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A Bell inequality violation allowed by the two-mode squeezed state, whose Wigner function is nonnegative,
is shown to hold only for correlations among dynamical variables that cannot be interpreted via a local hidden
variable theory. Explicit calculations and interpretation are given for Bell’s suggestion that the EPRsEinstein,
Podolsky, and Rosend state will not allow violation of Bell’s inequality, in conjunction with its Wigner repre-
sentative being nonnegative. It is argued that Bell’s theorem disallowing the violation of Bell’s inequality
within a local hidden-variable theory depends on the dynamical variables having a definite value—assigned by
the local hidden variables—even when they cannot be simultaneously measured. The analysis leads us to
conclude that Bell’s inequality violation is to be associated with endowing these definite values to the dynami-
cal variables, andnot with their locality attributes.
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I. INTRODUCTION

In his article entitled “EPRs=Einstein, Podolsky and
Rosend correlations and EPWs=Eugene Paul Wignerd Distri-
butions,” Bell f1g studied the possibility of underpinning
quantum theory with local hidden variablessLHV’s d f2g in
the case of two spinless particles. He analyzed the correla-
tions arising from measurements of positions of these par-
ticles in free space—a situation closer to the original one
envisaged by EPRf3g—utilizing the fact that Wigner’s dis-
tribution f4g simulates a local “classical” model of such cor-
relations in phase space. Bell suggestedf1g that the nonne-
gativity of the Wigner function for certain quantum-
mechanical states would preclude Bell’s inequality violation
sBIQVd with such states when one considers the correlations
constructed from a dichotomic variable defined as the sign of
the coordinates of the particles.

We first recall a few properties of the Wigner functionf5g.
One can show that the expectation value of any operatorÂ in
a state defined by the density matrixr̂ can be expressed as

Trsr̂Âd =E dlWr̂sldWÂsld, s1.1d

whereWr̂sld andWÂsld are the Wigner representative of the

density matrix r̂ and the quantal operatorÂ, respectively,
defined in Eqs.s2.13d ands2.12d below, andl designates the
appropriate phase space coordinates, i.e.,l=sq ,pd
=sq1, . . . ,qn,p1, . . . ,pnd, n being the number of degrees of
freedom. It should be noted that in Bell’s considerations of
local hidden variables, the values of the observables obey the
so-called Bell’s factorizationf2,6g, which leaves the value of
each observable independent of the “setting” of the other. In
the expressions for two-particle correlations in terms of the
Wigner representatives, when each of the dynamical vari-
ables depends on its own phase-space coordinates, this fac-
torization is satisfied automatically. This is our justification
for referring to the description in terms of the Wigner func-

tion aslocal f1g.
We illustrate the above considerations using the two-mode

squeezed statesTMSSd uzl, defined as

uzl = expfzsa1
†a2

† − a1a2dgu00l ; Sszdu00l. s1.2d

In a quantum optics problem,a1
† anda2

† represent the creation
operators for photons in two different channels andu00l is
the vacuum associated with these two channels;a1 and a2
denote the corresponding annihilation operatorssRef. f7gd.
Equations1.2d defines the operatorS.

Alternatively, we can think of a two-one-dimensional-
particle problemsi.e., a problem with two degrees of free-
domd with “dimensionless” position and momentum opera-
tors q̂1, p̂1 and q̂2, p̂2, respectively, through which one
defines, as usual, the raising and lowering operators

aa
† =

1
Î2

sq̂a − ip̂ad, s1.3ad

aa =
1
Î2

sq̂a + ip̂ad s1.3bd

swherea=1,2d. The ground stateu00l is, as usual, annihi-
lated by the operatoraa.

In the limit of the squeezing parameterz increasing with-
out limit, the states1.2d approaches the EPR statef3g
uEPRl=dsq1−q2d, as can be readily seen writing the state
s1.2d in the coordinate representation asswe use well known
normal ordering formulaf8gd

kq1q2uzl =
1

coshz
o
n=0

tanhn zkq1q2unnl →
z→`

, dsq1 − q2d.

s1.4d

Now, the Wigner function,Wz, of the TMSS is given byf9g
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Wzsq1,q2,p1,p2d =
1

p2 expf− coshs2zdsq1
2 + q2

2 + p1
2 + p2

2d

− 2 sinhs2zdsq1q2 − p1p2dg. s1.5d

It is clearlynon-negativefor all q’s andp’s, and thus may be
considered as a distribution in phase spacesq1,q2,p1,p2d
associated with the stateuzl. Thus we may refer to the vari-
ablessq1,q2,p1,p2d as local hidden variables, and correla-
tions weighed withWzsq1,q2,p1,p2d should preclude BIQV
for dynamical variables for which this may be a legitimate
view f10g.

As was mentioned above, Bell suggestedf1g that the non-
negativity of the Wigner function of the EPR state would
preclude BIQV with this state when one considers the corre-
lations of a dichotomic variable defined as the sign of the
coordinates of the particles. The correlations considered in
that work are those that are involved in the CHSHf11g in-
equality, i.e., the inequality that is often studied in terms of
the Bell operatorf12g. sIn the present paper, Bell’s inequality
and BIQV refer to this CHSH inequality.d Bell’s original
argument that nonnegativity of Wigner’s function suffices to
preclude BIQV was shownf13g to be inaccurate. Difficulties
in handling the normalization of the EPR state considered by
Bell were shown to involve a misleading factor.

The TMSS’s were studied extensively since the early
1980s in connection with BIQV in general and, in particular,
for their connection to the EPR statef14–20g. These studies
focused on the polarization as the observables5 dynamical
variabled. Banaszek and Wodkiewiczf9g noted thatwhile the
Wigner function of the TMSS is non-negative, it allows for
BIQV, when the dynamical variable involved in the correla-
tions is the parity. Their study was extended by Chenet al.
f21g who showed, by using appropriately defined spinlike
variablesfwhich, together with the parity operator, close an
SUs2d algebrag, that the TMSS,uzl, allows the maximal pos-
sible f22,23g BIQV for z→`, i.e., when it is maximally
entangledf24g and, as stated above, it tends to the EPR state.
An alternative parametrizationstermed configurationald for
spinlike operators was given inf25g. This choice of dynami-
cal variables is more convenient for our analysis as it in-
volves the dynamical variables considered by Bell and ad-
mits a simple interpretation.

Our study aims at clarifying the relation between the non-
negative Wigner function of the TMSS,uzl, for all values of
z, the dynamical variables involved in the CHSH inequality
f11,12g and the possibility of BIQV. The latter, by Bell’s
theoremf2,6g, prohibits the underpinning of the theory with
a local hidden-variables theory. Note that this attributesnon-
negativityd of the Wigner function depends on the variables
over which it is definedf26g.

The paper is organized as follows. In the next section we
describe the properties that should be required of a quantum
mechanical problem in order that its translation in terms of
Wigner representatives can be legitimately considered as a
local hidden-variables theory. We then divide the problem
indicated in the last paragraph into three levels. The first
level, which the works hitherto addressed, is to consider
BIQV with the TMSS, viz., with a state having non-negative
Wigner function. In this connection we give in Sec. III a

brief review of Chenet al. f21g considerations and those of
Ref. f25g. We argue that the former approachf21g involves,
exclusively, dynamical variables whose Wigner representa-
tives are physically unsuitable for allowing a local hidden-
variables theory underpinningsin addition, they do not fulfil
the property of boundedness, a mathematical condition that
enters the derivation of Bell’s inequalityd. Such dynamical
variables that are ineligible for a local hidden-variables
theory in phase spacesthe domain of Wigner’s functionf26gd
are termedimproper or dispersivedynamical variables; the
definition of these terms and their justification is included in
Sec. II. We then consider the next level of the problem, viz.,
where in addition to having the non-negative Wigner func-
tion of uzl, we have a dynamical variable that is propersor
nondispersived, i.e., one that can be accounted for by the
local hidden variables that the phase space providessindeed
it is the very one considered by Bellf1g: the sign of the
coordinate of the particled. However, we show that its mates,
i.e., its rotatedswe use here the spin analogyd partnerssd
which, with it, must be present in the Bell operatorf12g, are
dispersivesthey are also not boundedd and hence, again, no
local hidden-variables theory can be sustained here. We also
discuss the alternative approach of retaining the original dy-
namical variables and rotating the wave function and show
that in this case it leads to anon non-negative Wigner func-
tion. In Sec. IV we finally study the last level which is the
one considered by Bell. In addition to having the non-
negative Wigner function and the proper dynamical variable,
its “rotated” mates are now obtained by time evolution with
a “free” Hamiltonian. For this case we show that the evolved
dynamical variable remains non-dispersive, or alternatively
sperhaps less surprisingd, the “rotated” wave function contin-
ues to give rise to a non-negative Wigner function. We thus
arrive at the conclusion that Bell’s expectationf1g that the
EPR state will not allow BIQV is confirmed. However, our
approach underscores the importance of the perhaps not suf-
ficiently stressed assumption involved in the derivation of
Bell’s inequalitiesf2,11g, viz., that the local hidden-variables
theory be such that the dynamical variables are defined si-
multaneously, even when they cannot be measured simulta-
neously. This point was noted beforef27–32g. Indeed, such a
requirement is tantamount to having the local hidden vari-
ables endowing physical realitysin the EPR sensef3gd to the
dynamical variables measurable attributes.

To remain close to the formalism as discussed by Bellf1g,
we shall throughout refer to changes in the dynamical vari-
ables as “evolution.” This retains complete generality, since
to define the evolution we can choose a Hamiltonian leading
to the required change.

II. HIDDEN VARIABLES AND WIGNER’S FUNCTIONS

We consider bounded quantum-mechanical operatorsÂ
associated with dynamical variables for a given physical sys-
tem, with eigenvaluesan. By a proper rescaling, we can al-
ways have

uanu ø 1. s2.1d

In a hidden-variables theory we assume that we have vari-
ablesl endowed with a probability distribution
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rsld ù 0, s2.2d

such that to every operatorÂ we associate, according to
some recipe, a functionAsld—a “representative” of the dy-
namical variable in terms of the hidden variablel—that
takes on, as its possible values, the eigenvaluesan. When this
is feasible, we say that we are dealing with a “proper” dy-
namical variable. Then, ifAsld is the representative of the

operatorÂ, Aksld should be the representative of the operator

Âk, wherek is an integer. We then speak of a “nondispersive”
dynamical variable. As a consequence, theAsld’s are
bounded as

uAsldu ø 1. s2.3d

In a two-particle problem, if the dynamical variableÂ is

associated with particle 1 andB̂ with particle 2, the require-
ment thatAsld be independent of the settingb of the instru-
ment that measures particle 2 andBsld be independent of the
settinga of the instrument that measures particle 1 makes the
theory localf2g. For this two-particle problem we now intro-

duce two other dynamical variables,Â8 and B̂8, associated
with particles 1 and 2, respectively, and not commuting, in

general, withÂ andB̂, respectively. To these new dynamical
variables we associate the functionsA8sld andB8sld, respec-
tively. Notice that the functionsAsld andA8sld for particle 1
fand similarlyB8sld andB8sld for particle 2g assign a defi-
nite value to the two dynamical variables, whether they can
be measured simultaneously or not. Then one can prove the
CHSH inequality

ukBsldlu ; UE BsldrslddlU ø 2, s2.4d

whereB is given by

B = AsldBsld + AsldB8sld + A8sldBsld − A8sldB8sld.

s2.5d

We designate the above inequality BIQ. In other words, deal-
ing with proper dynamical variablessPDVd implies Eq.s2.3d
which, in turn, implies BIQ:

sPDVd ⇒ s2.3d ⇒ sBIQd, s2.6d

so that

sPDVd ⇒ sBIQd. s2.7d

Conversely, in a hidden-variables model in which Eq.s2.2d is
fulfilled, a violation of BIQsto be called BIQVd implies that
Eq. s2.3d is not fulfilled, and hence that we are not dealing
with PDV’s, i.e.,

sBIQVd ⇒ s2.3d ⇒ sPDVd, s2.8d

so that

sBIQVd ⇒ sPDVd. s2.9d

sThe bar on a proposition indicates its negation.d We men-
tioned these conditions with some care because of the vari-

ous applications that we shall be concerned with in the fol-
lowing sections.

Let us mention that when we deal with dichotomic vari-
ables, i.e., with operators having only two eigenvaluess±1d,
one can prove that the QM expectation value for any two-
particle stateuCl of the Bell operatorf12g

B = ÂB̂ + ÂB̂8 + Â8B̂ − Â8B̂8 s2.10d

satisfies the Cirel’son inequalityf22g

ukCuB̂uClu ø 2Î2. s2.11d

We now discuss a specific way of implementing the above
local hidden-variables program in terms of the theory of
Wigner’s functions. We define the Wigner representative

WQ̂sq,pd of the quantal operatorQ̂ sfor one degree of free-
domd as f33g

WQ̂sq,pd =E e−ip·yKq +
1

2
yUQ̂Uq −

1

2
yLdy, s2.12d

while the Wigner function for the density operator is defined
with an extra factor of 1/2p for each degree of freedom, i.e.,
for one degree of freedom:

Wr̂sq,pd =
1

2p
E e−ip·yKq +

1

2
yUr̂Uq −

1

2
yLdy.

s2.13d

Then one can prove that the expectation value of an operator

Â with the density matrixr̂ is f33g

Trsr̂Âd =E Wr̂sq,pdWÂsq,pddqdp. s2.14d

One can easily see thatWQ̂sq,pd of Eq. s2.12d can also be
expressed as

WQ̂sq,pd = TrfQ̂V̂sq,pdg, s2.15ad

V̂sq,pd =E Uq −
1

2
yLe−ip·yKq +

1

2
yUdy, s2.15bd

an expression that will be useful later.
It can be shownf34g that the only wave function whose

Wigner representative is non-negative is a Gaussian: in this
case, the associated Wigner function is apparently interpret-
able as a probability density in phase spacefsee Eq.s2.2dg.
The TMSS of Eq.s1.2d is an example where this interpreta-
tion is indeed feasible. If, in addition, the Wigner represen-
tatives of the dynamical variables under study are of the
proper, or nondispersive, nature required above, we have a
candidate for a local hidden-variables theory, where the local
hidden variables are represented by the canonical variablesq
and p. It seems clear from the outset that it will be rather
exceptional for a dynamical variable to fall into this category.
It is the purpose of the discussion that follows in the present

section to identify a class of operatorsÂ that do correspond
to proper dynamical variables. Although the analysis is cer-
tainly not exhaustive, it serves the purpose of indicating a
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number of sufficient conditions leading to proper dynamical
variables. For simplicity, the analysis will be restricted to
systems with only one degree of freedom.

Consider a functionfsxd, where −̀ øxø`, bounded as
ufsxduø1.

s1d We define the operatorÂ1= fsq̂d through its spectral
representation as

Â1 = fsq̂d =E
−`

`

uq8lfsq8dkq8udq8. s2.16d

The eigenvalues of this operator arefsxd, so that its spectrum
lies in the intervalf−1,1g. For instance,sad fsxd=tanhx
gives a continuous spectrum in the intervalf−1,1g; sbd fsxd
=sgnx swhere the sgn function takes on the value 1 forx
.0 and −1 forx,0d has a discrete spectrum, consisting of
the two values 1 and −1.

One can easily show that the Wigner representative of the
operatorfsq̂d of Eq. s2.16d is

Wfsq̂dsq8,p8d = fsq8d, s2.17d

a function which takes on, as its values, precisely the eigen-
values of the operatorfsq̂d. According to our nomenclature,
we are thus dealing with a proper dynamical variable. In
these examples we see the nondispersive property explicitly,
since

Wffsq̂dgksq8,p8d = fWfsq̂dsq8,p8dgk. s2.18d

s2d Similar considerations apply to the operatorÂ2= fsp̂d.
s3d Another case, which is very relevant for our future

considerations, is that of the operator

Â3 = fsq̂̄d, s2.19d

where

q̂̄ = aq̂+ bp̂, s2.20d

sa andb being numerical constantsd is a linear combination
of the position and momentum operatorsq̂ and p̂. If we add,
to Eq. s2.20d, the following one:

p̂̄ = cq̂+ dp̂, s2.21d

c andd being numerical constants satisfying the condition

ad− bc= 1, s2.22d

then the pair of equationss2.20d and s2.21d can be consid-
ered as a transformation from the canonical position and mo-

mentum operatorsq̂ and p̂ to the new onesq̂̄ and p̂̄. Thanks

to the conditions2.22d, the commutatorfq̂, p̂g=fq̂̄, p̂̄g= i is
preserved and the transformation is canonical: it is the
quantum-mechanical counterpartf35g of the classical linear
canonical transformation obtained from Eqs.s2.20d and
s2.21d by removing the “hats” and considering theq, p, q̄ and
p̄ asc-number canonical variables; in the classical problem it
is the Poisson bracket that is preserved by the transforma-
tion.

The operatorsq̂̄,q̂ have the same spectrum, and so do the

operatorsp̂̄,p̂; we can thus relate the two members of each
pair through the unitary transformation

q̂̄ = V†q̂V, s2.23ad

p̂̄ = V†p̂V. s2.23bd

The eigenstates ofq̂̄ and p̂̄, to be designated byuq8d andup8d,
respectively, i.e.,

q̂̄uq8d = q8uq8d, s2.24ad

p̂̄up8d = p8up8d, s2.24bd

are related to the eigenstatesuq8l, up8l of q̂ and p̂, respec-
tively, as

uq8d = V†uq8l, s2.25ad

up8d = V†up8l. s2.25bd

In terms of the eigenstatesuq8d of q̂̄, Eq. s2.24ad, we can

write the spectral representation of the operatorÂ3 of Eq.
s2.19d as

Â3 = fsq̂̄d =E
−`

`

uq8dfsq8dsq8udq8. s2.26d

Using Eqs.s2.25ad and s2.16d, we can write further

Â3 = fsq̂̄d = V†E
−`

`

uq8lfsq8dkq8uVdq8 s2.27ad

=V†fsq̂dV. s2.27bd

From Eq.s2.26d we read off the eigenvalues of the operator

Â3= fsq̂̄d as fsxd, just as forÂ1= fsq̂d: in point of fact, a uni-
tary transformationfEq. s2.27bdg does not change the spec-
trum.

The next step is analyze the properties of the Wigner rep-

resentative of the operatorÂ3= fsq̂̄d. We first make a more
general statement: from Eqs.s2.15d one can show that the

Wigner representatives of two operatorsÂ andV†ÂV, V be-
ing the unitary operator discussed above, are related by

WV†ÂVsq8,p8d = WÂsaq8 + bp8,cq8 + dp8d. s2.28d

In other words, if the operatorÂ undergoes the unitary trans-

formation Â⇒V†ÂV, the Wigner representative is affected
precisely by the classical linear canonical transformation of
which Eqs. s2.20d and s2.21d are the quantum-mechanical
counterpart. Now, if we apply this result to the operatorsfsq̂d
andV†fsq̂dV= fsaq̂+bp̂d of Eq. s2.27bd, we find

Wfsaq̂+bp̂dsq8,p8d = Wfsq̂dsaq8 + bp8,cq8 + dp8d, s2.29d

and, using Eq.s2.17d for the right-hand side, we finally ob-
tain
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Wfsaq̂+bp̂dsq8,p8d = fsaq8 + bp8d, s2.30d

which clearly reduces to Eq.s2.17d whena=1 andb=0.
Right after Eq. s2.27bd we identified the spectrum of

fsaq̂+bp̂d as fsxd. Now, Eq. s2.30d tells us that the Wigner
representative of this operator takes on, as its values, exactly
the eigenvalues of the quantum-mechanical operator: we are
thus dealing with a proper dynamical variable. As a result,
we have found a class of observables, i.e., fsaq̂+bp̂d which,
together with their Wigner representative, i.e.,fsaq8+bp8d,
are termed proper dynamical variables.

As an application, suppose that we have a two-particle
problem, with the Wigner function associated with the wave
function being non-negative. Suppose also that we choose, as

the operatorsÂ, Â8 to be associated with particle 1, any two
sin general noncommutingd of the propers⇒ nondispersive

f36gd dynamical variables discussed above, likeÂ1, Â2, or Â3,

and similarly for the operatorsB̂, B̂8 to be associated with
particle 2. Then the CHSH inequalitys2.4d must be fulfilled,
according to the discussion given right before that equation.

In the presentation carried out in Sec. IV below,Â is taken as

sgnsq̂d, i.e., asÂ1 above, Eq.s2.16d, casesbd; Â8 is taken as

Â3 above, Eq.s2.19d, again with fsxd=sgnsxd, for two op-
tions for the coefficientsa andb. Similar choices are made

for B̂ and B̂8. For these cases, the validity of the CHSH
inequality s2.4d is verified explicitly in Sec. IV.

In contrast, it is easy to give examples of dynamical vari-
ables that do not fulfill the above property of having a
Wigner function taking, as its values, the eigenvalues of the
quantum operator. For instance, for the observable

Â =
1

2
sp̂2 + q̂2d, s2.31d

the quantum-mechanical spectrum isn+1/2 sn=0,1,2, . . .d.
fThis spectrum is not bounded in the sense of Eq.s2.1d; it
just serves as an example to illustrate the point.g In contrast,
its Wigner representative is

Ws1/2dsp̂2+q̂2dsq8,p8d =
1

2
fsp8d2 + sq8d2g, s2.32d

which takes onany value in f0,`g: the dynamical variable
s2.31d, together with its Wigner representatives2.32d, is thus
improper. Some of the observables considered in Sec. III
below will, indeed, fail to be proper.

As one further application of Eq.s2.28d, consider the

variation of Trsr̂Âd, Eq. s2.14d, when the operatorÂ is sub-

jected to the unitary transformationÂ⇒V†ÂV; obviously, the
same answer is obtained if, instead,r̂ is transformed as
r̂⇒Vr̂V†: transforming the operator will be called the
Heisenberg picture, whereas transforming the state will be
designated as the Schrödinger picture. We can calculate the
change of the Wigner representative ofr̂ from Eq. s2.28d,
valid for any Hermitean operator, replacingÂ by r̂ andV by
its inverse, with the result

WVr̂V†sq8,p8d = Wr̂sdq8 − bp8,− cq8 + ap8d, s2.33d

which will be useful later.
The relevance of the Heisenberg vs the Schrödinger pic-

ture in the present context lies in the fact that we can calcu-
late the four terms occurring in the expectation value of the
Bell operators2.10d appearing in Eq.s2.11d in either of the
two pictures. In fact we can write

kcuÂB̂ucl =E WcWAWBdpdq, s2.34ad

kcuÂB̂8ucl =E WcWAWB8dpdq

= kc28uÂB̂uc28l =E Wc28
WAWBdpdq,

s2.34bd

kcuA8ˆ B̂ucl =E WcWA8WBdpdq

= kc18uÂB̂uc18l =E Wc18
WAWBdpdq,

s2.34cd

kcuÂ8B̂8ucl =E WcWA8WB8dpdq

= kc128 uÂB̂uc128 l =E Wc128
WAWBdpdq,

s2.34dd

wheredpdq=dq1dq2dp1dp2. If the operatorÂ8s1d associated

with particle 1 is obtained fromÂs1d via the unitary trans-
formation

Â8s1d = V†s1dÂs1dVs1d, s2.35d

then uc18l in Eq. s2.34cd denotes

uc18l = Vs1ducl, s2.36d

with a similar notation for the other states. An important
issue that will arise naturally in the following sections is
precisely that of the properties of the Wigner function asso-
ciated with the transformed operators and states, and the rel-
evance of those properties for the fulfillment of CHSH in-
equality. The interplay between the Heisenberg and
Schrödinger pictures that we just outlined will thus be very
relevant in what follows.

After having given a panoramic view of the hidden-
variables problem and Wigner’s function we now turn to a
study of the three levels outlined in the Introduction.

III. THE EPR-EPW PROBLEM

As outlined in the Introduction, we consider the so-called
EPR-EPW problemf1,13g in successive levels. The first
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level is as follows: Given a state,uzl in our case, whose
Wigner representative function is non-negative, does such a
state allow BIQV?

The answer to this was shownf9,21g to be in the affirma-

tive. The dynamical variable considered was the parity,Sz sN̂
being the number operatord,

Sz ; o
n=0

`

fu2n + 1lk2n + 1u − u2nlk2nug = − s− 1dN̂. s3.1d

In Ref. f21g, “rotated” parity operators were introduced:

Sx = o
n=0

`

fu2n + 1lk2nu + u2nlk2n + 1ug, s3.2d

Sy = io
n=0

`

fu2nlk2n + 1u − u2n + 1lk2nug. s3.3d

These operators close ansus2d algebra and are viewed as
components of a 3-dimensional vector operator. We may thus
consider a “rotation” in parity space by, e.g.,

Sx8sqd = esiq/2dSzSxe
s−iq/2dSz = Sx cosq − Sy sinq = S ·n,

s3.4d

with n a unit vector which, in this case, is in the “x−y” plane
of the parity space. It will be convenient for us later to refer
to the above as the “time evolution” ofSx under the “Hamil-
tonian” Sz in Eq. s3.4d: in this way we refer to the “rotation”
angle,q, as the time,t. Sticking to the geometric notation,
the Bell operatorf12g of Eq. s2.10d is

B = S1 ·nS2 ·m + S1 ·n8S2 ·m + S1 ·nS2 ·m8

− S1 ·n8S2 ·m8, s3.5d

and the Bell inequality we study is

ukBlu ø 2. s3.6d

Varying n ,n8 andm ,m8 to maximizeukB̂lu for the stateuzl
we getf25g

ukzuBuzlu = 2Î1 + F2szd, s3.7d

Fszd = kzuSx
1Sx

2uzl = tanh 2z. s3.8d

Thus the stateuzl allows BIQV, even though the Wigner
function of the corresponding density operator may be
viewed as a probability density of local hidden variablessthe
phase space coordinatesd. However, as was stressed in the
Introduction, this does not violate Bell’s theorem which pro-
hibits BIQV for a local hidden-variables theory. Thus the
correlations appearing in the Bell operator have the structure
f5g

kzuSz
1Sz

2uzl =E
−`

`

dp1dq1dp2dq2Wzsp1,q1,p2,q2d

3 WSz
1sp1,q1dWSz

2sp2,q2d. s3.9d

Here, the factorization of the Wigner function of the two

channels is automatic. As explained in detail in Sec. II, for
the right-hand side of Eq.s3.9d to be interpretable as a local
hidden-variables theory, aside from a nonnegative Wigner
function for the state,Wz, we require that the Wigner repre-
sentatives of the dynamical variables, theSz’s in this case,
give the observable values of these dynamical variables, viz.,
the eigenvalues of the quantal parity operatorsfor the phase
point: q,pd. As already indicated, we refer to a dynamical
variable with this property as aproper or nondispersive dy-
namical variablef36g. This is not the case for any of the
parity operators,Si si =x,y,zd; in fact, e.g., we can easily
verify that

WSz
sq,pd = − pdsad = − pdsqddspd, a = q + ip.

s3.10d

This clearly is not an eigenvalue of the parity operator
swhich is ±1d. Thus in this case this dynamical variable is
improper or dispersivef36g. Therefore, we are not dealing
here with a local hidden-variables theory.fIn addition, Eq.
s3.10d makes clear the assertion made in the Introduction that

the Wigner representative ofŜz violates the property of
boundedness.g

We have thus completed the discussion of the first level of
the EPR-EPW problem: nothing new was gained but we con-
sidered examples that will serve us below.

The second level of the EPR-EPW problem is when, in
addition to having a nonnegative Wigner function for the
state,we have a dynamical variable whose Wigner represen-
tative is the eigenvalue of the dynamical variable—i.e., it is
a proper or nondispersive dynamical variable. Would this
situation allow BIQV? Would it conform to Bell’s theorem?
Recentlyf10,25g an alternative configuration was discussed
for the parity operators. In this alternative configuration the
operators are given in theq representation. Denoting the op-
erators in this configuration byPi si =x,y,zd, we have

Pz ; −E
0

`

dqfuElkEu − uOlkOug = Sz. s3.11d

Here

uEl =
1
Î2

fuql + u− qlg, uOl =
1
Î2

fuql − u− qlg, s3.12d

so that

Pz = −E
−`

`

dqfuqlk− qug. s3.13d

The equality knuPzun8l=knuSzun8l is easily verifiable. The
natural vectorial operators that close ansus2d algebra with
Pz are

Px =E
0

`

dqfuElkOu + uOlkEug, s3.14d
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Py = iE
0

`

dqfuElkOu − uOlkEug. s3.15d

We note thatPx is diagonal inq, i.e.,

Px =E
0

`

dqfuqlkqu − u− qlk− qug = sgnsq̂d s3.16d

is the spectral representation ofPx. Its Wigner function is

WPx
sq,pd = sgnq, s3.17d

i.e., it gives the eigenvaluess±1d of the operator and hence is
a proper snondispersived dynamical variable, just as in the
discussion of Eq.s2.16d, casesbd, of Sec. II. In this case,
with Pi, much like in the previous caseswith the Si, i
=x,y,zd it is easy to get BIQV by selecting the appropriate
orientational parameters. For convenience, while retaining
complete generality, we consider the choice of the orienta-
tional parameters by choosing the timessfor both channelsd
of the evolution ofPx

1st1d, Px
2st2d under the HamiltonianH

=Pz. sWe note that Bellf1g considered the same case with
z→`, i.e., the EPR state, but with the free Hamiltonian,H
=p2/2.d

Direct calculations show that by appropriate choices of
the timesst1, t18 and t2, t28d we obtain

kB̂l = 2Î2F̄s2zd, F̄ =
2

p
arctanssinh 2zd. s3.18d

Thus we see that in this case, where seemingly the quantal
description may be given a local hidden-variables underpin-
ning, we get a BIQV which, we are told, is an impossibility.
However, the present Bell operator involves not only the
“proper” dynamical variable,Px, but alsoPy which evolves
via our Hamiltonian,H=Pz. The latter, i.e.,Py, is not a
proper dynamical variable. In fact, its Wigner representative
is given by

WPy
sq,pd = − dsqdP

1

p
, s3.19d

where P stands for the “principal value.” Thus, once again,
no local hidden-variables underpinning for the correlation
involved in Eq.s3.18d is possible, after all.sThe bounded-
ness condition for the Wigner representatives is violated as
well.d

We may attempt to consider the problem in a
“Schrödinger-like manner” by applying the time evolution
operator to the stateuzl; this, however, leads to a new state,
uz8l, whose Wigner function is no longer non-negative over
all phase space. This can be proven most readily by consid-
ering an alternative expression for the stateuzl obtained in
f25g, i.e.,

uzl =E
o

` E
0

`

dqdq8fsg+ + g−duEE8l + sg+ − g−duOO8lg,

s3.20d

where

g±sq,q, ;zd = kqq8uSs±zdu00l

=
1

Îp
expH−

1

2
fq2 + q82 7 2qq8 tanhs2zdg

3coshs2zdJ . s3.21d

Using this expression foruzl, we have directly

e−igPzuzl = uz8l = cosguzl + singu− zl, s3.22d

and the Wigner function ofuz8l is no longer non-negative
f34g.

IV. BILINEAR HAMILTONIANS

Level 3 of our EPR-EPW problem is closer to Bell’s
original programf1g; it involves the study of cases wherein
s1d the states have non-negative Wigner representatives
which, at some limit, reduce to the EPR state—ouruzl is
such a state. s2d There is a dynamical variable
s=observabled that is nondispersives=properd, i.e., such that
the Wigner representative of its quantal version gives its ei-
genvalues in terms of our local hidden variables:p, q—our
Px is such a dynamical variable. We inquire for possible
BIQV when this dynamical variable evolves via Hamilto-
nians which leave the Wigner representative of the state un-
der study non-negative. Alternatively, we inquire for BIQV
when our dynamical variables evolve by Hamiltonians which
allow the initially proper dynamical variable to remain so. In
the next paragraphs we study the relationship between these
two alternatives.

The only non-negative Wigner functions are gaussians
f34g. Since Gaussians remain gaussians under linear transfor-
mations, it follows that single-particle Hamiltonians that
leave the Wigner function non-negative are bilinear ones. We
will consider now two such Hamiltonians:

H0sid =
1

2
sp̂i

2 + vi
2q̂i

2d, s4.1ad

Hfsid =
1

2
p̂i

2, s4.1bd

where the subscripti =1,2 denotes the particle. For simplic-
ity we shall consider, inH0, the frequencyvi =1 for both
particles. The second Hamiltonian is the one considered by
Bell f1,13g.

We consider the harmonic oscillator HamiltonianH0 first.
Evolution of the stateuzl, Eq. s1.2d, underH0, during a time
t1 for particle 1 andt2 for particle 2, gives

uzst1,t2dl = uz8l = exp−zsa1
†a2

†e−iu−a1a2eiudu00l, s4.2d

whereu= t1+ t2. The corresponding Wigner function can be
obtained either directly from the states4.2d, or from Eq.
s1.5d, applying Eq.s2.33d with a=costi, b=sin ti, c=−sinti
andd=costi, with the result
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Wzsud =
1

p2 exph− coshs2zdsq1
2 + q2

2 + p1
2 + p2

2d − 2 sinhs2zd

3fsq1q2 − p1p2dcosu − sq1p2 + q2p1dsinugj. s4.3d

Direct evaluation of

Est1,t2d =E
−`

`

dq1dq2dp1dp2Wzsudsq1,q2,p1,p2dPx
1Px

2

s4.4d

fhere,Px
i =sgnsq̂id, Eq. s3.16dg gives ssee Appendix Ad

Est1,t2d = 1 –
2

p
x, cosx = tanhs2zdcosu. s4.5d

We have used the notation of Ref.f1g

Est1,t2d = P++sud + P−−sud − P−+sud − P+−sud. s4.6d

The first subscript inP++, P+−, etc., refers to the eigenvalue
si.e., ±1d of Px

1 for the first particle and the second subscript
refers to that of the second particlePx

2: i.e., P++ is the inte-
gral of Wzsudsq1,q2,p1,p2d fsee Eq.s4.4dg over the region
q1.0, q2.0, etc. The alternative view, i.e., allowingPx

i to
evolve in time, while keepingWz fixed, is readily donessee
Appendix Bd by noting that Px

i stid=sgnsq̂i costi + p̂i sin tid
and computing the resulting integral forEst1,t2d

Est1,t2d =E
−`

`

dq1dq2dp1dp2Wzsq1,q2,p1,p2dPx
1st1dPx

2st2d

s4.7d

upon the change of variables:q̄i =qi costi +pi sin ti and p̄i
=−qi sin ti +pi costi. We obviously obtain the same answer at
the end. Perhaps more elegantly, one can find the Wigner
representative of the time evolution ofPx

i by applying the
general results2.30d of Sec. II, with a=costi, b=sin ti, c
=−sinti, andd=costi.

It is easily shownscf. Ref. f1gd that, in case the time
dependence occurs only in the combinationt1+ t2 fwhich is
the case in the present situationsEq. s4.2dg, the CHSH in-
equality f11g implies the following inequality:

3P+−sud − P+−s3ud ù 0. s4.8d

In the z→` limit, i.e., when the stateuzl is maximally en-
tangled and approaches the EPR state, tanhs2zd→1. In this
limit x→cos−1scosud=u scf. Appendix Ad and P+−sud
=s1/2pdu; thus the inequality is saturated. It can be shown
that for finite z the inequality is always satisfied. Bell sug-
gested that correlations of observables of the type ofPx

1,2 fcf.
Eq. s4.7dg for the EPR state, evolving under the free Hamil-
tonian, would not allow for BIQV; we observe that this in-
deed occurs for the harmonic oscillator Hamiltonian used
here.

However, his reasoning perhaps was somewhat mislead-
ing: the reason is thatit is not only the nonnegativity of the
relevant Wigner function that matters, but also the type of
evolution induced in the observables by the Hamiltonian in
question. The fulfillment of the CHSH inequality in the
present case, in which the evolution is induced by the har-

monic oscillator Hamiltonian, is consistent with the discus-
sion given in Sec. II, below Eq.s2.30d. It is apt to notice that
the present evolution is not analogous to rotation of the spins
in the Bohm EPR version. The latter involves what was
termedf25g orientational variation, which leadssdepending
on the preferred viewpointd either to impropersdispersived
dynamical variables even when one starts with proper dy-
namical variables, or, alternatively, to anon non-negative
Wigner function. In either case, BIQV’s do not contradict
Bell’s theorem.

We now consider briefly the evolution due to the free
Hamiltonian of Eq.s4.1bd. Again, we study the evolution of
the stateuzl, Eq. s1.2d, underHf, during timest1 for particle
1 and t2 for particle 2. The corresponding Wigner function
can be otained from Eq.s1.5d, applying Eq.s2.33d with a
=1, b= ti, c=0 andd=1, with the result

Wzst1,t2d =
1

p2 exph− coshs2zdfsq1 − t1p1d2 + sq2 − t2p2d2 + p1
2

+ p2
2g − 2 sinhs2zdfsq1 − t1p1dsq2 − t2p2d − p1p2gj.

s4.9d

With the same definitions as above, we find

Est1,t2d =
2

p
arcsinfast1,t2dtanh 2zg, s4.10ad

ast1,t2d =
1 − t1t2

Îs1 + t1
2ds1 + t2

2d
. s4.10bd

Alternatively, just as with the previous HamiltonianH0, one
can find the Wigner representative of the time evolution of
Px

i applying the general results2.30d of Sec. II, with a=1,
b= ti, c=0, andd=1.

We wish to analyze whether this case abides by the CHSH
inequality, i.e., whether the inequality

uEst1,t2d + Est1,t28d + Est18,t2d − Est18,t28du ø 2, s4.11d

or

uarcsinfast1,t2dtanh 2zg + arcsinfast1,t28dtanh 2zg

+ arcsinfast18,t2dtanh 2zg − arcsinfast18,t28dtanh 2zgu ø p,

s4.12d

is satisfied. For instance, taking

t1 = 0, t18 = T, t2 = 0, t28 = T, s4.13d

and subsequently taking the limitT→`, the left-hand side of
Eq. s4.12d takes the valuep, i.e., the inequality is saturated.

The fulfillment of the CHSH inequality in the present
case, in which the evolution is induced by the free Hamil-
tonian, is, once again, consistent with the discussion given in
Sec. II, below Eq.s2.30d.

V. CONCLUSIONS AND REMARKS

In this study we took the Clauser, Horne, Shimony and
Holt f11g inequality as the representative of the so-called
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Bell’s inequalities. Indeed this inequality is the often ana-
lyzed and experimentally tested one and is the one used by
Bell himself in his study of the subject of this work: the
relation of the non-negative Wigner function of the Einstein,
Podolsky, and Rosen state to possible Bell’s inequality vio-
lations.

We subjected the reader to a lengthy derivation and ex-
planation of what we considered points worthy of clarifica-
tion. These were the delineation of what is meant by proper
and improper dynamical variables in the context of the
Wigner function as a probability distribution in phase space,
the canonical variables of the latter playing the role of the
local hidden variables, and showed that a proper observable
s=dynamical variabled is non-dispersive. Thus only proper
dynamical variables can be considered as accountable for by
a local hidden-variable theory with the phase space variables
sq,pd being the local hidden variables. A proper dynamical
variable is one whose Wigner function representative gives
the eigenvalues of the corresponding quantal dynamical vari-
able which the local hidden-variable theory aims at under-
pinning.

We now summarize the relations that we have found be-
tween the properties of Wigner’s representative of the opera-
tors and states on the one hand and the fulfillment of CHSH
inequality on the other.

From the standpoint of the Heisenberg picture, i.e., when
we work with a fixed wave functionswhich translates here to
a fixed densityd and transform the operators, it is not enough,
for the fulfillment of CHSH inequality, that the Wigner rep-
resentative of the wave function be non-negative: we saw
that we can ensure the fulfillment of CHSH inequality when
Wigner’s function of the state is non-negativeand the opera-

tors Â, B̂, Â8 and B̂8 and their Wigner representatives corre-
spond to proper dynamical variables. That is, as follows.

s1d Wc.0 and A,A8 ,B,B8 are proper dynamical vari-
ables. Then Bell’s inequality is fulfilled.

In Sec. III we discussed “orientational” transformations
that donot keep the observables as proper dynamical vari-
ables and found violations of Bell’s inequality.

In Schrödinger’s picture, i.e., when we consider the op-

erators Â and B̂ and transform the wave function as ex-
plained in relation with Eq.s2.34d, we have the following
possibilities.

s2d Wc ,Wc18
,Wc28

,Wc128
.0 and Â and B̂ are proper dy-

namical variables. For example:Â=sgnsq̂1d, B̂=sgnsq̂2d, or
the other examples discussed in Sec. II.

The only transformation V that keeps
Wc ,Wc18

,Wc28
,Wc128

.0 is a linear canonical transformation.

At least for theseÂ and B̂, this case can be reduced tos1d
above and thus Bell’s inequality is fulfilled. This case is the
closest one to the original problem studied by Bellf1g.

s3d Wc.0, but Wc18
,Wc28

,Wc128
³0, and Â and B̂ are

proper dynamical variables. For example:Â=sgnsq̂1d; B̂
=sgnsq̂2d. We may have the two following situations.

sad If V is an “orientational” transformation as explained
in Sec. III, then Bell’s inequality violations are possible.

sbd As another example, takeV so thatq̄=q3. This trans-
formation does not preserve the non-negativity of Wigner’s

representative of the statesthe wave function is no longer
Gaussiand; nonetheless, looked at in the Heisenberg picture,

it keeps the above-mentionedÂ and B̂ as proper dynamical
variables. Thus Bell’s inequality is fulfilled.

As a consequence of the above discussion, we can state
the following. Suppose that we have a Gaussian wave func-

tion and thatÂ and B̂ are proper dynamical variablesffor

example:Â
ˆ

=sgnsq̂1d, B̂=sgnsq̂2d, or the other examples dis-
cussed in Sec. IIg; suppose also that, in the Heisenberg pic-
ture, the transformations of the types2.35d do not keep the
observables as proper dynamical variables, and that we dis-
cover thatBell’s inequality violations are allowed. We con-
clude that, in the Schrödinger picture, the transformed states
of the typec18 of Eq. s2.36d cannot be Gaussian and thus
their Wigner representativesWc18

cease to be non-negative. In
fact, should thec18’s be Gaussian, their Wigner representa-
tives Wc18

would be non-negative and by cases2d above,

Bell’s inequality would be fulfilled, at least for the aboveÂ

and B̂.
Finally, we want to remark that, although the word “local”

was repeated several times, locality as such was not an issue
in the present discussion: Bell’s locality condition is auto-
matically fulfilled, as the Wigner function of any dynamical
variable that depends on distinct phase space coordinates fac-
torizes. In the derivation of Bell’s inequality one makes two
explicit assumptions:s1d the independence of A on the set-
ting of B sand vice versad and s2d each dynamical variable
has values for the observables, whether or not they can be
simultaneously measured. Our argument leads us to assert
that in the present context it is really the second assumption
which leads to Bell’s inequality—whose violation, therefore,
implies that the theory disallows it. This point was noted in
the pastf27–32g. In point of fact, two often quoted examples
for underpinning noncommuting dynamical variables with
local hidden variables—Bell’sf2g and Wigner’sf27g—are
manifestly so, although these examples are, perhaps, some-
what artificial. In the present work—which in its essence
follows Bell’s suggestionf1g—we outlined a canonical
theory which automatically abides by the locality require-
ment sthe phase space variables are locald, and Bell’s in-
equality is abided by in cases where the dynamical variables
are proper ones, even when they are noncommuting.

Our main conclusion is that in the present context the
validity of Bell’s inequality that we have considered hinges
on the assumption of having definite values for all the dy-
namical variables—thus endowing them with physical
reality—and not the issue of locality. Of course one might
ponder what one would mean by a local hidden-variables
theory without a definite value for all the dynamical vari-
ables; however, this is a separate issue.
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APPENDIX A: EVALUATION OF E„t1,t2… FOR THE
HARMONIC HAMILTONIAN

We first evaluateP−+st1,t2d fcf. Eq. s4.6dg. After the inte-
gration over thep’s and lettingq1→−q1 we find

P−+st1,t2d =
1

p coshs2zdÎ„1 − tanh2s2zdcos2 u…

3 E
0

`

dq1dq2 expf− coshs2zdGsu,zd

3„q1
2 + q2

2 − 2q1q2 tanhs2zdcosu…g. sA1d

Here u=st1+ t2d and Gsu ,zd=(1−tanhs2zd) / (1
−tanhs2zdcos2 u). This integral is evaluated directly to give

P−+st1,t2d =
1

2p
Fp

2
− arctanS tanhs2zdcosu

Î
„1 − tanh2s2zdcos2 u…

DG .

Similar calculation gives

P++st1,t2d =
1

2p
Fp

2
+ arctanS tanhs2zdcosu

Î
„1 − tanh2s2zdcos2 u…

DG .

The equalitiesP++st ,t8d=P−−st ,t8d and P+−st ,t8d=P−+st ,t8d
are easily verifiable; hence we have

Est1,t2d = 2P++sud − 2P−+sud = 1 –
2

p
x, sA2d

with tanhs2zdcosu;cosx, u= t1+ t2.

APPENDIX B: THE WIGNER FUNCTION OF
Px„t… FOR H =H0

The Wigner function forPxstd is given by

WPxstdsx,pd =
1

2p
E

−`

`

dyE
0

`

dqe−ipykx + y/2ueiH0t

3fuqlkqu − u− qlk− quge−iH0tux − y/2l.

sB1d

Inserting the harmonic oscillator propagatorsf37g and per-
forming they integration gives sgnsx cost+p sin td.
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