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We study macroscopic observables defined as the total value of a physical quantity over a collection of
guantum systems. We show that previous results obtained fanfauite ensemble of identically prepared
systems lead to incorrect conclusions for finite ensembles. In particular, exact measurement of a macroscopic
observable significantly disturbs the state of any finite ensemble. However, we show how this disturbance can
be made arbitrarily small when the measurements are of finite accuracy. We demonstrate a general trade-off
between state disturbance and measurement coarseness as a function of the size of the ensemble. Using this
trade-off, we show that the histories generated by any sequence of finite accuracy macroscopic measurements
always generate a consistent family in the absence of large-scale entanglement for sufficiently large ensembles.
Hence, macroscopic observables behave “classically” provided that their accuracy is coarser than the quantum
correlation length scale of the system. The role of these observable is also discussed in the context of NMR
guantum information processing and bulk ensemble quantum state tomography.
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I. OVERVIEW summarize the method of type and define type projectors.

Macroscopic observables correspond to physical quantil N€S€ are projectors on the degenerate eigensubspaces of

ties which are accessible to our senses. Since the physicElacroscopic observables of the foPR==2z,80, Whereay
scale of individual quanta is generally tiny, macroscopic ob4S @ physical observable acting on tkia system of the en-
servables arise when a collection of quantum systems agemble. Using the theory of generalized measurements, we
measured jointly. Formally, they can be describedtyyye  also define coarse-grained POVMs corresponding to finite
projectors which reveal information about the average popu-accuracy estimation of a macroscopic observable.
lation of single-particle states. For example, the total magne- Section Ill contains the core mathematical analysis of our
tization of an ensemble of spi%l—particles provides some study. We first recapitulate the well-known facts about type
information about the relative occupation number of theprojectors acting on infinite ensembles and show how they
spin-upandspin-downstates. We will derive several general dramatically break down for finite ensembles. Then, we
properties of these measurement and discuss how they leglow how the result is approximately recovered when the
to the emergence of a quasiclassical domain in the absence gfeasurements are of finite accuracy and study the general
large-scale entanglement. trade-off between measurement coarseness and state
The effect of macroscopic observations rfinite en-  disturbance—measured in terms of fidelity—as a function of
semble of identically prepared quantum systems has bee&Re size of the ensemble. In short, wedemonstrate that a mea-
studied in various contextsl-4]. The main conclusion of surement of coarseness>1/\N leaves the systems essen-
these studies is that the stai®“N describing such an en- tally unchanged: i.e. the fidelitf between the pre- and
semble is an eigenstate of type projectors wNerw. How-  post-measurement stats of the ensemble satisfief 1-
ever, for finite ensembles, things change dramatically. Thec|n(Ng2)/No2.
measurement of a macroscopic observable induces a distur- section IV is a discussion of the de Finetti representation
bance whichincreasesas the size of the ensemble grows, in theorem which provides a wide class of state—exchangeable
apparent contradiction with the infinite-copy result. This dis-states—for the study of macroscopic observables and is of
crepancy follows from the ambiguous extension of finite-prime importance to bridge the gap between the subjective
copy considerations to the nonseparable Hilbert space of afature of quantum states and the objective classical reality
infinite-copy ensemblg5]. In this article, we show how the [7]. Exchangeable states have recently been employed for the
essence of the infinite-copy result can be recovered for finitgjiscussion of quantum-state tomography based on single-
ensembles by “smoothing” the type projectors into coarsesystem measurements followed by Bayesian updéie
grained positive-operator-valued measureme®OVM'Ss)  we will show how macroscopic observables offer an alterna-
(essentially going from the strong to the weak law of largetive perspective on quantum tomography. Moreover, this ap-
numbers. proach offers interesting applications for quantum informa-
The paper is organized as follows. The central mathematiton theory [8,9] and is a more accurate description of
tomography—e.g., as achieved in REfO].
Macroscopic observables also provide an explanation for
*Electronic address: dpoulin@igc.ca the emergence of the classical world we perceive from the
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underlying quantum theory. Indeed, we demonstrate in Sec. 1 N

V that in the absence of large-scale entanglement, one of the L;(X) = => O

main characteristics of the classical domain follows naturally Nic1

from the general properties of coarse grained type POVM's;; ;o simply the number of occurrences of the lettgin X,

thedy tiehaveaslif thery]/ Werg revealing i;lformation abr(])ut an givided by the length oK. For example, if¥={a,b,c} and

underlying reality. This is done using the consistent historieg, _ (111 :

formalism which we briefly summarize. We demonstrate tha?(‘)_bt :Eznslégcgagri_n(zé“c;f“; V\i/\(/eeilio 2§f|ne a type clads

the histories generated ny sequence of macroscopic ob- 9 9 ype:

servables of accuraay> V¢/N are consistent, whegis the TL]={X e AN:L(X)=L}.

guantum correlation length scale of the system. This gener- .

alizes some ideas introduced by Halliwlll] on how to ~ FoOr exa‘}gmple, using the same alphabet as above, we have

achieve classicality in closed quantum systems. TL(;,0.3)]={accc,cacc ccac,ceed. The classT[L] can be
Finally, Sec. VI discusses the role of macroscopic observgenerated by applying all permutations to any single string of

ables in NMR quantum information processing. In this con-type L. Hence, the number of elementsTfL ] is given by

text, macroscopic observables are used to extract the outptite multinomial coefficient:

of the computation, but also, since the measurement device NI

cannot be “turned off’—i.e., the state of the processor can|T[L]| :( ): - )

always be read off from the spectrometer—they constantly NLy,NLp, ... ,NLg/  (NLy ' (NLp) ! ... (NLy!

perturb the computation. Following the results of Sec. 1l and Let R=(Ry,Ry, ...,Ry be a probability distribution over

a measurement model introduced in RGTQ]’ we show that g probability of the string of outputs=x; ---x; of N

the measurements used in NMR can in principle be suffi; . S N

; : . . letters, each drawn independently according to the distribu-
ciently precise to extract useful information about the com- R is P(X)=R R ---R . This can also be written as
putation but yet so coarse grained that they induce a negli- ' BRR P iINg

gible perturbation. However, as we will demonstrate, NMR P(X) = R\LOORNLX) ... Rgl—d(x),

measurements may not follow our optimal measurement _ T 3 _
coarseness-state disturbance trade-off when performed 8@ given a fixed distributiork, the probability of a string
room temperature; caution is advised when applying ouX € A" depends only on its type. Intuitively, the type of the

conclusions. Finally, Sec. VII summarizes our results andPbserved outcomX is very likely to be close to the prob-

discusses some open questions. ability distribution of the random variable—i.e.{(X) =R;,
asN increases. This is the substance of tyygical sequence
theorem[13],
1. DEFINITIONS
P(HL _ R”% > E) < e—N[e/2—d IN(N+1)/N] e—Ne/2, (1)

This section contains all the mathematical definitions re- s Y .
quired for our study. Our general setting consists of an en¥/here the “difference” between the typeand the probabil-

semble ofN quantum systems of the same nature. For sakdy distributionR is quantified by the variational distante,

of clarity, we adopt the vocabulary of NMR. Therefore, we NOMY:
shall refer to individual systems of an ensembleredecules

and to the ensemble dfl molecules itself as theample

Thus, the word “molecule” should not be taken literally in

what follows; it could be any elementary constituent of aThe typical sequence theorem takes on various forms. It can
larger system. be formulated in a stronger version using the relative en-

tropy, which is an upper bound to the variational distance.

Nevertheless, for our considerations, this simple version will
A. Method of types be sufficient.

The method of type is a very powerful statistical tool with
applications ranging from large deviation theory, universal
coding, and hypothesis testing. We will only scratch the sur- Using this notation, we now formally define macroscopic
face of this theory here; more details and applications can bebservables. Consider a Hermitian operat@r., observable
found in[13], for instance. a acting on thed-dimensional Hilbert space of a single mol-

Let X=X, x;,-+-X; € AN be a string ofN letters drawn ~ €CUlEH Let{xy),[x2), ....[xp} and{ay, @y, ... ,aq} denote
from ad-letter alphabeft={x;,%,, ... X4 Thetype(or em-  its eigenvectors and eigenvaluegx;)=qj|x;). We will as-

pirical probability distribution of X is a vector of positive ~Sume thata is nondegenerategeneralization is straightfor-
numbers summing to one defined by ward. The macroscopic observablg corresponds to the

sum of observable over all theN molecules of the sample,

IL = Rlly= 2 L0 - Ry
J

B. Macroscopic observable

L (X) = (L1(X),La(X), ... La(X)), N
Av=2 A, (2
whereL;(X) is the relative frequency of the lettey in the k=l
string X whereay, is the operatom acting on thekth molecule:
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ap=1® ... ®1®a®le® ... ®L
— 7 _— 5
N-k

k-1
The operatorAy acts on the joint Hilbert space of the
moIecuIesH;HﬁﬁN—the Hilbert space of the sample—
which has dimensiorN. We use the standard abbreviation
X)=[x )@ [x;)®...®|x ) for each stringX e AN. Clearly,
the stateg|X)} form an orthonormal basis fdt(s. Moreover,
they are eigenstates of the macroscopic observalle

An|X) :AN|XJ1> ® |Xj2> ®® |XjN>

N
= gla{k)|le> ®[x,)® - @ [x)

N
= E ajk|le> ® |Xj2> ® -

(e

> NL(X)g
j=1

N
T ® |XjN> = E CKJk|X>
k=1

()

Thus, we see that the eigenvalue associated to a basis st

|X) depends only on its type(X). As a consequence, the
degenerate eigensubspaces Af are those subspaces
spanned by the vecto}X) belonging to the same type class.

This brings us to the definition ofype measurements

PHYSICAL REVIEW A1, 022102(2009

Av=2AQN, (6)

L
where we have defineALzEdleLjaj. This decomposition
follows straightforwardly from Eq(3) as all the state$X)
with L (X)=L composing the projecthD(LN) have eigenvalue
A_. Similarly, any macroscopic observable of the form of Eq.
(2) has a spectral decomposition involving only type projec-
tors, as in Eq(6). Hence, following textbook quantum me-
chanics, when measuring a macroscopic observable—or
measuring the “expectation value” of a physical observable
over a macroscopic sample—one is really performing a pro-
jective von Neumann measurement composed of type projec-
tors.

These type projectors have been studied under many dif-
ferent formg 1-3] and take on many different names. Among
other formulations are the frequency operators. Recall that
L;(X) is the relative frequency of the symhxlin the string
X. We can define &requency operator

FIN =3 Li(X)[XXX.
X

él’tgis operator is a macroscopic physical observable whose
eigenvalues ar¢=0,1/N,2/N, ..., 1. IndeedF™™ takes on

the form of Eq.(2) by setting the single-molecule observable
ato (1/N)|xj)(xj|. Following textbook quantum mechanics,
when the measurement associated WifH is performed and

which are von Neumann measurements composed of the pr§igenvaluef; is observed, the state of the system gets col-

jection operators on the subspaces of a given type:

QV= X XXX

XeTL]

(4)

Each of thesdype projectorsis labeled by a vector ofl
positive numberd.; which correspond to the type(X) of
the basis vectorfX) spanning the subspace. Obviously,
projectors Q(LN) depend on the choice of basjzj> over
H.—i.e., on the eigenvectors of the observable-so we
could explicitly noteQ(LN'a). Moreover, we would like to
stress that the spectral project@%“‘a) and Q(LN,’b) associated
with two distinct macroscopic observabledy==,a, and

Bn=2b(y do not commuteunless the underlying single-
molecule observables andb happen to commute. To avoid
cumbersome notation, however, we will only use an extr
superscript when necessduf. Sec. IV A). For the time be-

ing, we will consider a fixed arbitrary macroscopic observ
able Ay. In this case, it is straightforward to verify that the

type projectors are mutually orthogonal and that they sum t&0rrespon

lapsed to the subspace spanned by the stafefor which
L;(X)=f;. Hence, the eigenvalug; indicates the relative
population of the single-molecule std,t@) in the sample of
N molecules.

The above construction yields commutingphysical ob-
servables{FEN)}jzl_,_d, one for each single-molecule state

{|xj>}j=1,,_,d. Regrouping these observable into a
thed—component observable yields
FN=FNFY, . F) =2 LQM, (7)
L

which takes on the form of Eq®6), with a d-component
eigenvalueA =L. The value of any macroscopic observable
of the form of Eq.(6) can be deduced straightforwardly from
the value ofFN. Hence, a great deal of attention has been
Jocused on the macroscopic observabB{®¥, without loss of
generality.

We illustrate macroscopic observables for a samplél of
spin4 particles. We choose the bagig)=|1) and|xz)=]||)
ding, respectively, t;4and — units of magneti-

the identity zation in thez direction:
1 1
Q(LN)QE\P — 5L,L’Q(LN)' SoM=1. (5) olxy) = 5|x1> and o?lxy) =- §|x2>.
L
We can use a single positive numberL
In other words, these projectors correspond to the exact mea={0,1/N,2/N, ..., 1 to label the type of a binary striny,

surement of the population of the Ievdhq) over an en-

which corresponds to the fraction »f's (or spin ups) in X.

semble ofN molecules, without distinguishing between the Hence, a typé. is a shorthand fok =(L,1-L). The bulk(or

molecules of the sample. The type project@{g) allows us
to express the operatéy, in a simple form:

total) magnetization of the sample is equal to the sum of the
magnetization of each molecules: the corresponding operator
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is thereforeMZ:EI’:‘zlofk), whereofk) is the Pauli operator in Continuing with our examplefinite accuracymeasure-
the z direction acting on théth molecule. When the sample ment of the bulk magnetization of a sample Ifspin-

is in a state of a definitive typk, its bulk magnetization is molecules can be described in termscofrse-grainedype
equal to%N(Ll—Lz):%N(ZL—l), which is simply the num- operatorsQ(gN). When the state of the sample is of a definite
ber of spins pointing up minus the number of spins pointingtype L, the observedralue of the bulk magnetization will not
down, times%. Hence, the observable corresponding to thenecessarily be equal %N(ZL—l), but due to the uncertainty

bulk magnetization can be written as of the measurement apparatus, may take different values
1 %N(Z{,’—l), with respective probabilitieg, (€). The function
MZ=N=> (2L - 1)Q(|_N)v g, (€) should be centered aroundand have a certain width
27 o corresponding to the coarseness of the measurement.

where the sum is over all tvoes. The tvpe ro'ect@i@ are Hence, the coarse-grained type measurements can be de-
; ypes. 1he type proj fined by “smoothing” the exact type projectors:
projectors on the degenerate eigensubspaces of the bulk

magnetization operator. Clearly, an exact measurement of the AN — a4 (0 )oNV 11
S =2 ,
magnetizationM* would reveal the type of the state of the Q ? A (OQ (1)

sample—i.e., the relative frequenc anddownspins.
P a yap P whereq, (€) is some probability distribution ovef centered

_ _ roughly atL and has the interpretation given above. In prin-
C. Coarse-grained macroscopic POVM's ciple, ¢ could be any reat-dimensional vector, as it contains
We will now present how finite accuracy macroscopic ob-Statistical fluctuations. For exampley (€) could be a
servables can be expressed in terms of type projectors. Bé=dimensional Gaussian
fore we do so, we briefly recall some basic concepts of the a2 2
X ! 1 €-Ll5
theory of generalized measurements. Generalized measure- q(0)={— -t
ments(POVM's) are described by a set positive operatgys 2ma? 20°
summing to identity. The generalized Born rule for the prob-, picp is properly normalizediq, (¢)d¢=1 and where thé.,
norm is [[¢-L|[2=3;(¢,~L;)% The operatorsE,=Q/VQ\""

ability of getting outcomeg; given initial statep is the same
form a POVM(with a continuous outcomesince they are all

(12)

as for von Neumann measurements:

P(Ej|p) = THE;p}. (8)  positive operators and satisfy
After the measurement outcong is observed, the state of = RN
the system gets updated to f E.d¢ :f Q/ Q¢ de=1. (13
) 2 AjTiPAji These coarse-grained type operators describe a situation
p_J,p_ - (9) where our measurement apparatus is not sufficiently precise
| P(Ej|P) ’ to measure the exact population of each level, but rather

provides an estimation of it within a finite accuraey

We have assumed that the measurement outdbiages
Qn a continuous spectrum. However, several measurement
apparatus, like those equipped with a numerical output dis-
r;?Iay, have a discrete spectrum of outcomes. This can be
a@ken into account by choosing a smoothing function

where theKraus operators A can be any set of operators
satisfying =;A;Al =E;. Here, we will often consideideal
quantum measurements where the disturbance inflicted to t
system is in some sense minimdl4]. This restriction is
necessary if we want to study the optimal trade-off betwee
information gathering and state disturbance. To each me
s_urement outcome; of aE i}j_eal megsurement is associated a qL(0) = 2 8- €)f(L),
singleKraus operatoA;y=E;. In this case, the state update ¢

rule, Eqg.(9), simplifies to :

‘ L where {¢;} is the set of possible outcomes. Thus, we will
I == (10) henceforth consider the more general continuous case, but all
our analysis carries through for discrete measurement out-

. comes by performing the above substitution.
which reduced to the regular state update rule wBgare yP g

projection operators. Hence, von Neumann measurements

are minimally disturbing POVM's with an extra orthogonal- }, +vpg \EASUREMENT ON IDENTICALLY PREPARED

ity constraint. Any generalized measurement can be realized SYSTEMS

physically by coupling the system of interest to a larger sys-

tem and performing a von Neumann measurement on the Type projectors were first studied by Finkelstdih],
larger system; an example of such a physical constructioiiartle [2], and Grahan{3] as part of discussions on the
will be presented in Sec. VI. Similarly, any such “indirect” interpretation of probabilities in quantum theory. The main
measurement corresponds to a POVM. Hence, POVM's daharacteristic of type projectors identified by these authors
not add anything extra to plain textbook quantum mechanics;an be summarized as follows. I_Idt>=2j,8j|xj> be an arbi-
beside conciseness. trary pure state of d-level molecule, with associated density
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matrix v=|y)(y)|. Consider a sample dfl identically pre- A. State disturbance
pared molecules, such that the state of the samp|# s

The state of the sample can be rearranged as follows:
=|»®N. Upon measurement of the type of the sample, we P 9

expect a result close to the probability distributidh d ®N d
— - 2 2 H _ )
= (X)) = (BaP . |BgD). Indeed. it fol |\PN>:<2 ﬁj|x,->) v (.H BJ_NLJ<x>>|X>
lows from the strong law of large numbers that j=1 xeaN \j=1
d
lim [F{Y W) - |2 w2 =0, (14) :Elﬂﬁ,—“i] > |><>:2<Hﬁ,-“LJ‘>v|T[L]||L>,
N—o0 L |j=1 XeT[L] L \j=1

(15

where FV is the jth component of the frequency operator ) )
defined ‘in Eq.(7). In other words,FN|W,)=R|¥,) with where we have defined the normalized state
probability 1 in the limit of infiniteN. This led Hartle to the
conclusion that an infinite number of identically prepared Ly= 1 S
molecgles areinan elge_nstzhﬂew} of the frequency operator VITIL ) xemiL
F*) with eigenvalueR. Finkelstein, on the other hand, con-
cluded from Eq.(14) that for finiteN, [Wy) is “close” to an  gnd
eigenstate oF ™ with eigenvalueR. Thus, a measurement
of the frequency operator reveals the probabilitiBs
=(x;|v|x)), in the standard Copenhagen sense, of observing a [T[L] = (
single molecule of the sample in the stbtﬁ.

However, the conclusions reported above can be quit

"
NL,, ... NLg

misleading. There are really two distinct issues here. The firs%enOteS the caer|naI|ty of the type cIa‘EEL]. The density
perator associated to this state will be denoted

one concerns the validity of the argument as a derivation of N
=[P (Py[= 2N

Born’s rule to assign probabilities in quantum theory. The™ .
Upon measurement of the coarse-grained operators of Eq.

main complication comes from the definition Bf* as the h ity of : e :
limit of a finite operator. This limit does not uniquely defined (11 the probability of observing an (;utcome within an in-
g )| pn)d€ where[see

the operator on theonseparableHilbert spaceH,,®H,, finitesimal volume range of € is P(Q
®--- of the infinite sample: specifying the action Bf” on  EQ. (8)]

all states of the fornix;) ® |x,)®- - is not enough to define

it. This was realized ift4] where an alternative derivation of PQM|pn) = THON p QMY (16)
the probability rule was presented. Nevertheless, the pro-

posed solution is still not satisfactory as it relies itself on

probability theory. An up-to-date and rather critical discus- => \,qu(e)qL,(f)Tr{Q(LWpNQI(_“P}
sion of the status of the frequency operator and the related L
programs can be found in a recent paper of Caves and N
Schack5]. We will not address these issues any further and = > qu(O(Ty QM)
do not claim to offer an alternative derivation of Born’s rule. L
The second difficulty which is directly relevant to the = q (O)m(L,R) (17)
present study concerns state disturbance. When a system is L

prepared in an eigenstate of a physical observable, the act of
measurement does not disturb it. While E@4) does not andm(L,R) denotes the multinomial distribution
grant this for any finiteN, one naturally expectdike Finkel-
stein dig that, asN grows, the disturbance caused by the
measurement should decrease and eventually become negli- m(L,R) = ( )H R,NLj-
gible for all practical purpose. i

In what follows, we will show that theneasurement of £qjiowing Eq.(10), the conditional post-measurement state
macroscopic observables induces an important disturbancgs the ensemble given measurement outcdhie
to the state of the samplin fact, this disturbance increases
as the size N of the sample growshis is in apparent con- ~N) =N )
tradiction with the conclusion that one might intuitively draw - Q¢ PnQe - 1 STI BNL,-B*NH-'
from Eq. (14) by extending it to finiteN. However, we will PQMlpn) PQMlpw) T L 5 el
show how the above conclusion can be recovered when the / ,
measurement of macroscopic observables are of finite accu- X AqLOau (ONV[TIL] - [TIL L XL (18
racy: sufficiently coarse-grained type measurements induce a
negligible disturbance to the state of the samplée are The post-measurement state is obtained by averaging the
interested in the trade-off between measurement accuraagonditional post-measurement states over all measurements
and state disturbance. outcomes:

N
NL,, ... NLg

PNle
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, ~ ~ ~ measurement stapg, also has, with high probability, a van-
PN=f P(QM o) oyt = f QN[ w|QM ishing fidelity with the original statgy.
The disturbance caused by an exact type measurement is

_ NL *NLJ.', NS R , most obvious when considering the conditional post-
? LE _H,BJ 'y (L LOVITIL |- [TIL I XL, measurement state ofsinglemolecule from the sample. As
b shown in Appendix A,
(19 ;
where we have defined tliecoherence kernel P = > €l (24
j=1
G(L,L") :f VaL(0)q.(€)de. (20 the conditional post-measurement state of a single molecule

is diagonal in thdxj) basis with eigenvalues given by the
Notice that settingG(L,L')=1 in Eq. (19 would yield a opservedype of the sample, independently of its state
density matrix p, identical to py. Finally, the post- Prior to the measurement. In words, an ensemble measure-
measurement state of a single molecule of the sample is of€nt of the relative occupation number of the single-

tained by taking a partial trace ovéd-1 moleculesp,  Molecule stateg|x;)} with outhme€:(€l,€2,...,€d) re-
=Try_dpyt and similarly for the conditional post- — Sets” the reduced state of a single molecule to a statistical

measurement staj,=Try_1{pnjc}- mixture of the stateg|x;)} with associated probabilitieé;.

The disturbance caused by the measurement is evaluat&tpwever, following the typical sequence theorem, En,
with the fidelity between the pre- and post-measurementhe observed coefficient§; are very likely to be close to
states. A fidelity of 1 indicates that the two states areRj=(xj|x). When averaging over measurement outcomes,
identical—i.e., the measurement did not cause disturbance-we recover the state— p;=3Rj|x;)}(x;| which has no off-
while a fidelity 0 indicates maximal disturbance. The fidelity diagonal terms—i.e|x;)(x;|. Thus, the exact measurement of

between two states and v is a macroscopic observabmpletely decoheres individual
T2 molecules of the samplié leaves the diagonal elements of
F(p,v) = (Tr{\p"2up3)?. (2)  unchanged while suppressing all off-diagonal terifhis

situation might appear worrisome for bulk-ensemble quan-
tum computing; we will return to this in Sec. ¥IMoreover,

the fgm|l|ar oyerlap '.:(p’|¢><(é|)_<¢|p|¢>' the measurement creates correlation between the molecules,

It is instructive to first consider t_he case wherg th_e mea-sopm& (pi)g)N andpy % (P1|1f)®N in general. The conditional
sgrement a_re perfectly accuratr?;(_) n Eq.(12)3 which im- post-measurement stajg, can even have entanglement
plies g, (£)=4(¢-L) and _G(L L .)_.BLL" In this case, the ;45 the different molecules of the sample.
post-measurement density matrix is

If one of the state is pure—say=|¢){p|—this reduces to

B. Gaussian smoothing

PN= %’ m(L,R)JL )L, (22) We now turn our attention to the case where the smooth-
ing functiong, (€) has a finite widtho. In the case of inter-
so it has completely decohered in the type bdkis i.e.,  est, the initial state of the samgh¥y) is pure, so combining
there are no off-diagonal terms of the foftn)(L’| like in  Eqgs.(15) and(19) we get
Eqg. (19). The fidelity between the pre- and post-measurement , /
919 y pre-andp Fon. ) = (Ul i)

states is then
= L,|B»m(L",|B]>)G(L,L"). (25
Fa:O(pNsP;v)=E[m(L,R)]2 E'm( |BJ| )m( |IBJ|) ( ) ( )
L

For the sake of clarity, we will first consider the Gaussian

a % m(L,R) X (mfx m(L,R)), distributionq, (¢) defined in Eq(12). The decoherence ker-

N nel defined in Eq(20) is then given by
! 1 d/2 ) )
1 G(L ,L ’) = (;2) e_(He - LH2+||{7 = L’Hz)/4o'2d€
= T
2aN)12TT 18 ,
2(20)% |

where the subscript=0 indicates that the measurement are
perfectly accurate, and we have used Stirling’s approximaThis is not surprising as the decoherence kernel is the con-
tion in the last line. Clearlygxact type measurements greatly volution of the smoothing function with itself. The convolu-
disturb the systemsince fidelity goes to zero as the size of tion of two distribution of widthe, and o, gives a distribu-

the sample increases, except in the case wifgra5; . A tion of width o' =0+ 0, SOG(L,L’) is a function of width
similar conclusion based on different considerations wage.

reached by Squirekl5]. It follows from the concavity of We can find a lower bound to the fidelity by truncating the
fidelity F(p,Z;p;v;)=Z2;p;F(p, ;) that the conditional post- sum in Eq.(25). By restrictingL andL’ to the domainD
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={L:|L -R|;=<A} whereR;=(x;|#|x;), we can lower bound lL=Lr)\®
the kernel byG(L,L’)=exp{-A?/2¢%} using the triangle lqu(€) —a..(0)] $C<T> (28
inequality. This yields the inequality
for sufficiently small|L —L ||, and some positive constants
, A2 2 ands[Eq. (28) is known as the Lipschitz conditignin gen-
Flon.pn) = exp{— ﬁ}( 2 b(L)> ' eral, c depends on the dimensiahof the molecules. There-
fore, the dependence of the bound, E2j?), on the dimen-
The quantity in the parentheses is a sum over the rdngé  siond (which may seem awkwajynly reflects our choice
a multinomial probability distribution. It is equal tB(|L  of theL, norm in the smoothing function; it is not universal.
-R|,<A)=P(|L -R|;<dA)=(1-eN®2) by the Cauchy- Given this assumption, we can derive the general result. It
Schwartz inequality and the typical sequence theorem, Eghould be mentioned that, ultimatety, (¢) depends on the
(1). Thus, we get details of the measurement procedure of the corresponding
macroscopic observablsee for example the model of Sec.

LeD

, A? _NdAZ/2\2 VI). However, if this measurement is of finite accuracy, then

Flon,pn) = exp{— ﬁ}(l -e )" (26)  the smoothing function must have a certain width and should
satisfy the above assumption.

Since this bound holds for all (which is an arbitrary cut- We see from Eq(25) that fidelity between the pre- and

off), we can maximize the right-hand side of E@6)—the  post-measurement states only depends on the decoherence
optimal value turn out to be attained whek?=2 In(1 kernel G(L,L")=[\a.(€)q./(€)d¢. Thus, the procedure
+2No?d)/Nd—to get the tightest bound: used in the previous section carries through straightfor-
wardly. We can truncate the sum, E5), to the domairiD
where|L -R|;<A, with R;=|8;|?. On this domain, the fluc-
tuations of the kernel are bounded by E@8) using the
triangle inequality. Moreover, aS(L,L)=1 by the normal-
Hence, as the size of the sample increases, the measuremegition condition of the smoothing function, we obtain
accuracyo can decrease as fast asyINwhile maintaining a
constant fidelityF(py, p{) =1—€ between the pre- and post- G(L,L")=1-c(Alo)*onD.
measurement states. l& decreases less rapidly than The bound
1/YN—e.g.,N7s for 0<s<1/2—the fidelity will go to 1 as
N grows. In particular, if o is constant, F(py,py) ~1 A\ _
_Clg N/N. p (PN pN) F(PN:p[,\j) = {1 _C<Z_> }(1 —-e NA2/2)2 (29)

The fidelity between the pre- andonditional post- ] ]
measurement States_i_@N and pN‘( respective|y_can be fO”OWS Stt’(_:llghtforwal’d|y from the typ|Ca| Sequence theorem,
computed using similar techniques. The computation is illusEd. (1). Given the value ofc ands, one can perform an
trated in Appendix B. While the mathematical details areOPptimization with respect ta\ to get the tightest bound.
slightly more involved, the essence of the result is identicalHlowever, this depends on the details of the smoothing func-
as long asr>1/\N—i.e., c=N"Sfor 0<s<1/2—the fidel- ton. . o

independently of the measurement outcaié,@ conrast  ETRE, P ERERERAT, BAE YRS LR D
with the result obtained in Ref9], where due to a sharp 4 PP P

smoothing function a low fidelity was obtained with some smoothing function can indeed be applied straightforwardly
small probability. to any type of smoothing function satisfying E@8). The

basic steps, starting from the expression

1 +In(2No?d
Flonpi = 1- -5 20 @)

C. General smoothing > Vg (&)m(L,R) ?
We now wish to argue that the essence of our measure- Fon pnje) = :
ment accuracy-state disturbance trade-off applies to arbitrary > qu(Om(L,R)
L

smoothing functiong, (€) introduced in Eq.(11), provided

that it is actually smooth with respect ta Let us be more  are the following. The sum in the numerator is truncated to
precise. Intrinsic to the smoothing function is a notion ofthe domainD. Using the typical sequence theorem and Eq.
distance on tha&l-dimensional pI’ObabI|Ity SimpleX. One can (28), we can bound the nominator of this expression by
define various distance measures on this space; e.g., our

choice of smoothing function, E412), in the previous sec- [ar(€) - c(Ala)](1 - eNA¥2)2,

tion relied on the distandé —L ||, induced by the_, norm. _ _
The exact statement of the trade-off will obviously depend!n€ denominator is bounded by E@8):
on the choice of distance measure. However, the essence of s

the result is independent of this choice, as all good distance % aL(O)m(L,R) < gr(£) + c(A/o)®.
measures are equivalent on small distances. Thus, a good

smoothing functiorg, (¢) should satisfy Combining these two inequalities yields, to first order,

022102-7



DAVID POULIN PHYSICAL REVIEW A 71, 022102(2005

Fpy PNM) = 1-2c(Alo)S— Ze—NA2/2_ IV. EXCHANGEABILITY

. - ' Before proceeding with the applications of the above re-
Again, the free parametex should be optimized to find the sults, we present an important result that will—under certain

tightest bound; the details of the trade-off depend on thé : - .
i . assumptions—Ilead to an objective perception of the state of
form of the smoothing function.

. . — . . . macroscopic systems. The conceptexichangeabilitywas
Finally, the scalinge~1/VN is optimal. A higher preci- . . . . N
sion woalld consideraggly dis\turb th:state of thg sys{)em. Thimtroduced in the classical theory of probability by de Finetti

; . o . f16] to substitute the incorrect use of “unknown probabili-
is because the multinomial distribution(L ,R) has a width 7, - : . . ;

—~ . ) ' ties.” A probability assignment is the expression of one’s
1/VN. Consider the expression of E@5). If the kernel has P Y d P

idth ller than the b il distributi h dsubjective knowledge about the possible outcomes of an ex-
a width smaller than the binomial distribution, the sum, an periment. Hence, it is not a property of a physical system

hence_the fidelity F(py,py), will be roughly equal 10 et hyt, rather, a property of the agent assigning the prob-
erf(ms‘N)z2<_r/_\sN7r for o<1/YN. The b_ound is also tight ability, so it cannot be unknown to him.
for the conditional post-measurement fidelRypy, py¢) as There are also several good reasons to believe that quan-
fidelity is a convex function. This can also be seen intuitivelyyym states are subjective; see, for exampld, 18—2Q and
by considering the behavior of two consecutive measurereferences therein. The state of a quantum system is a math-
ments. Upon fine-grained measurem@ill’, the variance of  ematical construct which allows one to compute probabilities
the outcomeL is 1/VN. However, if we first perform a for various measurements outconess a consequence of
coarse-grained measureme@”) of width o<1/YN and the subjective nature of quantum states, the concept of an
then perform a fine-grained measurement on the updategnknown quantum state in general an oxymoron, for es-
statepyy, the variance of the second measurement outcomgentially the same reasons which lead to this conclusion for
will be ¢: performing the coarse-grained measurement haslassical probability assignment.
altered its statistics. This means that the coarse-grained mea- However, unknown quantum states turn out to be quite
surement has appreciably disturbed the state of the sampleseful for the description of certain physical settings. Of par-
so F(PN-PN\@) is far from 1. ticular interest to us is the description of a sampleNof
“molecules.” Under certain circumstances—e.g., thermal
equilibrium—one can arrive at the conclusion that all the
molecules of the sample are equivalent, so they should all be
The results established in the present section hold undescribe by the same statewhich is itself unknown. This is
changed when the molecules of the sample are all preparexlvery common state of affairs in nuclear, atomic, or molecu-
in the samernixedstatev:Eid:l)\i|z,bi><¢/i|. The argument pro- lar physics where spectral quantities—which are formally
ceeds in three steps. First, we can construct a purification afescribed by macroscopic observables—are measured over a
the statev, large collection of quantum systems. In fact, in almost all
g physical experiments where ensemble measurements are per-
— . formed, the components of the sample are assumed to be in
|¢>:2 I, the “same unknown state” and the purpose of the measure-
=1 ment is to(partially) determine this state. Moreover, note that

by appending to each molecule an ancillary system of dimenMacroscopic observables do not allow one to discriminate
siond with orthonormal basig|i)}. Clearly, the reduced state between the molecules: all molecules of the sample are
of the molecule—obtained by tracing out the ancilla—is treated on equal footing. Hence, information gathered by

Trancid| ){(e|}=v. Second, the vectorﬁxj>|i>}i =1, form macroscopic measurements naturally leads to a state assign-

a basis for the Hilbert space of the pair molecule+anci|la.ment where all molecules are in the same, but perhaps par-

. (N) . , tially unknown, state.
The type projector€y. assomated with the molecule pnly To arrive at an appropriate description of the sample with-
measure the type of the prefig, so are a coarse-grained

version of the tvoe broiectors associated with the pair: th out referring to the unknown quantum state of individual
ype proj paur: olecules, we must clearly state the assumption of the agent

fgzguzﬁggcﬁ];hgéfjgzctg t:aeuzt;;ebof ;[Eg (S:irr?lf):itgatn Sg%:&%signing the state. His assumption is thatetstrary num-
) Thus, the bound, Eq26) ycan be a Iieg o Ber of molecules are all equivalemhich can be formalized
jectors. , us, _ 'oN ' P by demanding that the stapg assigned to the sample by the
F(®y, ®y) where®y=[$)(¢*" and observer satisfies the following requirements.
5 5 (i) For any permutationm of N molecules, ] py]=pn-
cp,’\l:f QN @ 1)Dy(QN ® 1)de. Such a state is called symmetric.

(i) For any positive integeM, there exists a symmetric
statepysm such thatoy=Try{pn:m}, Where Ty, denotes the
partial trace oveM molecules.

A state py satisfying these two conditions is callexk-

D. Mixed states

Finally, by monotonicity of the fidelity-F(&(p),E(v))
=F(p, ) for any trace preserving quantum operatiathe
bound applies directly to the pre- and post-measurement
states of the sample of molecules by tracing out the ancillas.
By similar considerations, all of the above conclusions can To quote Robert Griffiths, If probabilities are not real, then
be extended to mixed states. pre-probabilities[quantum statdsare even less real[17].
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changeable The quantum de Finetti representation theorentially in statev®N. As demonstrated in Sec. llI, this measure-
[6,21,27 asserts that any exchangeable quantum gfatda  ment has very high fidelity with the original state. Math-
sample ofN molecules can be written as ematically, this means

= f vNPH(v)dr, (30) QNN =~ pQNA| N peN,

Therefore, we get
wherev are density operators of a single molecule and Pr _
is a probability distribution over the quantum states of a P PQM[12N)
single molecule. PNje@ = [V pOMNa
The interpretation of this theorem is that itrisathemati- (Q¢"?lpn)
cally correctto look uponv as an objective element of real- Comparing this updated state with the initial state of the
ity about which we have incomplete knowledge: hence wesample, Eq(30), it is as if we had updated the probability
assign it some probability distribution ). For example, distribution Pt») of the real yet unknown state according
when the POVM{E;} is measured on the sample, the out-to Bayes’ rule P(y|x)=P(x|y)P(y)/P(x). However, this is
comek; is observed with probability strictly a mathematical identity; all we did was to apply the
. _ . state update rule, E¢Q), to an exchangeable state. This is of
P(EJ|pN)_Tr{EJpN} capital importance. Given the exchangeability assumption
and given that the observer can only gather information
:fTr{EJ”@N}Pr(V)d”:f P(E|v*M)Pr(v)dv. through the measurement of macroscopic quantities, the
guantum state update of E(@) behaves just like the classi-
(31) cal Bayes update rule. For these observers, the sample be-
We can think ofP(E; |v®N) as the probability of; given a havesas if the reduced state of a single moleculevas an
value of thereal parametery, but sincev is unknown, we Objective element of reality. Hence, the usual experimental-
average this probability over the possible valuew dfstrib-  ist's objection to the subjective nature of quantum states, “Of
uted according to Pr). However, it must be emphasized that Course quantum states are real, | measure them in my lab!,”

it is the assumption of exchangeability which leads to theS Mathematically justified by his limitations to measure
form of Eq. (30), which in turn legitimizes the term “un- Macroscopic observables on exchangeable statesnore

dv. (32

known state” for mathematical convenience. generally on states with no entanglement on macroscopic
scales as we shall soon establish
A. Bulk tomography We can repeat the procedure with different macroscopic

Quantum-state tomography is an experimental procedurgbservablesy,Cy;, ... derived from the single-molecule ob-
which transforms an exchangeable state of the form of EqServablesb,c,..., which do not necessarily commute with
(30) into a product state=1*N through repeated state up- each other. If the sets of observables are sufficiently
dates Eq(9). According to the de Finetti representation theo-informative—i.e., if their eigenStateﬂX}“)XX}m|}M:a,b,c,...
rem, we can equivalently say—and this is how tomographycontain  d’~1 linearly independent elements—the
is conventionally formulated—that the purpose of tomogra-updated probability distribution will converge with very high
phy is to determine which is theeal yet unknowrstater ~ probability to a & function for sufficiently large
describing theN identical molecules of the sample. N, Prv[€® ¢® )=4&%), so the final state

In Ref.[6], quantum-state tomography was studied in thewill be mea)e(b)__z?/@N. This is because the
context where the molecules of the sample are measured ifgnctions p(é(gNrﬂ)|V®N) are centered around ¢
dividually and the state of theest of the sample was up- :(<x(1“)|v|x(1“)>,(x(z“)|v|x(2”)>,...) and have a widtho. The
dated. Here, we present how guantum-state tomography CQate? is the only one satisfying all the linear constraints
be performed through bulk measurements. A similar descrip;_(u);~ (wn _ »(w) _
tion was recently and independently developeddh Let i |Ppx)=¢;" for all p=a,b,c,... up toaccuracyo.
Anv=23gy be a macroscopic observable deriving from theAgain, this ISas ifthe measurem%r;bts simply inform us of the
single-molecule observable as in Eq.(2). Exceptionally, identity of the “real but unknown?*", without disturbing it

we denote the eigenstates and eigenvalueswaith a super- in the limit of largeN.
script a|x}a)>:a§a)|x§a)> for later convenience. The finite ac-

curacy measurement of the macroscopic observaklas V. CLASSICALITY

defined through the POVI\{@N‘E‘)}. We have seen at the end of the last section that—under the
The conditional state of the sample after the measuremei@xchangeability assumption—macroscopic observables be-
of {é(em,a)} with outcomef@ is have as plassmal. Our _goal here is to formalize as w.eII as
extend this result. We will demonstrate that macroscopic ob-
_ [ mna enmnay PV servables define a classical limit for closed quantum systems;

pje = | (Q™ Qe )P("Q'%N,a)|pN) v i.e., they do not require interaction with any “environment.”

Observations play very different roles in classical and quan-
The quantity in parentheses is proportional to the conditionalum theory. In the classical setting, we can think of measure-
post-measurement state of the sample, given that it was ininents as unveiling an underlying “real” state of affairs: ob-
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servations reveal information about the state of the worldOVM elements describing the events commute. The consis-
without affecting it. On the other hand, quantum measuretent histories approach to quantum thef2g] lays down a
ments disturb or “collapse” the state of the system. set of conditions under which such behavior occurs. A com-

When states, either quantum or classical, are regarded ggete list of alternative evenTé‘O:{E}k)} at timet, defines a
subjective judgments of the world, both of the above descrippovm, A history is a list of “POVM  elementsH
tl(')ns'need revision. LeR(x;,y;) be the 'jomt probability ghs- =(EY E@ 'Egn)) at distinct timegty, t,, ... .t,. When the
tribution, or state, that the agent assigns to the classical S?ﬁitizjall stz]ﬁe of the]ns stem is, the probability of an historyd
quence of events{=x and Y=y;. Upon the observatioX . > y B, P

=¥;, the agent updates her predictions for evérgccording

to Bayes' rule P(H|p) - Tr{(EJ(:))lIZ. .. (E}Jl-))llzp(Ej(i-))lIZ. .. (EJ(:))lIZ}
P(y,[x) = —LPSE')'(V) ! (34)

! following Eqgs.(8) and(10). A complete family of histories is
whereP(x;) =2;P(x;,y;). This state generally differs from the the set of all combination of POVM elements from the sets
pre-measurement state assigned 1o M at all times, F={{W t,; 2 t,;...:{" t,}. A complete

family of histories is thus a sample space on which a prob-
P(yjlx) # P(y;) = 2 P(X, ;) ability distribution P(H|p) is defined. The family is said to
|

be consistentwhen the sum rule approximately holds for
Hence, the act of observing modifies the state assigned to P(H|p). This conditions is the simplest version of all consis-
Y. However, disregarding the observed valueXofor later ~ tency conditions but will be sufficient for our purposes. In
probability assignments is like not measuring the valug of this sense, consistent histories define a quasiclassical domain
at all: of familiar experience.
As was observed by Halliwelll1], histories correspond-
P(y;) = 2 P(y;[%)P(%). (33 ing to a sequence of finite accuracy measurement of macro-
i scopic observables generate a consistent family if the system

Indeed, we can interpret the observation as revealing thi @ sufficiently large sample of identically prepared
“real” value of X which was there all along: the agent simply Molecules—i.e., whep=»“". It should be stressed that the
did not know about it prior to her observation. In this sense Single-molecule observablesb,c, ... making up the histo-
X=x: is a real state of affairs about which the agent learndi€s do not need to commuté&or example, the coarse mea-
through the act of measurement. Thus, the state she assigfidrement of the magnetization of a sample of spialong
to Y prior to her observation of is the mixture of the state the z axis followed by a measurement along thewxis can
it would have given the different value & weighted by the generate a consistent family if the sample is sufficiently
probability of X; cf. Eq. (33). This reasoning extends in an large.
obvious way to any sequence of eveid X® ... X0 A simple argument to build our intuition in this direction
We can consider that the system follows a fixed historyiS to consider the commutator of any twormalizedmacro-
XD @ M of which the agent has incomplete knowl- scopic observables. Led and b be two arbitrary single-
12 Jn o) (@) " molecule observables and defingo be their commutator
edge, resulting in a joint d|str|but|oﬁ(lel ’Xiz_’ SR ) c=[a,b]. These operator can be suitably normalized so that
Quantum measurements behave quite differently. A quantey satisfy|al|,||b],||c/|= 1. The normalized macroscopic ob-

tum event corresponds to a “click” on a measurement appaseryableay, is defined ag=(1/N)=N,a,, and similarly for
ratus at some instant %tmtg Hence, each event is associ- g anq ¢, hence, [Ay],|IByl,[Cyl=1. A straightforward
ated a POVM elemert, '(t) in the Heisenberg picture at & aicylation shows that the commutator of the normalized
given timet,. (We will henceforth drop the explicit time macroscopic observables obeys

label t,.) In general, assigning definite yet unknown out-

comes to these events leads to incorrect predictions; e.g., the _1
sum rule [An:Bn] = NN (35)
PE?) = 2 P(E?|EY)P(E]” which implies [[Ay.By]| = 1/N. Thus, all macroscopic ob-
i1 servables commute in the limit of infinite-size sample and

does not hold in general. This is most obvious in Young'sCommuting observables systematically generate consistent

double-slit experiment where the everﬁ%‘) correspond to histories: measuring the value of one observable does not
the particle going through slif,=1 or 2 1and' label the affect the outcome statistics of other commuting observables.
P gong 9 i~ 1d]2 I ; % However, the infinite-sample considerations cannot be ap-
: ; e . lied straightforwardly to finite ensembléthis is the recur-
particle going through a definite yet unknown slit lead torent theme of this paperin particular, Eq.(35) does not

incorrect predictions. . involve any coarseness, which is essential to achieve consis-
There are, however, sequences of quantum events whic

do behave classically, as if the observations were revealing
an underlying reality, the typical example being when all the ®we assume for simplicity that the POVM aeal, see Sec. Il B.
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tency in finite ensembles. Our analysis of Sec. Il provideshe first half of the molecules are in stapg) while the
the right tools to formally study the consistency of macro-second half are in statg,). The measurement of the fre-
scopic histories operating on finite ensembles. Indeed, Halliquency operatoF™ of Eg. (7) yields the outcomd?,)
well’'s result is a straightforward consequence of the fact thatvith certainty when the state of the systemIi$p]. The

these measurements leave the stété of the ensemble es- average single-molecule state?sl|x1)<xl|+§|x2><x2|, so

sentially unchanged, so they do not alter the statistics ofzn 5150 yields an average rest(:%t %2) of the frequency op-
subsequent measurement outcomes. Moreover, our genegghyor Bt as opposed to the stétp], the outcome of the
analysis will allow us to extend the conclusions reached bXneasurement &N can fluctuate away frorﬁ%,%) when the

Halliwell to a much wider set of initial states. sample is in state®N. However, according to the typical

The first generguzatlon IS stralg_htforward:_by Ilnear_lty .Of sequence theorem, E(.), the size of these fluctuations will
Eq. (34), such families are automatically consistent for initial be of order 14N and so can only be perceived by macro-

exchangeablestates. Indeed, for any initial exchangeable . f I
statepy of the form Eq.(30), the probability of historyH scopic measurements of accuraoy=1/yN. For macro-
N ' ' scopic observables of coarseness 1/N, the two states

reads H[p] and ®N will yield the same statistics up to order
_ oN o N<1.
P(H|pn) 'f P(H[»*")Pr(v)dv. (36) Moreover, the statep and II[p] yield exactly the same
) ] o SN statistics for measurement outcomes of macroscopic observ-
Clearly, if the sum rule is satisfied for tHe(H|»*") indi-  pjes: this follows straightforwardly from the permutation

vidually, it is also satisfied for their convex combination. jnyariance of the type projectors, E@). We have thus es-
This is very much in the spirit of the de Finetti representationapjished the chain of equality,

theorem as one can interpret the outcome of the macroscopic 5 5 5

measurements as revealing partial information aboutethle P(QWN]p) = PQWN|[p]) = P(QN[2EN),

quantum state®N of the sample, of which we have incom- N . . o

plete knowledge. The consistency of such “macroscopic hisSC the statep and »*7 yield almost identical predictions

tories” for initial exchangeable state can also be seen as Wheno>1/\N. It follows that a sequence of finite accuracy

consequence of the fact that in those conditions the quantuf@Croscopic measurements performed on a state of the form

state update behaves approximately like a Bayesian updat@™v1® ¥2® - ® vy generates a consistent family of histo-

cf. Eq.(32). Indeed, the identitP(x):EyP(x|y)P(y) of clas-  ries for §uff|C|entIy large samples. This S|rr_1ple re;ult can be

sical probability theoryor more precisely its continuous ver- Slimmarlzed as follows: when the sample is assigned a state

sion) applied to Eq.(32) implies that the average post- P=71®12® - @y, coarse-grained macroscopic measure-

measurement state of the sample is approximately equal {§€Nts behave—to a high accuracy—as if the average state of
. , ~ (N,a) @ the moleculesy=(1/N)Z;»; was an objective element of

the initial state,p\= [ pn@P(Q, | pn)d¢'® = py, for any . . . .

o ¢ physical reality being discovered.

initial exchangeable staigy.

Moreover consider an arbitrary oroduct state of the In fact, any separable state leads to consistency of mac-
Ver, ! ltrary produ —aN roscopic historiesindeed, when the molecules of the sample
samplep=r;® 1,® - -+ ® vy. We will construct a state

. are not entangledvith each other, their state can be written
whose measurement outcomes, for coarse-grained macrg:

scopic observables, are statistically indistinguishable from

those obtained from the product stateThis will prove that

Haliwell's result applies to arbitrary product states as well. P:J Vi@ v ® @ wPI(vy, vy, .. y)drydey - doy.
Consider the symmetrized version af 38)

[p] = %2 V) @ Vr(2) @ @ VN, [This is the definition of entanglement: a state is said to be
T entangled if it cannot be written as E@8).] Now, consider
where the sum is over all permutations Nfelements. The the state
reduced state of a single molecule is
LN p= f PNPr(w)d, (39)
Try-o{l[p]} = NE W= v (37) _
k=1 where we have defined
The statedI[p] andv®N are in some sense very similar: they _ 1
are both symmetric, yield the same reduced single-molecule Pr(v) =f Privy, ... ’VN)5<V_ NE Vk>dV1"‘dVN-
state v, and yield the same expectation value of the fre- k
quency operatok FN)=((x,[1]x;),(X,[#]%y), ...). However, By linearity and using the result established above, we have
they are not identical. To illustrate this, consider a sample oP(H|p) = P(H|p) provided that the historield are generated
N two-dimensional molecule in the state by macroscopic observables of accuraey 1/\VN. Sincep
is exchangeable, the probabiliti®$H |p), and therefore the
p=ba)|® . @ )| @ n)nl ® - ® lo)al: probabilities P(H| p), approximately|satisfy the sum rule.
N2 N2 Again, this has a simple interpretation. The average state of
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When the molecules of the sample are correlated with each PN T T T
other, there is no well-defined average state. The observer
therefore assignes a probability distributi®t») over the
possible values of this “objective element of reality’hence
Eq. (39).

To put it simply, when macroscopic measurements ar

the sampler behaves like an objective element of realify. e Pt e =hw (e—ﬁh>®N
Z 1
whereZ=Tr{e#"} andz=Tr{e#"} are the partition functions
of the sample and of a single molecule, respectively. Each
molecule contains a certain number of nuclei which carry a

. . in, and it is these spin degrees of freedom which are used
coarse with respect to the quantum correlation length scaleq perform the computation. Due to their different chemical

the system, they behave classically. Indeed, assume thate%vironment, the various spins of a molecule can have dif-

sample oN molecules has guantum correlation lengfie., ferent Larmor frequencies;, which makes it possible to

there isé&-molecule entanglement in the system. Then, all of o ) .
the above construction can be applied to K collections address them individually. To do so, the sample is placed in

of £ molecules. We simply have to treat each block of ond coiled vv_ire through which a sequences of externally con-

tangled £ moleéules as one big molecule. There is no er]_trolled radlolfrequenCer) current pulses can be applied. By

tanglement between these big moleculeé so the previo roperly tgnmg_the frequency of the rf pulse, we can address
' | the spins with the same Larmor frequency, so all the

analysis ap!:Ltas, as long as the measurement accuracy olecules are addressed in parallel. Therefore, a sequence of
larger thanv¢/N. Thus, we see that only entanglement Ong_ulses transforms the state of the sample according to

“macroscopic” scales can cause quantum effects to the me
surement of coarse—graine_d mz_acrosc_opic observablr—;. o UeN, TN
We have demonstrated in this section that a classical limit PN PN '
can be obtained for closed quantum systems under certain ) ) . ) )
assumptions about the system’s initial state. This approach hereU is a unitary matrix acting on the Hilbert space of a
Comp|ementary to thejecoherenceprogram [24], where Slngle molecule. This tl’anSfO!’matlon.pl’eserve'S the tensor
classicality arises from the interaction between the system diroduct structure of the density matrpg=2""; it collec-
interest and its environment. Moreover, the combination ofively changes the state of individual molecule3 _
these two approaches extends the conclusions reached in thelt has been known for a long tinf@7] that the coupling
present section. When the sample interacts with an envirorRetween the nuclear spins and the coil can considerably dis-
ment, it will typically end up in a state that behaves classi-urb the state of the sample in certain regimes throboagtk-
cally under macroscopic measurements. For example, whegftion This noise ismotfundamentally irreversible; it is only
the effect of this interaction is to dephase or depolarize th&lue to our neglecting of high-order terms in the coupling
molecules of the sample, decoherence will destroy entangldd@miltonian. However, since the coil is also usedead out
ment on macroscopic scalE5], so coarse-grained “macro- the state of the sample, it must unavoidably induce extra
scopic histories” will be consistent. An other possibility is fundamentally irreversiblenoise, of the kind discussed in
that the environment interacts with the system through a€¢. lll. Indeed, in quantum theory, any measurement that
“collective coupling”; i.e., the system observables appearing€veals some information must unavoidably perturb the state
in the coupling Hamiltonian are of the form of E@). This  Of the systenj28]. This result is puzzling because the coil is
type of interaction will be studied in the next section. UnderPresent throughout the computation, not only during the
such a coupling, the environment is effectively measuringn€asurement phase, so should in principle disturb the com-
the macroscopic observables appearing in the couplingutation. o
Hamiltonian. Thus, after the interaction, the system is insen- A simple model to study the effect of this noise was pre-
sitive to further measurement of the same macroscopic obsented in Refl12]. The current in the coil can be modeled by
servables. For example, an environment consisting oft continuous quantum variabt®;=f ¢;|¢;)}#j|dr; where j
charged particles interacts with the total magnetization of dabels the modes of the field in the coil. Each field mdge
ferromagnet, effectively measuring the average value of théouples to the resonant magnetization of the sample—i.e., to
Pauli operatorgo,), (o), and{a) to finite accuracy. There- the spins of Larmor frequency;—through its conjugate
fore, after decoherence the ferromagnet will not be furtheffomentumil;, [TI;,®;]=i (IT is the “generator of transla-
disturbed by such measurements. tions” for @). The coupling Hamiltonian takes the forhf,
:ijHjM}‘ wherey is some coupling constafithat absorbs

VI. NMR INFORMATION PROCESSING the magnetization unit3g) and

Room-temperature nuclear magnetic resonafiésIR) SWhen the sequence of pulses generates a complex transforma
has been for several years a benchmark for quantum infor- 9 P g P

. - . tion, it is practically impossible to keep track of as this would
mation pro_cessm@26]. The Samplg co.ntalnNzllozo m.0|' require an exponential amount of computation. Hence, given our
ecules Wh,'Ch are to go_Od approximation nonlnteract'lng. du‘ﬁmited computational capacities, the sample should really be de-
to dynamical decoupllpg gau;ed by thermal exc't"’,‘t'onsscribed by an exchangeable state of the form, B6). Indeed, if
Hence, the total Hamiltonian is the sum of the single-e haq sufficient computational power to have complete knowledge
molecule Hamiltoniandd=Xh; it takes the form of EQ. f the stater®N after the pulse sequences, it would mean that the

(2), so it is a macroscopic observable. Initially, the sample isyuantum computation was useless since we are able to predict its
in a thermal state outcome.
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N 1 of such states. Consider, for example, the initial state of the
MX =2 0%y = ENE (2L -1 (40)  coil in a Gaussianmixture of Gaussian-like field modes
< ; Peoi* JE TNV ldg where [Wq) o f&@~04 | g)dp
is the total transverse magnetization of flie specie of nu- (the W, are like coherent states centered around the field
clei in their rotating frame of Larmor frequenay. Assume  Valueq). After a coupling timet, the observation of the field
for simplicity that each molecule contain a single spin- Mode in staté¢) updates the state of the sample to

nucleus which couples to the field modg, (we will thus ) Tr. Dot
drop the explicit 0 subscriptThis field mode is initially in PN PN = Feort (| #X(¢] © (D)}
state| V)= V()| p)d¢ and the sample is in stapg,. After a P(¢)
time t, simple calculations show that the joint state of the ZDZEN N
field and the sample is = J e 7N QugPnQy-da,
— ' * (4 AN ~[o-f(L)]H402AN) PR :
p(t) = E dgpde' V()W * (') where Qd) X /€ Q.- This is the continuous
LL version of the general-state update rule, &), for nonideal

, , ts. The corresponding POVM elemefs
C QL @ | = e‘qz’”‘z[Q('\'_)q]2 have width\ + o, which determines the ac-

wheref(L)=ytN(2L-1). The field modeD, is subsequently curacy of the measurement outcomes following ES).

observed to be in staf@), and accordingly the state of the However, the Kraus operatoﬁ%,:éfgf have widtho. Fol-

sample is updated to lowing Eq.(9), it is this width which governs the disturbance
- - caused to the state. Thus, it is not the measurement coarse-

¢ _ Treaif (X dl @ Dp®} QY pp QYY" ness A+o which ultimately determines the disturbance
PNTZPNIe = P(¢) TP caused to the state, but the details of the measurement pro-

_ cess. In this example, the statistical mixture caused by the
where Qi“):EL,\I'w—f(L’))Q(L'?) are coarse-grained type finite temperature of the coil added an extra source of uncer-
measurements like those of Eqll). The initial field tainty, characterized by the parameter

configuration ¥(¢) plays the role of the smoothing It is therefore necessary to have a detailed model of the
function and has width (in the L domain o  Interaction between the coil and sample and of the initial

~ W‘I’|‘I’§|‘l’>—<‘1’|¢o|‘1’>2/NYt- state of the coil to evaluate its contribution to decoherence of
This model may appear overcomplicated, but it is in factthe _state of the molecules. We suspect_ that, in actual NMR
quite simple. The field variabléy—which we can think of §ett|ngs, the measure.ment coarseness is largely due to statis-
as the amplitude of they, Fourier component of the current tical (therma) fluctuations of the type oh. l_—|,owever, we
in the coil—serves as a measurement apparatus: it is by reaf}iSO Suspect the coherent spread of the coil's wave function
ing the valueg of ®, that we learn about the magnetization ¢, to be much larger than 18, since cpherent n-1an|pulat|on.

of the molecules appears to be possible despite the coupling

of the spins with Larmor frequenay,. The coupling Hamil- . .
tonian is such that it “shifts” the value @b, by an amount to the coil. These questions, however, deserve a separate
study.

that is proportional to the value ofl; (the rotating magne-
tization induces a current in the cpillhus, determining the
amount by which®, got shifted allows us to infer the value
of M§. However, the coil may initiallynotbe in an eigenstate

of g, SO(W|DFW)—(W|Dy[¥)2>0 (it will typically be in a We have demonstrated a trade-off between macroscopic
coherent stafe Thus, our final measure of the value ®,  measurement accuracy and state disturbance for sample of
does not allow us to determine exactly by what amount it goidentically prepared quantum systems. A measurement
shifted: it can only do so up to accuracy coarseness smaller than\N causes a disturbance to the
V(W[ ®3W) —(W|do|W)?, which sets the accuraay on the  state of the system which increases as the size of the en-
measurement d¥1. Following the results established in Sec. semble grows, which is in apparent contradiction with the
Il C, a width > 1//N=~ 10710 ensures us that the measure- infinite-copy result. However, a measurement coarseness
ment does not significantly perturb the computation. >1/yVN induces a negligible disturbance to the state of the
Of course, the measurements achieved in the laboratorysample. This demonstrates that coarseness is an essential fea-
are much coarser than 6. Given the results presented in ture of the macroscopic limit. The type projectors of E4).
this paper, we could folloW12] and conclude that the pres- will unavoidably lead to macroscopic quantum fluctuations
ence of the coilor the NMR measurements in gengrad-  regardless of the size of the ensemble. Thus, the classical
duces a negligible disturbance to the state of the sampl@abservables encountered in our everyday (dey., position
However, our analysis does not apply here straightforwardlyand velocity of a baseball, bulk magnetization of a ferromag-
since NMR measurements are rndeal (see Sec. Il B This  net, etc) cannotbe suitably described in terms of von Neu-
is because the coil is not in a pure state at room temperaturenann macroscopic type projectors Ed)—the spectral pro-
As a consequence, not only is the coil not in an eigenstate géctors of average observables E@)—such as prescribed
®, (such as a coherent stgtbut it is in a statistical mixture by textbook quantum theory, but require coarse-grained

VII. CONCLUSION
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POVM’s, Eq. (11). Moreover, as illustrated with the mea- when the measurement is ideal. The NMR measurement pro-
surement model of Sec. VI, realistic measurements settingsess therefore deserves a detailed study.
give rise to coarse grained POVM's, not projective measures.
Using these results, we have argued that any sequence of
macroscopic observations behaves essentially classically ACKNOWLEDGMENTS
provided that there is no large-scale entanglement in the

sample. More precisely, th? measurgr_nent ofrnacroscopiq Ol?_' flamme, Camille Negrevergne, and Harold Ollivier for
?ﬁ;{’?ﬁelierscgg?:éﬁge; (i:so?;:;;?r;';}g%lﬁﬁe?fe?Iizt?r?eesql?ar\?-”de imulati,ng discussions. This work was supported in part by
. ) .Canada’s NSERC.

tum correlation length scale of the system. Under this condi-

tion, the quantum state update rule behasssf the mea-

surements were revealing information about an objective APPENDIX A: SINGLE-MOLECULE

element of reality: namely, the average reduced state of a POST-MEASUREMENT STATE

single moleculev. Hence, many independent observers ac-

quiring their information through these measurements will . astell

arrive to a common assignment @f In this operational ©f @ Single molecule: namely, Eq24). For this, it will be

sensey becomes an objective element of realif. ugeful to_ alter our notan_on a bit. In this subsection only, we
Our analysis does not apply when entanglement becomeXill _conS|dernon-normaI!zed typesf L()_() denotes the nor-

present on macroscopic scales. Clearly, not all such entangl@@lized type ofX, then its non-normalized type ML (X).

ment will yield quantum effects on the measurement of macJ hus, for this section onlyl.(X) is a d-component vector

roscopic observables. For example, the macroscopic quathosejth component, equals the number of occurrences of

tum superpositior{“cat”) State\,g(|xl>®N+|X2>®N), which is  the letterx; in X. Adding to the notation, for the typk

not exchangeable, behaves just like the exchangeable stafél‘l"" Ly of a N-letter string X, we denotg byL ™

%[(|xl><x1|)®’\‘+(|x2><x2|)®’\‘] for all macroscopic observables. _(Ll.' ~+Lj=1,...Lg) the type of the string obtameq b_y re-

Thus, it will be interesting to determine what type of en- moving one occurence of; from X. Of course, this is a

. . ) . . well-defined type only wheh,;=>1.

tangled states, if any, will manifest their quantum nature in Given this notation. we cajln write

the measurement of macroscopic observables. '
An interesting question arises from the study of the rela- (N) — Ny (N-1)

tion between exchangeable states and macroscopic observa- L EJ: Pl ® QL (AD)

tions. We have seen in Sec. V that applying a random per- (N-1) _ _

mutation to the molecules in a separable state yields a stawhere theQ -,"=0 whenL™i is not a well-defined type.

which is not exchangeable, but possesses similar characte&pplying the state update rule and tracing out all but a single

istics. We do not know what type of operation can transformmolecule, we get

We thanks Charles Bennett, Carl Caves, Raymond

We will show how to compute the post-measurement state

a generic quantum state into an exchangeable one. We sus-
. . Q(N) Q(N)
pect that performing a tomographically complete set of mac- puL = L PNCRL
roscopic measurements on subsets of the sample followed by = "N p@M|py)
a random permutation of the molecules would do the trick. (N-1) oN-1~(N-1)
Physically, this would mean that a collective coupling to the -3 )6 X (x [T Qi v QL
environment and a diffusion process would map any state to B i Xip XX G T P( (LN)|pN)
an exchangeable state. We also suspect that a random subset -
of VN molecules out of thé&l molecules of the sample would P(Q(L_Xj )|pN_1)
also be in an exchangeable state, regardless of the initial state = E Rj|xj><xj|T); (A2)
J- PQMlpn)

of the sample. This would be very interesting as it would

extend the reach of our classicality analysis. Moreover, unin the last line, we used the definition of the probability, Eq.

derstanding under what circumstances can a sample of physite), and the orthogonality of the type projectors, E§).

cal systems be treatess if they were all in the same un- The ratio appearing in the last line can easily be computed as

known state is of crucial importance since this is assumed iR involves multinomial distributions; it is equal to

most quantum experiments performed on macroscopic

sampleg(e.g., any type of spectroscopy Ri1...RLL... Rbd( N )
Finally, we have related our study to a NMR measurement 1 J Ly, ..o bj=1, ... Ly 1L

model introduced ih12]. We have extended their analysis to N =0 N

the case where the coil is not in a pure mode state but rather Ryt RJ.LJ’ .. Rgd< ) l

in a statistical mixture of such states, like a thermal state. In Ly, byl

this case, there are two parameters describing the MmaCcrhserting this into Eq(A2) (and keeping in mind the differ-

scopi(_: measurements: the widit+\ of the POVM elem_ents ent definitions ofL;) yields the result, Eq(24). Averaging
describes the accuracy of the measurements and width  tyis state over measurement outcorhegives

the Kraus operators governs the disturbance caused to the
state of the sample. Therefore, a measurement accuracy p:’L:E Ri[X;) (] (A3)
+\>1/VN does not guaranty a negligible disturbance except i
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The effect ofcoarse-grainedneasurementé(eN) on the 0 = 1 \9? _ € - L||§
state of a single molecule can be studied by straightforward a.(6) = 2752 262 |
modifications of the method outlined above. The results are
easily predictable: while the off-diagonal elemepis(x;| of ~ the fidelity takes the form
p; are completely suppressed wherr0, they only get ||€—L||2 2

) ~(N-1)  =(N-1) . > . m(L,R)

damped by a factor proportional tofQ, -, PN-1Q) } with - 452 '
L =NR when the measurement is coarse. Sinceé andL ™ Flonspnje) = > (B1)
are very close to each other on the probability simplex, this S expt - lle =L m(L,R)
decoherence factor is close to unity when the smoothing L 20° '

function g, (¢) is sufficiently wide. ) o o
For example, when we choose a Gaussian smoothing The lower bound on this expression is found by similar
function means that led to the bound on the fidelity betwegrand
py in Sec. lll, except that the presence of a denominator—
1 \92 € - L||§ absent in Eq(25—creates extra complications. Hence, let
aO={5">] exp -5 55 us start by considering the numerator. First, we use the tri-
angle inequality|L - €|,<|€¢-R|,+|[R-L|, to get an upper
(the extraN? in the denominator of the exponent is due to thepound
special normalization of the types used in this segtief 5 )
ementary algebra can be used to show that the matrix ele- gt ~ 03207 = (R~ €2+ [R = LIp%20?
mentv; of the single molecule density matrixget updated
according to

Then, just like we did in Sec. IIl, we truncate the sum to the
domainD={L :||L -R|,<A}. Clearly on this domain

(N) (—€i+L+0-Li+1)/N?0?
¢ 2 A OP@QN]py)Ly/Re ittty et - 03207 = (IR - o+ 82120 o . (B2)

Vij— Vijle = Vij

(N) '
E|_ oL (OPQ7 o) Combining these two steps yields the lower bound
The only nontrivial factors in this expression drgR; and o (R = dl + 8)%720 S m(L,R) 2
(~Ci+Li+6-Li+1)IN?? i N Vi '
et . However, the probability?( Q; |,,N) is LeD
according to the typical sequence theorem, Eg—very = (R~ tp+ A)2,20.2( 1—e‘NdA2’2)2 (B3)

sharply peaked arounid,=R;, so the factol;/R; is nearly
trivial [i.e., it differs from 1 byO(1/N)] in dominant terms  for the numerator of Eq(B1), where we appealed to the
of the sum. Similarly, the smoothing functiop(¢) becomes  Cauchy-Schwartz inequality and the typical sequence theo-
very small wherl differs from ¢; by more than roughl\o. rem, Eq.(1), to get the second line.

Thus, the argument of the exponentl’i*Li+(i—Lir DN jg Since we are interested in finding a lower bound to the
of order 1N in the dominant terms of the sum, so this factor fidelity, we must now find ampperbound to the denomina-
also differs from unity byO(1/N). Thus, the disturbance tor of Eq.(B1). To do this, we decompose the sum ip
caused to the matrix elementg are ofrelativeorder IN. A =2 cp+2( ¢p. The sum outside the domai can easily be
more quantitative comparison of the original and final single-bounded:

molecule state is obtained straightforwardly from our general e — 112 _NdA2

fidelity trade-off and the monotonicity of fidelity. L%D el L2 (L R) < EDD m(L,R) < ™7,

APPENDIX B: CONDITIONAL FIDELITY (B4)

We will compute, for an ensemble 8f molecule initially ~ Where the second inequality follows from the Cauchy-
in StateI‘I’N)=E}jzlﬂj|X,-), the fidelity between the pre- and Schwartz inequality and the typical sequence theorem. For
conditional post-measurement statgg and pyy, respec- the sum insideD, we use the triangle inequality¢ -R|;
tively. Starting from Egs(17) and (18), we can express the <[[€—L|.+[R-L||, which translates into

fidelty L -l = lle - Rl,~ A (B5)
/ 2
> \’GIL(e)m(L,R)] on the domairD. Before squaring this quantity, it is impor-
_ _Lt tant to determine whethéf —R|,—A is a positive or a nega-
F 1 - \I, ‘I, - ’ . . . 2 .
(Propie) = N|pw| v 2 q.(©m(L,R) tive quantity. We shall thus distinguish two cases.
L Case 1|[¢-R|,<A. In this case, we use the straightfor-
ward bound

whereR; =(xj|v|x;), and the multinomial coefficient
S gle-tF2e’ L Ry <1.

m(L,R):(NL " )HR]NLJ. Cep
S Combining this with Eq.(B4) yields the upper bound 1
2
Assuming that the smoothing function is Gaussian, +e N2 for the denominator of EqB1), so together with
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the numerator, EqB3), we get a bound on the fidelity: —2A/02(1 _e—NdA2/2)2

F(pn:pnje) =
o (Rt + A)Z/ZUZ(]_ _ e—NdA2/2)2 PN PNje 1 + @ NaAZ2+2i0?

(B6)

F(onspnje) = A2z _ ,
l+e This second case gives the worst bound, so(Bf) turns

o2 (1 _ N2 out to be universal, independent of the sign|6fR|,—A.
The cutoffA is a free parameter, so we should again try to

optimize it in order to achieve the tightest bound. We have

not found a closed form expression for this optimum. How-

ever, any assignmemnt=N"2 andA=NP with 2b<1, 2a<b,

and 22<1-2b yields

=

1+ e—NdA2/2

Case 2|[¢—R||,> A. In this case, the inequality, E(B5),
gives||lL —€|5= (¢ -R|,—A)? so the sum on the domaiR
is bounded by

S ele-tBel L Ry < e -R2-2%20 S 1y R)
LeD LeD e”N (1 —e_BNﬁ)Z A

F(pnprie) = 1-— 268V _gCV
< el Rly - 2202, (pn:prje) LracV y

so together with Eq.(B4), we get the upper bound
g (I-Rlo-8)%20% L N2 for the denominator of Eq(B1).
Combining this result with the bound on the numerator, Eq
(B3), yields

for some positive constant, B, C, «, 8, and y. For ex-
ample, when the accuracy of the measurement apparatus is
fixed to a constantr, setting the arbitrary cutoff parameter

(IR =t~ 8772071 _ grNan?12)2 A=N"" gives

. > >
e (1€ = Rl = 8)%20% | o~NdAZ/2

Flpn o) =

2
_e € - RlpA/e?(1 — g-NdAZ12y2 F(pnpr) = 1- 0221/3 _ g2
1+ e—NdA2/2+(H€ - R|, - 4)%252’ N
or using the fact that thi, distance is bounded Hip—q|/,
=<2 for any two probability distributionp andq, to first order.
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