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We present an alternative way to compute and interpret quantum tunneling in a one-dimensional double-well
potential. For large transition time we show that the quantum action functional gives an analytical expression
for tunneling amplitudes. This has been confirmed by numerical simulations giving relative errors in the order
of 10−5. In contrast to the classical potential, the quantum potential has a triple well if the classical wells are
deep enough. Its minima are located at the positions of extrema of the ground state wave function. The striking
feature is that a single trajectory with a double instanton reproduces the tunneling amplitude. This is in contrast
to the standard instanton approach, where infinitely many instantons and anti-instantons have to be taken into
account. The quantum action functional is valid in the deep quantum regime in contrast to the semiclassical
regime where the standard instanton approach holds. We compare both approaches via numerical simulations.
While the standard instanton picture describes only the transition between potential minima of equal depth, the
quantum action may give rise to instantons also for asymmetric potential minima. Such a case is illustrated by
an example.
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I. INTRODUCTION

Tunneling is a characteristic feature of quantum physics,
having no counterpart in classical physics. Instantons are
known to be intimately connected to tunneling. The physics
of instantons and its relation to tunneling have been dis-
cussed in Refs.f1,2g and the role of instantons in QCD has
been reviewed in Ref.f3g. Tunneling effects and the use of
instantons appear in many different areas of physics, such as
inflationary scenarios and formation of galaxiesf4–7g, hot
and dense nuclear matterf8g, neutrino oscillationsf9–11g,
condensed matter physicsfSuperconducting quantum inter-
ference devicessSQUIDsdg f12,13g, quantum computers
based on superconductorsf14,15g, dynamical tunneling
f16,17g, and chemistryschemical bindingsd.

The standard instanton picture is valid in the semiclassical
regime. Infinitely many instantons and anti-instantons con-
tribute to give the tunneling amplitude. In this work we con-
sider the opposite regime, i.e., the deep quantum regime. We
use the concept of the quantum action, being a kind of effec-
tive action, which takes into account quantum effects via
tuned action parameters. The action is computed from the
ground state of the system. In the limit of large imaginary
time, the ground state wave function determines the shape of
the quantum potential, which together with a corresponding
quantum mass determines the quantum action. The quantum
action functional then gives the exact tunneling amplitudes.
The shape of the resulting quantum potential is different
from the classical double-well potential, i.e., it exhibits a
triple-well structure. We find that a double instantonsanti-
instantond is necessary and sufficient to reproduce exactly
the tunneling amplitude. The standard instanton approach
holds for oscillatorlike potentials with deep wells and high

barriers. In contrast to that, the quantum action approach
holds when the potential is shallow and the physics is domi-
nated by the ground state propertiessFeynman-Kac limitd,
i.e., in the deep quantum regime. In this sense the quantum
action functional is a method complementary to the semi-
classical instanton approach.

Another approach in constructing an effective classical
potential has been proposed by Feynman and Kleinertf18g.
Though similar to the quantum action in its physical goal and
motivation, it differs by its definition. When applied to a
classical double-well potentialf19g it gives an effective po-
tential different from the quantum potential. In particular, the
quantum action generates a triple-well potential with degen-
erate minimasall of equal depthd, which is not the case for
the effective classical potential.

In Sec. II we present the tunneling model and the con-
struction of the quantum action functional. Section III pre-
sents numerical results on how the quantum action functional
has been calculated and how well it fits the transition ampli-
tude. In Sec. IV we compare numerical results from the stan-
dard instanton approach with those from the quantum action
functional. We briefly discuss the use of the quantum action
method for asymmetric double-well potentials in Sec. V. Fi-
nally, Sec. VI gives a discussion and Sec. VII a summary.

II. MODEL AND ITS QUANTUM ACTION

A. Quantum mechanical tunneling model

Let us consider in one dimensions1Dd a classical Hamil-
tonian system

H =
p2

2m
+ Vsxd, s1d

with a potential of double-well shape given by*Corresponding author. Email address: hkroger@phy.ulaval.ca
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Vsxd ; lSx2 −
1

8l
D2

= lx4 −
x2

4
+

1

64l
. s2d

For simplicity, we use throughout"=c=m=1, which makes
all physical units dimensionless. The potential minima are
located at ±a, a=1/Î8l. A potential barrier of heightB
=1/64l is located atx=0 ssee Fig. 1d. The potential param-
eters were chosen such that the natural frequency of the os-
cillations at the bottom of each well isv=1 for all l. The
potential is of confinement type, i.e., tends to infinity for
large uxu. Hence the quantum system has a discrete bound
state spectrumsno scattering statesd of energies En, n
=0,1,2,… . Depending on the height of the potential barrier
B, the following physical situations may occursid B,E0.
The barrier is lower than the ground state energy. Then the
ground state wave function has a single hump at the center.
sii d E0,B. The ground state energy is lower than the barrier
and the ground state wave function displays a double hump.
This case is sketched in Fig. 1.siii d E0,E1,¯,Ek,B.
The barrier is higher than the firstk+1 bound state energies.
Quantum tunneling in the proper sense occurs in casessii d
andsiii d. The transition between regionssid andsii d occurs at
l=5.345 813 36310−2. In all plots involving l, a vertical
gray line represents this boundary. The parameterl controls
the barrier height and the property of the system to be lo-
cated in the semiclassical regime. Largel means a low bar-
rier squantum regimed while small l represents two deep
salmost decoupledd wells ssemiclassical regimed. The tunnel-
ing amplitude is given by thesimaginary timed transition
matrix element corresponding to the transition from one
minimum to the other,

kauexpf− HT/"gu − al. s3d

B. Construction of the quantum action for large transition
time

The quantum action has been introduced in Ref.f20g. It is
a local action, like the classical action, given by

S̃fxg =E
0

T

dt
m̃

2
ẋ2 − Ṽsxd, s4d

wherem̃ is called the quantum mass andṼsxd the quantum
potential. The quantum action functional is defined as a pa-
rametrization of the quantum transition amplitudeGsxfi ,t
=T;xin ,t=0d for arbitrary transition timeT in the following
way:

Gsxfi ,t = T;xin,t = 0d = o
trajectories

Z̃ exphiS̃fx̃trajg/"j,

x̃traj:dS̃fx̃trajg = 0. s5d

Here x̃traj denotes a trajectorysstationary pointd of the action

S̃ going from boundary pointsxin ,t=0d to sxfi ,t=Td. There
may be several such trajectories.

Tunneling involves imaginary timest→−itd. Moreover,
the instanton picture of tunneling is usually considered in the
limit of large transition timesT→`d. Hence let us consider
from now on time to be imaginary and the transition timeT
to become largesFeynman-Kac limitd. In this limit the quan-
tum action functional has been proven to exist, and to give
an exact parametrization of transition amplitudes by taking
into account only a single trajectoryf21g

GEuclsxfi ,t = T;xin,t = 0d →
T→`

Z̃Eucl exph− S̃Euclfx̃Eucl
traj g/"j,

s6d

where

S̃Euclfxg =E
0

T

dt
m̃

2
ẋ2 + Ṽsxd s7d

denotes the Euclidean action.sFollowing physics conven-
tions, we dropped the overall minus sign occurring in the

action at imaginary time. It will reappear in expf−S̃Euclg.d
Here x̃Eucl

traj is the trajectory which makesS̃Eucl stationary. We

use the notationS̃=S̃fx̃Eucl
traj g. It should be pointed out that,

although being a stationary point of the actionS̃Eucl, the tra-
jectory x̃Eucl

traj does not necessarily always minimize the quan-
tum action. Below we will show which particular trajectory
must be taken in order to represent the propagator. From now
on we drop the subscript “Eucl.”

Also in this limit, analytical relations exist between the
classical potential, the quantum potential, and wave func-
tions f22g. For example the following relation was estab-
lished f21g:

2m̃

"2 fṼsxd − Ṽ0g = Sdcgrsxd/dx

cgrsxd
D2

= Sd ln cgrsxd
dx

D2

. s8d

Here Ṽ0 denotes the minimum value of the quantum poten-
tial. Those results have been established on the assumption
of a nondegenerate ground state and a confining potential
with a single minimum. Tunneling involves potentials with
multiple spossibly degenerated minima. Therefore, we take

FIG. 1. Classical double-well potential forl=1/32 sminima at
−a, +ad, the ground state wave function, and two lowest energy

levels. The quantum potentialṼ−Ṽ0 smultiplied by a scale factor
1.7331d displays triple wellssminima at −b, 0, +bd. All quantities
are in dimensionless units.
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here Eq.s8d as starting point and aim to construct an expres-
sion which generalizes that of Eq.s6d

From the Schrödinger equation one can compute the
ground state wave functioncgrsxd and via Eq.s8d obtain the
quantum potentialstimes the quantum massd. A plot of the

quantum potentialṼsxd−Ṽ0 sup to a multiplicative factord is
shown in Fig. 1. The following observations can be made.
First, the quantum potential, like the classical potential, is of
confining type, i.e., it goes to infinity for largeuxu. It also
displays the same dependence inx4 for largex. Second, there
is a marked difference between the shape of the classical
potential and the quantum potential. The former has two
wells, but the latter can have one, two, or, in the case shown
in Fig. 1, three wells, located at −b, 0, and +b. Moreover, Eq.

s8d shows thatṼsxd=Ṽ0, i.e., the quantum potential reaches a
minimum, whenever the ground state wave function has de-
rivative zero, i.e., whenever it reaches a maximum or a mini-
mum. This correspondence between the extrema of the
ground state wave function and the quantum action is a prop-
erty not shared by the classical potential. Finally, the parity

symmetry of classical potential is maintained by the quantum
potential also.

Integration of Eq.s8d allows us to express the ground
state wave function in terms of the quantum mass and poten-
tial,

cgrsxd = Z expF±E
x0

x

dsÎ2m̃

"2 fṼssd − Ṽ0gG , s9d

whereZ is some integration constant. In this section, we will
consider only the tunneling regime, where the quantum po-
tential shows a triple-well structure—other cases are simpler.
The question arises: Which is the physically valid sign in the
exponent? The answer can be found by looking at the shape

of cgrsxd and Ṽsxd. In the regime −̀ ,x,−b sregime Id,
cgrsxd decreases whenx goes from −b to −`. In the regime
−b,x,0 sregime IId, cgrsxd increases whenx goes from
zero to −b. In the regime 0,x, +b sregime IIId, cgrsxd in-
creases whenx goes from zero to +b. In the regime +b,x
, +` sregime IVd, cgrsxd decreases whenx goes from +b to
+`. This behavior requires the following choice of signs:

cgrsxd =5
ZI expF−E

x

−b

dsÎs2m̃/"2dfṼssd − Ṽ0gG , − ` , x , − b,

ZII expF+E
x

0

dsÎs2m̃/"2dfṼssd − Ṽ0gG , − b , x , 0,

ZIII expF+E
0

x

dsÎs2m̃/"2dfṼssd − Ṽ0gG , 0 , x , + b,

ZIV expF−E
+b

x

dsÎs2m̃/"2dfṼssd − Ṽ0gG , + b , x , `.

s10d

At the boundary of the regimes, the wave function has to be
continuous. This implies relations between the factors
ZI ,… ,ZIV,

cgr
I s− bd = cgr

II s− bd ⇒ ZI

= ZII expF+E
−b

0

dsÎs2m̃/"2dfṼssd − Ṽ0gG, x = − b,

cgr
II s0d = cgr

III s0d ⇒ ZII = ZIII , x = 0,

cgr
III s+ bd = cgr

IVs+ bd

⇒ ZIII expF+E
0

+b

dsÎs2m̃/"2dfṼssd − Ṽ0gG
= ZIV, x = + b.

Because the ground state wave functioncgrsxd and the quan-

tum potential Eq.s8d are parity symmetric, the previous
equations reduce to

ZII = ZIII ; Z,

ZI = ZIV = ZJ,

J ; expF+E
0

+b

dsÎ2m̃

"2 fṼssd − Ṽ0gG . s11d

Z is a factor which normalizes the wave function to unity,
and logJ will turn out to be the quantum action of the quan-
tum instanton.

Taking into account those continuity conditions Eq.s11d,
the wave functioncgrsxd can be expressed as
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cgrsxd = Z5
expF−E

x

−b

dsÎs2m̃/"2dfṼssd − Ṽ0g +E
−b

0

dsÎs2m̃/"2dfṼssd − Ṽ0gG , − ` , x , − b,

expF+E
x

0

dsÎs2m̃/"2dfṼssd − Ṽ0gG , − b , x , 0,

expF+E
0

x

dsÎs2m̃/"2dfṼssd − Ṽ0gG , 0 , x , + b,

expF+E
0

+b

dsÎs2m̃/"2dfṼssd − Ṽ0g −E
+b

x

dsÎs2m̃/"2dfṼssd − Ṽ0gG , + b , x , + `.

s12d

The terms occurring in the exponents are related to the quan-
tum action. Because the action is derived from a potential,
energy is conserved. In imaginary time it reads

E = − T̃ + Ṽ = const, s13d

whereT̃= 1
2m̃ẋ̃tr

2 denotes the kinetic term. Thus Eq.s13d can
be resolved for the velocity,

ẋ̃tr = ±Î 2

m̃
fṼsx̃trd − Eg. s14d

Then we can express the quantum action,

S̃xin,0
xfi ,T =E

0

T

dt T̃+ Ṽ

=E
0

T

E + 2T̃

= ET+E
0

T

dt m̃ẋ̃tr
2

= ET+E
xin

xfi

dx̃ m̃ẋ̃tr

= ET+E
xin

xfi

dx± Î2m̃fṼsxd − Eg, s15d

where the sign is determined by the sign of the velocityẋ̃tr.
Now we consider the quantum mechanical transition am-

plitude in imaginary time in the limitT→` sFeynman-Kac
limit d,

Gsy,T:x,0d ,
T→`

cgrsydexpf− EgrT/"gcgrsxd. s16d

The coordinatesx,y may be located in any of the regimes
I,II,III,IV. For example, let us considerx,y[ Is−`,x,y,
−bd. Combining Eqs.s16d and s12d yields

Gsy,T:x,0d = Z2 expf− EgrT/"g

3 expF−E
0

−b

dsÎ2m̃

"2 fṼssd − Ṽ0g

+E
−b

y

dsÎ2m̃

"2 fṼssd − Ṽ0gG
3 expF−E

x

−b

dsÎ2m̃

"2 fṼssd − Ṽ0g

+E
−b

0

dsÎ2m̃

"2 fṼssd − Ṽ0gG . s17d

There are five contributions in the exponent. Each of them
can be identified with the quantum action of some trajectory.
For example, consider the term

expF−E
x

−b

dsÎ2m̃

"2 fṼssd − Ṽ0gG . s18d

It corresponds to a trajectory starting fromx and approaching
−b some time later, i.e., entering the valley of the quantum
potential at −b ssee Fig. 2d. Because the velocityẋ.0 along
the trajectory, the corresponding sign in the quantum action
is 1. Thus the quantum action is

S̃x
−b = +E

x

−b

dsÎ2m̃fṼssd − Ṽ0g. s19d

The term occurring inG is

expF−E
x

−b

dsÎ2m̃

"2 fṼssd − Ṽ0gG = expF−
1

"
S̃x

−bG ,

s20d

which is valid, when we identifyE=Ṽ0. It gives a minus sign
in front of the action. Similarly, the other contributions toG
can be expressed as some part of the trajectory shown in Fig.
2. The term
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expf− EgrT/"g s21d

corresponds to the trajectory, where the particle rests either
in the valley at −b or in the valley at 0shaving identified

Egr=Ṽ0d.
To sum up, in the quantum mechanical transition ampli-

tude occur contributions from five different trajectories. They
are the trajectory fromx to −b, then a straight-line trajectory
in the valley at −b, then a trajectory going over from the
valley at −b to the valley at 0, then a straight-line trajectory
in the valley 0, then a trajectory going over from the valley 0
to the valley −b, then a straight-line trajectory in the valley 0,
and finally the trajectory going from the valley −b to the final
boundary pointy. The transition amplitude then becomes

Gsy,T;x,0d = Z2 expF1

"
h− S̃x

−b + S̃−b
0 + S̃0

−b − S̃−b
y − S̃SljG .

s22d

Note that the straight-line trajectory contribution can be
taken out of the action integral by computing the action in

the potentialṼ−Ṽ0 and adding −EgrT/" to the action after-
ward. The full trajectory is shown in Fig. 2. The full line
corresponds to those parts of the trajectory corresponding to
the minus sign, while the dashed line corresponds to parts
with the plus sign. Let us take a closer look at the trajectories
shown in Fig. 2. The trajectory going fromx=−2 at t=0 to
x=−2 at t=100 has a contribution from an instanton and an
anti-instanton. Note that this trajectory does not minimize the
quantum action due to the contribution of the instanton–anti-
instanton pair. This contribution is necessary to correctly nor-
malize the propagator. Other trajectoriesscorresponding to
other initial and final pointsd are built in the same way. If we
assign to each piece of trajectory a corresponding sign in
front of the quantum action, we can write

Gsy,T;x,0d = Z2 expF 1

"
o

trajsnd
sgntrajsndS̃trajsndG . s23d

For other regimes, where the quantum potential has only one
well, the correct trajectory is much simpler to find and all of
it is accounted negatively in the action.

III. NUMERICAL SIMULATIONS

In this section we want to present numerical simulations
of the quantum action and see how well it fits the transition
amplitudes. The computation of the quantum action func-
tional requires us to compute a trajectory. Such a trajectory is
a solution of the Euler-Lagrange equation of motionsin
imaginary timed, and satisfies boundary conditions at initial
and final points. The numerical solution of such differential
equations has been found to be most convenient and give
stable results by using a relaxation algorithm. To give an
example how we have proceeded, consider Fig. 2, in particu-
lar, the trajectory going fromx=−2 to 12. Let us recall that
we work in the regime where the transition timeT is large. In
this regime we observe that the trajectory has three pieces,
where its motion follows the bottom of a potential valley
sfirst from t=5 to 35, second fromt=45 to 60, finally from
t=70 to 95d. Each of those pieces of trajectory in the valley
can be cut somewhere in the middle. As a result the whole
trajectory is decomposed into four parts; first fromt=0 to 20,
second fromt=20 to 50, third fromt=50 to 80, and fourth
from t=80 to 100. Each of those four pieces can be com-
puted separately in a numerical way. Finally, the assignment
of the sign of the quantum action is taken from the above
theoretical analysis.

The system provides two quantities that can be used to
find a characteristic time scale, namely, the natural frequency
of oscillation in each wellsTscale

s1d =v−1=1d and the ground

state energy of the systemsTscale
s2d =" /Egrd. SinceEgr is in the

order of 1 in the range of parameters considered in this paper
sand since we work in units where"=1d, we simply take
Tscale=1. We chose to study transitions at timesT=10 and
100, which are both large compared to the dynamical time
scale. For large transition timesT@Tscale the transition am-
plitude is dominated by the ground state and a few excited
states. The wave functions and energies of those states have
been computed by numerically solving the Schrödinger
equation. The quantum action Eq.s4d is determined by the
parameter of the quantum massm̃ and the quantum potential

Ṽsxd. We computed the functionm̃fṼsxd−Ṽ0g from Eq. s8d.
In order to determine the quantum mass we need another
equation. In the Feynman-Kac limit, one cannot directly find
the quantum mass independently from the quantum potential.
The physical reason is that in the Feynman-Kac limit physics
is dominated by the ground state. According to Eq.s9d, in the
ground state wave function occurs the product of quantum
mass and quantum potential. The mathematical reason is that
there is a symmetry transformationf21g, which keeps the
transition amplitude and the quantum action invariant. The
transformation

FIG. 2. Trajectory derived from quantum actionS̃ for boundary
conditions xin=−2 and xfi = ±2 sl=1/32 andT=100d. Full line

expf−S̃g. Dashed line expf+S̃g. Minima of quantum potential are
indicated by thin gray lines. All quantities are in dimensionless
units.
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m→ m8 = m/a,

Vsxd → V8sxd = aVsxd,

T → T8 = T/a s24d

leaves the transition amplitudesGsy,T;x,0d invariant. The
transformation

m̃→ m̃8 = m̃/a,

Ṽsxd → Ṽ8sxd = aṼsxd,

T → T8 = T/a s25d

leaves the quantum actionS̃x,0
y,T invariant. This invariance im-

plies that the choice of the quantum massm̃ is arbitrary when
T is very large: this symmetry strictly holds in the limitT
→`. Numerically, we found that this freedom in the choice
of m̃ was valid to good precision forTù100, that is, the
value of the quantum mass had no significant influence on
the transition amplitudes forT=100. However, this was
found not to be the case forT=10. Therefore, we need addi-
tional information about the system to find the correct quan-
tum mass forT=10. We have proceeded in the following
way. For a given value ofl we made an initial guess of the
quantum massm̃. Then we computed the quantum action for
a number of initial pointsxin and final pointsxfi , taken from
a set hx1,… ,xNj. Thus we generated a matrix of quantum
action elementsSi

j. Via the quantum action functionalGij
=Z expfSi

jg, we computed a matrix of transition matrix ele-
ments. Diagonalization ofGij yields eigenvaluesEnT/".
Then we made a variational search in the parameterm̃, until
the energy of the first excited stateE1 obtained from diago-
nalization ofGij agreed with the exact valuesobtained from
the solution of the Schrödinger equationd. On the other hand,
previous numerical experiments have shown that the quan-
tum masssand also the parameters of the quantum potentiald
asymptotically converge whenT→`. Therefore, we simply
chose the same values of the quantum mass in theT=100
case. The obtained results for the quantum mass are shown in
Fig. 3 as a function of the parameterl. One observes for

large lsl.6310−2d a smooth behavior ofm̃. At l<5.3
310−2 there is a cusp. In our opinion the behavior forl
,5310−2 is unphysical, caused by limited numerical preci-
sion and the fact that in this regime the contribution to the
propagator from the first excited state becomes non-
negligible. However, this uncertainty does not translate into a
large error on the transition amplitudes because of their van-
ishing dependence on the quantum mass in the limitT→`.
The relative error of the transition amplitude as a function of
final position y, while keeping the initial position fixedsx
=0d, is shown in Fig. 4 forT=100 andl= 1

32. The error is
larger for largey because the numerical error on the quantum
potential is larger for largeuxu.

IV. TUNNELING: COMPARISON WITH INSTANTON
PICTURE

We have determined the tunneling amplitude

GTun; Gsa,T;− a,0d = kauexpf− HT/"gu − al, s26d

where ±a are the minima of the classical potential, for vari-
ous values of the potential parameterl and transition timeT.
As reference value, the tunneling amplitude has been com-
puted by solving the Schrödinger equation. Next, the tunnel-
ing transition amplitude has been computed from the quan-
tum action functional, that is, by computing the quantum
potential and the quantum mass for each of the different
classical potentials and transition times and by using the
tools developed in Sec. II. Moreover, the transition ampli-
tudes have been obtained by using the semiclassical multi-
instanton expression at two-loop order, given by Ref.f3g,

Gtun =Îv

p
S1 +

3

8S0
DexpS−

vT

2
F1 −

1

3S0
GD

3sinhSÎ6S0

p
expF− S0 −

71

72

1

S0
GvTD , s27d

where"=1 andS0;1/s12ld is the action of the instanton
between classical minima. Results are shown in Figs. 5 and 6
for T=10 and 100, respectively. The relative difference be-

FIG. 3. Quantum mass vs parameterl. T=10. All quantities are
in dimensionless units.

FIG. 4. Relative error Esyd= ufGsy,T:0 ,0dQA

−Gsy,T:0 ,0dSchrodg /Gsy,T:0 ,0dSchrodu of transition amplitude for
various final positionsy for T=100 andl=1/32. All quantities are
in dimensionless units.
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tween the exact tunneling amplitudesfrom the Schrödinger
equationd and the quantum action amplitude forT=10 and
100 is shown in Fig. 7. The instanton method is valid in the
semiclassical limit where the actionS0 of the classical instan-
ton is large compared to unityscorresponding to smallld.
This is clearly the case in Figs. 5 and 6 where the semiclas-
sical tunneling amplitude is quite close to the exact ampli-
tude for smalll. In contrast, the tunneling amplitude com-
puted from the quantum action is better at largel. It diverges
substantially from the exact result for smalll. This diver-
gence isnot due to a bad choice of quantum mass. It can
rather be explained by the fact that the quantum action is
constructed from the exact propagatorin the Feynman-Kac
limit, where only the ground state contributes to the physics
of the system. However, whenl decreases, the wells get
deeper and the energy of the first excited approaches the
ground state energy. Then the first excited state contribution

cannot be neglected anymoresthe ground state becomes de-
generated. We can verify that the quantum action functional
indeed reproduces correctly the ground state contribution to
the propagatorucgrle−EgrT/"kcgru for all l, up to numerical
limits. The relative error of tunneling amplitudes from the
quantum action is shown in Fig. 7. The fact that the error is
generally higher forT=10 confirms this observationslower
transition time means that the first excited state is more im-
portant in the transition amplitude for the same value ofld. It
turns out that the quantum action can be used to compute
transition amplitudes for a wide range of potential param-
eters.

V. TUNNELING IN ASYMMETRIC POTENTIALS

Another advantage of the quantum action functional is
that it can be used to study tunneling in an asymmetric
double-well potential, with wells of different depth. While
such a system is much harder to study in the standard instan-
ton picture, it does not require substantially more work in the
quantum action context. In fact, the quantum potential will
still display one, two, or three minima,having all the same
depth. Instanton trajectories similar to those in the standard
double-well case then appear likewise. For example, con-
sider the potential

Vsxd =
1

50
Fx2 − S5

2
D2G2

+
1

250
Fx −

5

2
G2

, s28d

which is shown in Fig. 8. This potential has two wells, but
the left well is higher than the right one, and therefore a
classical instanton does not exist. The quantum potentialsup
to a multiplicative factord recovered from the ground state
wave function is also shown in Fig. 8. We find that the quan-
tum mass in this casesfor T=100d is aboutm̃=0.11 and that
the tunneling transition amplitudeGsa,T;−a,0d reproduces
the exact value with a relative error of 2.87310−4.

VI. DISCUSSION

Using the quantum action functional to describe tunneling
in a double-well potential gives good results in the deep

FIG. 5. Tunneling amplitudeGsa,T;−a,0d vs potential param-
eter l. T=10. Comparison of exact resultsfrom the Schrödinger
equationd with result from quantum action functional and from in-
stanton methodssemiclassicald. All quantities are in dimensionless
units.

FIG. 6. Same as Fig. 5 butT=100. All quantities are in dimen-
sionless units.

FIG. 7. Relative error of the tunneling amplitude from the quan-
tum action functional with respect to exact result, forT=10 and
100. All quantities are in dimensionless units.
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quantum regimesopposite to the semiclassical regimed.
Quantum effects appear in the quantum action via tuned pa-
rameters. In the case of tunneling in a classical double-well
potential this leads to a quantum potential with a different
well structure, having possibly one, two, or three wells. As in
the standard instanton picture, quantum instantons occur also
in the tunneling amplitude obtained by the quantum action
functional. Instantons play an important role in many do-
mains of physics so one may ask how important are the
instantons in this case. First, we saw that they play a normal-
ization role in the trajectories, that is, they ensure that the
propagator is correctly normalized. Second, as much as stan-
dard instantons represent the only finite action solutionsin
the limit T→`d contributing to the propagator between the
classical minima, we can interpret the additional instantons
as the only finite action solutionssin the T→` limit d con-
tributing to the propagatorbetween the minima of the quan-
tum potential. Because these minima of the quantum poten-
tial correspond in position to the extrema of the ground state
wave function, the double quantum instanton going from
−b to 0 to b represents the trajectory reproducing the
largest transition amplitude. In particular, the tunneling
amplitude between the minima of the quantum poten-
tial k−buexpf−HT/"gubl is larger than the tunneling
amplitude between the minima of the classical potentialk
−auexpf−HT/"gual. Third, one might wonder why in the
quantum action functional only two instantonssanti-
instantonsd contribute, while in the standard approach infi-
nitely many instantons and anti-instantons are needed. The
answer is simply that the quantum action was explicitly con-
structed to reproduceexactly, in the Feynman-Kac limit, the
transition amplitude, using a single trajectory. This is suffi-
cient to discard the use of multiple instanton trajectories.
Fourth, let us compare the structure of the classical instanton
with the quantum instanton. The instanton solution corre-
sponding to the classical Hamiltonian of Eqs.s1d and s2d, is
given by

xinststd =
1

Î8l
tanhF 1

Î4m
st − tcdG = Î8B tanhF 1

Î4m
st − tcdG ,

s29d

whereB denotes the barrier height of the potential andtc is
the center of the instanton. The steepness of the instanton at
its center is given by

d

dt
xinstst = tcd =Î2B

m
. s30d

Figure 1 shows that that the barrier height of the quantum
potential is much smaller than that of the classical potential.
The quantum mass is of the same order of magnitude as the
classical mass. From Eq.s30d we expect that the steepness of
the quantum instanton is smaller than that of the classical
instanton. This is confirmed by a numerical calculation, com-
paring the classical with the quantum instanton, shown in
Fig. 9. Also, because the locations of the potential minima
are closer for the quantum potential than for the classical
potential, the quantum instanton has a smaller action than the
classical one. The bottom line is that the quantum instanton
is “softer” than the classical instanton. It is interesting to note
that a similar observation has been made previously in the
context of comparing classical chaos with quantum chaos,
again using the quantum action functionalf23g. It has been
found that the quantum action yields a less chaotic phase
space than the classical action. The underlying reason for
such behavior is unknown to us. We believe that a promising
strategy may be to analyze the path integral and its relation
to the quantum action functional.

VII. SUMMARY

This work is about tunneling described in terms of the
quantum action functional. This point of view is complemen-
tary to the standard instanton picture: While the latter holds
in the semiclassical regime, the former holds in the deep
quantum regime. The observation that the quantum potential
has additional minimasin number and locationd beyond
those of the classical potential may be of interest for cosmol-

FIG. 8. Asymmetric double-well potential Eq.s28d, the ground

state wave function, and corresponding quantum potentialṼ−Ṽ0

sup to a multiplicative factord. All quantities are in dimensionless
units.

FIG. 9. Comparison between the classical and quantum instan-
tons, forl=1/32. All quantities are in dimensionless units.
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ogy and inflationary models. There are experiments on tun-
neling in condensed matter, e.g., Josephson junctions,
SQUIDS f12,13g, or in atomic physics in dynamical tunnel-
ing of atoms in a time-dependent exterior fieldf16,17g. It
would be interesting to explore if the quantum action func-
tional can be applied to describe such physics. This requires
further development, in particular, to explore the quantum
action functional in real time and for explicitly time-
dependent systems. Likewise one may ask if tunneling out of
metastable states can be described in our approach. We have
shown that an asymmetric double-well potential which may
give rise to metastable statesswhich occur, e.g., in nuclear
fission and emission ofa particlesd can be treated in this

framework, provided that the potential is bounded from be-
low swhich excludes a potential likeV,x3d. However, the
description of tunneling from quasistationary states to the
ground state or other excited states would require to apply
the quantum action in real time. This will be a subject of
further studies.
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