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It is well known that measurements performed on spatially separated entangled quantum systems can give
rise to correlations that are nonlocal, in the sense that a Bell inequality is violated. They cannot, however, be
used for superluminal signaling. It is also known that it is possible to write down sets of “superquantum”
correlations that are more nonlocal than is allowed by quantum mechanics, yet are still nonsignaling. Viewed
as an information-theoretic resource, superquantum correlations are very powerful at reducing the amount of
communication needed for distributed computational tasks. An intriguing question is why quantum mechanics
does not allow these more powerful correlations. We aim to shed light on the range of quantum possibilities by
placing them within a wider context. With this in mind, we investigate the set of correlations that are con-
strained only by the no-signaling principle. These correlations form a polytope, which contains the quantum
correlations as asproperd subset. We determine the vertices of the no-signaling polytope in the case that two
observers each choose from two possible measurements withd outcomes. We then consider how interconver-
sions between different sorts of correlations may be achieved. Finally, we consider some multipartite examples.
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I. INTRODUCTION

In a typical Bell-type experiment, two entangled particles
are produced at a source and move apart to separated observ-
ers. Each observer chooses one from a set of possible mea-
surements and obtains some outcome. The joint outcome
probabilities are determined by the measurements and quan-
tum state. One of the more striking features of quantum me-
chanics is that joint outcome probabilities can violate a Bell-
type inequalityf1g, indicating that quantum mechanics is not,
in Bell’s terminology, locally causal. This prediction has
been confirmed in numerous laboratory experimentsf2g.

Abstractly this scenario may be described by saying that
the two observers have access to a black box. Each observer
selects an input from a range of possibilities and obtains an
output. The box determines a joint probability for each out-
put pair given each input pair. It is clear that a quantum state
provides a particular example of such a box, with input cor-
responding to measurement choice and output to measure-
ment outcome. More generally, boxes can be divided into
different types. Some will allow the observers to signal to
one another via their choice of input and correspond to two-
way classical channels, as introduced by Shannonf3g. Others
will not allow signaling—it is well known, for example, that

any box corresponding to an entangled quantum state will
not. This is necessary for compatibility between quantum
mechanics and special relativity. Of the nonsignaling boxes,
some will violate a Bell-type inequality. The significance of
this can be spelt out in information-theoretic terms: separated
observers without the box, who have access to preshared
classical random data but no other resources and, in particu-
lar, who cannot communicate, will not be able to simulate
the box. We refer to any such boxsand to the corresponding
correlationsd as nonlocal.

In general, these boxes can be viewed as an information-
theoretic resource. This is obvious in the case of signaling
boxes or classical channels. However, it is also known that
nonlocal correlations arising from an entangled quantum
state, even though they cannot be used directly for signaling,
can be useful in reducing the amount of signaling that is
needed in communication complexity scenarios below what
could be achieved with only shared random dataf4g. A local
black box is, of course, simply equivalent to some shared
random data, which in turnsdepending on the precise nature
of the problemd may be better than nothingf5g.

A good question to ask now is, can any set of nonsignal-
ing correlations be produced by measurements on some
quantum state? The answer, in fact, is no. This was shown by
Popescu and Rohrlichf6g, who wrote down a set of correla-
tions that return a value of 4 for the Clauser-Horne-Shimony-
Holt sCHSHd expressionf7g, the maximum value algebra-
ically possible, yet are nonsignaling. The maximum quantum
value is given by Tsirelson’s theorem as 2Î2 f8g. These
should be compared with the maximum value obtainable by
noncommunicating classical observers, which is 2. Popescu
and Rohrlich concluded that quantum mechanics is only one
of a class of nonlocal theories consistent with causality. In
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terms of our boxes, there are some boxes that are nonsignal-
ing but are more nonlocal than is allowed by quantum me-
chanics. It is interesting to note that from an information-
theoretic point of view, some of these latter are very
powerful. For example, van Dam has shownf9g that two
observers who have access to a supply of Popescu-Rohrlich-
type boxes would be able to solve essentially any two-party
communication complexity problem with only a constant
number of bits of communication. This should be contrasted
with the quantum case, for which it is known that certain
communication complexity problems require at leastn bits
of communication even if unlimited shared entanglement is
availablef10g.

In this work, we investigate the set of nonsignaling boxes,
considering them as an information-theoretic resource.
Clearly this set includes those corresponding to measure-
ments on quantum states as a subset. The motivation for
studying the wider set is partly that it is interesting for its
own sake. This is true even though no correlations other than
quantum correlations have so far been observed in nature.
Our findings are preliminary, but it is already clear that the
set of nonsignaling boxes has interesting structure, and one
finds analogies with other information-theoretic resources, in
particular with the set of entangled quantum states. This
work is not, however, purely academic. Another motivation
is that a better understanding of the nature of quantum cor-
relations can be gained by placing them in a wider setting.
Only in this way, for example, can one hope to answer Pope-
scu and Rohrlich’s original question, of why quantum corre-
lations are not more nonlocal than they are. More generally,
a proper understanding of the information-theoretic capabili-
ties of quantum mechanics includes an understanding of
what cannot be achieved as well as what can.

This article is organized as follows. In Sec. II A, we in-
troduce the convex polytope that describes the set of nonsig-
naling correlations. In Sec. II B, we examine more closely
the particular case of correlations involving two possible in-
puts, obtaining all the vertices of the corresponding polytope.
We then consider, in Sec. II C, how interconversions between
these extreme points may be achieved using local operations.
Section III is devoted to three-party correlations, and in Sec.
III D, we examine how extremal correlations correlate to the
environment. We conclude with some open questions in Sec.
IV.

II. TWO-PARTY CORRELATIONS

A. Definitions

The no-signaling polytope.A bipartite correlation box
shereafter, just “box”d is defined by a set of possible inputs
for each of Alice and Bob, a set of possible outputs for each,
and a joint probability for each output pair given each input
pair. We denote Alice’s and Bob’s inputsX and Y, respec-
tively, and their outputsa and b. The joint probability of
getting a pair of outputs given a pair of inputs ispabuXY. Since
pabuXY are probabilities, they satisfy positivity,

pabuXY ù 0 ∀ a,b,X,Y, s1d

and normalization,

o
a,b

pabuXY = 1 ∀ X,Y. s2d

In this work we only consider nonsignaling boxes; i.e., we
require that Alice cannot signal to Bob by her choice ofX
and vice versa. This means that the marginal probabilities
pauX andpbuY are independent ofY andX, respectively:

o
b

pabuXY = o
b

pabuXY8 ; pauX ∀ a,X,Y,Y8, s3d

o
a

pabuXY = o
a

pabuX8Y ; pbuY ∀ b,Y,X,X8. s4d

A concrete example of a correlation box is an experiment
with two spin-12 particles, with the inputsX and Y labeling
Alice’s and Bob’s analyzer settings and the outputsa andb
labeling the experimental outcomes. In a quantum experi-
ment like this one, it is generally the case that the outcome of
the measurement is obtained as soon as the measurement is
performed. In addition, the entanglement is destroyed after
the measurements, so that if the experiment is to be repeated
a new entangled state is needed. We define boxes to have the
same properties. Alice can select her input at any time and
obtains her output immediately, and similarly Bob. There
may of course be a time delay between Alice selecting her
input and Bob selecting his input, but this makes no differ-
ence to the correlations. Further, after a box is used once, it is
destroyed and to repeat the experiment a new box is needed.

We will always consider that the number of possible in-
puts and outputs is finite. Since the above constraints are all
linear, the set of boxes with a given number of inputs and
outputs is a polytope, which we denote byP. It is easy to see
that the set is convex—if two boxes each satisfy the con-
straints, then a probabilistic mixture of themsdefined in the
obvious mannerd will also do so.

The local polytope.In general, the set of nonsignaling
boxes can be divided into two types: local and nonlocal. A
box is local if and only if it can be simulated by noncommu-
nicating observers with only shared randomness as a re-
source. This means that we can write

pabuXY = o
l

plpauXsldpbuYsld, s5d

wherel is the value of the shared random data andpl is the
probability that a particular value ofl occurs. We have that
pauXsld is the probability that Alice outputsa given that the
shared random data wasl and the input was chosen to beX
and similarly forpbuYsld.

We recall what is known about the set of local boxesssee,
for instance,f11,12gd. This set is itself a convex polytope,
with vertices corresponding to local deterministic boxessall
pauX, pbuY are 0 or 1d. The positivity conditions of Eq.s1d are
trivial facets of this polytope, while nontrivial facets corre-
spond to Bell-type inequalities. Violation of the latter implies
that a point lies outside the local polytope and that the cor-
responding box is therefore nonlocal. We denote the local
polytope byL.

Quantum mechanical correlations.Finally, there is a third
set of interest: the correlations obtainable by measurements
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on bipartite quantum states. We denote this setQ swhereQ
is defined for a fixed number of measurement settings and
outcomesd. The setQ is investigated in Refs.f8,12–15g. It is
convex but is not a polytope as the number of extremal
points is not finite. Since the correlations allowed by quan-
tum mechanics can violate Bell inequalities,Q is nonlocal.
However, as they violate the CHSH inequality only up to
Tsirelson’s bound of 2Î2 f6,8g, they form a proper subset of
the no-signaling polytope. Overall, we have thatL,Q,P.
This situation is illustrated in Fig. 1.

B. Two-input no-signaling polytope

1. Two outputs

Having defined the objects that we are interested in, we
begin by considering in detail the simple case in which Alice
and Bob are each choosing from two inputs, each of which
has two possible outputs. We writeX,Y,a,bP h0,1j. The
probabilities pabuXY thus form a table with 24 entries, al-
though these are not all independent due to the constraints of
Sec. II A. The dimension of the polytope is found by sub-
tracting the number of independent constraints from 24 and
turns out to be 8. To understand the polytopeP, we wish to
find its vertices. These will be boxes that satisfy all of the
constraints and saturate a sufficient number of the positivity
constraints to be uniquely determined. In the next subsection,
we present an argument that allows us to find all the vertices
of the two-inputd-output polytope. Here we simply state the
results for the simple two-input two-output case.

We find that there are 24 vertices, which may be divided
into two classes: those corresponding to local boxes and
those corresponding to nonlocal boxes. Local vertices are
simply the local deterministic boxes, which assign a definite
value to each of Alice’s and Bob’s inputs. There are thus 16
local vertices, which can be expressed as

pabuXY = 51, a = aX % b,

b = gY % d,

0, otherwise,
6 s6d

wherea,b,g,dP h0,1j. Here and throughout,% denotes ad-
dition modulo 2.

The eight nonlocal vertices may be expressed compactly
as

pabuXY = H1/2, a % b = XY % aX % bY % g,

0, otherwise,
J s7d

where a,b,gP h0,1j. We will refer to these boxes as
Popescu-RohrlichsPRd boxes.

By using reversible local operations Alice and Bob can
convert any vertex in one class into any other vertex within
the same class. There are two types of reversible local op-
erations. Alice may relabel her inputs,X→X% 1, and she
may relabel her outputssconditionally on the inputd, a→a
% aX% b. Bob can perform similar operations. Thus up to
local reversible transformations, each local vertex is equiva-
lent to the vertex settinga=0, b=0, g=0, andd=0—i.e,

pabuXY = H1, a = 0 andb = 0,

0, otherwise.
J s8d

Each nonlocal vertex is equivalent to

pabuXY = H1/2, a % b = XY,

0, otherwise.
J s9d

We note that if we allow irreversible transformations on the
outputs, we may convert any nonlocal vertex into a local
vertex.

For the case of two inputs and two outputs, it is well
known that the only nontrivial facets of the local polytopeL
correspond to the CHSH inequalitiesf16g. There is an im-
portant connection between the CHSH inequalities and the
nonlocal vertices ofP. In order to explain this, we first recall
explicitly the CHSH inequalities. Letki j l be defined by

ki j l = o
a,b=0

1

s− 1da+bpabuX=i,Y=j . s10d

Then the nontrivial facets ofL are equivalent to the follow-
ing inequalities.

Babg ; s− 1dgk00l + s− 1db+gk01l + s− 1da+gk10l

+ s− 1da+b+g+1k11l ø 2, s11d

wherea,b,gP h0,1j. For each of the eight Bell expressions
Babg, the algebraic maximum isBabg=4. We find that for
each choice ofa, b, andg the correlations defined by Eq.s7d
return a value for the corresponding Bell expression of
Babg=4. Thus there is a one-to-one correspondence between
the nonlocal vertices ofP and the nontrivial facets ofL, with
each vertex violating the corresponding CHSH inequality up
to the algebraic maximum. These extremal correlations de-
scribe in a compact way the logical contradiction in the
CHSH inequalities.

2. d outputs

We now generalize the results of the preceding section.
Again we have two parties, Alice and Bob, who choose from
two inputsX andYP h0,1j and receive outputsa andb with
a joint probabilitypabuXY. We denote the number of distinct
outputs associated with inputsX and Y by dX

A and dY
B. If

FIG. 1. A schematic representation of the space of nonsignaling
correlation boxes. The vertices are labeled L and NL for local and
nonlocal. Bell inequalities are the facets represented in dashed lines.
The set bounded by these isL. The region accessible to quantum
mechanics isQ. A general nonsignaling boxPP.
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Alice’s input is X, for example, thenaP h0, . . . ,dX
A−1j.

Theorem 1.The nonlocal vertices ofP for two input set-
tings anddX

A and dY
B outputs are equivalent under reversible

local relabeling to

pabuXY = 51/k, sb − admod k = XY,

a,b P h0, . . . ,k − 1j,

0, otherwise,
6 s12d

for eachkP h2, . . . ,minX,YsdX
A,dY

Bdj.
We note that the casedX

A=dY
B=2 gives the PR correlations

we found previously. IfdX
A=dY

B=k=d, then the vertex violates
the d-dimensional generalization of the CHSH inequality
f17g up to its algebraic maximum. We call such a box a
d-box sa more complete name would specify that the number
of parties and the number of inputs per party are each two,
but this simple name will do for our purposesd.

Proof of Theorem 1.A probability tablepabuXY is a vertex
of P if and only if it is the unique solution of Eqs.s1d, s2d,
s3d, and s4d with dimsPd of the positivity inequalitiess1d
replaced with equalities.

It will be useful to distinguish two kinds of extremal
points: partial-output vertices and full-output vertices.
Partial-output vertices are vertices for which at least one of
thepauX=0 or pbuY=0. They can be identified with vertices of
polytopesP8 with fewer possible outputs:dX8

A,dX
A or dY8

B

,dY
B. Conversely, the vertices of a polytopeP8, with dX8

A

,dX
A or dY8

B,dY
B can be extended to vertices ofP by map-

ping the outcomes ofX8 andY8 to a subset of the outcomes
of X andY, and by assigning a zero probabilitypauX=0 and
pbuY=0 to extra outcomes. Full-output vertices are vertices
for which all pauXÞ0 andpbuYÞ0—i.e., for which all outputs
contribute nontrivially topabuXY. Thus the extremal points of
a given two-setting polytope consist of the full-output verti-
ces of that polytope and, by iteration, of all the full-output
vertices of two-settings polytopes with fewer outcomes.
Hence in the following, we need construct only the full-
output vertices for a polytope characterized bydX

A anddY
B.

The joint probabilitiespabuXY form a table ofoX,YdX
AdY

B

entries. These are not all independent because of the normal-
ization and no-signaling conditions. There are four normal-
ization equalities expressed by Eq.s2d and oXdX

A+oYdY
B no-

signaling equalities expressed by Eqs.s3d and s4d. But for
each value ofX, the no-signaling condition for one of Alice’s
outputs can be deduced from the conditions of normalization
and no-signaling for thedX

A−1 other outputs. A similar argu-
ment applies for each value ofY and Bob’s outputs. Hence
Eqs. s2d, s3d, and s4d form a set of only 4+oXsdX

A−1d
+oYsdY

B−1d=oXsdX
Ad+oYsdY

Bd linearly independent equa-
tions. The dimension of the no-signaling polytope is thus

dimsPd = o
X,Y=0

1

dX
AdY

B − o
X=0

1

dX
A − o

Y=0

1

dY
B. s13d

This is the number of entries in the tablepabuXY that must be
set to zero to obtain a vertex. Moreover, to obtain a full-
output vertex, these must be chosen so that neitherpauX=0
nor pbuY=0. If we fix a particular pair of inputssX,Yd, then
no more thandX

AdY
B−maxsdX

A,dY
Bd probabilities may be set to

zero; otherwise, there will be fewer than maxsdX
A,dY

Bd prob-
abilities pabuXY.0, and thus one of Alice’s or one of Bob’s
outcomes will not be output for these values ofX and Y.
Because of the no-signaling conditions, it will not be output
for the other possible pairs of inputs, so the vertex will be a
partial-output one. Overall, the maximal number of allowed
zero entries for a full-output vertex is

Z = o
X,Y

fdX
AdY

B − maxsdX
A,dY

Bdg. s14d

Such a vertex is thus possible if dimsPdøZ or

o
X=0

1

dX
A + o

Y=0

1

dY
B ù o

X,Y=0

1

maxsdX
A,dY

Bd. s15d

This condition is fulfilled swith equalityd only for dX
A=dY

B

=d, ∀X,YP h0,1j.
We can thus restrict our analysis tod-outcome polytopes.

The extremal points of more general ones, wheredX
AÞdY

B,
will be the full-output extremal points ofd-outcome poly-
topes ford=2, . . . ,minX,YsdX

A,dY
Bd.

Using dX
A=dY

B=d, ∀X,YP h0,1j, in the discussion before
Eq. s14d, it follows that the dimension of ad-outcome poly-
tope is 4dsd−1d and that for a given pair of inputs exactly
dsd−1d probabilities must be assigned the value zero or,
equivalently, thatd probabilities must be.0. We can there-
fore write the probabilities as

pabuXYH.0 if b = fXYsad,

=0 otherwise,
J s16d

where fXYsad is a permutation of thed outcomes. Indeed, if
fXYsad is not a permutation, then at least one of Bob’s out-
comes will not be output.

We can relabel Alice’s outcomes forX=0 so thatf01sad
=a, those of Bob forY=0 so thatf00sad=a, and finally those
of Alice for X=1 so thatf10sad=a. In other words,

pabuXYH.0 if sb − admod d = 0,

=0 otherwise,
J s17d

for sX,YdP hs0,0d ,s0,1d ,s1,0dj. It remains to determinef11.
It must be chosen so that the probability tablepabuXY is
uniquely determined—i.e., so that specific values are as-
signed to the probabilities different from zero. In fact, it is
easy to show that this can only be the case if the permutation
f11 is of orderd—i.e., f11

k sad=a only for k=0 modd.
The only remaining freedom in the relabeling of the out-

comes so that propertys17d is conserved is to relabel simul-
taneously the outputs for all four possible inputs. We can
relabel them globally so thatf11sad=sa+1dmodd. This im-
plies thatpabu11=1/d if sb−admodd=1. This completes the
proof. j

C. Resource conversions

In the preceding section we found all the vertices of the
no-signaling polytope for bipartite, two-input boxes. As de-
scribed in the Introduction, the ethos adopted in this work is
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that boxessin particular, nonlocal boxesd can be regarded as
an information-theoretic resource and investigated as such.
Useful comparisons can be drawn with other information-
theoretic resources, including shared random dataf18g,
shared secret dataf19,20g, and entanglementf21g. In each
case, there is a convex set of possible states and a notion of
interconversion between different states. There is also a no-
tion of interconversion between different resources. Each re-
source is useful for some taskssd and can be quantified via
some measuressd. Some of this is illustrated in Table I. Note
that the quantitative measures given are not the only possi-
bilities. Note also that even if the given measure vanishes, a
useful resource may still be present. Thus uncorrelated ran-
dom variables can still be usefulsas local randomnessd, as
can separable quantum statessfor various thingsd and as can
local boxessas local or shared randomnessd.

In light of this, it is natural to ask, what interconversions
between boxes are possible and what would be a good mea-
sure of the nonlocality of a box? To the second question,
several answers suggest themselves, such as the amount of
classical communication needed to simulate the boxsgiven
that the only other resource is shared random datad and the
degree of violation of Bell inequalitiesf22g. In this work,
however, we concentrate on the first question—partly be-
cause it is independently interesting and partly because an
understanding of possible interconversions is a prerequisite
for a good understanding of quantitative measures.

The problem that we consider, then, is whether one can
simulate one type of box using one or more copies of another
type as a resource. Local operations such as relabeling are of
course allowed. As nonlocality is the resource that we have
in mind, it is also natural to allow the parties free access to
local boxessi.e., to local and shared randomnessd. We note,
however, that neither local nor shared randomness can help if
the box to be simulated is a vertex1; thus, none of the proto-
cols we describe below make use of this. We make the as-
sumption that communication between the parties is not al-
lowed.

In general, outputs for one box can be used as inputs for
another box. This allows nontrivial protocols to be con-
structed. As an interesting logical possibility, we note that the

temporal order in which each party uses the boxes need not
be the same and that this allows loops to be constructed that
would be ill defined if it were not for the no-signaling con-
dition. sThus if signaling boxes were to be considered, our
stipulation that outputs be obtained immediately after inputs
would have to be altered.d Such a loop is illustrated in Fig. 2.
In all of the protocols presented below, however, the parties
use the boxes in the same temporal order.

In the following, we will describe three simple examples.
We show that given ad-box and ad8-box, we can simulate a
dd8-box. We will also show that given add8-box, we can
simulate oned-box. Finally, an unlimited supply ofd-boxes
can simulate ad8-box to arbitrarily high precision. In addi-
tion, we will describe a negative result: it is not in general
possible to goreversibly from n d-boxes tom d8-boxes,
wheredÞd8. Although we only prove this for exact trans-
formations, we believe a similar result should hold even if
transformations need only be exact in an asymptotic limit. It
follows from this thatd- and d8-boxes are ultimately in-
equivalent resources and that in our context, it is inappropri-
ate to suppose that they can be characterized by a single
numerical measure of nonlocality.2

Suppose first, then, that Alice and Bob have oned-box
and oned8-box and they wish to simulate onedd8-box.
Simulate means that for each value ofXP h0,1j, a procedure
should be defined for Alice, using thed- andd8-boxes, which
eventually enables her to determine the value of an output
aP h0, . . . ,dd8−1j. Similarly for Bob, for each value ofY

1This is easy to see. For each value of the local or shared random-
ness, one can write down the box that is simulated, conditioned on
that value occurring. The box simulated by the overall protocol is
then the average of these conditional boxes, with the average taken
over the possible values of the randomness. But if this box is a
vertex, then each of the conditional boxes must be the same vertex,
and the protocol could have been carried out without the random-
ness.

2Similar considerations apply to the other resources we have men-
tioned. In the case of entanglement, for example, reversible inter-
conversions are not in general possible for mixed states; thus, there
is no unique measure of entanglement for mixed states. In the case
of shared random data, interconversions by local operations are
rather limited and provide no very meaningful measure of shared
randomness. However, if one expands the set of operations that
Alice and Bob are allowed, then the picture changes. Thus, in the
case of shared random data, allowing that Alice and Bob can com-
municate classically, while demanding that the communication must
be subtracted at the end, gives an operational meaning to the mutual
informationf18g. Inspired by this, it may be interesting to consider
conversions between boxes, with classical communication allowed
but subtracted at the end or, indeed, conversions between entangled
quantum states with quantum communication allowed but sub-
tracted at the end. We do not pursue these questions here.

TABLE I. Comparison of information-theoretic resources.

Resource Instantiation Quantitative measure

Shared random data Random variables Mutual information

Shared secret data Random variables Secrecy rate

Entanglement Quantum states Entanglement cost

Nonlocality Boxes Classical simulation cost

FIG. 2. An example of how two parties that are given two boxes
may process locally their inputs and outputs. They result in simu-
lating another type of box with inputsX,Y and outcomesa,b. Note
that due to the no-signaling condition, the parties can use their two
boxes with a different time ordering.
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there is an eventual outputb. The joint probabilities fora and
b should satisfy Eq.s12d swith dd8 inserted instead ofd
where necessaryd.

Protocol 1: 1 d-box and 1 d8-box → 1 dd8-box.
Alice.Alice inputsX into thed-box, obtaining outcomea.

She then inputsX into thed8-box if a=d−1 and inputs 0 into
the d8-box otherwise, obtaining an outputa8. Alice’s output
for the protocol isa=a8d+a.

Bob. Bob inputsY into thed-box, obtaining outputb, and
inputsY into thed8-box, obtaining outputb8. His output for
the protocol is thenb=b8d+b.

Protocol 1 is illustrated in Fig. 3 for the cased=d8=2. We
indicate briefly why this protocol works. Recall that a
dd8-box satisfiessb−admod dd8=XY. Write a=a8d+a and
b=b8d+b, wherea can take valuesa=0, . . . ,d−1, a8 can
take valuesa8=0, . . . ,d8−1, and so on. We see that the con-
dition satisfied by add8-box is equivalent to

b − a mod d = XY,

b8 − a8 mod d8 = HXY, a = d − 1,

0, otherwise.
J s18d

Protocol 1 is designed precisely to satisfy this condition. It is
then not difficult to check that the correct probabilities are
reproduced.

We note next that it is easy to convert onedd8-box into
oned-box.

Protocol 2: 1 dd8-box→1 d-box.
Alice. Alice inputsX into thedd8-box, obtaining an output

a. Her output for the protocol is thena=a mod d.
Bob. Bob inputsY into thedd8-box, obtaining an output

b. His output for the protocol isb=b mod d.
Again, it is not difficult to check thatsb−ad mod d=XY

and that the correct probabilities are reproduced.
Now we show hown d-boxes can be used to simulate a

d8-box to arbitrarily high precision. This is done using a
combination of Protocols 1 and 2.

Protocol 3: n d-boxes 1 d8-box.
Alice and Bob begin by using then d-boxes to simulate a

dn-box, as per Protocol 1. Call the outputs for thedn-box a
andb. They satisfysb−admod dn=XY. Alice and Bob now
use Protocol 2 to obtain something close to ad8-box: the
final outputs area=a mod d8 andb=b mod d8.

If dn=kd8 for some positive integerk, this protocol works
exactly. Otherwise, one can calculate the errors resulting in
Protocol 3. Denote byk the largest integer such thatkd8
ødn. Now we have that ifX=0 or Y=0, thensb−ad mod
d8=0 as required. However, the probabilities are skewed by
an amount~1/k<d8 /dn. If X=Y=1, then the probabilities
are skewed in a similar manner. But in addition we have that
if b=dn−1, thensb−admod d8=1 is not satisfied with prob-
ability 1/dn. The important thing here is that all errors tend
to zero exponentially fast asn becomes large.

We have seen several examples of how interconversions
between nonlocal extremal boxes are possible using only lo-
cal operations. It is also interesting to consider how boxes
may be simulated using only classical communicationsCCd
and shared randomsSRd data—i.e., without other boxes. For
example, we can see that oned-box may be simulated with
one bit of one-way communication and log2d bits of shared
randomness.

Protocol 4: 1 bit CC andlog2d bits SR→1 d-box.
Alice and Bob share a random variableaP h0, . . . ,d−1j,

wherea takes all its possible values with equal probability
1/d.

Alice. Alice sends her inputX to Bob and outputsa=a.
Bob. Bob, knowingX anda, outputsb=sa+XYd mod d.
This protocol is optimal regarding the amount of one-way

communication exchanged. This is a consequence of the fol-
lowing lemma, which places a lower bound on the amount of
communication needed to simulate boxes. The lemma is used
in the proof of Theorem 2, our final main result for this
section.

Lemma 1. The simulation ofn d-boxes using one-way
communication requires at leastn bits of communication if
shared randomness is available andn+n log2d bits without
shared randomness.

Proof. Note that this bound can be achieved using Proto-
col 4 for each of then boxes, replacing if necessary
n log2d bits of shared randomness byn log2d bits of commu-
nication from Alice to Bob.

Let us show that this amount of communication is neces-
sary. Suppose first that both parties have access to shared
random data and that communication is allowed from Alice

to Bob. Bob’s output is thusb=bsYW ,C,rd where YW

=Y1, . . . ,Yn are the joint inputs for Bob,C is the communi-
cation, andr the shared data. Note simply that for Alice,
there are 2n possible joint inputs inton d-boxes. If Alice is
sending fewer thann bits, there will be at least one pair of
joint inputs for which her communication is the same. Call

themXW 1 andXW 2. A careful examination of the definition of a
d-box reveals that there will be at least one joint input of
Bob’s into then boxes such that his output must be different

according to whether Alice’s input wasXW 1 or XW 2. Thus
,n bits of communication are not sufficient.

If Alice and Bob do not have access to shared random-

ness, then Bob’s output is of the formb=bsYW ,Cd. The proof
then follows by an argument similar to the one used above,
noting that for Alice there are 2n+n log2d possible joint input-

output pairssXW ,AW d. j

These types of considerations will help us to establish the
final result of this section.

FIG. 3. Making a 4-box from two PR boxes. Alice inputsX into
the first box andaX into the second, while Bob inputsY into both
boxes. Alice’s output is given bya=2a8+a and Bob’s byb=2b8
+b.
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Theorem 2. It is in general impossible, using local revers-
ible operations, exactly to transformn d-boxes into m
d8-boxes.

The theorem follows from the following two lemmas.
Lemma 2. Using n d-boxes, Alice and Bob can exactly

simulate at mostn d8-boxes, fordùd8.
Lemma 3. Using n d8-boxes, Alice and Bob can exactly

simulate at mostns1+log2d8d / s1+log2dd,n d-boxes for
d8ød.

Proof. We prove Lemma 2 as follows. We know that we
can simulaten d-boxes withn bits of communication and
n log2d bits of shared randomness. Suppose that there were a
protocol using only local operations that could convertn
d-boxes intoN d8 boxes, for somed8ød, whereN.n. Then,
by combining the simulation of thed-boxes with the protocol
for their conversion, we would have constructed a protocol
for simulatingN d8-boxes using onlyn bits of communica-
tion, in contradiction with Lemma 1. The proof of Lemma 3
is very similar. Note that we can simulaten d8-boxes with
n+n log2d8 bits of classical communication and no shared
randomness. Suppose that there were a protocol that converts
n d8-boxes intoN d-boxes, for somedùd8, whereN.ns1
+log2d8d / s1+log2dd. As argued above, it follows from the
fact that d-boxes are vertices that this protocol would not
need any additional shared randomness. Then we would have
constructed a protocol for simulatingN d-boxes using only
n+n log2d8 bits of communication and no shared random-
ness, again in contradiction with Lemma 1. j

III. THREE-PARTY CORRELATIONS

A. Definitions

In this section, we generalize the considerations of the
previous sections to consider tripartite correlations. As be-
fore, we consider that correlations are produced by a black
box with specified inputs and outputs, but now the box is
assumed to be shared between three separated partiesA, B,
andC.

The no-signaling polytope. A box is defined by joint prob-
ability distributionspabcuXYZ, which satisfy positivity,

pabcuXYZù 0 ∀ a,b,c,X,Y,Z, s19d

normalization,

o
a,b,c

pabcuXYZ= 1 ∀ X,Y,Z, s20d

and no-signaling. With three parties it is possible to imagine
various types of communication, and correspondingly there
are different types of no-signaling conditions. Obviously we
require thatA cannot signal toB or C sand cyclic permuta-
tionsd. We should also, however, require the stronger condi-
tion that if the systemsB andC are combined, thenA cannot
signal to the resulting composite systemBC. This is ex-
pressed by

o
a

pabcuXYZ= o
a

pabcuX8YZ ∀ b,c,Y,Z,X,X8, s21d

where, again, we include cyclic permutations. Finally, note
that if systemsA andB are combined, the resulting compos-

ite systemAB should not be able to signal toC. This type of
condition does not require a separate statement, however, as
it already follows from Eq.s21d. Indeed, using the fact thatA
cannot signal toBC and thatB cannot signal toAC, we
deduce

o
a,b

pabcuXYZ= o
a,b

pabcuX8YZ ∀ b,c,X,X8,Y,Z

= o
a,b

pabcuX8Y8Z ∀ c,X,X8,Y,Y8,Z, s22d

which is the condition thatAB cannot signal toC. Hence the
only conditions we need to impose on a tripartite box are
those of Eqs.s19d, s20d, ands21d. The set of boxes satisfying
these conditions is the polytopeP.

Locality conditions. In the tripartite case, as well as dif-
ferent types of no-signaling condition, there are different
types of locality condition. First, a box is fully local if the
probabilities can be written in the form

pabcuXYZ= o
l

plpauXsldpbuYsldpcuZsld. s23d

The set of such boxes is a convex polytope denotedL. Sec-
ond, we say that a box is two-way local if either there exists
a bipartition of the parties—say,AB versusC—such that the
composite systemAB is local versusC or if the box can be
written as a convex combination of such boxes—i.e.,

pabcuXYZ= p12o
l12

pl12
pabuXYsl12dpcuZsl12d

+ p13o
l13

pl13
pacuXZsl13dpbuYsl13d

+ p23o
l23

pl23
pbcuYZsl23dpauXsl23d, s24d

where p12+p23+p13=1. The set of such boxes is again a
convex polytope, denotedL2. Finally, any box that cannot be
written in this form demonstrates genuine three-way nonlo-
cality. We have thatL,L2,P and also thatL,Q,P.

In the following, we restrict our attention to the case
a,b,c,X,Y,ZP h0,1j. We find the vertices of the polytopeP
and point out some connections with three-party Bell-type
inequalities. Finally we consider some examples of intercon-
versions, in particular of how to construct tripartite boxes
using PR boxes as a resource.

B. Two inputs and two outputs

For the tripartite boxes with two inputs and two outputs
per observer, Eq.s20d expresses eight normalization con-
straints, and Eq.s21d expresses 3316=48 no-signaling con-
straints. However, as in the bipartite case, there is also some
further redundancy; there turn out to be 38 independent con-
straints. Therefore the dimension of this polytope is dimP
=26−38=26.

Finding the vertices of a polytope given its facets is the
so-called “vertex enumeration problem” for which several
algorithms are available, although they are efficient only for
low dimensional problems. We determined the extreme
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points of our three-party polytope, with bothPorta f23g and
cdd f24g. It turns out that there are 46 classes of vertices,
where vertices within one class are equivalent under local
relabeling operations and permutations of the parties. These
46 classes of extreme points can be divided into three cat-
egories: local, two-way local and three-way nonlocal.

Local vertices. This category contains boxes for which
A’s, B’s andC’s outputs are all deterministic. They all belong
to the same class under reversible local operations, a repre-
sentative of which is

pabcuXYZ= H1, a = 0,b = 0,c = 0,

0, otherwise.
J s25d

Two-way local vertices. In view of the preceding discus-
sion for bipartite correlations, there is only one class of ex-
tremal two-way local correlations that are not fully local.
This is because if a box is a vertex, there can be only one
term in the decomposition on the right-hand side of Eq.s24d.
Then it follows from Theorem 1 that this term must describe
a PR box shared between two parties, along with a determin-
istic outcome for the third party. Thus any box of this type is
equivalent under local relabelings and permutations of par-
ties to

pabcuXYZ= H1/2, a % b = XY andc = 0,

0, otherwise.
J s26d

Three-way nonlocal vertices. This category contains
genuine three-party nonlocal extremal correlations. It is
much more complex than the two above, since it comprises
44 different classes of vertices. Out of these, we mention 3
classes of particular interest. The first class can be expressed
as

pabcuXYZ= H1/4, a % b % c = XY % XZ,

0, otherwise.
J s27d

If we imagine thatB and C form a composite system with
input Y% Z and outputb% c, then this is a PR box shared
betweenA andBC. We refer to them as “XsY+Zd” boxes.

Correlations in the second class are equivalent to

pabcuXYZ= H1/4, a % b % c = XY % YZ% XZ,

0, otherwise.
J s28d

We call them “Svetlichny” correlationssfor reasons ex-
plained belowd.

Finally, the third class contains what we call “XYZ” cor-
relations.

pabcuXYZ= H1/4, a % b % c = XYZ,

0, otherwise.
J s29d

The XYZ correlations are special because, as van Dam
pointed out to usf25g, they can be used to solve any three-
party communication complexity problem with only 1 bit
broadcast by each party. He also pointed out that they have a
natural generalization ton parties: a1 % a2 % ¯ % an
=X1X2. . .Xn, whereXi P h0,1j is the input of partyi and ai

P h0,1j the output of partyi. Thesen-party correlations can
be used to solve anyn-party communication complexity

problem with 1 bit broadcast by each party. They can be
constructed from a supply of PR boxes.

We conclude this section with some remarks on these cor-
relation vertices and known multipartite Bell-type inequali-
ties. First, each of the XsY+Zd, XYZ, and Svetlichny boxes
violates the Mermin-Klyshko inequalityf26,27g up to the
algebraic maximum. Second, we recall that inequalities can
be written down that detect genuine three-way nonlocality.
One such is the Svetlichny inequalityf28g. If we definekijkl
by

ki jkl = o
a,b,c

s− 1da+b+cpabcuX=i,Y=j ,Z=k, s30d

then the Svetlichny inequality is

M = k000l + k001l + k010l + k100l − k011l − k101l − k110l

− k111l ø 4. s31d

Any local or two-way local box must satisfy this inequality.
Quantum mechanically we can obtainM =4Î2 using a
Greenberger-Horne-ZeilingersGHZd state f29g salthough
note that different measurements are needed from those that
produce the well known GHZ paradoxf30gd. XsY+Zd boxes
do not violate the Svetlichny inequality as writtensalthough
they must violate some Svetlichny-type inequality as they
are three-way nonlocald. Svetlichny boxes giveM =8, the
algebraic maximum of the expressionshence their named;
XYZ correlations again do not violate the Svetlichny in-
equality as written, but returnM =6 after the local relabeling
a→a% X, b→b% Y, c→c% Z% 1.

From the fact that some quantum states violate the Svetli-
chny inequality, we can conclude that in the two-input two-
output case,QúL2. From the fact that bipartite correlations
can be more nonlocal than quantum mechanics allows, we
can also conclude thatL2úQ.

C. Simulating tripartite boxes

We consider how we may simulate some of these tripartite
boxes, using a supply of PR boxes as a resource. We will
give three examples, showing how to simulate an XsY+Zd
box with two PR boxes, a Svetlichny box with three PR
boxes, and an XYZ box with three PR boxes.

First, suppose that two PR boxes are shared, with box 1
between Alice and Bob and box 2 between Alice and
Charles. The following protocol shows how the three observ-
ers may simulate one XsY+Zd box ssee Fig. 4d.

FIG. 4. Making an XsY+Zd box from two PR boxes. Alice
outputsa=a1 % a2, Bob outputsb and Charles outputsc.

BARRETT et al. PHYSICAL REVIEW A 71, 022101s2005d

022101-8



Protocol 5: 2 PR boxes→1 XsY+Zd box.
Alice. Alice inputs X into box 1 and box 2, obtaining

outputsa1 anda2. She then outputsa=a1 % a2.
Bob. Bob inputsY into box 1, obtaining outputb.
Charles. Charles inputsZ into box 2 obtaining outputc.
The protocol works because

a % b % c = a1 % a2 % b % c = XY % XZ. s32d

Suppose now that three PR boxes are shared, with box 1
between Alice and Bob, box 2 between Alice and Charles,
and box 3 between Bob and Charles. Protocol 6ssummarized
in Fig. 5d allows them to simulate one Svetlichny box.

Protocol 6: 3 PR boxes→1 Svetlichny box.
Alice. Alice inputsX into both box 1 and box 2, obtaining

a1 anda2. Her final output isa=a1 % a2.
Bob. Bob inputsY into both box 1 and box 3, obtainingb1

andb3. His final output isb=b1 % b3.
Charles. Charles inputsZ into both box 2 and box 3,

obtainingc2 andc3. His final output isc=c2 % c3.
This works because

a % b % c = a1 % b1 % b3 % c3 % a2 % c2

= XY % YZ% XZ. s33d

Protocol 7ssummarized in Fig. 6d shows how to simulate
one XYZ box using three PR boxes.

Protocol 7: 3 PR boxes→1 XYZ box.
Alice. Alice inputsX into box 1, obtaining an outputa1.

She then inputsa1 into box 2, obtaining outputa2. Alice’s
output for the protocol isa=a2.

Bob. Bob inputsY into box 1, obtaining an outputb1. He
then inputsb1 into box 3, obtaining outputb3. Bob’s output
for the protocol isb=b3.

Charles. Charles inputsZ into both boxes 2 and 3, obtain-
ing outputsc2 and c3. Charles’ output for the protocol isc
=c2 % c3.

The protocol works because

a % b % c = a2 % b3 % c2 % c3 = Za1 % Zb1 = XYZ.

s34d

Finally, we note that it is of course possible to perform
conversions among tripartite boxes. For example, it is easy to
see how to make one Svetlichny box using two XYZ boxes.
The protocol is obvious once it is realized that a Svetlichny
box is locally equivalent to a box defined by Eq.s28d with
XY% YZ% XZ on the right-hand side replaced by
XYZ% s1% Xds1% Yds1% Zd. We omit the details.

D. Nonlocality and the environment

Suppose that we have some three-party no-signaling dis-
tribution pabeuXYE with partiesA, B, andE. We will show that
if the reduced probability distributionpabuXY=oepabeuXYE is a
vertex of the bipartite no-signaling polytope, then the com-
posite systemAB is local versusE. This is analogous to the
result that pure quantum states cannot be entangled with a
third party or the environment. It means that extremal non-
local correlations cannot be correlated to any other system.
sNote that this raises interesting new possibilities for cryp-
tography. These are investigated in Ref.f31g.d

By Bayes’ theorem,

pabeuXYE= pabuXYEepeuXYE

=pabuXYEepeuE, s35d

where we have used the fact thatAB cannot signal toE to
deduce the second equality. The condition thatE cannot sig-
nal to AB implies

pabuXY = o
e

pabeuXYE ∀ E

= o
e

pabuXYEepeuE ∀ E. s36d

For each valueE, the last equality provides a convex decom-
position ofpabuXY in terms of non-signaling correlations, with
e playing the role of the shared randomness. Since we sup-
posed thatpabuXY is extremal, this decomposition is unique
andpabuXYEe=pabuXY ∀e,E. We then deduce

pabeuXYE= pabuXYpeuE, s37d

i.e., thatAB is uncorrelated withE.
A natural question that we leave as an open problem is

whether the converse is true: ifpabuXY is in the interior of the
no-signaling polytope, is it always possible to extend it to a
tripartite distributionpabeuXYE such thatAB is nonlocal versus
E? sIt is always possible, ifpabuXY is not a vertex, to write it
as pabuXY=oepabeuXYE, whereE takes the single valueE=0.
One can also require thatE take several values, in such a
way that pabeuXYE is nonsignaling. What is nontrivial is the
requirement thatpabeuXYE is nonlocal in the partitionAB ver-
susE. We do not know if this is possible in general.d

FIG. 5. Making a Svetlichny box from three PR boxes. Alice
outputsa=a1 % a2, Bob outputsb=b1 % b3, and Charles outputsc
=c2 % c3.

FIG. 6. Making an XYZ box from three PR boxes. Alice outputs
a=a2, Bob outputsb=b3, and Charles outputsc=c2 % c3.
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IV. DISCUSSION AND OPEN QUESTIONS

In conclusion, we have defined nonsignaling correlation
boxes and investigated their potential as an information-
theoretic resource. Once the structure of the set of such
boxes is understood as a convex polytope, it is clear that
there are analogies with other information-theoretic re-
sources, in particular the resource of shared quantum states
swith nonlocality taking the place of entanglementd. With
this in mind, we have shown how various interconversions
between boxes are possible. The set of multipartite boxes in
particular appears very rich. Finally, we furthered the anal-
ogy with quantum states by demonstrating how nonlocality
is monogamous, in much the same way that entanglement is
monogamous. We finish with some open questions.

Nonlocal vertices and Bell inequalities. We saw in Sec.
II B 1 that for the two-input two-output polytope there is a
one-to-one correspondence between extremal nonlocal corre-
lations and facet Bell inequalitiessnontrivial facets of the
local polytoped. One might wonder whether this one-to-one
correspondence holds in general. It appears, however, that
for more complicated situations, involving more possible in-
puts or outputs, it does not. It would be interesting to inves-
tigate what is the precise relation between nonlocal vertices
and facet Bell inequalities. This might help understand fur-
ther the geometrical structure of nonlocal correlations.

Other vertices. We have given a complete characterization
of two-input extremal nonlocal boxes in the bipartite case
and presented some examples in the tripartite case. In gen-
eral, one might also consider extremal boxes involving more
inputs, more outcomes, or more parties.

For instance, a natural way to generate more complex
boxes is by taking products of simpler ones. Suppose Alice
and Bob have access to two boxespa0b0uX0Y0

0 and pa1b1uX1Y1

1 ,
where for simplicity we consider that there areM possible
inputs andd possible outputs for each box. If Alice inputsX0
andX1 in each of the two boxes and outputsa=da1+a0 and
similarly for Bob, they have now produced a nonlocal box
with M2 inputs andd2 outputs pabuXY=pa0b0uX0Y0

0 pa1b1uX1Y1

1 ,
whereX=MX1+X0 and similarly forY. If the two original
boxes were extremal for thesM ,dd polytope, will the product
be extremal for thesM2,d2d polytope? In the case of quan-
tum states, the analogous result of course holds—a product
of two pure states is itself a pure state. We have been able to
show that in the case of boxes, the result holds provided that
we restrict ourselves to extremal boxes with the following
property: the output of one party is uniquely determined
when the two inputs and the other party’s output are speci-
fied. This is true for all the vertices presented in this paper.
Plausibly it is true for all vertices, but this is not proven.

Interconversions. We have so far been able to achieve
only a limited set of interconversions between extremal
boxes. This is especially true for the three party case, where
there are 46 classes of vertices and we have investigated only
5 of these. Understanding what kinds of interconversions be-
tween extremal boxes are possible is necessary to appraise
their relative power as an information-theoretic resource.

The motivation is also to answer the general question of
whether there exist inequivalent types of nonlocal correla-

tions. Note, for instance, that the three-way nonlocal corre-
lations of Eqs.s27d, s29d, and s28d cannot be reduced to
two-way nonlocal ones using only local operations. This fol-
lows from the fact that the outcomes for two out of the three
parties are totally independent of one anothersunless the
outcome of the third party is communicated to themd. In this
sense genuinely tripartite extremal correlations and bipartite
extremal correlations belong to inequivalent classes. Are
there inequivalent classes of bipartite extremal correlations?
In other words, are there two bipartite extremal boxes such
that one cannot simulate the other even approximately, no
matter how many copies are available?

Another problem is whether all bipartite and multipartite
correlations can be constructed using PR boxes, as is the case
for all the extremal boxes presented in this papersand thus
also for probabilistic mixtures of themd. PR boxes could then
be viewed as the unit of nonlocal correlation, in analogy with
the bit, qubit, and ebit, which are the units of classical and
quantum information-theoretic resources.

Interior points. We have only considered conversions be-
tween extremal probability distributions. It would be inter-
esting to consider the interior points of the polytope, which
include quantum correlations. In particular we would like to
find out if distillation of such mixed correlations is
possible—i.e., if given a number of copies of a mixed box
we can by local operations obtain some number of extremal
boxes. Note that Tsirelson’s boundf13g shows that the quan-
tum correlationsQ are a proper subset of the set of all non-
signaling correlationsP. Thus it is impossible to distill cor-
relations inQ to extremal correlations. But apart from this,
we do not know of any constraint on possible distillation of
nonlocal correlations.

Finally, one could consider distillation in a new context,
where we allow some communication between the parties
but account for it at the end of the protocolsas noted above,
an analogous approach was considered in Ref.f18g in the
context of classical distillation of shared randomnessd. Alter-
natively, following Ref. f20g, one could introduce a new
element: that of secrecy. Suppose that inputs and outputs
are considered to be secret and that Alice and Bob have a
supply of noisysthat is nonextremald boxes. Can Alice and
Bob distill a supply of extremal boxes, whose inputs and
outputs are also secret, via public communication?

As we outlined in the Introduction, nonlocal extremal cor-
relations can be a very powerful resource for communication
complexity problems. This will also be the case for correla-
tions that can be distilled to these with no or little commu-
nication. On the other hand, Tsirelson’s bound and results in
communication complexityf10g put limits on the power of
quantum mechanics as a resource in distributed tasks. A bet-
ter understanding of the possible interconversions between
nonlocal correlations might bring an information-theoretic
explanation of these limitations.

Note added. After the completion of this work we were
made aware of a work by Tsirelsonf32g that contains some
of the results presented here, in particular those of Secs. II A
and II B 1.
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