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Bell's inequality violation with non-negative Wigner functions
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A Bell inequality violation allowed by the two-mode squeezed state, whose Wigner function is nonnegative,
is shown to hold only for correlations among dynamical variables that cannot be interpreted via a local hidden
variable theory. Explicit calculations and interpretation are given for Bell's suggestion that theEiRiRein,
Podolsky, and Roserstate will not allow violation of Bell's inequality, in conjunction with its Wigner repre-
sentative being nonnegative. It is argued that Bell's theorem disallowing the violation of Bell's inequality
within a local hidden-variable theory depends on the dynamical variables having a definite value—assigned by
the local hidden variables—even when they cannot be simultaneously measured. The analysis leads us to
conclude that Bell's inequality violation is to be associated with endowing these definite values to the dynami-
cal variables, andot with their locality attributes.
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I. INTRODUCTION tion aslocal [1].

. . . B - . We illustrate the above considerations using the two-mode
In his article entitled “EPR(=Einstein, Podolsky and squeezed stat@MSS) |¢), defined as

Rosen correlations and EPWEEugene Paul WigngDistri-
butions,” Bell [1] studied the possibility of underpinning _ tot _
quantum theory with local hidden variablésHV's) [2] in 0y = exd {(aja; — 48,)]|00) = §(¢)|00). (1.2

the case .Of two spinless particles. He a’?‘f’"yze“ the correlgg 5 guantum optics problera] anda) represent the creation
tions arising from measurements of positions of these par.

. . o . operators for photons in two different channels d0@ is
ticles in free space—a situation closer to the original ON& o vacuum associated with these two channejsand a,

epvis_aged bY EPFES]—utiIizing the fact"that Wigner’s dis- denote the corresponding annihilation operatdref. [7]).
tribution [4] simulates a local “classical” model of such cor- Equation(1.2) defines the operatc.

rele}tipns in phase space. Bell .Sugges[te}jthat'the nonne- Alternatively, we can think of a two-one-dimensional-
gativity .Of the Wigner function for’ certain quantum- particle problem(i.e., a problem with two degrees of free-
mechanical states would preclude Bell's inequality V|olat|0ndom) with “dimensionless” position and momentum opera-

(BIQV) W|t2 fsuch Stéi'ter? whe_n one cgjlns(;d?_rs :jhe cohrrel(fsttmngyrS Gy, P, and 8, P, respectively, through which one
constructed from a dichotomic variable defined as the sign ofofines, as usual, the raising and lowering operators

the coordinates of the particles.
We first recall a few properties of the Wigner functid.

b 1. .
One can show that the expectation value of any operator al="=(G,~1p,). (1.33
a state defined by the density matfixan be expressed as

Tr(pA) = f dAAW,(MWA(N), (1.1 a,= =G, +ip,) (1.3b

wher.eWﬁ()\) "fmfjWAo\) are the Wigner rep[esentat|v§ of the (wherea=1,2). The ground stat¢00) is, as usual, annihi-
density matrixp and the quantal operatdk, respectively, |ated by the operataa,,.

defined in Eqs(2.13 and(2.12 below, and\ designates the In the limit of the squeezing parametéincreasing with-
appropriate  phase space coordinates, i.27(d.p) oyt limit, the state(1.2 approaches the EPR stafé]
=(G1, -+ ,Gn:P1, - ,Pn), N being the number of degrees of #EPR}zé(ql—qz), as can be readily seen writing the state
freedom. It should be noted that in Bell's considerations o (12) in the coordinate representa‘tion (ﬂm use well known
local hidden variables, the values of the observables obey thgormal ordering formul48])

so-called Bell's factorizatiofi2,6], which leaves the value of

each observable independent of the “setting” of the other. In 1

the expressions for two-particle correlations in terms of the {(Gi0|) = ——— > tant aqyqplnn) — ~ 8(dy — dp).
Wigner representatives, when each of the dynamical vari- COShZ n=o oo

ables depends on its own phase-space coordinates, this fac- (1.9
torization is satisfied automatically. This is our justification

for referring to the description in terms of the Wigner func- Now, the Wigner function\V,, of the TMSS is given by9]
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1 s o o brief review of Cheret al. [21] considerations and those of
W01, 02, P1,P2) = = exf - cosh2¢)(qy + gz + p1 + p2) Ref.[25]. We argue that the former approal@i] involves,
exclusively, dynamical variables whose Wigner representa-
-2 sinh(20)(q,9, = p1P2) ] (1.5 tives are physically unsuitable for allowing a local hidden-

variables theory underpinnin@n addition, they do not fulfil

the property of boundedness, a mathematical condition that
enters the derivation of Bell's inequaljtySuch dynamical
variables that are ineligible for a local hidden-variables

It is clearly non-negativedor all g's andp’s, and thus may be
considered as a distribution in phase sp&ggq,,p;,p,)
associated with the stat&). Thus we may refer to the vari-

ables(q;,0,,p1,p2) as local hidden variables, and correla- , ; : , ;
tions wéigﬁedlwi%hwg(ql,qz, b.,p,) should preclude BIQV theory in phase spadéhe domain of Wigner’s functiof26))

for dynamical variables for which this may be a legitimate @€ termedmproper or dispersivedynamical variables; the
view [10]. definition of these terms and their justification is included in

Sec. Il. We then consider the next level of the problem, viz.,
d where in addition to having the non-negative Wigner func-
ection of |), we have a dynamical variable that is proger
enondispersiv}: i.e., one that can be accounted for by the
!pcal hidden variables that the phase space provitezed
it is the very one considered by Bdll]: the sign of the
equality, i.e., the inequality that is often studied in terms ofco0rdinate of the particleHowever, we show that its mates,

the Bell operatof12]. (In the present paper, Bell's inequality €., its r'ota.ted(we use here the spin analggpartne(s)

and BIQV refer to this CHSH inequalijy.Bell's original W_h'Ch’ \_N'th it, must be present in the Bell operamﬂ],_are

argument that nonnegativity of Wigner's function suffices todisPersive(they are also not boundgdnd hence, again, no

preclude BIQV was showft3] to be inaccurate. Difficulties local hidden-variables theory can be sustained here. We also

in handling the normalization of the EPR state considered byiScuss the alternative approach of retaining the original dy-

Bell were shown to involve a misleading factor. amical variables and rotating the wave function and show
The TMSS's were studied extensively since the earlyt_hat in this case it leads torson non-negative Wigner func-

1980s in connection with BIQV in general and, in particular, ioN- In Sec. IV we finally study the last level which is the
for their connection to the EPR stdte4—20. These studies one qonsu:{ered by Bell. In addition to havm_g the non-
focused on the polarization as the observabiedynamical negative Wigner function and the proper dynamical variable,

variablg. Banaszek and Wodkiewi¢®] noted thatwhile the its “rotated” mates are now obtained by time evolution with
Wigner function of the TMSS is non-negative, it allows ford “free” Hamiltonian. For this case we show that the evolved

BIQV, when the dynamical variable involved in the correla-dynamical variable remains non-dispersive, or alternatively
tions is the parity. Their study was extended by Cletral. (perhap; Ies; surprisinghe “mtated” wave funct|pn contin-
[21] who showed, by using appropriately defined spinIike“e?' to give rise to a _non-negatlvej Wigner fu_nct|on. We thus
variables[which, together with the parity operator, close an&'TiVe at the conclusion that Bell's expectatifj that the
SU(2) algebrd, that the TMSS|?), allows the maximal pos- EPR state will not allow BIQV is confirmed. However, our
sible [22,23 BIQV for {—, i.e., when it is maximally approach underscores the importance of the perhaps not suf-
entangled24] and, as stated above, it tends to the EPR statdiciently stressed assumption involved in the derivation of

An alternative parametrizatiotermed configurationalfor Bell's inequalities(2,11], viz., that_ the Iocgl hidden-varigbles .
spinlike operators was given [5]. This choice of dynami- theory be such that the dynamical variables are defined si-

cal variables is more convenient for our analysis as it in_multanleouily, even when they c?nnot be measured srl]multa—

volves the dynamical variables considered by Bell and adn€ously. This point was noted befd7-32. Indeed, such a -

mits a simple interpretation. requirement is tantamount to _havmg the local hidden vari-
Our study aims at clarifying the relation between the non-2Ies endowing physical realitjn the EPR sensgS]) to the

negative Wigner function of the TMSE,), for all values of dynamical variables measurable attributes.
z, the dynamical variables involved in the CHSH inequality 1° fémain close to the formalism as discussed by Bdll
[11,17 and the possibility of BIQV. The latter, by Bell's we shall throughout refer to changes in the dynamical vari-

theorem[2,6], prohibits the underpinning of the theory with PIes as “evolution.” This retains complete generality, since
a local hidden-variables theory. Note that this attribten- to define the evolution we can choose a Hamiltonian leading

negativity of the Wigner function depends on the variables© the required change.
over which it is defined26]. _ Il. HIDDEN VARIABLES AND WIGNER'S FUNCTIONS

The paper is organized as follows. In the next section we N
describe the properties that should be required of a quantum We consider bounded quantum-mechanical operafors
mechanical problem in order that its translation in terms ofassociated with dynamical variables for a given physical sys-
Wigner representatives can be legitimately considered as tam, with eigenvalues,,. By a proper rescaling, we can al-
local hidden-variables theory. We then divide the problemways have
indicated in the last paragraph into three levels. The first
level, which the works hitherto addressed, is to consider
BIQV with the TMSS, viz., with a state having non-negative In a hidden-variables theory we assume that we have vari-
Wigner function. In this connection we give in Sec. Il a ablesh endowed with a probability distribution

As was mentioned above, Bell suggest&fithat the non-
negativity of the Wigner function of the EPR state woul
preclude BIQV with this state when one considers the corr
lations of a dichotomic variable defined as the sign of th
coordinates of the particles. The correlations considered i
that work are those that are involved in the CHEH] in-

la|<1. (2.1)
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p(\) =0, (2.2)  ous applications that we shall be concerned with in the fol-
. lowing sections.

such that to every operatok we associate, according to  Let us mention that when we deal with dichotomic vari-
some recipe, a functioA(\)—a “representative” of the dy- ables, i.e., with operators having only two eigenval(teb),
namical variable in terms of the hidden variable-that  one can prove that the QM expectation value for any two-
takes on, as its possible values, the eigenvayed/hen this  particle statg¥) of the Bell operatof12]
is feasible, we say that we are dealing with a “proper” dy- o mm
namical variable. Then, iA(\) is the representative of the B=AB+AB'+A'B-A'B’ (2.10

operatorA, AX(\) should be the representative of the operatOrgatisfies the Cirel'son inequalif22]
Ak wherek is an integer. We then speak of a “nondispersive”

dynamical variable. As a consequence, tAé\)'s are (W|BIW)| < 212. (211

bounded as We now discuss a specific way of implementing the above

AV <1. (2.3y  local hidden-variables program in terms of the theory of
R Wigner’s functions. We define the Wigner representative
In a two-particle problem, it the dynamical variabke is W (g, p) of the quantal operato® (for one degree of free-
associated with particle 1 ar@lwith particle 2, the require- dom) as[33]
ment thatA(\) be independent of the settifgof the instru-

ment that measures patrticle 2 @B@\) be independent of the Wo(d, p) :f e—ip-y<q + }y’ Q‘ q- }y>dy, (2.12)

settinga of the instrument that measures particle 1 makes the
theory local[2]. For this two-particle problem we now intro- \hije the Wigner function for the density operator is defined
duce two other dynamical variable& and B’, associated with an extra factor of 1/2 for each degree of freedom, i.e.,
with particles 1 and 2, respectively, and not commuting, infor one degree of freedom:

general, withA andB, respectively. To these new dynamical 1

variables we associate the functio’§\) andB’(\), respec- W;(q,p) = f PYCq+=y|plg- =y )dy.

tively. Notice that the function&(\) andA’(\) for particle 1 2

[and similarlyB’(\) andB’(\) for particle 2 assign a defi- (2.13

hite value to th_e two dynamical variables, whether they “arhen one can prove that the expectation value of an operator
be measured simultaneously or ndhen one can prove the . ) o

CHSH inequality A with the density matrix is [33]

<2, (2.4 Tr(pA) = f W;(q,p)Wa(g, p)dgdp. (2.14

KB\ = ‘ f B(\)p(\)dx

One can easily see thillp(q,p) of Eq. (2.12 can also be

where B is given by q
expressed as

B=AMNBMN) + ANB' (M) + A"(M)B(N) = A" (M)B’(M).

2.5 Wold,p) = T QQ(a, p)], (2.153
We designate the above inequality BIQ. In other words, deal- N 1\ _ 1
ing with proper dynamical variabl¢®DV) implies Eq.(2.3) Q(q,p) :f ‘q— EY>9 'p'y<q + 5)” dy, (2.15b
which, in turn, implies BIQ:
an expression that will be useful later.
(PDV) O (2.3 0 (BIQ), (2.6 It can be showri34] that the only wave function whose
so that Wigner representative is hon-negative is a Gaussian: in this
case, the associated Wigner function is apparently interpret-
(PDV) O (BIQ). (2.7 able as a probability density in phase spfeee Eq.(2.2)].

The TMSS of Eq.(1.2) is an example where this interpreta-
tion is indeed feasible. If, in addition, the Wigner represen-
tatives of the dynamical variables under study are of the
proper, or nondispersive, nature required above, we have a

Conversely, in a hidden-variables model in which Exj2) is
fulfilled, a violation of BIQ (to be called BIQV implies that
Eqg. (2.3 is not fulfilled, and hence that we are not dealing

with PDV's, i.e., candidate for a local hidden-variables theory, where the local
(BIQV) O (2.3 0 (PDV), (2.  hidden variables are represented by the canonical varigbles

and p. It seems clear from the outset that it will be rather

so that exceptional for a dynamical variable to fall into this category.

It is the purpose of the discussion that follows in the present
section to identify a class of operatoksthat do correspond

(The bar on a proposition indicates its negatioe men-  to proper dynamical variables. Although the analysis is cer-
tioned these conditions with some care because of the variainly not exhaustive, it serves the purpose of indicating a

(BIQV) O (PDV). (2.9
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number of sufficient conditions leading to proper dynamical The operators;§ have the same spectrum, and so do the
variables. For simplicity, the analysis will be restricted to

systems with only one degree of freedom.
Consider a functiorf(x), where se<x<<, bounded as

operatorsﬁf); we can thus relate the two members of each
pair through the unitary transformation

[fel<1. . J= VgV, (2.233
(1) We define the operatoh;=f(¢) through its spectral

representation as Ia_: VBV, (2.23b

Al =f(Q) = f la"Yf(q'){q’|dq’. (2.16  The eigenstates G;Tandﬁ to be designated bg’) and|p’),
- respectively, i.e.,

The eigenvalues of this operator df®), so that its spectrum A

lies in the interval[-1,1]. For instance,(@ f(x)=tanhx da)=ala), (2.249

gives a continuous spectrum in the interjal , 1]; (b) f(x) ~

=sgnx (where the sgn function takes on the value 1 Xor plp)=p'lp), (2.24b

>0 and -1 forx<0) has a discrete spectrum, consisting of
the two values 1 and -1. vel
One can easily show that the Wigner representative of th& Y. a

p’) of § and p, respec-

operatorf(g) of Eqg. (2.16) is la") =V'|q"), (2.253
Wi (a',p) =f(q'), (2.17) , )
" p)=Vip). (2.25b
a function which takes on, as its values, precisely the eigen- ) ~
values of the operatdi(g). According to our nomenclature, ~ In terms of the eigenstatég’) of g, Eq. (2.249, we can

we are thus dealing with a proper dynamical variable. Inwrite the spectral representation of the operaét@rof Eq.
these examples we see the nondispersive property explicitly2.19 as
since

WiH@ ) =[Wig(@ p)F. (218 hmi@=|_wraiar. @2

(2) Similar considerations apply to the operaigr:f(ﬁ). Using Egs.(2.253 and(2.16), we can write further
(3) Another case, which is very relevant for our future

considerations, is that of the operator A= f(ﬁ? :thx g (q' g’ Vg (2.273

As= (@), (2.19
where =VH(@V. (2.27H
~ From Eg.(2.26) we read off the eigenvalues of the operator
g=aq+ bp, (2.20 A~ : L . .
As=1(q) asf(x), just as forA;=f(q): in point of fact, a uni-

(a andb being numerical constantss a linear combination tary transformatiolEqg. (2.27h] does not change the spec-
of the position and momentum operatérandp. If we add,  trum.

to Eq.(2.20, the following one: The next step is analyze the properties of the Wigner rep-
~ resentative of the operatd¥;=f(q). We first make a more
p=cq+dp, (2.21) general statement: from Eg&.15 one can show that the

c andd being numerical constants satisfying the condition Wigner representatives of two operatdrsand V'AV, V be-
ing the unitary operator discussed above, are related by

Wyrav(@',p’) =Wi(agq' +bp’,cq’ +dp’).  (2.28
then the pair of equation®.20 and (2.21) can be consid-
ered as a transformation from the canonlcal posmon and man other words, if the operatdk undergoes the unitary trans-
mentum operator§ andp to the new oneq andp Thanks formation A VTAV, the Wigner representative is affected
to the condition(2.22, the commutatofd, p]= [——J i is Precisely by the classical linear canonical transformation of
preserved and the transformation is canonical: it is théVhich Egs.(2.20 and (2.21) are the quantum-mechanical
quantum-mechanical counterp&85] of the classical linear countsrpart Now, if we apply this result to the operatitty
canonical transformation obtained from Eq@.20 and andV'f(@V=f(ag+bp) of Eq.(2.27h, we find
(2.21) by removing the “hats” and considering thep, g and W (@' 0') = Ween(ad' + bo'.cd +do’). (2.29
p asc-number canonical variables; in the classical problem it fatrop (0',P") = W (@d +bp',cq’ +dp’), (2.29
is the Poisson bracket that is preserved by the transformand, using Eq(2.17) for the right-hand side, we finally ob-
tion. tain

ad-bc=1, (2.22
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W agrop)(@',p’) = f(agq’ +bp’), (2.30 Wy t(@',p") =W,(dg' - bp',—cq’ +ap’), (2.33

which will be useful later.
The relevance of the Heisenberg vs the Schrodinger pic-

PN : ture in the present context lies in the fact that we can calcu-
+ . (2. o .
f(aq+bp) asf(x). Now, Eq.(2.30 telis us that the Wigner ate the four terms occurring in the expectation value of the

representative of this operator takes on, as its values, exact L9 o
the eigenvalues of the quantum-mechanical operator: we aree” operator(2.10 appearing in Eq(2.11) in either of the

thus dealing with a proper dynamical variable. As a result,tWO pictures. In fact we can write
we have found a class of observables., f(ag+bp) which, “n
together with their Wigner representative, i.&aq +bp’), (YIAB|y) = J W, WaWgdpdgq, (2.343
are termed proper dynamical variables

As an application, suppose that we have a two-particle
problem, with the Wigner function associated with the wave (Y|AB'| g = f W, W,Wg.dpdg
function being non-negative. Suppose also that we choose, as
the operatord\, A’ to be associated with particle 1, any two .
(in general noncommutingof the proper(= nondispersive :<¢§|AB|¢5>:JW¢§WAWBdqu
[36]) dynamical variables discussed above, kkeA,, or A;,

and similarly for the operator, B’ to be associated with
particle 2. Then the CHSH inequalit@2.4) must be fulfilled,
according to the discussion given right before that equation. <¢|,&'[:,|¢> = f W, W, Wedpdq

In the presentation carried out in Sec. IV beldvis taken as
sgnq), i.e., asA; above, Eq(2.16), case(b); A’ is taken as aAa

~ ! o _ = (Yi|ABlyn) = | W,y WAWgdpda,

A; above, Eq.(2.19, again with f(x)=sgr(x), for two op- 1

tions for the coefficientst andb. Similar choices are made (2.349

for B and B’. For these cases, the validity of the CHSH
inequality (2.4) is verified explicitly in Sec. IV. .

In contrast, it is easy to give examples of dynamical vari- (YIA'B' |y = f W, W, Wg dpdq
ables that do not fulfill the above property of having a

which clearly reduces to E¢2.17 whena=1 andb=0.
Right after Eq.(2.27h we identified the spectrum of

(2.34h

Wigner function taking, as its values, the eigenvalues of the Caal
quantum operator. For instance, for the observable = (1dABl1) = | Wy, WaWedpda,
.1 (2.340
A==(p*+6?), (2.31) - .
2 wheredpdo=dg;da,dp;dp,. If the operatorA’(1) associated

with particle 1 is obtained fronA(1) via the unitary trans-

the quantum-mechanical spectrumis1/2 (n=0,1,2,..). formation

[This spectrum is not bounded in the sense of @ql); it

just serves as an example to illustrate the pdintcontrast, A’(l) = V(1) A(l)v(l) (2.3

its Wigner representative is ’ '
then|y) in Eq. (2.349 denotes

l !
Wisa@erap(A',p") = 5[(p’)2+ @), (2.32 | =V(D)|4), (2.36)

. . ) ) with a similar notation for the other states. An important
which takes orany value in[0,]: the dynamical variable jssye that will arise naturally in the following sections is
(2.3D), together with its Wigner representatii232), is thus  precisely that of the properties of the Wigner function asso-
improper. Some of the observables considered in Sec. li¢jated with the transformed operators and states, and the rel-
below will, indeed, fail to be proper. evance of those properties for the fulfilment of CHSH in-

As one further application of Ec(2.28, consider the equality. The interplay between the Heisenberg and
variation of TpA), Eq. (2.14), when the operatof is sub-  Schrodinger pictures that we just outlined will thus be very

jected to the unitary transformatidi] V'AV; obviously, the ~ relevant in what follows.

same answer is obtained if, instead,is transformed as After having given a panoramic view of the hidden-
p0 VpVT: transforming the operator will be called the variables problem and Wigner’s function we now turn to a

Heisenberg picture, whereas transforming the state will b&Udy Of the three levels outlined in the Introduction.
designated as the Schrodinger picture. We can calculate the
change of the Wigner representative mffrom Eg. (2.28),

valid for any Hermitean operator, replaciAgby p andV by As outlined in the Introduction, we consider the so-called
its inverse, with the result EPR-EPW problem[1,13] in successive levels. The first

Ill. THE EPR-EPW PROBLEM
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level is as follows: Given a staté) in our case, whose channels is automatic. As explained in detail in Sec. Il, for
Wigner representative function is non-negative, does such #he right-hand side of E43.9) to be interpretable as a local

state allow BIQV?
The answer to this was show8,21] to be in the affirma-

tive. The dynamical variable considered was the paﬂztyN
being the number operajor

S,= S [j2n+(2n+1 - 2@ =-(- V. (3.
n=0

In Ref.[21], “rotated” parity operators were introduced:

S.= X, [|2n+ 1)(2n| +[2n)(2n + 1]], (3.2
n=0

S =i [|2n)2n+ 1| - [2n+ 1)(2n]]. (3.3
n=0

hidden-variables theory, aside from a nonnegative Wigner
function for the state\V,, we require that the Wigner repre-
sentatives of the dynamical variables, t8¢s in this case,
give the observable values of these dynamical variables, viz.,
the eigenvalues of the quantal parity operdfor the phase
point: q,p). As already indicated, we refer to a dynamical
variable with this property as proper or nondispersive dy-
namical variablg/36]. This is not the case for any of the
parity operators§ (i=x,y,2); in fact, e.g., we can easily
verify that

Ws/(0,p) =~ 78(a) == 7d@)d(p), a=q+ip.

(3.10

This clearly is not an eigenvalue of the parity operator
(which is +£1). Thus in this case this dynamical variable is

These operators close @u(2) algebra and are viewed as improper or dispersiv¢36]. Therefore, we are not dealing
components of a 3-dimensional vector operator. We may thuBere with a local hidden-variables theofjn addition, Eq.

consider a “rotation” in parity space by, e.g.,
S,(9) = €17255e512S: = 5 cosd - S, sin¥=S-n,
(3.9

with n a unit vector which, in this case, is in the-y” plane

of the parity space. It will be convenient for us later to refer

to the above as the “time evolution” & under the “Hamil-

tonian” S, in Eq. (3.4): in this way we refer to the “rotation”
angle, ¥, as the timet. Sticking to the geometric notation,

the Bell operatof12] of Eq. (2.10 is
B=s'nS* m+S'-n'S>m+st-nS*-m’
-st.n'S$-m’, (3.5
and the Bell inequality we study is

B =< 2. (3.6

Varyingn,n’ andm,m’ to maximize|<l§>| for the statd()
we get[25]

KLBIO| =201 +F2(0), 3.7
F(O) =({SS) =tanh Z. (3.9

Thus the statd?) allows BIQV, even though the Wigner

(3.10 makes clear the assertion made in the Introduction that

the Wigner representative db, violates the property of
boundedness.

We have thus completed the discussion of the first level of
the EPR-EPW problem: nothing new was gained but we con-
sidered examples that will serve us below.

The second level of the EPR-EPW problem is when, in
addition to having a nonnegative Wigner function for the
state,we have a dynamical variable whose Wigner represen-
tative is the eigenvalue of the dynamical variablee., it is
a proper or nondispersive dynamical variable. Would this
situation allow BIQV? Would it conform to Bell's theorem?
Recently[10,25 an alternative configuration was discussed
for the parity operators. In this alternative configuration the
operators are given in thgrepresentation. Denoting the op-
erators in this configuration by; (i=x,y,z), we have

m=- | ddlee-loxol=s. @12

0

Here

1 1
&) ==l +[-al, [0)=—=la)-]-p], (3.12
V2 V2

function of the corresponding density operator may be

viewed as a probability density of local hidden variakjse

phase space coordinateglowever, as was stressed in the
Introduction, this does not violate Bell's theorem which pro-
hibits BIQV for a local hidden-variables theory. Thus the
correlations appearing in the Bell operator have the structure

(5]

©

dp,dcydp,d WPy, 01, P2, G2)

(1SS0 = f

X Ws%(ply(h)wsg(pzv%)- (3.9

Here, the factorization of the Wigner function of the two

so that

I, = —f dof|a)-q]. (3.13

The equality (n|TI,Jn")=(n|S|n’) is easily verifiable. The
natural vectorial operators that close su{2) algebra with
I1, are

11, = f defl€)0] + [Oxell (3.14

0
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A 9:(0,9,;¢) =(qq'|S(x.£)|00)
n,=i[ aqlexol-loxell. (315
0 1 1 2 2
=—=exp) - [0+ q'° ¥ 299" tanH(2{)]
We note thatll, is diagonal ing, i.e., N 2
- - X . .
I, = J della)al - |- a)(-al]=sor@  (3.16 °°S”2@} (.29
0
is the spectral representation Idf. Its Wigner function is Using this expression fd¢), we have directly
Wi, (0,p) = sgna, (3.17) ey =|7") = cosy|g) + sin - 0), (3.22

i.e., it gives the eigenvaluga1) of the operator and hence is @nd the Wigner function of¢’) is no longer non-negative
a proper (nondispersive dynamical variable, just as in the
discussion of Eq(2.16), case(b), of Sec. Il. In this case,
with IT;, much like in the previous casewith the S, i
=X,y,2) it is easy to get BIQV by selecting the appropriate )
orientational parameters. For convenience, while retaining Level 3 of our EPR-EPW problem is closer to Bell's
complete generality, we consider the choice of the orientafiginal program{1]; it involves the study of cases wherein
tional parameters by choosing the tim@sr both channels (l)_ the states have non-negative Wigner representatives
of the evolution oflIX(t,), I1X(t,) under the Hamiltoniad ~ Which, at some limit, reduce to the EPR state—ai)ris
=11,. (We note that Bel[1] considered the same case with SUch @ state.(2) There is a dynamical variable
{—o, i.e., the EPR state, but with the free Hamiltoniah, ~(=observablgthat is nondispersivé=propey, i.e., such that
=p?/2)) the ngner_representanve of its q_uantal version gives its ei-
Direct calculations show that by appropriate choices ofdénvalues in terms of our local hidden variablpsg—our
the times(ty, t; andt,, t;) we obtain IT, is such a Qynam|ca! vanab]e. We inquire for pos_S|bIe
BIQV when this dynamical variable evolves via Hamilto-
nians which leave the Wigner representative of the state un-
der study non-negative. Alternatively, we inquire for BIQV
when our dynamical variables evolve by Hamiltonians which
Thus we see that in this case, where seemingly the quantallow the initially proper dynamical variable to remain so. In
description may be given a local hidden-variables underpinthe next paragraphs we study the relationship between these
ning, we get a BIQV which, we are told, is an impossibility. two alternatives.
However, the present Bell operator involves not only the The only non-negative Wigner functions are gaussians
“proper” dynamical variablell,, but alsoll, which evolves [34]. Since Gaussians remain gaussians under linear transfor-
via our Hamiltonian,H=1II,. The latter, i.e.Il;, is not a  mations, it follows that single-particle Hamiltonians that
proper dynamical variable. In fact, its Wigner representativdeave the Wigner function non-negative are bilinear ones. We

IV. BILINEAR HAMILTONIANS

(By=2\2F(27), F= 2 arctarisinh ). (3.18
a

is given by will consider now two such Hamiltonians:
= L R PP 242
WHy(q’p) T 5(q)PF—), (3.19 Ho(i) = E(pi +00), (4.19
where P stands for the “principal value.” Thus, once again,
no local hidden-variables underpinning for the correlation L1,
involved in Eq.(3.18 is possible, after all(The bounded- Hq(i) = PLE (4.1b

ness condition for the Wigner representatives is violated as

well.) . . where the subscript=1, 2 denotes the particle. For simplic-
We may attempt to consider the problem in aijty we shall consider, iH,, the frequencyw;=1 for both

“Schrédinger-like manner” by applying the time evolution particles. The second Hamiltonian is the one considered by

operator to the statg); this, however, leads to a new state, Bel| [1,13.

|¢'), whose Wigner function is no longer non-negative over e consider the harmonic oscillator Hamiltonielg first.

all phase space. This can be proven most readily by considsyolution of the staté?), Eq.(1.2), underH,, during a time

ering an alternative expression for the sthteobtained in t, for particle 1 and, for particle 2, gives

[25], i.e.,

Lty t)) = | = expé@ie ~azdlog),  (4.2)

|£>=f f dadd[(g, +g-)|EE") + (9. —9-)|0O")],
o 0

(3.20

where #=t,+t,. The corresponding Wigner function can be
obtained either directly from the statd.2), or from Eqg.
(1.5, applying Eq.(2.33 with a=cost;, b=sint;, c=-sint;
where andd=cost;, with the result
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1 s 2 o o ) monic oscillator Hamiltonian, is consistent with the discus-
Waon = > exp{— cosh20)(qy + gz + p1 + p3) — 2 sinl(2¢) sion given in Sec. II, below Eq2.30. It is apt to notice that
the present evolution is not analogous to rotation of the spins
X[(0102 = P1P2)COSH — (012 + O2py)SiN 6]}, (4.3)  in the Bohm EPR version. The latter involves what was
termed[25] orientational variation, which leadslepending
on the preferred viewpoipteither to improper(dispersive
- 12 dynamical variables even when one starts with proper dy-
Eltnty) = f da; dopdpid Wy ) (G, G2, P1, P TL LI namical variables, or, alternatively, to reon non-negative
- Wigner function. In either case, BIQV’s do not contradict
(4.4 Bell's theorem.

We now consider briefly the evolution due to the free
Hamiltonian of Eq.(4.1b). Again, we study the evolution of
the statg¢), Eq. (1.2), underH;, during timest; for particle
1 andt, for particle 2. The corresponding Wigner function

] can be otained from Eq1.5), applying Eq.(2.33 with a
We have used the notation of Ré1] =1, b=t;, c=0 andd=1, with the result

E(ty,t) =Pi(6) + P_(6) - P_.(6) - P._(6). (4.6)

The first subslcript iP,,, P,_, etc., refers to the eigenvalue
(i.e., 1) of II;, for the first particle and the second subscript .
refers to that of the second partid€: i.e., P,, is the inte- + 3] - 2 sinh(20)[ (0 — typ1) (A2 = toP2) = PaPal}-
gral of Wy)(d1,02,P1,P2) [see Eq.(4.4)] over the region (4.9
0;>0, g,>0, etc. The alternative view, i.e., allowid@ix to
evolve in time, while keepindV, fixed, is readily dondsee
Appendix B by noting thatIT}(t;) =sgn(g; cost;+p; sint;)
and computing the resulting integral fB(t;,t,)

Direct evaluation of

[here,IT\=sgn(@), Eq.(3.16] gives (see Appendix A

2

E(t;,t;)) =1——y, cosy=tanh2{)cos. (4.5
a

1 2 2, 12

Wity t,) = 2 exp{~ cosh2{)[ (g = typy)“ + (A2 =~ t2P2)" + PI

With the same definitions as above, we find

E(ty,ty) = 7% arcsifa(ty,ty)tanh 2], (4.109

1-tt,

E(ty,ty) = f d0ydadp,dp, W, (a1, 02, P1, P TLY(t)TIZ(t,)
o - 12
VL+)(L+1)

a(ty,ty) = (4.10b

(4.7
Alternatively, just as with the previous Hamiltoni&ty, one

upon the change of variables;=g; costi+p;sint; and pi o fing the Wigner representative of the time evolution of
=—q; sint;+p; cost;. We obviously obtain the same answer atpyi applying the general resul2.30 of Sec. II, witha=1
the end. Perhaps more elegantly, one can find the Wignegét_ c=0. andd=1 ' '

11 7 -

representative of the time evolution &K by applying the
general result(2.30 of Sec. Il, with a=cost;, b=sint;, c
=-sint;, andd=cost;.

It is easily shown(cf. Ref. [1]) that, in case the time |E(ty,tp) + E(ty,t) + E(t;, 1) — E(t}, )| < 2, (4.1))
dependence occurs only in the combinatig#t, [which is
the case in the present situatioBq. (4.2)], the CHSH in-  ©F

We wish to analyze whether this case abides by the CHSH
inequality, i.e., whether the inequality

equality[11] implies the following inequality: |arcsifa(ty, ty)tanh 2] + arcsida(t,, th)tanh 2]
3P,(6) - P,(36) = 0. (4.9 +arcsifa(t],ty)tanh Z] - arcsia(ty, ty)tanh Z]| < m,
In the {— < limit, i.e., when the staté’) is maximally en- (4.12

tangled and approaches the EPR state,(®fh-1. In this o ) _

limit y—cosl(cos®)=6 (cf. Appendix A and P,(6) IS satisfied. For instance, taking

=(1/2m) 0 _thus the.inequallity_is saturated. .It can be shown =0, t,=T, =0, =T, (4.13

that for finite { the inequality is always satisfied. Bell sug-

gested that correlations of observables of the typdpt[cf. ~ and subsequently taking the linfit— o, the left-hand side of

Eq. (4.7)] for the EPR state, evolving under the free Hamil- EQ. (4.12 takes the valuer, i.e., the inequality is saturated.

tonian, would not allow for BIQV; we observe that this in- ~ The fulfililment of the CHSH inequality in the present

deed occurs for the harmonic oscillator Hamiltonian usedrase, in which the evolution is induced by the free Hamil-

here. tonian, is, once again, consistent with the discussion given in
However, his reasoning perhaps was somewhat misleadec. Il, below Eq(2.30.

ing: the reason is that is not only the nonnegativity of the

relevapt V_\ﬁgner fu_nction that matters, but also th_e type pf V. CONCLUSIONS AND REMARKS
evolution induced in the observables by the Hamiltonian in
question The fulfilment of the CHSH inequality in the In this study we took the Clauser, Horne, Shimony and

present case, in which the evolution is induced by the harHolt [11] inequality as the representative of the so-called

022103-8



BELL's INEQUALITY VIOLATION WITH NON- ... PHYSICAL REVIEW A 71, 022103(2005

Bell's inequalities. Indeed this inequality is the often ana-representative of the stafthe wave function is no longer
lyzed and experimentally tested one and is the one used h@aussiajy nonetheless, looked at in the Heisenberg picture,
Bell himself in his study of the subject of this work: the j; keeps the above-mentionedand B as proper dynamical
relation of the non-negative Wigner _functlon of_ the Einstein,, ariables. Thus Bell's inequality is fulfilled.

Podolsky, and Rosen state to possible Bell's inequality vio- As a consequence of the above discussion, we can state

lations. . )
We subjected the reader to a lengthy derivation and eXt_he following. Suppose that we have a Gaussian wave func-

planation of what we considered points worthy of clarifica-tion and thatA and B are proper dynamical variabl¢for
tion. These were the delineation of what is meant by Propegxample:A=sgr(d,), B=sgn@y), or the other examples dis-

an_d impropgr dynamical V"?‘F‘ab'.es _in Fhe context of thecussed in Sec. ]i suppose also that, in the Heisenberg pic-
Wigner function as a probability distribution in phase spaceture, the transformations of the ty[§2.35 do not keep the

the canonical variables of the latter playing the role of the bservables as prober dvnamical variables. and that we dis-
local hidden variables, and showed that a proper observabl proper dy ’

(=dynamical variablgis non-dispersive. Thus only proper cover thatB_eII’s inequa_!ity violat?ons are allowedhe con-
dynamical variables can be considered as accountable for gude that, m/the Schrédinger picture, the transformed states
a local hidden-variable theory with the phase space variabled the typey; of Eq. (2.36 cannot be Gaussian and thus
(q,p) being the local hidden variables. A proper dynamica|the|rW|gner representanvw% F:ease tg be.non—negatlve. In
variable is one whose Wigner function representative give#act, should they;’'s be Gaussian, their Wigner representa-
the eigenvalues of the corresponding quantal dynamical varkives W, would be non-negative and by ca&®) above,
gmﬁir‘]’éh":h the local hidden-variable theory aims at underger's inequality would be fulfilled, at least for the abose

We now summarize the relations that we have found be2ndB- o
tween the properties of Wigner’s representative of the opera- Finally, we want to remark that, although the word “local
tors and states on the one hand and the fulfillment of CHSHvaS repeated several times, locality as such was not an issue
inequality on the other. in the present discussion: Bell's locality condition is auto-

From the standpoint of the Heisenberg picture, i.e., whednatically fulfilled, as the Wigner function of any dynamical
we work with a fixed wave functiotwhich translates here to vanable that depends. on distinct p_hase space coordinates fac-
a fixed densityand transform the operators, it is not enough,torizes. In the derivation of Bell's inequality one makes two
for the fulfillment of CHSH inequality, that the Wigner rep- €xplicit assumptionst1) the independence of A on the set-
resentative of the wave function be non-negative: we sa@ind of B (and vice verspand (2) each dynamical variable
that we can ensure the fulfillment of CHSH inequality whenhas values for the observables, whether or not they can be
Wigner's function of the state is non-negatiaed the opera- S|mu.ltaneously measured. Our argument leads us to assert
o5/ B, A andB'and thi Wigner repteseias core- 21 Present comet i el he second assumpr
spond to proper dynamical variables. That is, as follows. .~ " q y—V ; . ’ .

(1) W,>0 andA,A",B,B’ are proper dynamical vari implies that the theory disallows it. This point was noted in

l// ’ ’ ’ = _ "

ables. Then Bell's inequality is fulfilled. the pasf{27-32. In point of fact, two often quoted examples

: - : N . for underpinning noncommuting dynamical variables with
In Sec. lll we discussed “orientational” transformations p 9 g dy

that donot keep the observables as proper dynamical vari—IOCaI hidden variables—Bell'$2] and Wigner's[27}—are

ables and found violations of Bell's inequalit manifestly so, although these examples are, perhaps, some-
quairy. what artificial. In the present work—which in its essence

In Schrodinger’s picture, i.e., when we consider the op~ i . : ;

. 3 ) ollows Bell's suggestion[1]—we outlined a canonical
era_torsA andB_ and_transform the wave function as €X- theory which automatically abides by the locality require-
plaln_eo_l_l_n relation with Eq(2.34), we have the following ent (the phase space variables are Ipcahd Bell's in-
possibilities. . ) equality is abided by in cases where the dynamical variables

(2 W¢,W¢1,W¢é,w¢i2>0 and A and B are proper dy- are proper ones, even when they are noncommuting.

Our main conclusion is that in the present context the
validity of Bell's inequality that we have considered hinges
on the assumption of having definite values for all the dy-
namical variables—thus endowing them with physical
-~ reality—and not the issue of locality. Of course one might
At least for theseA and B, this case can be reduced ®  ponder what one would mean by a local hidden-variables
above and thus Bell’'s inequality is fulfilled. This case is thetheory without a definite value for all the dynamical vari-
closest one to the original problem studied by Bl ables; however, this is a separate issue.

(3 W,>0, but W%,W%,W%}O, and A and B are

proper dynamical variables. For exampl.&.:sgr(ql); B
=sgr(@,). We may have the two following situations.

(a) If V is an “orientational” transformation as explained One of us(M.R.) expresses his gratitude to the Elena
in Sec. lll, then Bell's inequality violations are possible.  Aizen de Moshinsky Chair, through whose financial support
(b) As another example, také so thatq=g°. This trans-  his visit to UNAM (where an important part of this investi-
formation does not preserve the non-negativity of Wigner’'sgation was carried outwas made possible. The research of

namical variables. For exampl&=sgn(¢;), B=sgn({,), or
the other examples discussed in Sec. Il.

The only transformation V that keeps
Ww,Wd,i,Wd,é,W%2>0 is a linear canonical transformation.
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APPENDIX A: EVALUATION OF E(t;,t,) FOR THE The equalitiesP,.(t,t')=P__(t,t’) and P,(t,t')=P_,(t,t')

HARMONIC HAMILTONIAN are easily verifiable; hence we have
. ; 2
We first evaluateP_+(t1,t?) [cf. Eq. (4.6)]. After the inte- E(ty,ty) = 2P,.(6) - 2P_()) =1 — =, (A2)
gration over thep's and lettingg, — —q; we find ™
1 with tanh(2{)cosf=cosy, 0=t;+t,.
P-ltuty) = cosh20)V(1 - tanR(2¢)co 6)
7 \ APPENDIX B: THE WIGNER FUNCTION OF
” I, (1) FOR H=H
X f dagyda, exd — cosh2H)T(6,¢) < 0
0 The Wigner function fodl,(t) is given by
X (0 + 05 — 20,0, tanh(2¢)cos 6)]. (A1) 10 = -
- — 1Py
Here  6=(ti+t)  and  I(6,0=(1-tank20)/(1 Wi, (.P) 27J . dyJ , das oyl

—tanh(2¢)cog 6). This integral is evaluated directly to give B
X[|a)al - |- a)X-dlle™"ox ~ y/2).

_ i L tanh(2¢)cosé@ B1)
P_i(ty,t) 277{ > arcta’< V(1 - tantf(2)cos 6) )} '

Inserting the harmonic oscillator propagat¢®] and per-
Similar calculation gives forming they integration gives sgm cost+p sint).
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