _|mag|nar.y time. It _W'” reappear in _E{XFSEUC']')
The barrier is higher than the firkt 1 bound state energies. HereXgy is the trajectory which makes;,q stationary. We

Quantum tunneling in the proper sense occurs in céges use the notatiori=~3[7<t5rﬁjC . It should be pointed out that,

and(iii ). The transitic;n between regio(i$ gnd(ii) occurs at  ajthough being a stationary point of the aC'f@Lch the tra-
A=5.345813 36¢10°" In all plots involving A, a vertical  jectoryX®, does not necessarily always minimize the quan-
gray line represents this boundary. The parameteontrols  t,m action. Below we will show which particular trajectory
the barrier height and the property of the system to be lomyst be taken in order to represent the propagator. From now
cated in the semiclassical regime. Lalgeneans a low bar- g we drop the subscript “Eucl.”

rier (quantum regimewhile small X represents two deep  Also in this limit, analytical relations exist between the
(almost decoupledwells (semiclassical regimeThe tunnel-  ¢jassical potential, the quantum potential, and wave func-

ing amplitude is given by theimaginary time transition  tions [22]. For example the following relation was estab-
matrix element corresponding to the transition from onejished[21]:

minimum to the other,

Mo~ [ dg 00X\ (dIn g (x)\2
(alexii- HT/A]| - &), 3 ﬁ%‘[vw—vo]:(%g(ﬁ—)x) :<ij@) ®

HereV, denotes the minimum value of the quantum poten-

tial. Those results have been established on the assumption

of a nondegenerate ground state and a confining potential
The quantum action has been introduced in R&d]. Itis  with a single minimum. Tunneling involves potentials with

a local action, like the classical action, given by multiple (possibly degenerateminima. Therefore, we take

B. Construction of the quantum action for large transition
time
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here Eq.(8) as starting point and aim to construct an expressymmetry of classical potential is maintained by the quantum
sion which generalizes that of E(f) potential also.

From the Schrodinger equation one can compute the Integration of Eq.(8) allows us to express the ground
ground state wave functiog,(x) and via Eq.(8) obtain the §tate wave function in terms of the quantum mass and poten-
guantum potentialtimes the quantum massA plot of the  tial,

guantum potential/(x) -V, (up to a multiplicative factoris x 2m ~ ~

shown in Fig. 1. The following observations can be made. Yer(X) = Z expy ’—'f dsy/ 2z [V(S) ~ Vol | (9)
First, the quantum potential, like the classical potential, is of %0

confining type, i.e., it goes to infinity for large(. It also  whereZ is some integration constant. In this section, we will
displays the same dependenceirior largex. Second, there consider only the tunneling regime, where the quantum po-
is a marked difference between the shape of the classic&ntial shows a triple-well structure—other cases are simpler.
potential and the quantum potential. The former has twolhe question arises: Which is the physically valid sign in the
wells, but the latter can have one, two, or, in the case showRxponent? The answer can be found by looking at the shape
in Fig. 1, three wells, located ab-0, and -b. Moreover, Eq.  of #,(x) and V(x). In the regime «<x<-b (regime ),

(8) shows thaV/(x) =V, i.e., the quantum potential reaches a ¥(X) decreases whex goes from b to —. In the regime
minimum, whenever the ground state wave function has de=b<<x<0 (regime II), ,(x) increases whex goes from
rivative zero, i.e., whenever it reaches a maximum or a minizero to -b. In the regime 6<x<+b (regime Il), ¢ (x) in-
mum. This correspondence between the extrema of thereases whemr goes from zero to b. In the regime H<x
ground state wave function and the quantum action is a prop< + (regime IV), #,(x) decreases whexngoes from b to

erty not shared by the classical potential. Finally, the parity+c. This behavior requires the following choice of signs:

( -b
Z exp[—f dsy (2VA3)[V(s) —\70]} , —w<x<-b,

0
Z exp{+ J dS\/(ZﬁVhZ)[V(s) - T/O]} , —-b<x<0,

Pr¥) =4 (10)

Z exp[+ f ’ dsV (2RVA2)[V(S) —Y/o]} , 0<x< +b,
0

Zy exp{— J ' dsv (2MVA)[V(s) - Y/o]} , +h<x<o.

\ *b

At the boundary of the regimes, the wave function has to beum potential Eq.(8) are parity symmetric, the previous
continuous. This implies relations between the factorsequations reduce to

Z| yaes ,Z|V,
Yy(=b) = Y (-b) O Z, 4=, =2,
O ~ ~
=2, exp[+ f dsy (22 [V(s) - vo]} . x=-b,
" Z,=2y =2,
50 = Y0 0 Z,=2y, x=0, —
2m ~ ~
" v J= exp[+ f dsy/ ?[V(s) - VO]} . (11
lﬂgl’(+ b) = wgr (+ b) 0
+b
0 zy, exp[+f dS\/(ZFthZ)[V(s) _Vo]:| Z is a factor which normalizes the wave function to unity,
0 and logJ will turn out to be the quantum action of the quan-

=Zy, X=+b. tum instanton.
Taking into account those continuity conditions Efyl),
Because the ground state wave functigy(x) and the quan- the wave functionj(x) can be expressed as
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( i -b 0

expl - f dsv (2VAD[V(S) - Vo] + f dS\/(ZHVhZ)[V(s)—T/O]}, —w<x<-b,

X -b
L -
exp| +J dS\/(ZFﬁ/ﬁZ)[V(S)—VO]i|, -b<x<0,
b=y S (12)

exp +f dS\/(ZﬁVhZ)[V(S)—VO]], 0< X< +bh,

0

+b X
exp| + f ds (2fVA)[V(s) - V] - f dsJ(zﬁmz)[Y/(s)—T/o]] +h<x< +.
\ L Jo +b

The terms occurring in the exponents are related to the quan-  G(y, T:x,0) = Z% exd - E, T/#i]

tum action. Because the action is derived from a potential, b —
energy is conserved. In imaginary time it reads X exp| —f dsw—zmﬁ/(s) -Vl
oV ’

E=-T+V=const, (13 y 2 ~ ~
+ f bdsy/hL;[V(s)—Vo]]
1o B

where?:imxtr denotes the kinetic term. Thus E(.3) can

be resolved for the velocity, X exp[_ f‘b i /@[V(s) -]
X h? °
o /2 ~ B 0 [om _ ~
Xtr =t Fn[VG(tr) E]- (14) + f dS iL_T[V(S) — VO]:| . (17)
-b

Then we can express the quantum action, . I .
P g There are five contributions in the exponent. Each of them

can be identified with the quantum action of some trajectory.

iiﬁ ’B: jT dtT+V For example, consider the term
in’ 0
T B b oM ~ -
:J E+2T exp| - ds ?[V(s)—vo] . (18
0 X
T
—ET+ J dt 7 It corresponds to a trajectory starting fronand approaching
0 H —-b some time later, i.e., entering the valley of the quantum

% potential at b (see Fig. 2. Because the velocity>0 along
— ET+J Id;(’m’;(tr Fhe trajectory, the correspondin_g sign in the quantum action
Xin is +. Thus the quantum action is

CET+ J ldxs oMV -El,  (15) <o, J ™ e —va 9

where the sign is determined by the sign of the velogity The term occurring irG is

Now we consider the quantum mechanical transition am-
plitude in imaginary time in the limif — o (Feynman-Kac b 2m ~ ~ 1~
limit), exp| - ds ﬁ[V(s) -Vo] | =exp - %Exb ,
X
X,0) ~ - (20
G(y,T-x,O)T dgy)exd— EgT/h]g(x).  (16)

which is valid, when we identif)E:Y/o. It gives a minus sign
The coordinates,y may be located in any of the regimes in front of the action. Similarly, the other contributions®
LILILIV. For example, let us considery €& l(-o<x,y< can be expressed as some part of the trajectory shown in Fig.

-b). Combining Eqs(16) and(12) yields 2. The term
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1 ~
2 G(y,T;x,0) = z? eXp|: % 2 Sgnraj(v)ztraj(v)] . (23

__w @ trai(v)
" ’(iii) i i

| For other regimes, where the quantum potential has only one
S 04 v _J well, the correct trajectory is much simpler to find and all of
x

’/ \\ it is accounted negatively in the action.
(i)
I |

v (G
N (i) ‘ I1l. NUMERICAL SIMULATIONS

In this section we want to present numerical simulations
of the quantum action and see how well it fits the transition
amplitudes. The computation of the quantum action func-

FIG. 2. Trajectory derived from quantum actidrfor boundary ~ tonal requires us to compute a trajectory. Such a trajectory is
conditions x,=—2 andx;=+2 (\=1/32 andT=100. Full line @ Solution of the Euler-Lagrange equation of motiGn
imaginary time, and satisfies boundary conditions at initial

and final points. The numerical solution of such differential
equations has been found to be most convenient and give
stable results by using a relaxation algorithm. To give an
example how we have proceeded, consider Fig. 2, in particu-
expl - EgT/h] (21) lar, the trajectory going from=-2 to +2. Let us recall that

we work in the regime where the transition timiés large. In

, i . this regime we observe that the trajectory has three pieces,
corresponds to the trajectory, where the particle rests eithg{heare its motion follows the bottom of a potential valley

in thg valley at b or in the valley at O(having identified (first from t=5 to 35, second from=45 to 60, finally from

Eq=Vo). t=70 to 95. Each of those pieces of trajectory in the valley
To sum up, in the quantum mechanical transition ampli-can be cut somewhere in the middle. As a result the whole

tude occur contributions from five different trajectories. Theytrajectory is decomposed into four parts; first fror0 to 20,

are the trajectory from to —b, then a straight-line trajectory second fromt=20 to 50, third fromt=50 to 80, and fourth

in the valley at b, then a trajectory going over from the from t=80 to 100. Each of those four pieces can be com-

valley at b to the valley at 0, then a straight-line trajectory puted separately in a numerical way. Finally, the assignment

in the valley 0, then a trajectory going over from the valley Oof the sign of the quantum action is taken from the above

to the valley -b, then a straight-line trajectory in the valley O, theoretical analysis.

and finally the trajectory going from the valley+o the final The system provides two quantities that can be used to

boundary pointy. The transition amplitude then becomes  find a characteristic time scale, namely, the natural frequency

of oscillation in each weII(T(slcgle:w‘lzl) and the ground

1 e state energy of the systeﬁﬁ(si)ale:h/Egr). SinceEy, is in the
G(y,T;x,0) =72 exp[ ={- z;b + 29b + 25’3 -3 -3gH. order of 1 in the range of parameters considered in this paper
h (and since we work in units wherk=1), we simply take
(22)  Tsae1l. We chose to study transitions at timés 10 and
100, which are both large compared to the dynamical time
scale. For large transition timé&s> T4 the transition am-
Note that the straight-line trajectory contribution can beplitude is dominated by the ground state and a few excited

taken out of the action integral by computing the action instates. The wave functions and energies of those states have
the potentialV-V, and adding £, T/# to the action after- Peen computed by numerically solving the Schrodinger
ward. The full trajectory is shown in Fig. 2. The full line €guation. The quantum action E@t) is determined by the
corresponds to those parts of the trajectory corresponding e@rameter of the quantum massand the quantum potential
the minus sign, while the dashed line corresponds to part¥(x). We computed the functiom[V(x)—V,] from Eq. (8).

with the plus sign. Let us take a closer look at the trajectoriesn order to determine the quantum mass we need another
shown in Fig. 2. The trajectory going from=—-2 att=0 to  equation. In the Feynman-Kac limit, one cannot directly find
x=-2 att=100 has a contribution from an instanton and anthe quantum mass independently from the quantum potential.
anti-instanton. Note that this trajectory does not minimize theThe physical reason is that in the Feynman-Kac limit physics
guantum action due to the contribution of the instanton—antiis dominated by the ground state. According to &, in the
instanton pair. This contribution is necessary to correctly norground state wave function occurs the product of quantum
malize the propagator. Other trajectori@®rresponding to mass and quantum potential. The mathematical reason is that
other initial and final pointsare built in the same way. If we there is a symmetry transformatiq@1], which keeps the
assign to each piece of trajectory a corresponding sign itransition amplitude and the quantum action invariant. The
front of the quantum action, we can write transformation

0 10 20 30 40 50 60 70 80 90 100
t

exp{—i]. Dashed line ex{pti]. Minima of quantum potential are
indicated by thin gray lines. All quantities are in dimensionless
units.
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Quantum mass

FIG. 3. Quantum mass vs paramexeiT=10. All quantities are
in dimensionless units.

m—m =ma,
V(X) — V'(X) = aV(X),

T—T =Tla (24)

leaves the transition amplitudéa(y,T;x,0) invariant. The
transformation

m—m=ma,
V(%) — V'(x) = aV(x),

T-T =Tl (25
leaves the quantum acti(iﬂ invariant. This invariance im-
plies that the choice of the quantum mass arbitrary when

T is very large: this symmetry strictly holds in the limit

— o, Numerically, we found that this freedom in the choice

of M was valid to good precision fof =100, that is, the

value of the quantum mass had no significant influence on
the transition amplitudes fof=100. However, this was
found not to be the case fdr=10. Therefore, we need addi-
tional information about the system to find the correct quan-
tum mass forT=10. We have proceeded in the following
way. For a given value of we made an initial guess of the
guantum mas&. Then we computed the quantum action for

a number of initial pointsg, and final pointsx;, taken from
a set{xs,...,xy}. Thus we generated a matrix of quantu
action element§J Via the quantum action functlonzﬁIl

=Zexd3!], we computed a matrix of transition matrix ele-

ments. Diagonalization of5;; yields eigenvaluesE,T/%.
Then we made a variational search in the paranfatamtil
the energy of the first excited stafig obtained from diago-
nalization ofG;; agreed with the exact valuebtained from

the solution of the Schrédinger equatio®n the other hand,
previous numerical experiments have shown that the quan-
tum masgand also the parameters of the quantum potential

asymptotically converge wheh— c. Therefore, we simply
chose the same values of the quantum mass inTth&00

PHYSICAL REVIEW A 71, 022106(2005
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FIG. 4, Relative error  E(y)=|[G(y,T:0,0)a

-G(y,T:0,0schiod/ G(Y, T:0,0)schiod Of transition amplitude for
various final positiony for T=100 and\=1/32. All quantities are
in dimensionless units.

large A\(A>6Xx 10 a smooth behavior of. At A=5.3

X 1072 there is a cusp. In our opinion the behavior for
<5x 1072 is unphysical, caused by limited numerical preci-
sion and the fact that in this regime the contribution to the
propagator from the first excited state becomes non-
negligible. However, this uncertainty does not translate into a
large error on the transition amplitudes because of their van-
ishing dependence on the quantum mass in the Mmitoo.

The relative error of the transition amplitude as a function of
final positiony, while keeping the initial position fixedx
=0), is shown in Fig. 4 forT=100 and)\—— The error is
larger for largey because the numerical error on the quantum
potential is larger for largéx|.

IV. TUNNELING: COMPARISON WITH INSTANTON
PICTURE

We have determined the tunneling amplitude
Grun= G(a,T;-a,0) =(alexd— HT/A]| - (26)

where 4a are the minima of the classical potential, for vari-
ous values of the potential paramekeand transition timer.

As reference value, the tunneling amplitude has been com-
puted by solving the Schrodinger equation. Next, the tunnel-
ing transition amplitude has been computed from the quan-
tum action functional, that is, by computing the quantum

m Potential and the quantum mass for each of the different

classical potentials and transition times and by using the
tools developed in Sec. Il. Moreover, the transition ampli-

tudes have been obtained by using the semiclassical multi-
instanton expression at two-loop order, given by R&f,

w21 g el 5155 )
XSinr(@exp[ so-lli}m) (27)

72
wherefi=1 and§,=1/(12\) is the action of the instanton

case. The obtained results for the quantum mass are shownletween classical minima. Results are shown in Figs. 5 and 6

Fig. 3 as a function of the parameter One observes for

for T=10 and 100, respectively. The relative difference be-
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FIG. 7. Relative error of the tunneling amplitude from the quan-

tum action functional with respect to exact result, for10 and

FIG. 5. Tunneling amplitudé&(a, T; ~a,0) vs potential param- 100. All quantities are in dimensionless units.

eter \. T=10. Comparison of exact resulirom the Schrédinger
equation with result from quantum action functional and from in-
stanton methodsemiclassical All quantities are in dimensionless
units.

cannot be neglected anymaithe ground state becomes de-
generatg We can verify that the quantum action functional
indeed reproduces correctly the ground state contribution to
tween the exact tunneling amplitudzom the Schrodinger the propagatotyg)e =™ (yy| for all X, up to numerical
equation and the quantum action amplitude f&=10 and limits. The relative error of tunneling amplitudes from the
100 is shown in Fig. 7. The instanton method is valid in thequantum action is shown in Fig. 7. The fact that the error is
semiclassical limit where the acti@® of the classical instan- generally higher folT=10 confirms this observatiofiower

ton is large compared to uniticorresponding to smal).  transition time means that the first excited state is more im-
This is clearly the case in Figs. 5 and 6 where the semiclageortant in the transition amplitude for the same valug)ofit

sical tunneling amplitude is quite close to the exact ampliturns out that the quantum action can be used to compute
tude for small\. In contrast, the tunneling amplitude com- transition amplitudes for a wide range of potential param-
puted from the quantum action is better at laxgdt diverges  eters.

substantially from the exact result for small This diver-
gence isnot due to a bad choice of quantum mass. It can
rather be explained by the fact that the quantum action is Another advantage of the quantum action functional is
constructed from the exact propagatorthe Feynman-Kac that it can be used to study tunneling in an asymmetric
limit, where only the ground state contributes to the physicglouble-well potential, with wells of different depth. While

of the system. However, wher decreases, the wells get such a system is much harder to study in the standard instan-
deeper and the energy of the first excited approaches then picture, it does not require substantially more work in the
ground state energy. Then the first excited state contributioquantum action context. In fact, the quantum potential will
still display one, two, or three minimd&aving all the same

V. TUNNELING IN ASYMMETRIC POTENTIALS

1012 depth Instanton trajectories similar to those in the standard
——  Ggemicassical N & double-well case then appear likewise. For example, con-
10 4 2 gsmradmger / sider the potential
+ QA / v _i|: ) (§>Z:|2+i|: §:|2 o8
107 A I/A e R P 250l X" 2| (28
10-18 4 / & which is shown in Fig. 8. This potential has two wells, but
4 the left well is higher than the right one, and therefore a
102 | / classical instanton does not exist. The quantum potefutfal
;k/ & to a multiplicative factor recovered from the ground state
nlt + 7 wave function is also shown in Fig. 8. We find that the quan-
0= / tum mass in this cas@or T=100 is aboutm=0.11 and that
A the tunneling transition amplitudé(a, T;—a,0) reproduces
102 {— ) g ., the exact value with a relative error of 2.82.0° 4,
10- 10- 10

VI. DISCUSSION

FIG. 6. Same as Fig. 5 bt=100. All quantities are in dimen-
sionless units.

Using the quantum action functional to describe tunneling
in a double-well potential gives good results in the deep
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FIG. 8. Asymmetric double-well potential E(8), the ground  ong fory=1/32. All quantities are in dimensionless units.

state wave function, and corresponding quantum potektialV,
(up to a multiplicative factor All quantities are in dimensionless
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quantum regime(opposite to the semiclassical regime (29
Quantum effects appear in the quantum action via tuned pavhereB denotes the barrier height of the potential aps
rameters. In the case of tunneling in a classical double-we!lhe center of t_he instanton. The steepness of the instanton at
potential this leads to a quantum potential with a differentits center is given by

well structure, having possibly one, two, or three wells. As in d oB
the standard instanton picture, quantum instantons occur also —Xinsft =t0) = \/ —.
in the tunneling amplitude obtained by the quantum action dt

functional. Instantons play an important role in many do-Figure 1 shows that that the barrier height of the quantum
mains of physics so one may ask how important are theotential is much smaller than that of the classical potential.
instantons in this case. First, we saw that they play a normalfhe quantum mass is of the same order of magnitude as the
ization role in the trajectories, that is, they ensure that thelassical mass. From E¢B0) we expect that the steepness of
propagator is correctly normalized. Second, as much as stathe quantum instanton is smaller than that of the classical
dard instantons represent the only finite action solution  instanton. This is confirmed by a numerical calculation, com-
the limit T— ) contributing to the propagator between the paring the classical with the quantum instanton, shown in
classical minima, we can interpret the additional instantongig. 9. Also, because the locations of the potential minima
as the only finite action solutiongn the T—c limit) con-  are closer for the quantum potential than for the classical
tributing to the propagatdoetween the minima of the quan- potential, the quantum instanton has a smaller action than the
tum potential Because these minima of the quantum potenciassical one. The bottom line is that the quantum instanton
tial correspond in position to the extrema of the ground statgs “softer” than the classical instanton. It is interesting to note
wave function, the double quantum instanton going fromthat a similar observation has been made previously in the
-b to O to b represents the trajectory reproducing thecontext of comparing classical chaos with quantum chaos,
largest transition amplitude. In particular, the tunnelingagain using the quantum action functionas]. It has been
amplitude between the minima of the quantum potenfound that the quantum action yields a less chaotic phase
tial (-blexd-HT/#]jb) is larger than the tunneling space than the classical action. The underlying reason for
amplitude between the minima of the classical poterial such behavior is unknown to us. We believe that a promising
-alexd-HT/#]|a). Third, one might wonder why in the strategy may be to analyze the path integral and its relation
guantum action functional only two instanton@nti- to the quantum action functional.

instanton$ contribute, while in the standard approach infi-

nitely many instantons and anti—instantons are ngeded. The VII. SUMMARY

answer is simply that the quantum action was explicitly con-

structed to reproducexactly in the Feynman-Kac limit, the This work is about tunneling described in terms of the
transition amplitude, using a single trajectory. This is suffi-quantum action functional. This point of view is complemen-
cient to discard the use of multiple instanton trajectoriestary to the standard instanton picture: While the latter holds
Fourth, let us compare the structure of the classical instantoim the semiclassical regime, the former holds in the deep
with the quantum instanton. The instanton solution correquantum regime. The observation that the quantum potential
sponding to the classical Hamiltonian of E¢) and(2), is  has additional minima(in number and location beyond
given by those of the classical potential may be of interest for cosmol-

(30)
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ogy and inflationary models. There are experiments on tunframework, provided that the potential is bounded from be-
neling in condensed matter, e.g., Josephson junctionsow (which excludes a potential lik&~x%). However, the

SQUIDS[12,13, or in atomic physics in dynamical tunnel- description of tunneling from quasistationary states to the
ing of atoms in a time-dependent exterior fi¢lth,17. It ground state or other excited states would require to apply

would be interesting to explore if the quantum action func-the quantum action in real time. This will be a subject of
tional can be applied to describe such physics. This requiregrther studies.

further development, in particular, to explore the quantum

action functional in real time and for explicitly time-

dependent systems. Likewise one may ask if tunneling out of ACKNOWLEDGMENTS
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