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We study macroscopic observables defined as the total value of a physical quantity over a collection of
quantum systems. We show that previous results obtained for aninfinite ensemble of identically prepared
systems lead to incorrect conclusions for finite ensembles. In particular, exact measurement of a macroscopic
observable significantly disturbs the state of any finite ensemble. However, we show how this disturbance can
be made arbitrarily small when the measurements are of finite accuracy. We demonstrate a general trade-off
between state disturbance and measurement coarseness as a function of the size of the ensemble. Using this
trade-off, we show that the histories generated by any sequence of finite accuracy macroscopic measurements
always generate a consistent family in the absence of large-scale entanglement for sufficiently large ensembles.
Hence, macroscopic observables behave “classically” provided that their accuracy is coarser than the quantum
correlation length scale of the system. The role of these observable is also discussed in the context of NMR
quantum information processing and bulk ensemble quantum state tomography.
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I. OVERVIEW

Macroscopic observables correspond to physical quanti-
ties which are accessible to our senses. Since the physical
scale of individual quanta is generally tiny, macroscopic ob-
servables arise when a collection of quantum systems are
measured jointly. Formally, they can be described bytype
projectors, which reveal information about the average popu-
lation of single-particle states. For example, the total magne-
tization of an ensemble of spin-1

2 particles provides some
information about the relative occupation number of the
spin-upandspin-downstates. We will derive several general
properties of these measurement and discuss how they lead
to the emergence of a quasiclassical domain in the absence of
large-scale entanglement.

The effect of macroscopic observations oninfinite en-
semble of identically prepared quantum systems has been
studied in various contextsf1–4g. The main conclusion of
these studies is that the stateucl^N describing such an en-
semble is an eigenstate of type projectors whenN=`. How-
ever, for finite ensembles, things change dramatically. The
measurement of a macroscopic observable induces a distur-
bance whichincreasesas the size of the ensemble grows, in
apparent contradiction with the infinite-copy result. This dis-
crepancy follows from the ambiguous extension of finite-
copy considerations to the nonseparable Hilbert space of an
infinite-copy ensemblef5g. In this article, we show how the
essence of the infinite-copy result can be recovered for finite
ensembles by “smoothing” the type projectors into coarse-
grained positive-operator-valued measurementssPOVM’sd
sessentially going from the strong to the weak law of large
numbersd.

The paper is organized as follows. The central mathemati-
cal objects of the present study are defined in Sec. II. We first

summarize the method of type and define type projectors.
These are projectors on the degenerate eigensubspaces of
macroscopic observables of the formAN=ok=1

N askd, whereaskd
is a physical observable acting on thekth system of the en-
semble. Using the theory of generalized measurements, we
also define coarse-grained POVMs corresponding to finite
accuracy estimation of a macroscopic observable.

Section III contains the core mathematical analysis of our
study. We first recapitulate the well-known facts about type
projectors acting on infinite ensembles and show how they
dramatically break down for finite ensembles. Then, we
show how the result is approximately recovered when the
measurements are of finite accuracy and study the general
trade-off between measurement coarseness and state
disturbance—measured in terms of fidelity—as a function of
the size of the ensemble. In short, wedemonstrate that a mea-
surement of coarsenesss@1/ÎN leaves the systems essen-
tially unchanged; i.e. the fidelityF between the pre- and
post-measurement stats of the ensemble satisfies 1−F
~ lnsNs2d /Ns2.

Section IV is a discussion of the de Finetti representation
theorem which provides a wide class of state—exchangeable
states—for the study of macroscopic observables and is of
prime importance to bridge the gap between the subjective
nature of quantum states and the objective classical reality
f7g. Exchangeable states have recently been employed for the
discussion of quantum-state tomography based on single-
system measurements followed by Bayesian updatef6g.
We will show how macroscopic observables offer an alterna-
tive perspective on quantum tomography. Moreover, this ap-
proach offers interesting applications for quantum informa-
tion theory f8,9g and is a more accurate description of
experimental spectroscopy-based implementations of
tomography—e.g., as achieved in Ref.f10g.

Macroscopic observables also provide an explanation for
the emergence of the classical world we perceive from the*Electronic address: dpoulin@iqc.ca
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underlying quantum theory. Indeed, we demonstrate in Sec.
V that in the absence of large-scale entanglement, one of the
main characteristics of the classical domain follows naturally
from the general properties of coarse grained type POVM’s:
they behaveas if they were revealing information about an
underlying reality. This is done using the consistent histories
formalism which we briefly summarize. We demonstrate that
the histories generated byany sequence of macroscopic ob-
servables of accuracys@Îj /N are consistent, wherej is the
quantum correlation length scale of the system. This gener-
alizes some ideas introduced by Halliwellf11g on how to
achieve classicality in closed quantum systems.

Finally, Sec. VI discusses the role of macroscopic observ-
ables in NMR quantum information processing. In this con-
text, macroscopic observables are used to extract the output
of the computation, but also, since the measurement device
cannot be “turned off”—i.e., the state of the processor can
always be read off from the spectrometer—they constantly
perturb the computation. Following the results of Sec. III and
a measurement model introduced in Ref.f12g, we show that
the measurements used in NMR can in principle be suffi-
ciently precise to extract useful information about the com-
putation but yet so coarse grained that they induce a negli-
gible perturbation. However, as we will demonstrate, NMR
measurements may not follow our optimal measurement
coarseness-state disturbance trade-off when performed at
room temperature; caution is advised when applying our
conclusions. Finally, Sec. VII summarizes our results and
discusses some open questions.

II. DEFINITIONS

This section contains all the mathematical definitions re-
quired for our study. Our general setting consists of an en-
semble ofN quantum systems of the same nature. For sake
of clarity, we adopt the vocabulary of NMR. Therefore, we
shall refer to individual systems of an ensemble asmolecules
and to the ensemble ofN molecules itself as thesample.
Thus, the word “molecule” should not be taken literally in
what follows; it could be any elementary constituent of a
larger system.

A. Method of types

The method of type is a very powerful statistical tool with
applications ranging from large deviation theory, universal
coding, and hypothesis testing. We will only scratch the sur-
face of this theory here; more details and applications can be
found in f13g, for instance.

Let X=xj1
xj2

¯xjN
PXN be a string ofN letters drawn

from a d-letter alphabetX=hx1,x2, . . . ,xdj. The typesor em-
pirical probability distributiond of X is a vector of positive
numbers summing to one defined by

L sXd = „L1sXd,L2sXd, . . . ,LdsXd…,

whereLjsXd is the relative frequency of the letterxj in the
string X

LjsXd =
1

N
o
k=1

N

d j ,jk
;

it is simply the number of occurrences of the letterxj in X,
divided by the length ofX. For example, ifX=ha,b,cj and
N=4, thenL scbaad= s 1

2 , 1
4 , 1

4
d. We also define a type classT

to be the set of strings of a given type:

TfL g = hX P XN:L sXd = L j.

For example, using the same alphabet as above, we have
Tfs 1

4 ,0 ,3
4

dg=haccc,cacc,ccac,cccaj. The classTfL g can be
generated by applying all permutations to any single string of
type L . Hence, the number of elements inTfL g is given by
the multinomial coefficient:

uTfL gu = S N

NL1,NL2, . . . ,NLd
D =

N!

sNL1d ! sNL2d ! . . . sNLdd!
.

Let R=sR1,R2, . . . ,Rdd be a probability distribution over
X. The probability of the string of outputsX=xj1

¯xjN
of N

letters, each drawn independently according to the distribu-
tion R, is PsXd=Rj1

Rj2
¯RjN

. This can also be written as

PsXd = R1
NL1sXdR2

NL2sXd
¯ Rd

NLdsXd,

so given a fixed distributionR, the probability of a string
XPXN depends only on its type. Intuitively, the type of the
observed outcomeX is very likely to be close to the prob-
ability distribution of the random variable—i.e.,LjsXd<Rj,
asN increases. This is the substance of thetypical sequence
theoremf13g,

PsiL − Ri1
2 . ed ø e−Nfe/2−d lnsN+1d/Ng < e−Ne/2, s1d

where the “difference” between the typeL and the probabil-
ity distributionR is quantified by the variational distancesL1
normd:

iL − Ri1 = o
j

uLjsXd − Rju.

The typical sequence theorem takes on various forms. It can
be formulated in a stronger version using the relative en-
tropy, which is an upper bound to the variational distance.
Nevertheless, for our considerations, this simple version will
be sufficient.

B. Macroscopic observable

Using this notation, we now formally define macroscopic
observables. Consider a Hermitian operatorsi.e.,observabled
a acting on thed-dimensional Hilbert space of a single mol-
eculeHm. Let hux1l , ux2l , . . . ,uxdlj andha1,a2, . . . ,adj denote
its eigenvectors and eigenvalues:auxjl=a juxjl. We will as-
sume thata is nondegenerate; generalization is straightfor-
ward. The macroscopic observableAN corresponds to the
sum of observablea over all theN molecules of the sample,

AN = o
k=1

N

askd, s2d

whereaskd is the operatora acting on thekth molecule:
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The operatorAN acts on the joint Hilbert space of theN
moleculesHs=Hm

^N—the Hilbert space of the sample—
which has dimensiondN. We use the standard abbreviation
uXl= uxj1

l ^ uxj2
l ^ . . . ^ uxjN

l for each stringXPXN. Clearly,
the stateshuXlj form an orthonormal basis forHs. Moreover,
they are eigenstates of the macroscopic observableAN:

ANuXl = ANuxj1
l ^ uxj2

l ^ ¯ ^ uxjN
l

= o
k=1

N

askduxj1
l ^ uxj2

l ^ ¯ ^ uxjN
l

= o
k=1

N

a jk
uxj1

l ^ uxj2
l ^ ¯ ^ uxjN

l = o
k=1

N

a jk
uXl

= So
j=1

d

NLjsXda jDuXl. s3d

Thus, we see that the eigenvalue associated to a basis state
uXl depends only on its typeL sXd. As a consequence, the
degenerate eigensubspaces ofAN are those subspaces
spanned by the vectorsuXl belonging to the same type class.

This brings us to the definition oftype measurements
which are von Neumann measurements composed of the pro-
jection operators on the subspaces of a given type:

QL
sNd = o

XPTfL g
uXlkXu. s4d

Each of thesetype projectorsis labeled by a vector ofd
positive numbersLj which correspond to the typeL sXd of
the basis vectorsuXl spanning the subspace. Obviously, the
projectors QL

sNd depend on the choice of basisuxjl over
Hm—i.e., on the eigenvectors of the observablea—so we
could explicitly noteQL

sN,ad. Moreover, we would like to
stress that the spectral projectorsQL

sN,ad andQL8
sN,bd associated

with two distinct macroscopic observablesAN=okaskd and
BN=okbskd do not commute, unless the underlying single-
molecule observablesa andb happen to commute. To avoid
cumbersome notation, however, we will only use an extra
superscript when necessaryscf. Sec. IV Ad. For the time be-
ing, we will consider a fixed arbitrary macroscopic observ-
able AN. In this case, it is straightforward to verify that the
type projectors are mutually orthogonal and that they sum to
the identity

QL
sNdQL8

sNd = dL ,L8QL
sNd, o

L
QL

sNd = 1. s5d

In other words, these projectors correspond to the exact mea-
surement of the population of the levelsuxjl over an en-
semble ofN molecules, without distinguishing between the
molecules of the sample. The type projectorsQL

sNd allows us
to express the operatorAN in a simple form:

AN = o
L

ALQL
sNd, s6d

where we have definedAL =o j=1
d NLja j. This decomposition

follows straightforwardly from Eq.s3d as all the statesuXl
with L sXd=L composing the projectorQL

sNd have eigenvalue
AL . Similarly, any macroscopic observable of the form of Eq.
s2d has a spectral decomposition involving only type projec-
tors, as in Eq.s6d. Hence, following textbook quantum me-
chanics, when measuring a macroscopic observable—or
measuring the “expectation value” of a physical observable
over a macroscopic sample—one is really performing a pro-
jective von Neumann measurement composed of type projec-
tors.

These type projectors have been studied under many dif-
ferent formsf1–3g and take on many different names. Among
other formulations are the frequency operators. Recall that
LjsXd is the relative frequency of the symbolxj in the string
X. We can define afrequency operator

Fj
sNd = o

X

LjsXduXlkXu.

This operator is a macroscopic physical observable whose
eigenvalues aref j =0,1/N,2 /N, . . . ,1. Indeed,Fj

sNd takes on
the form of Eq.s2d by setting the single-molecule observable
a to s1/Nduxjlkxju. Following textbook quantum mechanics,
when the measurement associated withFj

sNd is performed and
eigenvaluef j is observed, the state of the system gets col-
lapsed to the subspace spanned by the statesuXl for which
LjsXd= f j. Hence, the eigenvaluef j indicates the relative
population of the single-molecule stateuxjl in the sample of
N molecules.

The above construction yieldsd commutingphysical ob-
servableshFj

sNdj j=1,. . .,d, one for each single-molecule state
huxjlj j=1,. . .,d. Regrouping these observable into a
d-component observable yields

FsNd = sF1
sNd,F2

sNd, . . . ,Fd
sNdd = o

L
LQL

sNd, s7d

which takes on the form of Eq.s6d, with a d-component
eigenvalueAL =L . The value of any macroscopic observable
of the form of Eq.s6d can be deduced straightforwardly from
the value ofFsNd. Hence, a great deal of attention has been
focused on the macroscopic observableFsNd, without loss of
generality.

We illustrate macroscopic observables for a sample ofN
spin-12 particles. We choose the basisux1l= u↑ l and ux2l= u↓ l
corresponding, respectively, to +1

2 and −1
2 units of magneti-

zation in thez direction:

szux1l =
1

2
ux1l and szux2l = −

1

2
ux2l.

We can use a single positive numberL
P h0,1/N,2 /N, . . . ,1j to label the type of a binary stringX,
which corresponds to the fraction ofx1’s sor spin up’sd in X.
Hence, a typeL is a shorthand forL =sL ,1−Ld. The bulksor
totald magnetization of the sample is equal to the sum of the
magnetization of each molecules: the corresponding operator
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is thereforeMz=ok=1
N sskd

z , wheresskd
z is the Pauli operator in

the z direction acting on thekth molecule. When the sample
is in a state of a definitive typeL, its bulk magnetization is
equal to 1

2NsL1−L2d= 1
2Ns2L−1d, which is simply the num-

ber of spins pointing up minus the number of spins pointing
down, times1

2. Hence, the observable corresponding to the
bulk magnetization can be written as

Mz = N
1

2o
L

s2L − 1dQL
sNd,

where the sum is over all types. The type projectorsQL
sNd are

projectors on the degenerate eigensubspaces of the bulk
magnetization operator. Clearly, an exact measurement of the
magnetizationMz would reveal the type of the state of the
sample—i.e., the relative frequency ofup anddownspins.

C. Coarse-grained macroscopic POVM’s

We will now present how finite accuracy macroscopic ob-
servables can be expressed in terms of type projectors. Be-
fore we do so, we briefly recall some basic concepts of the
theory of generalized measurements. Generalized measure-
mentssPOVM’sd are described by a set positive operatorsEj
summing to identity. The generalized Born rule for the prob-
ability of getting outcomeEj given initial stater is the same
as for von Neumann measurements:

PsEjurd = TrhEjrj. s8d

After the measurement outcomeEj is observed, the state of
the system gets updated to

r→
j

ru j u =

o
i

Aji
†rAji

PsEjurd , s9d

where theKraus operators Aji can be any set of operators
satisfying oiAjiAji

† =Ej. Here, we will often considerideal
quantum measurements where the disturbance inflicted to the
system is in some sense minimalf14g. This restriction is
necessary if we want to study the optimal trade-off between
information gathering and state disturbance. To each mea-
surement outcomeEj of an ideal measurement is associated a
singleKraus operatorAj0=ÎEj. In this case, the state update
rule, Eq.s9d, simplifies to

r→
j

ru j u =
ÎEj

†rÎEj

PsEjurd , s10d

which reduced to the regular state update rule whenEj are
projection operators. Hence, von Neumann measurements
are minimally disturbing POVM’s with an extra orthogonal-
ity constraint. Any generalized measurement can be realized
physically by coupling the system of interest to a larger sys-
tem and performing a von Neumann measurement on the
larger system; an example of such a physical construction
will be presented in Sec. VI. Similarly, any such “indirect”
measurement corresponds to a POVM. Hence, POVM’s do
not add anything extra to plain textbook quantum mechanics,
beside conciseness.

Continuing with our example,finite accuracymeasure-
ment of the bulk magnetization of a sample ofN spin-12
molecules can be described in terms ofcoarse-grainedtype

operatorsQ̃,
sNd. When the state of the sample is of a definite

typeL, theobservedvalue of the bulk magnetization will not
necessarily be equal to12Ns2L−1d, but due to the uncertainty
of the measurement apparatus, may take different values
1
2Ns2,−1d, with respective probabilitiesqLs,d. The function
qLs,d should be centered aroundL and have a certain width
s corresponding to the coarseness of the measurement.

Hence, the coarse-grained type measurements can be de-
fined by “smoothing” the exact type projectors:

Q̃,
sNd = o

L

ÎqLs,dQL
sNd, s11d

whereqLs,d is some probability distribution over, centered
roughly atL and has the interpretation given above. In prin-
ciple,, could be any reald-dimensional vector, as it contains
statistical fluctuations. For example,qLs,d could be a
d-dimensional Gaussian

qLs,d = S 1

2ps2Dd/2

expH−
i, − L i2

2

2s2 J , s12d

which is properly normalizedeqLs,dd,=1 and where theL2

norm is i,−L i2
2=o js, j −Ljd2. The operatorsE,=Q̃,

sNdQ̃,
sNd†

form a POVMswith a continuous outcomed since they are all
positive operators and satisfy

E E,d, =E Q̃,
sNdQ̃,

sNd†d, = 1. s13d

These coarse-grained type operators describe a situation
where our measurement apparatus is not sufficiently precise
to measure the exact population of each level, but rather
provides an estimation of it within a finite accuracys.

We have assumed that the measurement outcome, takes
on a continuous spectrum. However, several measurement
apparatus, like those equipped with a numerical output dis-
play, have a discrete spectrum of outcomes. This can be
taken into account by choosing a smoothing function

qLs,d = o
, j

ds, − , jdf jsL d,

where h, jj is the set of possible outcomes. Thus, we will
henceforth consider the more general continuous case, but all
our analysis carries through for discrete measurement out-
comes by performing the above substitution.

III. TYPE MEASUREMENT ON IDENTICALLY PREPARED
SYSTEMS

Type projectors were first studied by Finkelsteinf1g,
Hartle f2g, and Grahamf3g as part of discussions on the
interpretation of probabilities in quantum theory. The main
characteristic of type projectors identified by these authors
can be summarized as follows. Letucl=o jb juxjl be an arbi-
trary pure state of ad-level molecule, with associated density
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matrix n= uclkcu. Consider a sample ofN identically pre-
pared molecules, such that the state of the sample isuCNl
= ucl^N. Upon measurement of the type of the sample, we
expect a result close to the probability distributionR
=skx1unux1l , . . . ,kxdunuxdld=sub1u2, . . . ,ubdu2d. Indeed, it fol-
lows from the strong law of large numbers that

lim
N→`

uFj
sNduCNl − ub ju2uCNlu2 = 0, s14d

whereFj
sNd is the j th component of the frequency operator

defined in Eq.s7d. In other words,FsNduCNl=RuCNl with
probability 1 in the limit of infiniteN. This led Hartle to the
conclusion that an infinite number of identically prepared
molecules are in an eigenstateuC`l of the frequency operator
Fs`d with eigenvalueR. Finkelstein, on the other hand, con-
cluded from Eq.s14d that for finiteN, uCNl is “close” to an
eigenstate ofFsNd with eigenvalueR. Thus, a measurement
of the frequency operator reveals the probabilitiesRj
=kxjunuxjl, in the standard Copenhagen sense, of observing a
single molecule of the sample in the stateuxjl.

However, the conclusions reported above can be quite
misleading. There are really two distinct issues here. The first
one concerns the validity of the argument as a derivation of
Born’s rule to assign probabilities in quantum theory. The
main complication comes from the definition ofFs`d as the
limit of a finite operator. This limit does not uniquely defined
the operator on thenonseparableHilbert spaceHm^ Hm
^¯ of the infinite sample: specifying the action ofFs`d on
all states of the formux1l ^ ux2l ^¯ is not enough to define
it. This was realized inf4g where an alternative derivation of
the probability rule was presented. Nevertheless, the pro-
posed solution is still not satisfactory as it relies itself on
probability theory. An up-to-date and rather critical discus-
sion of the status of the frequency operator and the related
programs can be found in a recent paper of Caves and
Schackf5g. We will not address these issues any further and
do not claim to offer an alternative derivation of Born’s rule.

The second difficulty which is directly relevant to the
present study concerns state disturbance. When a system is
prepared in an eigenstate of a physical observable, the act of
measurement does not disturb it. While Eq.s14d does not
grant this for any finiteN, one naturally expectsslike Finkel-
stein didd that, asN grows, the disturbance caused by the
measurement should decrease and eventually become negli-
gible for all practical purpose.

In what follows, we will show that themeasurement of
macroscopic observables induces an important disturbance
to the state of the sample. In fact, this disturbance increases
as the size N of the sample grows. This is in apparent con-
tradiction with the conclusion that one might intuitively draw
from Eq. s14d by extending it to finiteN. However, we will
show how the above conclusion can be recovered when the
measurement of macroscopic observables are of finite accu-
racy:sufficiently coarse-grained type measurements induce a
negligible disturbance to the state of the sample. We are
interested in the trade-off between measurement accuracy
and state disturbance.

A. State disturbance

The state of the sample can be rearranged as follows:

uCNl = So
j=1

d

b juxjlD^N

= o
XPXN

Sp
j=1

d

b j
NLjsXdDuXl

= o
L
Fp

j=1

d

b j
NLjG o

XPTfL g
uXl = o

L
Sp

j=1

d

b j
NLjDÎuTfL guuL l,

s15d

where we have defined the normalized state

uL l =
1

ÎuTfL gu
o

XPTfL g
uXl

and

uTfL gu = S N

NL1, . . . ,NLd
D

denotes the cardinality of the type classTfL g. The density
operator associated to this state will be denotedrN
= uCNlkCNu=n^N.

Upon measurement of the coarse-grained operators of Eq.
s11d, the probability of observing an outcome within an in-

finitesimal volume rangedø of ø is PsQ̃ø
sNd urNddø wherefsee

Eq. s8dg

PsQ̃ø
sNdurNd = TrhQ̃ø

sNdrNQ̃ø
sNdj s16d

= o
L ,L8

ÎqLs,dqL8s,dTrhQL
sNdrNQL8

sNdj

= o
L

qLs,dkCNuQL
sNduCNl

= o
L

qLs,dmsL ,Rd s17d

andmsL ,Rd denotes the multinomial distribution

msL ,Rd = S N

NL1, . . . ,NLd
Dp

j

Rj
NLj .

Following Eq. s10d, the conditional post-measurement state
of the ensemble given measurement outcome, is

rNu, =
Q̃,

sNdrNQ̃,
sNd

PsQ̃,
sNdurNd

=
1

PsQ̃,
sNdurNd

o
L

o
L8

p
j ,j8

b j
NLjb

j8

*NL
j8
8

3 ÎqLs,dqL8s,dÎuTfL gu · uTfL 8guuL lkL 8u. s18d

The post-measurement state is obtained by averaging the
conditional post-measurement states over all measurements
outcomes:
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rN8 =E PsQ̃,
sNdurNdrNu,d, =E Q̃,

sNduClkCuQ̃,
sNd

= o
L

o
L8

p
j ,j8

b j
NLjb

j8

*NL
j8
8
GsL ,L 8dÎuTfL gu · uTfL 8guuL lkL 8u,

s19d

where we have defined thedecoherence kernel

GsL ,L 8d =E ÎqLs,dqL8s,dd,. s20d

Notice that settingGsL ,L 8d=1 in Eq. s19d would yield a
density matrix rN8 identical to rN. Finally, the post-
measurement state of a single molecule of the sample is ob-
tained by taking a partial trace overN−1 moleculesr18
=TrN−1hrN8 j and similarly for the conditional post-
measurement stater1u,=TrN−1hrNu,j.

The disturbance caused by the measurement is evaluated
with the fidelity between the pre- and post-measurement
states. A fidelity of 1 indicates that the two states are
identical—i.e., the measurement did not cause disturbance—
while a fidelity 0 indicates maximal disturbance. The fidelity
between two statesr andn is

Fsr,nd = sTrhÎr1/2nr1/2jd2. s21d

If one of the state is pure—say,n= uflkfu—this reduces to
the familiar “overlap”Fsr , uflkfud=kfurufl.

It is instructive to first consider the case where the mea-
surement are perfectly accurate,s=0 in Eq.s12d, which im-
plies qLs,d=ds,−L d and GsL ,L 8d=dLL 8. In this case, the
post-measurement density matrix is

rN8 = o
L

msL ,RduL lkL u, s22d

so it has completely decohered in the type basisuL l; i.e.,
there are no off-diagonal terms of the formuL lkL 8u like in
Eq. s19d. The fidelity between the pre- and post-measurement
states is then

s23d

where the subscripts=0 indicates that the measurement are
perfectly accurate, and we have used Stirling’s approxima-
tion in the last line. Clearly,exact type measurements greatly
disturb the system, since fidelity goes to zero as the size of
the sample increases, except in the case whereb j =d j j 0

. A
similar conclusion based on different considerations was
reached by Squiresf15g. It follows from the concavity of
fidelity Fsr ,o jpjn jdùo jpjFsr ,n jd that the conditional post-

measurement staterNu, also has, with high probability, a van-
ishing fidelity with the original staterN.

The disturbance caused by an exact type measurement is
most obvious when considering the conditional post-
measurement state of asinglemolecule from the sample. As
shown in Appendix A,

r1u, = o
j=1

d

, juxjlkxju:, s24d

the conditional post-measurement state of a single molecule
is diagonal in theuxjl basis with eigenvalues given by the
observedtype of the sample,, independently of its staten
prior to the measurement. In words, an ensemble measure-
ment of the relative occupation number of the single-
molecule stateshuxjlj with outcome,=s,1,,2, . . . ,,dd “re-
sets” the reduced state of a single molecule to a statistical
mixture of the stateshuxjlj with associated probabilities, j.
However, following the typical sequence theorem, Eq.s1d,
the observed coefficients, j are very likely to be close to
Rj =kxjunuxjl. When averaging over measurement outcomes,
we recover the staten→r18=o jRjuxjlkxju which has no off-
diagonal terms—i.e.,uxilkxju. Thus, the exact measurement of
a macroscopic observablecompletely decoheres individual
molecules of the sample; it leaves the diagonal elements ofn
unchanged while suppressing all off-diagonal terms.sThis
situation might appear worrisome for bulk-ensemble quan-
tum computing; we will return to this in Sec. VId. Moreover,
the measurement creates correlation between the molecules,
sorN8 Þ sr18d

^N andrNuøÞ sr1uød^N in general. The conditional
post-measurement staterNuø can even have entanglement
across the different molecules of the sample.

B. Gaussian smoothing

We now turn our attention to the case where the smooth-
ing functionqLsød has a finite widths. In the case of inter-
est, the initial state of the sampleuCNl is pure, so combining
Eqs.s15d and s19d we get

FsrN,rN8 d = kCNurN8 uCNl

= o
L ,L8

msL ,ub ju2dmsL 8,ub ju2dGsL ,L 8d. s25d

For the sake of clarity, we will first consider the Gaussian
distributionqLs,d defined in Eq.s12d. The decoherence ker-
nel defined in Eq.s20d is then given by

GsL ,L 8d =E S 1

2ps2Dd/2

e−si, − L i2
2+i, − L8i2

2d/4s2
d,

= expH−
iL − L 8i2

2

2s2sd2 J .

This is not surprising as the decoherence kernel is the con-
volution of the smoothing function with itself. The convolu-
tion of two distribution of widths1 ands2 gives a distribu-
tion of width s8=s1+s2, soGsL ,L 8d is a function of width
2s.

We can find a lower bound to the fidelity by truncating the
sum in Eq.s25d. By restrictingL and L 8 to the domainD
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=hL : iL −Ri2øDj whereRj =kxjunuxjl, we can lower bound
the kernel byGsL ,L 8dùexph−D2/2s2j using the triangle
inequality. This yields the inequality

FsrN,rN8 d ù expH−
D2

2s2JS o
LPD

bsLdD2
.

The quantity in the parentheses is a sum over the rangeD of
a multinomial probability distribution. It is equal toPsiL
−Ri2øDdù PsiL −Ri1ødDdù s1−e−NdD/2d by the Cauchy-
Schwartz inequality and the typical sequence theorem, Eq.
s1d. Thus, we get

FsrN,rN8 d ù expH−
D2

2s2Js1 − e−NdD2/2d2. s26d

Since this bound holds for allD swhich is an arbitrary cut-
offd, we can maximize the right-hand side of Eq.s26d—the
optimal value turn out to be attained whenD2=2 lns1
+2Ns2dd /Nd—to get the tightest bound:

FsrN,rN8 d ù 1 −
1 + lns2Ns2dd

Ns2d
. s27d

Hence, as the size of the sample increases, the measurement
accuracys can decrease as fast as 1/ÎN while maintaining a
constant fidelityFsrN,rN8 d=1−e between the pre- and post-
measurement states. Ifs decreases less rapidly than
1/ÎN—e.g.,N−s for 0,s,1/2—the fidelity will go to 1 as
N grows. In particular, if s is constant, FsrN,rN8 d,1
−cln N/N.

The fidelity between the pre- andconditional post-
measurement states—i.e.,rN and rNu, respectively—can be
computed using similar techniques. The computation is illus-
trated in Appendix B. While the mathematical details are
slightly more involved, the essence of the result is identical:
as long ass@1/ÎN—i.e., s=N−s for 0øs,1/2—the fidel-
ity FsrN,rNu,d goes to 1 asN increases. Moreover, this is true

independently of the measurement outcome Q˜
,
sNd, in contrast

with the result obtained in Ref.f9g, where due to a sharp
smoothing function a low fidelity was obtained with some
small probability.

C. General smoothing

We now wish to argue that the essence of our measure-
ment accuracy-state disturbance trade-off applies to arbitrary
smoothing functionqLsød introduced in Eq.s11d, provided
that it is actually smooth with respect toL . Let us be more
precise. Intrinsic to the smoothing function is a notion of
distance on thed-dimensional probability simplex. One can
define various distance measures on this space; e.g., our
choice of smoothing function, Eq.s12d, in the previous sec-
tion relied on the distanceiL −L 8i2 induced by theL2 norm.
The exact statement of the trade-off will obviously depend
on the choice of distance measure. However, the essence of
the result is independent of this choice, as all good distance
measures are equivalent on small distances. Thus, a good
smoothing functionqLs,d should satisfy

uqLs,d − qL8s,du ø cS iL − L 8i1

s
Ds

s28d

for sufficiently smalliL −L 8i1 and some positive constantsc
ands fEq. s28d is known as the Lipschitz conditiong. In gen-
eral,c depends on the dimensiond of the molecules. There-
fore, the dependence of the bound, Eq.s27d, on the dimen-
sion d swhich may seem awkwardd only reflects our choice
of theL2 norm in the smoothing function; it is not universal.
Given this assumption, we can derive the general result. It
should be mentioned that, ultimately,qLs,d depends on the
details of the measurement procedure of the corresponding
macroscopic observablessee for example the model of Sec.
VI d. However, if this measurement is of finite accuracy, then
the smoothing function must have a certain width and should
satisfy the above assumption.

We see from Eq.s25d that fidelity between the pre- and
post-measurement states only depends on the decoherence
kernel GsL ,L 8d=eÎqLs,dqL8s,dd,. Thus, the procedure
used in the previous section carries through straightfor-
wardly. We can truncate the sum, Eq.s25d, to the domainD
whereiL −Ri1øD, with Rj = ub ju2. On this domain, the fluc-
tuations of the kernel are bounded by Eq.s28d using the
triangle inequality. Moreover, asGsL ,L d=1 by the normal-
ization condition of the smoothing function, we obtain

GsL ,L 8d ù 1 − csD/sds on D.

The bound

FsrN,rN8 d ù H1 − cS D

2s
DsJs1 − e−ND2/2d2 s29d

follows straightforwardly from the typical sequence theorem,
Eq. s1d. Given the value ofc and s, one can perform an
optimization with respect toD to get the tightest bound.
However, this depends on the details of the smoothing func-
tion.

Similarly, we can derive a bound for the fidelity of the
conditional post-measurement state whens@1/ÎN. The
technique illustrated in Appendix B for a specific choice of
smoothing function can indeed be applied straightforwardly
to any type of smoothing function satisfying Eq.s28d. The
basic steps, starting from the expression

FsrN,rNuød =
Fo

L

ÎqLsødmsL ,RdG2

o
L

qLsødmsL ,Rd
,

are the following. The sum in the numerator is truncated to
the domainD. Using the typical sequence theorem and Eq.
s28d, we can bound the nominator of this expression by

fqRs,d − csD/sdsgs1 − e−ND2/2d2.

The denominator is bounded by Eq.s28d:

o
L

qLs,dmsL ,Rd ø qRs,d + csD/sds.

Combining these two inequalities yields, to first order,
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FsrN,rNu,d ù 1 − 2csD/sds − 2e−ND2/2.

Again, the free parameterD should be optimized to find the
tightest bound; the details of the trade-off depend on the
form of the smoothing function.

Finally, the scalings,1/ÎN is optimal. A higher preci-
sion would considerably disturb the state of the system. This
is because the multinomial distributionmsL ,Rd has a width
1/ÎN. Consider the expression of Eq.s25d. If the kernel has
a width smaller than the binomial distribution, the sum, and
hence the fidelity FsrN,rN8 d, will be roughly equal to
erfssÎNd<2s /ÎNp for s!1/ÎN. The bound is also tight
for the conditional post-measurement fidelityFsrN,rNuød as
fidelity is a convex function. This can also be seen intuitively
by considering the behavior of two consecutive measure-
ments. Upon fine-grained measurementQL

sNd, the variance of
the outcomeL is 1/ÎN. However, if we first perform a

coarse-grained measurementQ̃ø
sNd of width s!1/ÎN and

then perform a fine-grained measurement on the updated
staterNuø, the variance of the second measurement outcome
will be s: performing the coarse-grained measurement has
altered its statistics. This means that the coarse-grained mea-
surement has appreciably disturbed the state of the sample,
so FsrN,rNu,d is far from 1.

D. Mixed states

The results established in the present section hold un-
changed when the molecules of the sample are all prepared
in the samemixedstaten=oi=1

d liucilkciu. The argument pro-
ceeds in three steps. First, we can construct a purification of
the staten,

ufl = o
i=1

d

Îliuciluil,

by appending to each molecule an ancillary system of dimen-
siond with orthonormal basishuilj. Clearly, the reduced state
of the molecule—obtained by tracing out the ancilla—is
Trancillahuflkfuj=n. Second, the vectorshuxjluilji,j=1,. . .,d form
a basis for the Hilbert space of the pair molecule+ancilla.
The type projectorsQL

sNd associated with the molecule only
measure the type of the prefixxj, so are a coarse-grained
version of the type projectors associated with the pair: the
disturbance they cause to the state of the sample can only be
less than the disturbance caused by the complete type pro-
jectors. Thus, the bound, Eq.s26d, can be applied to
FsFN,FN8 d whereFN= uflkfu^N and

FN8 =E sQ̃ø
sNd

^ 1dFNsQ̃ø
sNd

^ 1ddø.

Finally, by monotonicity of the fidelity—F(Esrd ,Esnd)
ùFsr ,nd for any trace preserving quantum operationE—the
bound applies directly to the pre- and post-measurement
states of the sample of molecules by tracing out the ancillas.
By similar considerations, all of the above conclusions can
be extended to mixed states.

IV. EXCHANGEABILITY

Before proceeding with the applications of the above re-
sults, we present an important result that will—under certain
assumptions—lead to an objective perception of the state of
macroscopic systems. The concept ofexchangeabilitywas
introduced in the classical theory of probability by de Finetti
f16g to substitute the incorrect use of “unknown probabili-
ties.” A probability assignment is the expression of one’s
subjective knowledge about the possible outcomes of an ex-
periment. Hence, it is not a property of a physical system
itself but, rather, a property of the agent assigning the prob-
ability, so it cannot be unknown to him.

There are also several good reasons to believe that quan-
tum states are subjective; see, for example,f14,18–20g and
references therein. The state of a quantum system is a math-
ematical construct which allows one to compute probabilities
for various measurements outcomes.1 As a consequence of
the subjective nature of quantum states, the concept of an
unknown quantum stateis in general an oxymoron, for es-
sentially the same reasons which lead to this conclusion for
classical probability assignment.

However, unknown quantum states turn out to be quite
useful for the description of certain physical settings. Of par-
ticular interest to us is the description of a sample ofN
“molecules.” Under certain circumstances—e.g., thermal
equilibrium—one can arrive at the conclusion that all the
molecules of the sample are equivalent, so they should all be
describe by the same staten, which is itself unknown. This is
a very common state of affairs in nuclear, atomic, or molecu-
lar physics where spectral quantities—which are formally
described by macroscopic observables—are measured over a
large collection of quantum systems. In fact, in almost all
physical experiments where ensemble measurements are per-
formed, the components of the sample are assumed to be in
the “same unknown state” and the purpose of the measure-
ment is tospartiallyd determine this state. Moreover, note that
macroscopic observables do not allow one to discriminate
between the molecules: all molecules of the sample are
treated on equal footing. Hence, information gathered by
macroscopic measurements naturally leads to a state assign-
ment where all molecules are in the same, but perhaps par-
tially unknown, state.

To arrive at an appropriate description of the sample with-
out referring to the unknown quantum state of individual
molecules, we must clearly state the assumption of the agent
assigning the state. His assumption is that thearbitrary num-
ber of molecules are all equivalent, which can be formalized
by demanding that the staterN assigned to the sample by the
observer satisfies the following requirements.

sid For any permutationp of N molecules,pfrNg=rN.
Such a state is called symmetric.

sii d For any positive integerM, there exists a symmetric
staterN+M such thatrN=TrMhrN+Mj, where TrM denotes the
partial trace overM molecules.

A state rN satisfying these two conditions is calledex-

1To quote Robert Griffiths, “If probabilities are not real, then
pre-probabilitiesfquantum statesg are even less real” f17g.
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changeable. The quantum de Finetti representation theorem
f6,21,22g asserts that any exchangeable quantum staterN of a
sample ofN molecules can be written as

rN =E n^NPrsnddn, s30d

wheren are density operators of a single molecule and Prsnd
is a probability distribution over the quantum states of a
single molecule.

The interpretation of this theorem is that it ismathemati-
cally correct to look uponn as an objective element of real-
ity about which we have incomplete knowledge: hence we
assign it some probability distribution Prsnd. For example,
when the POVMhEij is measured on the sample, the out-
comeEj is observed with probability

PsEjurNd = TrhEjrNj

=E TrhEjn
^NjPrsnddn =E PsEjun^NdPrsnddn.

s31d

We can think ofPsEj un^Nd as the probability ofEj given a
value of thereal parametern, but sincen is unknown, we
average this probability over the possible values ofn distrib-
uted according to Prsnd. However, it must be emphasized that
it is the assumption of exchangeability which leads to the
form of Eq. s30d, which in turn legitimizes the term “un-
known state” for mathematical convenience.

A. Bulk tomography

Quantum-state tomography is an experimental procedure
which transforms an exchangeable state of the form of Eq.
s30d into a product stater=n^N through repeated state up-
dates Eq.s9d. According to the de Finetti representation theo-
rem, we can equivalently say—and this is how tomography
is conventionally formulated—that the purpose of tomogra-
phy is to determine which is thereal yet unknownstaten
describing theN identical molecules of the sample.

In Ref. f6g, quantum-state tomography was studied in the
context where the molecules of the sample are measured in-
dividually and the state of therest of the sample was up-
dated. Here, we present how quantum-state tomography can
be performed through bulk measurements. A similar descrip-
tion was recently and independently developed inf9g. Let
AN=okaskd be a macroscopic observable deriving from the
single-molecule observablea as in Eq.s2d. Exceptionally,
we denote the eigenstates and eigenvalues ofa with a super-
script auxj

sadl=a j
saduxj

sadl for later convenience. The finite ac-
curacy measurement of the macroscopic observableAN is

defined through the POVMhQ̃ø
sN,adj.

The conditional state of the sample after the measurement

of hQ̃ø
sN,adj with outcomeøsad is

rNuøsad =E sQ̃ø
sN,adn^NQ̃ø

sN,add
Prsnd

PsQ̃ø
sN,adurNd

dn.

The quantity in parentheses is proportional to the conditional
post-measurement state of the sample, given that it was ini-

tially in staten^N. As demonstrated in Sec. III, this measure-
ment has very high fidelity with the original state. Math-
ematically, this means

Q̃ø
sN,adn^NQ̃ø

sN,ad < PsQ̃ø
sN,adun^Ndn^N.

Therefore, we get

rNuøsad < E n^NPrsndPsQ̃ø
sN,adun^Nd

PsQ̃ø
sN,adurNd

dn. s32d

Comparing this updated state with the initial state of the
sample, Eq.s30d, it is as if we had updated the probability
distribution Prsnd of the real yet unknown staten according
to Bayes’ rulePsy uxd=PsxuydPsyd /Psxd. However, this is
strictly a mathematical identity; all we did was to apply the
state update rule, Eq.s9d, to an exchangeable state. This is of
capital importance. Given the exchangeability assumption
and given that the observer can only gather information
through the measurement of macroscopic quantities, the
quantum state update of Eq.s9d behaves just like the classi-
cal Bayes update rule. For these observers, the sample be-
havesas if the reduced state of a single moleculen was an
objective element of reality. Hence, the usual experimental-
ist’s objection to the subjective nature of quantum states, “Of
course quantum states are real, I measure them in my lab!,”
is mathematically justified by his limitations to measure
macroscopic observables on exchangeable statessor more
generally on states with no entanglement on macroscopic
scales as we shall soon establishd.

We can repeat the procedure with different macroscopic
observablesBN,CN, . . . derived from the single-molecule ob-
servablesb,c, . . ., which do not necessarily commute with
each other. If the sets of observables are sufficiently
informative—i.e., if their eigenstateshuxj

smdlkxj
smdujm=a,b,c,. . .

contain d2−1 linearly independent elements—the
updated probability distribution will converge with very high
probability to a d function for sufficiently large
N, Prsn uøsad ,øsbd , . . .d<dsn̂d, so the final state
will be rNu,sad,sbd. . .< n̂^N. This is because the

functions PsQ̂,
sN,md un^Nd are centered around øsmd

=skx1
smdunux1

smdl ,kx2
smdunux2

smdl , . . .d and have a widths. The
state n̂ is the only one satisfying all the linear constraints
kxj

smdun̂uxj
smdl=ø j

smd for all m=a,b,c, . . . up to accuracy s.
Again, this isas if the measurements simply inform us of the
identity of the “real but unknown”n̂^N, without disturbing it
in the limit of largeN.

V. CLASSICALITY

We have seen at the end of the last section that—under the
exchangeability assumption—macroscopic observables be-
have as classical. Our goal here is to formalize as well as
extend this result. We will demonstrate that macroscopic ob-
servables define a classical limit for closed quantum systems;
i.e., they do not require interaction with any “environment.”
Observations play very different roles in classical and quan-
tum theory. In the classical setting, we can think of measure-
ments as unveiling an underlying “real” state of affairs: ob-

MACROSCOPIC OBSERVABLES PHYSICAL REVIEW A71, 022102s2005d

022102-9



servations reveal information about the state of the world
without affecting it. On the other hand, quantum measure-
ments disturb or “collapse” the state of the system.

When states, either quantum or classical, are regarded as
subjective judgments of the world, both of the above descrip-
tions need revision. LetPsxi ,yjd be the joint probability dis-
tribution, or state, that the agent assigns to the classical se-
quence of events,X=xi and Y=yj. Upon the observationX
=xi, the agent updates her predictions for eventY according
to Bayes’ rule

Psyjuxid =
Psxi,yjd
Psxid

,

wherePsxid=o jPsxi ,yjd. This state generally differs from the
pre-measurement state assigned toY:

Psyjuxid Þ Psyjd = o
i

Psxi,yjd.

Hence, the act of observingX modifies the state assigned to
Y. However, disregarding the observed value ofX for later
probability assignments is like not measuring the value ofX
at all:

Psyjd = o
i

PsyjuxidPsxid. s33d

Indeed, we can interpret the observation as revealing the
“real” value ofX which was there all along: the agent simply
did not know about it prior to her observation. In this sense,
X=xi is a real state of affairs about which the agent learns
through the act of measurement. Thus, the state she assigns
to Y prior to her observation ofX is the mixture of the state
it would have given the different value ofX, weighted by the
probability of X; cf. Eq. s33d. This reasoning extends in an
obvious way to any sequence of eventsXs1d ,Xs2d , . . . ,Xsnd.
We can consider that the system follows a fixed history
xj1

s1d ,xj2

s2d , . . . ,xjn

snd of which the agent has incomplete knowl-

edge, resulting in a joint distributionPsxj1

s1d ,xj2

s2d , . . . ,xjn

sndd.
Quantum measurements behave quite differently. A quan-

tum event corresponds to a “click” on a measurement appa-
ratus at some instant of timet. Hence, each event is associ-
ated a POVM elementEjk

skdstkd in the Heisenberg picture at a
given time tk. sWe will henceforth drop the explicit time
label tk.d In general, assigning definite yet unknown out-
comes to these events leads to incorrect predictions; e.g., the
sum rule

PsEj2
s2dd = o

j1

PsEj2
s2duEj1

s1ddPsEj1
s1dd

does not hold in general. This is most obvious in Young’s
double-slit experiment where the eventsEj1

s1d correspond to
the particle going through slitj1=1 or 2 and j2 label the
various positions on the detector. Reasonings involving the
particle going through a definite yet unknown slit lead to
incorrect predictions.

There are, however, sequences of quantum events which
do behave classically, as if the observations were revealing
an underlying reality, the typical example being when all the

POVM elements describing the events commute. The consis-
tent histories approach to quantum theoryf23g lays down a
set of conditions under which such behavior occurs. A com-
plete list of alternative eventszskd=hEjk

skdj at time tk defines a
POVM. A history is a list of POVM elementsH
=sEj1

s1d ,Ej2

s2d , . . . ,Ejn

sndd at distinct timest1,t2, . . . ,tn. When the
initial state of the system isr, the probability of an historyH
is 2

PsHurd = TrhsEjn
sndd1/2

¯ sEj1
s1dd1/2rsEj1

s1dd1/2
¯ sEjn

sndd1/2j

s34d

following Eqs.s8d ands10d. A complete family of histories is
the set of all combination of POVM elements from the sets
zskd at all times,F=hzs1d ,t1;zs2d ,t2; . . . ;zsnd ,tnj. A complete
family of histories is thus a sample space on which a prob-
ability distribution PsH urd is defined. The family is said to
be consistentwhen the sum rule approximately holds for
PsH urd. This conditions is the simplest version of all consis-
tency conditions but will be sufficient for our purposes. In
this sense, consistent histories define a quasiclassical domain
of familiar experience.

As was observed by Halliwellf11g, histories correspond-
ing to a sequence of finite accuracy measurement of macro-
scopic observables generate a consistent family if the system
is a sufficiently large sample of identically prepared
molecules—i.e., whenr=n^N. It should be stressed that the
single-molecule observablesa,b,c, . . . making up the histo-
ries do not need to commute. For example, the coarse mea-
surement of the magnetization of a sample of spin1

2 along
the z axis followed by a measurement along they axis can
generate a consistent family if the sample is sufficiently
large.

A simple argument to build our intuition in this direction
is to consider the commutator of any twonormalizedmacro-
scopic observables. Leta and b be two arbitrary single-
molecule observables and definec to be their commutator
c=fa,bg. These operator can be suitably normalized so that
they satisfyiai ,ibi ,ici<1. The normalized macroscopic ob-
servableAN is defined asAN=s1/Ndok=1

N askd and similarly for
BN and CN; hence,iANi ,iBNi ,iCNi<1. A straightforward
calculation shows that the commutator of the normalized
macroscopic observables obeys

fAN,BNg =
1

N
CN, s35d

which implies ifAN,BNgi<1/N. Thus, all macroscopic ob-
servables commute in the limit of infinite-size sample and
commuting observables systematically generate consistent
histories: measuring the value of one observable does not
affect the outcome statistics of other commuting observables.

However, the infinite-sample considerations cannot be ap-
plied straightforwardly to finite ensemblessthis is the recur-
rent theme of this paperd. In particular, Eq.s35d does not
involve any coarseness, which is essential to achieve consis-

2We assume for simplicity that the POVM areideal; see Sec. II B.

DAVID POULIN PHYSICAL REVIEW A 71, 022102s2005d

022102-10



tency in finite ensembles. Our analysis of Sec. III provides
the right tools to formally study the consistency of macro-
scopic histories operating on finite ensembles. Indeed, Halli-
well’s result is a straightforward consequence of the fact that
these measurements leave the staten^N of the ensemble es-
sentially unchanged, so they do not alter the statistics of
subsequent measurement outcomes. Moreover, our general
analysis will allow us to extend the conclusions reached by
Halliwell to a much wider set of initial states.

The first generalization is straightforward: by linearity of
Eq. s34d, such families are automatically consistent for initial
exchangeablestates. Indeed, for any initial exchangeable
staterN of the form Eq.s30d, the probability of historyH
reads

PsHurNd =E PsHun^NdPrsnddn. s36d

Clearly, if the sum rule is satisfied for thePsH un^Nd indi-
vidually, it is also satisfied for their convex combination.
This is very much in the spirit of the de Finetti representation
theorem as one can interpret the outcome of the macroscopic
measurements as revealing partial information about thereal
quantum staten^N of the sample, of which we have incom-
plete knowledge. The consistency of such “macroscopic his-
tories” for initial exchangeable state can also be seen as a
consequence of the fact that in those conditions the quantum
state update behaves approximately like a Bayesian update;
cf. Eq.s32d. Indeed, the identityPsxd=oyPsxuydPsyd of clas-
sical probability theorysor more precisely its continuous ver-
siond applied to Eq.s32d implies that the average post-
measurement state of the sample is approximately equal to

the initial state,rN8 = u erNu,sadPsQ̃,
sN,ad urNdd,sad<rN, for any

initial exchangeable staterN.
Moreover, consider an arbitrary product state of the

sampler=n1 ^ n2 ^ ¯ ^ nN. We will construct a staten̄^N

whose measurement outcomes, for coarse-grained macro-
scopic observables, are statistically indistinguishable from
those obtained from the product stater. This will prove that
Haliwell’s result applies to arbitrary product states as well.
Consider the symmetrized version ofr:

Pfrg =
1

N! op nps1d ^ nps2d ^ ¯ ^ npsNd,

where the sum is over all permutations ofN elements. The
reduced state of a single molecule is

TrN−1hPfrgj =
1

N
o
k=1

N

nk = n̄. s37d

The statesPfrg andn̄^N are in some sense very similar: they
are both symmetric, yield the same reduced single-molecule
state n̄, and yield the same expectation value of the fre-
quency operatorkFsNdl=skx1un̄ux1l ,kx1un̄ux1l , . . .d. However,
they are not identical. To illustrate this, consider a sample of
N two-dimensional molecule in the state

the first half of the molecules are in stateux1l while the
second half are in stateux2l. The measurement of the fre-
quency operatorFsNd of Eq. s7d yields the outcomes 1

2 , 1
2

d
with certainty when the state of the system isPfrg. The
average single-molecule state isn̄= 1

2ux1lkx1u+ 1
2ux2

lkx2u, so
n̄^N also yields an average results 1

2 , 1
2

d of the frequency op-
erator. But as opposed to the statePfrg, the outcome of the
measurement ofFsNd can fluctuate away froms 1

2 , 1
2

d when the
sample is in staten̄^N. However, according to the typical
sequence theorem, Eq.s1d, the size of these fluctuations will
be of order 1/ÎN and so can only be perceived by macro-
scopic measurements of accuracys&1/ÎN. For macro-
scopic observables of coarsenesss@1/ÎN, the two states
Pfrg and n̄^N will yield the same statistics up to order
sÎN!1.

Moreover, the statesr and Pfrg yield exactly the same
statistics for measurement outcomes of macroscopic observ-
ables: this follows straightforwardly from the permutation
invariance of the type projectors, Eq.s4d. We have thus es-
tablished the chain of equality,

PsQ̃,
sNdurd = PsQ̃,

sNduPfrgd < PsQ̃,
sNdun̄^Nd,

so the statesr and n̄^N yield almost identical predictions
whens@1/ÎN. It follows that a sequence of finite accuracy
macroscopic measurements performed on a state of the form
r=n1 ^ n2 ^ ¯ ^ nN generates a consistent family of histo-
ries for sufficiently large samples. This simple result can be
summarized as follows: when the sample is assigned a state
r=n1 ^ n2 ^ ¯ ^ nN, coarse-grained macroscopic measure-
ments behave—to a high accuracy—as if the average state of
the moleculesn̄=s1/Ndo jn j was an objective element of
physical reality being discovered.

In fact, any separable state leads to consistency of mac-
roscopic histories. Indeed, when the molecules of the sample
arenot entangledwith each other, their state can be written
as

r =E n1 ^ n2 ^ ¯ ^ nNPrsn1,n2, . . . ,nNddn1dn2 ¯ dnN.

s38d

fThis is the definition of entanglement: a state is said to be
entangled if it cannot be written as Eq.s38d.g Now, consider
the state

r̄ =E n̄^NPrsn̄ddn̄, s39d

where we have defined

Prsn̄d =E Prsn1, . . . ,nNddSn̄ −
1

N
o
k

nkDdn1 ¯ dnN.

By linearity and using the result established above, we have
PsH urd< PsH u r̄d provided that the historiesH are generated
by macroscopic observables of accuracys@1/ÎN. Sincer̄
is exchangeable, the probabilitiesPsH u r̄d, and therefore the
probabilities PsH urd, approximately satisfy the sum rule.
Again, this has a simple interpretation. The average state of
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the samplen̄ behaves like an objective element of realityf7g.
When the molecules of the sample are correlated with each
other, there is no well-defined average state. The observer
therefore assignes a probability distributionPsn̄d over the
possible values of this “objective element of reality”n̄, hence
Eq. s39d.

To put it simply, when macroscopic measurements are
coarse with respect to the quantum correlation length scale of
the system, they behave classically. Indeed, assume that a
sample ofN molecules has quantum correlation lengthj; i.e.,
there isj-molecule entanglement in the system. Then, all of
the above construction can be applied to theN/j collections
of j molecules. We simply have to treat each block of en-
tangledj molecules as one big molecule. There is no en-
tanglement between these big molecules, so the previous
analysis applies, as long as the measurement accuracy is
larger thanÎj /N. Thus, we see that only entanglement on
“macroscopic” scales can cause quantum effects to the mea-
surement of coarse-grained macroscopic observable.

We have demonstrated in this section that a classical limit
can be obtained for closed quantum systems under certain
assumptions about the system’s initial state. This approach is
complementary to thedecoherenceprogram f24g, where
classicality arises from the interaction between the system of
interest and its environment. Moreover, the combination of
these two approaches extends the conclusions reached in the
present section. When the sample interacts with an environ-
ment, it will typically end up in a state that behaves classi-
cally under macroscopic measurements. For example, when
the effect of this interaction is to dephase or depolarize the
molecules of the sample, decoherence will destroy entangle-
ment on macroscopic scalesf25g, so coarse-grained “macro-
scopic histories” will be consistent. An other possibility is
that the environment interacts with the system through a
“collective coupling”; i.e., the system observables appearing
in the coupling Hamiltonian are of the form of Eq.s2d. This
type of interaction will be studied in the next section. Under
such a coupling, the environment is effectively measuring
the macroscopic observables appearing in the coupling
Hamiltonian. Thus, after the interaction, the system is insen-
sitive to further measurement of the same macroscopic ob-
servables. For example, an environment consisting of
charged particles interacts with the total magnetization of a
ferromagnet, effectively measuring the average value of the
Pauli operatorsksxl, ksyl, andkszl to finite accuracy. There-
fore, after decoherence the ferromagnet will not be further
disturbed by such measurements.

VI. NMR INFORMATION PROCESSING

Room-temperature nuclear magnetic resonancesNMRd
has been for several years a benchmark for quantum infor-
mation processingf26g. The sample containsN<1020 mol-
ecules which are to good approximation noninteracting due
to dynamical decoupling caused by thermal excitations.
Hence, the total Hamiltonian is the sum of the single-
molecule HamiltoniansH=okhskd; it takes the form of Eq.
s2d, so it is a macroscopic observable. Initially, the sample is
in a thermal state

rN =
e−bH

Z
=

e−okhskd

Z
= Se−bh

z
D^N

,

whereZ=Trhe−bHj andz=Trhe−bhj are the partition functions
of the sample and of a single molecule, respectively. Each
molecule contains a certain number of nuclei which carry a
spin, and it is these spin degrees of freedom which are used
to perform the computation. Due to their different chemical
environment, the various spins of a molecule can have dif-
ferent Larmor frequenciesv j, which makes it possible to
address them individually. To do so, the sample is placed in
a coiled wire through which a sequences of externally con-
trolled radio frequencysrfd current pulses can be applied. By
properly tuning the frequency of the rf pulse, we can address
all the spins with the same Larmor frequency, so all theN
molecules are addressed in parallel. Therefore, a sequence of
pulses transforms the state of the sample according to

rN → U^NrNU†^N,

whereU is a unitary matrix acting on the Hilbert space of a
single molecule. This transformation preserves the tensor
product structure of the density matrixrN=n^N; it collec-
tively changes the state of individual moleculesn.3

It has been known for a long timef27g that the coupling
between the nuclear spins and the coil can considerably dis-
turb the state of the sample in certain regimes throughback-
action. This noise isnot fundamentally irreversible; it is only
due to our neglecting of high-order terms in the coupling
Hamiltonian. However, since the coil is also used toread out
the state of the sample, it must unavoidably induce extra
fundamentally irreversiblenoise, of the kind discussed in
Sec. III. Indeed, in quantum theory, any measurement that
reveals some information must unavoidably perturb the state
of the systemf28g. This result is puzzling because the coil is
present throughout the computation, not only during the
measurement phase, so should in principle disturb the com-
putation.

A simple model to study the effect of this noise was pre-
sented in Ref.f12g. The current in the coil can be modeled by
a continuous quantum variableF j =ef juf jlkf judrj where j
labels the modes of the field in the coil. Each field modeF j
couples to the resonant magnetization of the sample—i.e., to
the spins of Larmor frequencyv j—through its conjugate
momentumP j, fP j ,F jg= i sP is the “generator of transla-
tions” for Fd. The coupling Hamiltonian takes the formHc
=go jP jMj

x whereg is some coupling constantsthat absorbs
the magnetization units12"gd and

3When the sequence of pulses generates a complex transforma-
tion, it is practically impossible to keep track ofn, as this would
require an exponential amount of computation. Hence, given our
limited computational capacities, the sample should really be de-
scribed by an exchangeable state of the form, Eq.s30d. Indeed, if
we had sufficient computational power to have complete knowledge
of the staten^N after the pulse sequences, it would mean that the
quantum computation was useless since we are able to predict its
outcome.
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Mj
x = o

k=1

N

s jskd
x =

1

2
No

L

s2L − 1dQL
sNd s40d

is the total transverse magnetization of thej th specie of nu-
clei in their rotating frame of Larmor frequencyv j. Assume
for simplicity that each molecule contain a single spin-1

2
nucleus which couples to the field modeF0 swe will thus
drop the explicit 0 subscriptd. This field mode is initially in
stateuCl=eCsfdufldf and the sample is in staterN. After a
time t, simple calculations show that the joint state of the
field and the sample is

rstd = o
L,L8

E dfdf8CsfdC * sf8d

3QL
sNdrNQL8

sNd
^ uf + fsLdlkf8 + fsL8du,

where fsLd=gtNs2L−1d. The field modeF0 is subsequently
observed to be in stateufl, and accordingly the state of the
sample is updated to

rN→
f

ruNuf =
Trcoilhsuflkfu ^ 1drstdj

Psfd
=

Q̃f
sNdrNQ̃f

sNd†

Psfd
,

where Q̃f
sNd=oL8C(f− fsL8d)QL8

sNd are coarse-grained type
measurements like those of Eq.s11d. The initial field
configuration Csfd plays the role of the smoothing
function and has width sin the L domaind s
<ÎkCuF0

2uCl−kCuF0uCl2/Ngt.
This model may appear overcomplicated, but it is in fact

quite simple. The field variableF0—which we can think of
as the amplitude of thev0 Fourier component of the current
in the coil—serves as a measurement apparatus: it is by read-
ing the valuef of F0 that we learn about the magnetization
of the spins with Larmor frequencyv0. The coupling Hamil-
tonian is such that it “shifts” the value ofF0 by an amount
that is proportional to the value ofM0

x sthe rotating magne-
tization induces a current in the coild. Thus, determining the
amount by whichF0 got shifted allows us to infer the value
of M0

x. However, the coil may initiallynot be in an eigenstate
of F0, sokCuF0

2uCl−kCuF0uCl2.0 sit will typically be in a
coherent stated. Thus, our final measure of the value ofF0
does not allow us to determine exactly by what amount it got
shifted: it can only do so up to accuracy
ÎkCuF0

2uCl−kCuF0uCl2, which sets the accuracys on the
measurement ofM0

x. Following the results established in Sec.
III C, a width s@1/ÎN<10−10 ensures us that the measure-
ment does not significantly perturb the computation.

Of course, the measurements achieved in the laboratory
are much coarser than 10−10. Given the results presented in
this paper, we could followf12g and conclude that the pres-
ence of the coilsor the NMR measurements in generald in-
duces a negligible disturbance to the state of the sample.
However, our analysis does not apply here straightforwardly
since NMR measurements are notideal ssee Sec. II Bd. This
is because the coil is not in a pure state at room temperature.
As a consequence, not only is the coil not in an eigenstate of
F0 ssuch as a coherent stated, but it is in a statistical mixture

of such states. Consider, for example, the initial state of the
coil in a Gaussianmixture of Gaussian-like field modes
rcoil~ee−q2/2l2

uCqlkCqudq where uCql~ee−sf −qd2/4s2
ufldf

sthe Cq are like coherent states centered around the field
valueqd. After a coupling timet, the observation of the field
mode in stateufl updates the state of the sample to

rN→
f

ruNuf =
Trcoilhsuflkfu ^ ldrstdj

Psfd

=E e−q2/2l2
Q̃f−q

sNd rNQ̃f−q
sNd dq,

where Q̃f
sNd~oL8e

−ff − fsL8dg2/4s2
Q

L8
sNd. This is the continuous

version of the general-state update rule, Eq.s9d, for nonideal
measurements. The corresponding POVM elementsEf

=ee−q2/2l2
fQ̃f−q

sNd g2 have widthl+s, which determines the ac-
curacy of the measurement outcomes following Eq.s8d.
However, the Kraus operatorsAqr=Q̃f−q

sNd have widths. Fol-
lowing Eq.s9d, it is this width which governs the disturbance
caused to the state. Thus, it is not the measurement coarse-
ness l+s which ultimately determines the disturbance
caused to the state, but the details of the measurement pro-
cess. In this example, the statistical mixture caused by the
finite temperature of the coil added an extra source of uncer-
tainty, characterized by the parameterl.

It is therefore necessary to have a detailed model of the
interaction between the coil and sample and of the initial
state of the coil to evaluate its contribution to decoherence of
the state of the molecules. We suspect that, in actual NMR
settings, the measurement coarseness is largely due to statis-
tical sthermald fluctuations of the type ofl. However, we
also suspect the coherent spread of the coil’s wave function
s to be much larger than 10−10, since coherent manipulation
of the molecules appears to be possible despite the coupling
to the coil. These questions, however, deserve a separate
study.

VII. CONCLUSION

We have demonstrated a trade-off between macroscopic
measurement accuracy and state disturbance for sample of
identically prepared quantum systems. A measurement
coarseness smaller than 1/ÎN causes a disturbance to the
state of the system which increases as the size of the en-
semble grows, which is in apparent contradiction with the
infinite-copy result. However, a measurement coarsenesss
@1/ÎN induces a negligible disturbance to the state of the
sample. This demonstrates that coarseness is an essential fea-
ture of the macroscopic limit. The type projectors of Eq.s4d
will unavoidably lead to macroscopic quantum fluctuations
regardless of the size of the ensemble. Thus, the classical
observables encountered in our everyday lifese.g., position
and velocity of a baseball, bulk magnetization of a ferromag-
net, etc.d cannotbe suitably described in terms of von Neu-
mann macroscopic type projectors Eq.s4d—the spectral pro-
jectors of average observables Eq.s2d—such as prescribed
by textbook quantum theory, but require coarse-grained
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POVM’s, Eq. s11d. Moreover, as illustrated with the mea-
surement model of Sec. VI, realistic measurements settings
give rise to coarse grained POVM’s, not projective measures.

Using these results, we have argued that any sequence of
macroscopic observations behaves essentially classically
provided that there is no large-scale entanglement in the
sample. More precisely, the measurement of macroscopic ob-
servables generates consistent families of histories provided
that their coarseness is larger thanÎj /N wherej is the quan-
tum correlation length scale of the system. Under this condi-
tion, the quantum state update rule behavesas if the mea-
surements were revealing information about an objective
element of reality: namely, the average reduced state of a
single moleculen̄. Hence, many independent observers ac-
quiring their information through these measurements will
arrive to a common assignment ofn̄. In this operational
sense,n̄ becomes an objective element of realityf7g.

Our analysis does not apply when entanglement becomes
present on macroscopic scales. Clearly, not all such entangle-
ment will yield quantum effects on the measurement of mac-
roscopic observables. For example, the macroscopic quan-
tum superpositions“cat”d stateÎ1

2sux1l^N+ ux2l^Nd, which is
not exchangeable, behaves just like the exchangeable state
1
2fsux1lkx1ud^N+sux2lkx2ud^Ng for all macroscopic observables.
Thus, it will be interesting to determine what type of en-
tangled states, if any, will manifest their quantum nature in
the measurement of macroscopic observables.

An interesting question arises from the study of the rela-
tion between exchangeable states and macroscopic observa-
tions. We have seen in Sec. V that applying a random per-
mutation to the molecules in a separable state yields a state
which is not exchangeable, but possesses similar character-
istics. We do not know what type of operation can transform
a generic quantum state into an exchangeable one. We sus-
pect that performing a tomographically complete set of mac-
roscopic measurements on subsets of the sample followed by
a random permutation of the molecules would do the trick.
Physically, this would mean that a collective coupling to the
environment and a diffusion process would map any state to
an exchangeable state. We also suspect that a random subset
of ÎN molecules out of theN molecules of the sample would
also be in an exchangeable state, regardless of the initial state
of the sample. This would be very interesting as it would
extend the reach of our classicality analysis. Moreover, un-
derstanding under what circumstances can a sample of physi-
cal systems be treatedas if they were all in the same un-
known state is of crucial importance since this is assumed in
most quantum experiments performed on macroscopic
samplesse.g., any type of spectroscopyd.

Finally, we have related our study to a NMR measurement
model introduced inf12g. We have extended their analysis to
the case where the coil is not in a pure mode state but rather
in a statistical mixture of such states, like a thermal state. In
this case, there are two parameters describing the macro-
scopic measurements: the widths+l of the POVM elements
describes the accuracy of the measurements and widths of
the Kraus operators governs the disturbance caused to the
state of the sample. Therefore, a measurement accuracys
+l@1/ÎN does not guaranty a negligible disturbance except

when the measurement is ideal. The NMR measurement pro-
cess therefore deserves a detailed study.
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APPENDIX A: SINGLE-MOLECULE
POST-MEASUREMENT STATE

We will show how to compute the post-measurement state
of a single molecule: namely, Eq.s24d. For this, it will be
useful to alter our notation a bit. In this subsection only, we
will considernon-normalized types: If L sXd denotes the nor-
malized type ofX, then its non-normalized type isNL sXd.
Thus, for this section only,L sXd is a d-component vector
whosej th componentLj equals the number of occurrences of
the letterxj in X. Adding to the notation, for the typeL
=sL1, . . . ,Ldd of a N-letter string X, we denote byL −xj

=sL1, . . . ,Lj −1, . . .Ldd the type of the string obtained by re-
moving one occurence ofxj from X. Of course, this is a
well-defined type only whenLj ù1.

Given this notation, we can write

QL
sNd = o

j

uxjlkxju ^ QL −xj

sN−1d, sA1d

where theQL −xj

sN−1d=0 when L −xj is not a well-defined type.
Applying the state update rule and tracing out all but a single
molecule, we get

r1uL = TrN−1HQL
sNdrNQL

sNd

PsQL
sNdurNd J

= o
i j

uxilkxiunuxjlkxjuTrHQL −xi

sN−1d
n^N−1QL −xj

sN−1d

PsQL
sNdurNd

J
= o

j

Rjuxjlkxju
PsQL −xj

sN−1durN−1d

PsQL
sNdurNd

; sA2d

in the last line, we used the definition of the probability, Eq.
s16d, and the orthogonality of the type projectors, Eq.s5d.
The ratio appearing in the last line can easily be computed as
it involves multinomial distributions; it is equal to

R1
L1
¯ Rj

Lj−1
¯ Rd

LdS N

L1, . . . ,Lj − 1, . . . ,Ld
D

R1
L1
¯ Rj

Lj
¯ Rd

LdS N

L1, . . . ,Lj, . . . ,Ld
D =

1

Rj

Lj

N
.

Inserting this into Eq.sA2d sand keeping in mind the differ-
ent definitions ofLjd yields the result, Eq.s24d. Averaging
this state over measurement outcomesL gives

r18 = o
j

Rjuxjlkxju. sA3d
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The effect ofcoarse-grainedmeasurementsQ̃,
sNd on the

state of a single molecule can be studied by straightforward
modifications of the method outlined above. The results are
easily predictable: while the off-diagonal elementsuxilkxju of
r18 are completely suppressed whens=0, they only get

damped by a factor proportional to TrhQ̃L −xi

sN−1d
rN−1Q̃L −xj

sN−1dj with
L <NR when the measurement is coarse. SinceL −xi andL −xj

are very close to each other on the probability simplex, this
decoherence factor is close to unity when the smoothing
function qLs,d is sufficiently wide.

For example, when we choose a Gaussian smoothing
function

qLsød = S 1

2ps2Dd/2

expH−
iø − L i2

2

2s2N2 J
sthe extraN2 in the denominator of the exponent is due to the
special normalization of the types used in this sectiond, el-
ementary algebra can be used to show that the matrix ele-
mentni j of the single molecule density matrixn get updated
according to

ni j→
,

ni j u, = ni j

oL
qLsødPsQL

sNdurNdLj/Rje
s−, j+Lj+,i−Li+1d/N2s2

oL
qLsødPsQL

sNdurNd
.

The only nontrivial factors in this expression areLj /Rj and
es−, j+Lj+,i−Li+1d/N2s2

. However, the probabilityPsuQL
sNdurNd is—

according to the typical sequence theorem, Eq.s1d—very
sharply peaked aroundLj =Rj, so the factorLj /Rj is nearly
trivial fi.e., it differs from 1 byOs1/Ndg in dominant terms
of the sum. Similarly, the smoothing functionqLs,d becomes
very small whenLj differs from, j by more than roughlyNs.
Thus, the argument of the exponentiales−, j+Lj+,i−Li+1d/N2s2

is
of order 1/N in the dominant terms of the sum, so this factor
also differs from unity byOs1/Nd. Thus, the disturbance
caused to the matrix elementsni j are ofrelativeorder 1/N. A
more quantitative comparison of the original and final single-
molecule state is obtained straightforwardly from our general
fidelity trade-off and the monotonicity of fidelity.

APPENDIX B: CONDITIONAL FIDELITY

We will compute, for an ensemble ofN molecule initially
in state uCNl=o j=1

d b juxjl, the fidelity between the pre- and
conditional post-measurement statesrN and rNu,, respec-
tively. Starting from Eqs.s17d and s18d, we can express the
fidelity

FsrN,ruNuød = kCNuruNuøuCNl =
Fo

L

ÎqLsødmsL ,RdG2

o
L

qLsødmsL ,Rd
,

whereRj =kxjunuxjl, and the multinomial coefficient

msL ,Rd = S N

NL1, . . . ,NLd
Dp

j

Rj
NLj .

Assuming that the smoothing function is Gaussian,

qLsød = S 1

2ps2Dd/2

expH−
iø − L i2

2

2s2 J ,

the fidelity takes the form

FsrN,rNuød =

So
L

expH−
iø − L i2

2

4s2 JmsL ,RdD2

o
L

expH−
iø − L i2

2

2s2 JmsL ,Rd
. sB1d

The lower bound on this expression is found by similar
means that led to the bound on the fidelity betweenrN and
rN8 in Sec. III, except that the presence of a denominator—
absent in Eq.s25d—creates extra complications. Hence, let
us start by considering the numerator. First, we use the tri-
angle inequalityiL −øi2ø iø−Ri2+iR−L i2 to get an upper
bound

e−iL − øi2
2/2s2

ù e−siR − øi2 + iR − L i2d2/2s2
.

Then, just like we did in Sec. III, we truncate the sum to the
domainD=hL : iL −Ri2øDj. Clearly on this domain

e−iL − ,i2
2/2s2

ù e−siR − ,i2 + Dd2/2s2
on D. sB2d

Combining these two steps yields the lower bound

e−siR − ,i2 + Dd2/2s2S o
LPD

msL ,RdD2

ù e−siR − ,i2 + Dd2/2s2s1 − e−NdD2/2d2 sB3d

for the numerator of Eq.sB1d, where we appealed to the
Cauchy-Schwartz inequality and the typical sequence theo-
rem, Eq.s1d, to get the second line.

Since we are interested in finding a lower bound to the
fidelity, we must now find anupperbound to the denomina-
tor of Eq. sB1d. To do this, we decompose the sum intooL
=oLPD+oL¹D. The sum outside the domainD can easily be
bounded:

o
L¹D

e−i, − L i2
2/2s2

msL ,Rd ø o
L¹D

msL ,Rd ø e−NdD2/2,

sB4d

where the second inequality follows from the Cauchy-
Schwartz inequality and the typical sequence theorem. For
the sum insideD, we use the triangle inequalityiø−Ri2
ø iø−L i2+iR−L i2, which translates into

iL − øi2 ù iø − Ri2 − D sB5d

on the domainD. Before squaring this quantity, it is impor-
tant to determine whetheriø−Ri2−D is a positive or a nega-
tive quantity. We shall thus distinguish two cases.

Case 1. iø−Ri2øD. In this case, we use the straightfor-
ward bound

o
LPD

e−iø − L i2
2/2s2

msL ,Rd ø 1.

Combining this with Eq.sB4d yields the upper bound 1
+e−NdD2/2 for the denominator of Eq.sB1d, so together with
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the numerator, Eq.sB3d, we get a bound on the fidelity:

FsrN,rNu,d ù
e−siR − ,i2 + Dd2/2s2

s1 − e−NdD2/2d2

1 + e−NdD2/2

ù
e−2D2/s2

s1 − e−NdD2/2d2

1 + e−NdD2/2
.

Case 2. iø−Ri2.D. In this case, the inequality, Eq.sB5d,
gives iL −øi2

2ù siø−Ri2−Dd2, so the sum on the domainD
is bounded by

o
LPD

e−iø − L i2
2/2s2

msL ,Rd ø e−siø − Ri2 − Dd2/2s2 o
LPD

msL ,Rd

ø e−siø − Ri2 − Dd2/2s2
,

so together with Eq.sB4d, we get the upper bound
e−si, −Ri2−Dd2/2s2

+e−NdD2/2 for the denominator of Eq.sB1d.
Combining this result with the bound on the numerator, Eq.
sB3d, yields

FsrN,rNuød ù
e−siR − ,i2 − Dd2/2s2

s1 − e−NdD2/2d2

e−si, − Ri2 − Dd2/2s2
+ e−NdD2/2

=
e−i, − Ri2D/s2

s1 − e−NdD2/2d2

1 + e−NdD2/2+si, − Ri2 − Dd2/2s2 ,

or using the fact that theL2 distance is bounded byip−qi2
ø2 for any two probability distributionsp andq,

FsrN,rNuød ù
e−2D/s2

s1 − e−NdD2/2d2

1 + e−NdD2/2+2/s2 . sB6d

This second case gives the worst bound, so Eq.sB6d turns
out to be universal, independent of the sign ofiø−Ri2−D.
The cutoff D is a free parameter, so we should again try to
optimize it in order to achieve the tightest bound. We have
not found a closed form expression for this optimum. How-
ever, any assignments=N−a andD=Nb with 2b,1, 2a,b,
and 2a,1−2b yields

FsrN,rNu,d ù
e−AN−a

s1 − e−BNb
d2

1 + e−CNg < 1 −
A

Ng − 2e−BNb
− e−CNg

for some positive constantsA, B, C, a, b, and g. For ex-
ample, when the accuracy of the measurement apparatus is
fixed to a constants, setting the arbitrary cutoff parameter
D=N−1/3 gives

FsrN,rNu,d * 1 −
2

s2N1/3 − 3e−dN1/3/2

to first order.
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