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It is well known that measurements performed on spatially separated entangled quantum systems can give
rise to correlations that are nonlocal, in the sense that a Bell inequality is violated. They cannot, however, be
used for superluminal signaling. It is also known that it is possible to write down sets of “superquantum”
correlations that are more nonlocal than is allowed by quantum mechanics, yet are still nonsignaling. Viewed
as an information-theoretic resource, superquantum correlations are very powerful at reducing the amount of
communication needed for distributed computational tasks. An intriguing question is why quantum mechanics
does not allow these more powerful correlations. We aim to shed light on the range of quantum possibilities by
placing them within a wider context. With this in mind, we investigate the set of correlations that are con-
strained only by the no-signaling principle. These correlations form a polytope, which contains the quantum
correlations as @prope) subset. We determine the vertices of the no-signaling polytope in the case that two
observers each choose from two possible measurementslwitkcomes. We then consider how interconver-
sions between different sorts of correlations may be achieved. Finally, we consider some multipartite examples.
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[. INTRODUCTION any box corresponding to an entangled quantum state will
) ] . not. This is necessary for compatibility between quantum
In a typical Bell-type experiment, two entangled particlesmechanics and special relativity. Of the nonsignaling boxes,
are produced at a source and move apart to separated obseggme will violate a Bell-type inequality. The significance of
ers. Each observer chooses one from a set of possible megis can be spelt out in information-theoretic terms: separated
surements and obtains some outcome. The joint outcomebservers without the box, who have access to preshared
probabilities are determined by the measurements and quaotassical random data but no other resources and, in particu-
tum state. One of the more striking features of quantum melar, who cannot communicate, will not be able to simulate
chanics is that joint outcome probabilities can violate a Bell-the box. We refer to any such bdand to the corresponding
type inequality 1], indicating that quantum mechanics is not, correlation as nonlocal.
in Bell's terminology, locally causal. This prediction has In general, these boxes can be viewed as an information-
been confirmed in numerous laboratory experiméais theoretic resource. This is obvious in the case of signaling
Abstract'y th|s scenario may be described by Saying thaboxes or CIaSS|Ca.I Chanl'?ells. HOWeVer, it is also known that
the two observers have access to a black box. Each obsen/pnlocal correlations arising from an entangled quantum
selects an input from a range of possibilities and obtains aftate; €ven though they cannot be used directly for signaling,

output. The box determines a joint probability for each out-c@n P& useful in reducing the amount of signaling that is

ut pair given each input pair. It is clear that a quantum stat@€€ded in communication complexity scenarios below what
put parr g putp g could be achieved with only shared random ddtia A local

provides a particular example of such a box, with input cor- lack box is, of course, simply equivalent to some shared
responding to measurement choice and output to measur Sndom data' which in tﬁrfdepending on the precise nature
ment outcome. More generally, boxes can be divided intoOf the proble'n)u may be better than nothiri@]
different types. Some will allow the observers to signal to A good question to ask now is, can any éet of nonsignal-
one another via their choice of input and correspond to tWOTng correlations be produced b),/ measurements on some
way classical channels, as introduced by Shari8rOthers quantum state? The answer, in fact, is no. This was shown by
will not allow signaling—it is well known, for example, that Popescu and Rohrlif6], th Wrote' down a set of correla-
tions that return a value of 4 for the Clauser-Horne-Shimony-
Holt (CHSH) expression 7], the maximum value algebra-
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terms of our boxes, there are some boxes that are nonsignal- > Pagxy=1 OX,Y. 2)
ing but are more nonlocal than is allowed by quantum me- ab

chanics. It is interesting to note that from an information- ) ) ) ) )
theoretic point of view, some of these latter are very!n this work we only consider nonsignaling boxes; i.e., we
powerful. For example, van Dam has shoy#] that two  require that Alice cannot signal to Bob by her chome)«_)f_
observers who have access to a supply of Popescu-RohrIicﬁ-”d vice versa. _Thls means that the marglna_l probabilities
type boxes would be able to solve essentially any two-partpax andpyjy are independent of and X, respectively:
communication complexity problem with only a constant _ _ /

number of bits of communication. This should be contrasted % Pabixv= % Pabixy = Pajx HaXY,Y", ©®

with the quantum case, for which it is known that certain

communication complexity problems require at leagbits _ _ ,

of communication even if unlimited shared entanglement is % Pabixy = g Papjxy = Poiy HDY,X,X". (4)
available[10].

In this work, we investigate the set of nonsignaling boxes, A concrete example of a correlation box is an experiment
considering them as an information-theoretic resourcewith two spin-% particles, with the inputX andY labeling
Clearly this set includes those corresponding to measureAlice’s and Bob’s analyzer settings and the outpaitasnd b
ments on quantum states as a subset. The motivation fdabeling the experimental outcomes. In a quantum experi-
studying the wider set is partly that it is interesting for its ment like this one, it is generally the case that the outcome of
own sake. This is true even though no correlations other thathe measurement is obtained as soon as the measurement is
quantum correlations have so far been observed in natureerformed. In addition, the entanglement is destroyed after
Our findings are preliminary, but it is already clear that thethe measurements, so that if the experiment is to be repeated
set of nonsignaling boxes has interesting structure, and orenew entangled state is needed. We define boxes to have the
finds analogies with other information-theoretic resources, irsame properties. Alice can select her input at any time and
particular with the set of entangled quantum states. Thisbtains her output immediately, and similarly Bob. There
work is not, however, purely academic. Another motivationmay of course be a time delay between Alice selecting her
is that a better understanding of the nature of quantum colinput and Bob selecting his input, but this makes no differ-
relations can be gained by placing them in a wider settingence to the correlations. Further, after a box is used once, it is
Only in this way, for example, can one hope to answer Popedestroyed and to repeat the experiment a new box is needed.
scu and Rohrlich’s original question, of why quantum corre- We will always consider that the number of possible in-
lations are not more nonlocal than they are. More generallyputs and outputs is finite. Since the above constraints are all
a proper understanding of the information-theoretic capabilifinear, the set of boxes with a given number of inputs and
ties of quantum mechanics includes an understanding adutputs is a polytope, which we denote Bylt is easy to see
what cannot be achieved as well as what can. that the set is convex—if two boxes each satisfy the con-

This article is organized as follows. In Sec. Il A, we in- straints, then a probabilistic mixture of theefined in the
troduce the convex polytope that describes the set of nonsigbvious manngrwill also do so.
naling correlations. In Sec. Il B, we examine more closely The local polytopeln general, the set of nonsignaling
the particular case of correlations involving two possible in-boxes can be divided into two types: local and nonlocal. A
puts, obtaining all the vertices of the corresponding polytopebox is local if and only if it can be simulated by noncommu-
We then consider, in Sec. Il C, how interconversions betweenicating observers with only shared randomness as a re-
these extreme points may be achieved using local operationsource. This means that we can write
Section Il is devoted to three-party correlations, and in Sec.

Il D, we examine how extremal correlations correlate to the Pabixy = 2 PAPaix(MPoy(N), (5
environment. We conclude with some open questions in Sec. A

V. where\ is the value of the shared random data @pds the
probability that a particular value of occurs. We have that
Il. TWO-PARTY CORRELATIONS Pax(M) is the probability that Alice outputa given that the
shared random data wasand the input was chosen to e
) ) o ) and similarly forpgy(X).

The no-signaling polytopeA bipartite correlation box We recall what is known about the set of local bokese,
(hereafter, just “box'is defined by a set of possible inputs tq jnstance,[11,17). This set is itself a convex polytope,
for each of Alice and Bob, a set of possible outputs for €achyit vertices corresponding to local deterministic boxa
an_d a joint probabll_lty for each output pair given each mputpalx, Pyy are 0 or 1. The positivity conditions of Eq(1) are
pair. We denote Alice’s and Bob’s inpuds and Y, respec- i facets of this polytope, while nontrivial facets corre-

tively, and their outputsa and b. The joint probability of g5 to Bell-type inequalities. Violation of the latter implies
getting a pair of outputs given a pair of inputspigxy. Since  hat 4 point lies outside the local polytope and that the cor-

A. Definitions

Pabixy are probabilities, they satisfy positivity, responding box is therefore nonlocal. We denote the local
Paxy=0 Dab,X,Y, (1  Polytope byZ. _ o .
Quantum mechanical correlationBinally, there is a third
and normalization, set of interest:  the correlations obtainable by measurements
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The eight nonlocal vertices may be expressed compactly
as

12, a®b=XY® aX& BY @ 7,
Pabixy = (7)

0, otherwise,

where «,8,ye{0,1}. We will refer to these boxes as
Popescu-RohrliciPR) boxes.

By using reversible local operations Alice and Bob can
convert any vertex in one class into any other vertex within
the same class. There are two types of reversible local op-
erations. Alice may relabel her inputsX,—X®1, and she

FIG. 1. A schematic representation of the space of nonsignalingnay relabel her output&onditionally on the inpyt a—a
correlation boxes. The vertices are labeled L and NL for local and® aX® 8. Bob can perform similar operations. Thus up to
nonlocal. Bell inequalities are the facets represented in dashed linetacal reversible transformations, each local vertex is equiva-
The set bounded by these £ The region accessible to quantum lent to the vertex setting=0, 8=0, y=0, and5=0—i.e,

mechanics i9. A general nonsignaling box P. 1 a=0andb=0
Pabjxy = { ’ , ’ (8)

on bipartite quantum states. We denote this@divhere Q 0, otherwise.
is defined for a fixed number of measurement settings anftach nonlocal vertex is equivalent to
outcome$ The setQ is investigated in Ref$8,12-15. It is
convex but is not a polytope as the number of extremal _J12, a®b=XY,

oints is not finite. Since the correlations allowed by quan- Papixy = i ©)
p y q 0, otherwise.

tum mechanics can violate Bell inequalitied,is nonlocal. ) _ ) ]
However, as they violate the CHSH inequality only up toWe note that if we allow irreversible transformations on the

Tsirelson’s bound of 22 [6,8], they form a proper subset of Outputs, we may convert any nonlocal vertex into a local
the no-signaling polytope. Overall, we have tfat QCP.  Vertex.

This situation is illustrated in Fig. 1. For the case of two inputs and two outputs, it is well
known that the only nontrivial facets of the local polytofe
B. Two-input no-signaling polytope correspond to the CHSH inequalitie$6]. There is an im-

portant connection between the CHSH inequalities and the

nonlocal vertices of. In order to explain this, we first recall
Having defined the objects that we are interested in, wexplicitly the CHSH inequalities. Lefij) be defined by

begin by considering in detail the simple case in which Alice

and Bob are each choosing from two inputs, each of which N ! ash

has two possible outputs. We writg,Y,a,be{0,1}. The (ii)= 2 (= D™ Papjxci =i (10

probabilities payxy thus form a table with 2 entries, al- ab=0

though these are not all independent due to the constraints @hen the nontrivial facets of are equivalent to the follow-

Sec. Il A. The dimension of the polytope is found by sub-ing inequalities.

tracting the number of independent constraints frdhaad g+ .

turns out to be 8. To understand the polytdpewe wish to Bogy = (= 100) + (- D7X0D) + (- D*"X10)

find its vertices. These will be boxes that satisfy all of the + (- )P < 2, (11)

constraints and saturate a sufficient number of the positivity ) ]

constraints to be uniquely determined. In the next subsectiovherea.s,y {0, 1;. For each of the eight Bell expressions

we present an argument that allows us to find all the verticeBas,, the algebraic maximum i8,4,=4. We find that for

of the two-inputd-output polytope. Here we simply state the €ach choice ok, 8, andy the correlations defined by E(¥)

results for the simple two-input two-output case. return a value for the corresponding Bell expression of
We find that there are 24 vertices, which may be dividedBas,=4- Thus there is a one-to-one correspondence between

into two classes: those corresponding to local boxes anthe nonlocal vertices gP and the nontrivial facets of, with

those corresponding to nonlocal boxes. Local vertices argach vertex violating the corresponding CHSH inequality up

simply the local deterministic boxes, which assign a definite© the algebraic maximum. These extremal correlations de-

value to each of Alice’s and Bob’s inputs. There are thus 16scribe in a compact way the logical contradiction in the

1. Two outputs

local vertices, which can be expressed as CHSH inequalities.
1, a=aXo® B, 2. d outputs
Pabjxy = b=9yY® 6, (6) We now generalize the results of the preceding section.

Again we have two parties, Alice and Bob, who choose from
two inputsX andY e {0, 1} and receive outputa andb with
wherea,B,y,6€{0,1}. Here and throughouty denotes ad- a joint probability p,xy- We denote the number of distinct
dition modulo 2. outputs associated with inputé and Y by dy and d. If

0, otherwise,
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Alice’s input is X, for example, ther e {0, ... di—1}. zero; otherwise, there will be fewer than nd¥,d%) prob-
Theorem 1The nonlocal vertices dP for two input set-  abilities p,yxy>0, and thus one of Alice’s or one of Bob’s
tings anddj anddZ outputs are equivalent under reversible outcomes will not be output for these values Xfand Y.
local relabeling to Because of the no-signaling conditions, it will not be output
for the other possible pairs of inputs, so the vertex will be a
1k, (b-amodk=XY, partial-output one. Overall, the maximal number of allowed
Pabixy = a,be{0,... k-1}, (12)  zero entries for a full-output vertex is

0, otherwise,

for eachk e {2, ..., min y(dg,d9)}.

We note that the casif=d$=2 gives the PR correlations gch 4 vertex is thus possible if dif)<Z or
we found previously. Itfy=d®=k=d, then the vertex violates

Z= 2 [dydy - max(dy, dy)]. (14
XY

the d-dimensional generalization of the CHSH inequality ! . ! . ! e
[17] up to its algebraic maximum. We call such a box a 2 di+ 2 db= > maxd,d). (15
d-box (a more complete name would specify that the number X=0 ¥=0 X.¥=0
of parties and the number of inputs per party are each tWorhis condition is fulfilled (with equality only for d=d®
but this simple hame will do for our purpoges =d, OX,Y {0, 1.

Proof of Theorem 1A probability tablepyxy is & vertex We can thus restrict our analysis deoutcome polytopes.

of P if and only if it is the unique solution of Eq$1), (2),  The extremal points of more general ones, whefe d&,
(3), and (4) with dim(P) of the positivity inequalities1) i pe the full-output extremal points ofi-outcome poly-
replaced with equalities. topes ford=2, ..., miry y(dj,d5).

It will be useful to distinguish two kinds of extremal Using d=d=d 0x Y {0, 1}, in the discussion before
points: partial-output vertices and full-output vertices. q. (14), it follows that the dimension of d-outcome poly-
Partial-output vertices are vertices for which at least one o ope is 4l(d-1) and that for a given pair of inputs exactly
the pyx=0 orpyy=0. They can be identified with vertices of y_ 1) propanilities must be assigned the value zero or,

’ H H TA A B
ioé%togiitergglh fg]v;e\r,e?giz;blgf oautpgltsijg péf< d\)/(vi?hr SYA equivalently, that probabilities must be>0. We can there-
Y, poly ' X fore write the probabilities as

<d§ or d®<d? can be extended to vertices Bf by map-
ping the outcomes ok’ andY’ to a subset of the outcomes >0 if b="fyy(a),
of X andY, and by assigning a zero probabilipyx=0 and Papxy
Ppy=0 to extra outcomes. Full-output vertices are vertices
for which all p,x # 0 andpy,y # 0—i.e., for which all outputs ~ wherefyy(a) is a permutation of thel outcomes. Indeed, if
contribute nontrivially top,yxy- Thus the extremal points of fxy(a) is not a permutation, then at least one of Bob’s out-
a given two-setting polytope consist of the full-output verti- comes will not be output.
ces of that polytope and, by iteration, of all the full-output We can relabel Alice’s outcomes fo¢=0 so thatfy,(a)
vertices of two-settings polytopes with fewer outcomes.=a, those of Bob fory=0 so thatfy,(a)=a, and finally those
Hence in the following, we need construct only the full- of Alice for X=1 so thatf;(a)=a. In other words,
output vertices for a polytope characterizeddﬁ/and d$.

pabXY{

16
=0 otherwise, (16)

>0 if (b—a)modd=0,
=0 otherwise,

The joint probabilitiesp,yxy form a table of =y yddf
entries. These are not all independent because of the normal-
ization and no-signaling conditions. There are four normal- ) )
ization equalities expressed by E) and EXdQ+EYd$ no- for (X,Y) €1(0,0),(0,2),(1,00}. It remalns.t.o determlnél_l.
signaling equalities expressed by E¢3) and (4). But for 't must be chosen so that the probability talg,xy is
each value oK, the no-signaling condition for one of Alice’s Uniquely determined—i.e., so that specific values are as-
outputs can be deduced from the conditions of normalizatior§i9ned to the probabilities different from zero. In fact, it is
and no-signaling for theIQ—l other outputs. A similar argu- €2SY to show tha’g this ii:an only be the case if the permutation
ment applies for each value af and Bob's outputs. Hence 11 1S of orderd—i.e., f;,(a)=a only for k=0 modd.

Egs. (2), (3), and (4) form a set of only 4-Ex(dﬁ— 1) The only remaining fregdom in the rglabehng of th_e out-
(e )=3(ch) + () lnearly independent equa- ZREER S8 BREEERE R e puts, We can
tions. The dimension of the no-signaling polytope is thus relabel them globally so thaft(a)=(a+ 1)modd, This im-

! ! ! plies thatp,y;;=1/d if (b-a)modd=1. This completes the
dim(P)= X dpdg- X di— > of. (13 proof. [ |
0 X=0 Y=0

XY=

17

This is the number of entries in the talgg,xy that must be

set to zero to obtain a vertex. Moreover, to obtain a full-
output vertex, these must be chosen so that nejphgr0 In the preceding section we found all the vertices of the
nor pyy=0. If we fix a particular pair of input¢X,Y), then  no-signaling polytope for bipartite, two-input boxes. As de-
no more thardydS—max(dy,d®) probabilities may be set to scribed in the Introduction, the ethos adopted in this work is

C. Resource conversions
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TABLE |. Comparison of information-theoretic resources. X
D
Resource Instantiation Quantitative measure \
Shared random data Random variables Mutual information ( b
Shared secret data  Random variables Secrecy rate /Y
Entanglement Quantum states Entanglement cost D
Nonlocality Boxes Classical simulation cost a/

that boxes(in particular, nonlocal boxg¢san be regarded as  FIG. 2. An example of how two parties that are given two boxes
an information-theoretic resource and investigated as sucilay process locally their inputs and outputs. They result in simu-
Useful comparisons can be drawn with other information-lating another type of box with inputs, Y and outcomes, b. Note
theoretic resources, including shared random dt8l, that due to the no-signaling condition, the parties can use their two
shared secret dafd 9,20, and entanglemeri21]. In each  Poxes with a different time ordering.

case, there is a convex set of possible states and a notion @mporal order in which each party uses the boxes need not

interconversion between different states. There is also a NQyg the same and that this allows loops to be constructed that
tion of interconversion between different resources. Each regqouid be ill defined if it were not for the no-signaling con-

source is useful for some task and can be quantified via ition. (Thus if signaling boxes were to be considered, our
some measufg). Some of this is illustrated in Table I. Note gt jation that outputs be obtained immediately after inputs
that the quantitative measures given are not the only possjyoy|d have to be alteredSuch a loop is illustrated in Fig. 2.

bilities. Note also that even if the given measure vanishes, & || of the protocols presented below, however, the parties
useful resource may still be present. Thus uncorrelated ran;se the boxes in the same temporal order.

dom variables can still be useftas local randomnegsas In the following, we will describe three simple examples.
can separable quantum statés various thingsand as can  \we show that given d-box and ad’-box, we can simulate a

local boxes(as local or shared randomngss ~dd’-box. We will also show that given dd’-box, we can

In light of this, it is natural to ask, what interconversions gjmulate oned-box. Finally, an unlimited supply af-boxes
between boxes are possible and’\)/vhat would be a good megan, simulate al’-box to arbitrarily high precision. In addi-
sure of the nonlocality of a box? To the second questionsion e will describe a negative result: it is not in general
several answers suggest themselves, such as the amountpgfssime to goreversibly from n d-boxes tom d-boxes
classical communication needed to simulate the @wen  \ynered-d'. Although we only prove this for exact trans-
that the only other resource is shared random)damal the  tormations, we believe a similar result should hold even if
degree of violation of Bell inequalitief22]. In this work,  {ransformations need only be exact in an asymptotic limit. It
however, we concentrate on the first question—partly befo|iows from this thatd- and d’-boxes are ultimately in-
cause it is independently interesting and partly because afyyjvalent resources and that in our context, it is inappropri-
understanding of possible interconversions is a prerequisitge tq suppose that they can be characterized by a single
for a good understanding of quantitative measures. numerical measure of nonlocali?ty.

The problem that we consider, then, is whether one can Suppose first, then, that Alice and Bob have ahBox
simulate one type of box using one or more copies of anothexq oned’-box and they wish to simulate oned’-box.
type as a resource. Local opgrqtions such as relabeling are 8fyylate means that for each valueXoé {0, 1}, a procedure
course allowed. As nonlocality is the resource that we havgp,uid be defined for Alice using tie andd’-boxes, which

in mind, it is also natural to allow the parties free access tcbventually enables her to determine the value of an output
local boxes(i.e., to local and shared randomne3da/e note, ac{0,...dd' —1}. Similarly for Bob, for each value o¥
however, that neither local nor shared randomness can help if

the box to be simulated is a verfexhus, none of the proto- e _ )

cols we describe below make use of this. We make the as- Similar considerations apply to the other resources we have_men-
sumption that communication between the parties is not alion€d. In the case of entanglement, for example, reversible inter-
lowed. conversions are not in general possible for mixed states; thus, there

In general, outputs for one box can be used as inputs foiF no unique measure of e_ntanglemen? for mixed states. In_the case
another box. This allows nontrivial protocols to be con-Of Shar.ed. random dat'“." Interconversions by local operations are
structed. As an interesting logical possibility, we note that the 2 c" limited and provide no very meaningful measure of shared

) ’ randomness. However, if one expands the set of operations that
Alice and Bob are allowed, then the picture changes. Thus, in the
This is easy to see. For each value of the local or shared randoncase of shared random data, allowing that Alice and Bob can com-
ness, one can write down the box that is simulated, conditioned omunicate classically, while demanding that the communication must
that value occurring. The box simulated by the overall protocol isbe subtracted at the end, gives an operational meaning to the mutual
then the average of these conditional boxes, with the average takemformation[18]. Inspired by this, it may be interesting to consider
over the possible values of the randomness. But if this box is a&onversions between boxes, with classical communication allowed
vertex, then each of the conditional boxes must be the same vertekut subtracted at the end or, indeed, conversions between entangled
and the protocol could have been carried out without the randomguantum states with quantum communication allowed but sub-
ness. tracted at the end. We do not pursue these questions here.
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FIG. 3. Making a 4-box from two PR boxes. Alice inputsnto
the first box andwX into the second, while Bob inpud into both
boxes. Alice’s output is given bg=2a"+a and Bob's byb=2p’
+B.

there is an eventual outpht The joint probabilities fom and
b should satisfy Eq(12) (with dd’ inserted instead ofl
where necessary

Protocol 1: 1 d-box and 1 dbox — 1 dd'-box

Alice.Alice inputsX into thed-box, obtaining outcome:.
She then inputX into thed’-box if «=d-1 and inputs 0 into
the d’-box otherwise, obtaining an output. Alice’s output
for the protocol isa=a’'d+a.

Bobh. Bob inputsY into thed-box, obtaining outpug, and
inputsY into thed’-box, obtaining outpuB’. His output for
the protocol is therb=g"d+ .

Protocol 1 is illustrated in Fig. 3 for the caded’=2. We
indicate briefly why this protocol works. Recall that a
dd’-box satisfiesb—a)mod dd’ =XY. Write a=a’d+« and
b=pB'd+ 3, wherea can take values=0,... d-1, o’ can
take valuesx’ =0, ... d' -1, and so on. We see that the con-
dition satisfied by ald’-box is equivalent to

B— amodd=XY,

B —a' modd’ =

XY, a=d-1,
|

0, otherwise.

PHYSICAL REVIEW A 71, 022101(2005

If d"=kd’ for some positive integek, this protocol works
exactly. Otherwise, one can calculate the errors resulting in
Protocol 3. Denote by the largest integer such that’
<d". Now we have that ifX=0 or Y=0, then(b—-a) mod
d’=0 as required. However, the probabilities are skewed by
an amountxl/k=d’/d". If X=Y=1, then the probabilities
are skewed in a similar manner. But in addition we have that
if b=d"-1, then(b—a)modd’=1 is not satisfied with prob-
ability 1/d". The important thing here is that all errors tend
to zero exponentially fast asbecomes large.

We have seen several examples of how interconversions
between nonlocal extremal boxes are possible using only lo-
cal operations. It is also interesting to consider how boxes
may be simulated using only classical communicatic)
and shared randoit8R) data—i.e., without other boxes. For
example, we can see that odédox may be simulated with
one bit of one-way communication and loigbits of shared
randomness.

Protocol 4: 1 bit CC andog,d bits SR— 1 d-box

Alice and Bob share a random varialte= {0, ... d-1},
where « takes all its possible values with equal probability
1/d.

Alice. Alice sends her inpuX to Bob and outputai=a.

Boh Bob, knowingX and «, outputsb=(a+XY) modd.

This protocol is optimal regarding the amount of one-way
communication exchanged. This is a consequence of the fol-
lowing lemma, which places a lower bound on the amount of
communication needed to simulate boxes. The lemma is used
in the proof of Theorem 2, our final main result for this
section.

Lemma 1 The simulation ofn d-boxes using one-way
communication requires at leastbits of communication if
shared randomness is available antn log,d bits without
shared randomness.

Proof. Note that this bound can be achieved using Proto-
col 4 for each of then boxes, replacing if necessary
n log,d bits of shared randomness hyog,d bits of commu-
nication from Alice to Bob.

Let us show that this amount of communication is neces-

Protocol 1 is designed precisely to satisfy this condition. It isSary. Suppose first that both parties have access to shared
then not difficult to check that the correct probabilities arerandom data and that communication is allowed from Alice

reproduced.

We note next that it is easy to convert odé -box into
oned-box.

Protocol 2: 1 dd-box— 1 d-box

Alice. Alice inputsX into thedd’-box, obtaining an output
a. Her output for the protocol is theam=« mod d.

Bob. Bob inputsY into the dd’-box, obtaining an output
B. His output for the protocol i®=8 mod d.

Again, it is not difficult to check thatb—a) mod d=XY
and that the correct probabilities are reproduced.

Now we show hown d-boxes can be used to simulate a
d’-box to arbitrarily high precision. This is done using a
combination of Protocols 1 and 2.

Protocol 3: n dboxes~1 d’-box

Alice and Bob begin by using the d-boxes to simulate a
d"-box, as per Protocol 1. Call the outputs for iifebox «
and B. They satisfy(8—a)mod d"=XY. Alice and Bob now
use Protocol 2 to obtain something close tal’abox: the
final outputs area=a modd’ andb=8 modd’.

to Bob. Bob’s output is thusb=b(Y,C,r) where Y
=Y4,...,Y, are the joint inputs for BobC is the communi-
cation, andr the shared data. Note simply that for Alice,
there are 2 possible joint inputs intan d-boxes. If Alice is
sending fewer tham bits, there will be at least one pair of
joint inputs for which her communication is the same. Call
themX; andX,. A careful examination of the definition of a
d-box reveals that there will be at least one joint input of
Bob’s into then boxes such that his output must be different
according to whether Alice’s input Walzl or X,. Thus
<n bits of communication are not sufficient.

If Alice and Bob do not have access to shared random-
ness, then Bob’s output is of the foroxb(Y ,C). The proof
then follows by an argument similar to the one used above,
noting that for Alice there are™'°%d possible joint input-
output pairs(X,A). |

These types of considerations will help us to establish the
final result of this section.
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Theorem 21t is in general impossible, using local revers- ite systemAB should not be able to signal ©. This type of
ible operations, exactly to transform d-boxes intom  condition does not require a separate statement, however, as
d’-boxes. it already follows from Eq(21). Indeed, using the fact that
The theorem follows from the following two lemmas. cannot signal toBC and thatB cannot signal toAC, we
Lemma 2 Using n d-boxes, Alice and Bob can exactly deduce
simulate at mosh d’-boxes, ford=d’.

Lemma 3 Using n d’-boxes, Alice and Bob can exactly 2 Pabdxvz= 2 Pavaxrvz Ob,e, XX, Y,Z
simulate at mostn(1+log,d’)/(1+log,d) <n d-boxes for ab ap
d’ =d. - , /
= w7z O, X, XY, Y Z, 22
Proof. We prove Lemma 2 as follows. We know that we g Pabax'y'z (22

can simulaten d-boxes withn bits of communication and o . .

nlog,d bits of shared randomness. Suppose that there were'§hich is the condition tha#B cannot signal t&. Hence the
protocol using only local operations that could convert only conditions we need to impose on a tr|part|te_bo>_< are
d-boxes intoN d’ boxes, for some!’ <d, whereN > n. Then, those of Eq.s.(19), .(20), and(21). The set of boxes satisfying
by combining the simulation of thé-boxes with the protocol these conditions is the polytoge. _
for their conversion, we would have constructed a protocol Locality conditions In the tripartite case, as well as dif-
for simulatingN d’-boxes using only bits of communica- ferent types (_)f no-mgnalmg_ cond|t|0n,_there are d!fferent
tion, in contradiction with Lemma 1. The proof of Lemma 3 YPes of locality condition. First, a box is fully local if the
is very similar. Note that we can simulated’-boxes with ~ Probabilities can be written in the form

n+n log,d’ bits of classical communication and no shared _

randomness. Suppose that there were a protocol that converts Pabdxyz= 2;* PAPax(M)Pojy(M)Pez(N) (23

n d’-boxes intoN d-boxes, for somal=d’, whereN>n(1

+log,d’)/(1+logd). As argued above, it follows from the The set of such boxes is a convex polytope dendte8ec-
fact thatd-boxes are vertices that this protocol would notond, we say that a box is two-way local if either there exists
need any additional shared randomness. Then we would hagebipartition of the parties—sapB versusC—such that the
constructed a protocol for simulatirg d-boxes using only ~composite systenAB is local versusC or if the box can be
n+n |ngd’ bits of communication and no shared random-Written as a convex combination of such boxes—i.e.,

ness, again in contradiction with Lemma 1. |
Pabdxyz= P12 P Pabixv(N12) Pejz(N12)
Ill. THREE-PARTY CORRELATIONS M2

A. Definitions + P32 Ph,Pacxz(N13)Ppjv(N13)
In this section, we generalize the considerations of the Ms
previous sections to consider tripartite correlations. As be- + P03 Py PoayZN23) Paix(N23), (24)
fore, we consider that correlations are produced by a black Ny

box with specified inputs and outputs, but now the box is

assumed to be shared between three separated paytis where pyo*pa3tpig=1. The set of such boxes is again a
andC. convex polytope, denotdd. Finally, any box that cannot be

The no-signaling polytope box is defined by joint prob- written in this form demonstrates genuine three-way nonlo-

I ) ) - cality. We have thalz C £L2CP and also thalt C Q CP.
ability distributionspapgxyz Which satisfy positivity, Iny the following, we restrict our attention t% the case

Pabixyz=0 Oa,b,c,XY,Z, (190 a,b,c,X,Y,Ze{0,1}. We find the vertices of the polytoge
o and point out some connections with three-party Bell-type
normalization, inequalities. Finally we consider some examples of intercon-
versions, in particular of how to construct tripartite boxes
> Pabdxyz=1 UXY,Z, (20) usina PR bop P
abc g Xes as a resource.

and no-signaling. With three parties it is possible to imagine
various types of communication, and correspondingly there
are different types of no-signaling conditions. Obviously we  For the tripartite boxes with two inputs and two outputs
require thatA cannot signal tdB or C (and cyclic permuta- per observer, Eq(20) expresses eight normalization con-
tions). We should also, however, require the stronger condistraints, and Eg(21) expresses 8 16=48 no-signaling con-
tion that if the systemB andC are combined, theA cannot  straints. However, as in the bipartite case, there is also some
signal to the resulting composite systdB€C. This is ex-  further redundancy; there turn out to be 38 independent con-

B. Two inputs and two outputs

pressed by straints. Therefore the dimension of this polytope is dim
B , =26-38=26.
§ Pabdxyz= % Pabgxvz UD,CY,ZXX", (21) Finding the vertices of a polytope given its facets is the

so-called “vertex enumeration problem” for which several
where, again, we include cyclic permutations. Finally, notealgorithms are available, although they are efficient only for
that if systemsA andB are combined, the resulting compos- low dimensional problems. We determined the extreme
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points of our three-party polytope, with boBorta [23] and ai 2
cdd [24]. It turns out that there are 46 classes of vertices, /
where vertices within one class are equivalent under local
relabeling operations and permutations of the parties. These
46 classes of extreme points can be divided into three cat-
egories: local, two-way local and three-way nonlocal. e

Local vertices This category contains boxes for which '\ /
A’s, B's andC's outputs are all deterministic. They all belong Y Z
to the same class under reversible local operations, a repre-

sentative of which is FIG. 4. Making an XY+Z) box from two PR boxes. Alice

outputsa=a; ® a,, Bob outputsh and Charles outputs.
_J1, a=0,b=0,c=0,
Pabdxvz= 0, otherwise. (25 problem with 1 bit broadcast by each party. They can be
constructed from a supply of PR boxes.

We conclude this section with some remarks on these cor-
Telation vertices and known multipartite Bell-type inequali-
ties. First, each of the ¥ +Z), XYZ, and Svetlichny boxes
fiolates the Mermin-Klyshko inequality26,27] up to the
algebraic maximum. Second, we recall that inequalities can

Two-way local verticesln view of the preceding discus-
sion for bipartite correlations, there is only one class of ex
tremal two-way local correlations that are not fully local.
This is because if a box is a vertex, there can be only on
term in the decomposition on the right-hand side of &4).
Then g foIIc;lws f(rjotr)n Theorem 1 that thislterm ml;‘St (cdjescribebe written down that detect genuine three-way nonlocality
a PR box shared between two parties, along with a determins : : - L '
istic outcome for the third party.pThus any b?)x of this type isrbne such s the Svetlichny inequaligs]. If we define(ijk)

equivalent under local relabelings and permutations of patl-)y

ties to (ijky= 2 (= D**Papici v=j zoke (30
_J1/2, a@b=XYandc=0, abe
Pabdxyz= 0, otherwise. (26) then the Svetlichny inequality is
Three-way nonlocal verticesThis category contains M =(000 +(001) +(010 + (100 - (011) - (10D - (110
genuine three-party nonlocal extremal correlations. It is (11D <4 (31)

much more complex than the two above, since it comprises
44 different classes of vertices. Out of these, we mention Zny local or two-way local box must satisfy this inequality.
classes of particular interest. The first class can be express@lantum mechanically we can obtaM=4y2 using a

as Greenberger-Horne-Zeilinge(GHZ) state [29] (although
14 aebec=XYeXZ note that different measurements are needed from those that

Pabdxyz= ' _ ' (27) produce the well known GHZ parad$80]). X(Y +Z) boxes

0, otherwise. do not violate the Svetlichny inequality as writtéathough

If we imagine thatB and C form a composite system with €y must violate some Svetlichny-type inequality as they
input Y& Z and outputb@ c, then this is a PR box shared &€ three-way nonlocal Svetlichny boxes giveV =8, the
betweenA andBC. We refer to them as “KY +Z)” boxes. algebraic maximum of the expressidhence their name

Correlations in the second class are equivalent to XYZ _correlatu_)ns again do not violate the Svetllchny In-
equality as written, but returll =6 after the local relabeling

_J1/4, a@bec=XY& YZ® XZ, a—ae X, b—baY, c—cozal.
Pabdxyz= 0, otherwise. (28) From the fact that some quantum states violate the Svetli-
chny inequality, we can conclude that in the two-input two-
We call them “Svetlichny” correlationgfor reasons ex- output caseQ ¢ L2. From the fact that bipartite correlations

plained below. _ can be more nonlocal than quantum mechanics allows, we
Finally, the third class contains what we call “XYZ” cor- can also conclude that2d Q.
relations.

1/4, adbaec=XYZ

Pabdxyz= { .

0, otherwise. We consider how we may simulate some of these tripartite
The XYZ correlations are special because, as van Darboxes, using a supply of PR boxes as a resource. We will
pointed out to u$25], they can be used to solve any three-give three examples, showing how to simulate afY XZ)
party communication complexity problem with only 1 bit box with two PR boxes, a Svetlichny box with three PR
broadcast by each party. He also pointed out that they havel@xes, and an XYZ box with three PR boxes.
natural generalization ton parties: a;®a,® - Pda, First, suppose that two PR boxes are shared, with box 1
=X1X,...X,, whereX; € {0,1} is the input of partyi and g between Alice and Bob and box 2 between Alice and
€{0, 1} the output of party. Thesen-party correlations can Charles. The following protocol shows how the three observ-
be used to solve any-party communication complexity ers may simulate one (X +Z) box (see Fig. 4

(29) C. Simulating tripartite boxes
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’i 8 X 2 Charles Charles input& into both boxes 2 and 3, obtain-
7\ / ing outputsc, and c;. Charles’ output for the protocol is
ZCZ@Cg.
The protocol works because

Y

), ~c, adbdc=a,®by@c,®c3=2Za @ Zb=XYZ

S o
b;/ \c3 Finally, we note that it is of course possible to perform
conversions among tripartite boxes. For example, it is easy to
FIG. 5. Making a Svetlichny box from three PR boxes. Alice see how to make one Svetlichny box using two XYZ boxes.
outputsa=a, ® a;, Bob outputsb=b; ®bs, and Charles outputs  The protocol is obvious once it is realized that a Svetlichny

=C2®Cs. box is locally equivalent to a box defined by E@8) with
XY®YZ®&XZ on the right-hand side replaced by
Protocol 5: 2 PR boxes:1 X(Y+Z) box XYZa (1o X)(1aeY)(1e2Z). We omit the details.
Alice. Alice inputs X into box 1 and box 2, obtaining
outputsa; anda,. She then outputa=a; ® a,. D. Nonlocality and the environment

Boh Bob inputsY into box 1, obtaining outpub.
Charles Charles input& into box 2 obtaining output.
The protocol works because

Suppose that we have some three-party no-signaling dis-
tribution p,pgxye With partiesA, B, andE. We will show that
if the reduced probability distributiop,pxy=2cPabgxve IS @
adbec=agda,dbdc=XY® XZ (32)  vertex of the bipartite no-signaling polytope, then the com-
Hosite systenAB is local versusE. This is analogous to the
result that pure quantum states cannot be entangled with a
third party or the environment. It means that extremal non-
local correlations cannot be correlated to any other system.
(Note that this raises interesting new possibilities for cryp-
tography. These are investigated in R&fl].)

By Bayes' theorem,

Suppose now that three PR boxes are shared, with box
between Alice and Bob, box 2 between Alice and Charles
and box 3 between Bob and Charles. Protoc@Bnmarized
in Fig. 5 allows them to simulate one Svetlichny box.

Protocol 6: 3 PR boxes>1 Svetlichny bax

Alice. Alice inputsX into both box 1 and box 2, obtaining
a; anda,. Her final output isa=a; @ a,.

Bob. Bob inputsY into both box 1 and box 3, obtainiry
andbs. His final output isb=b; ® bs.

Charles Charles inputsZ into both box 2 and box 3, =PabixyEelE: (35)
obtainingc, andc;. His final output isc=c,® c3.

This works because

PabegxyE= PabxYEdeXYE

where we have used the fact thB cannot signal tcE to
deduce the second equality. The condition tBatannot sig-

adboc=agobebdcoadc, nal to AB implies
=XY®YZ XZ. (33 Pabjxy = E Pavéxye UE
Protocol 7(summarized in Fig. 6shows how to simulate ©
one XYZ box using three PR boxes. = E. (36)
Protocol 7: 3 PR boxes> 1 XYZ box % PatixYEdele

Alice. Alice inputs X into box 1, obtaining an outpia;.
She then inputs, into box 2, obtaining outpué,. Alice’s
output for the protocol im=a,.

Bob. Bob inputsY into box 1, obtaining an output;. He
then inputsb; into box 3, obtaining outpub;. Bob’s output
for the protocol ish=bs.

For each valué&, the last equality provides a convex decom-
position of payxy i terms of non-signaling correlations, with

e playing the role of the shared randomness. Since we sup-
posed thatp,,xy is extremal, this decomposition is unique
and papxyee=Panxy €, E. We then deduce

PabexyE= PabjxYPeE: (37)

\ o [/ i.e., thatAB is uncorrelated witlE.

A natural question that we leave as an open problem is
whether the converse is true:pfyxy is in the interior of the
no-signaling polytope, is it always possible to extend it to a
S tripartite distributionp,,gxye Such thatAB is nonlocal versus
Y b}‘ /Tz E? (It is always possible, ip,yxy is Not a vertex, to write it

as Papyxy=2ePangxye WhereE takes the single valug=0.
b3/ \c3 One can also require th& take several values, in such a
way thatpapexye IS nonsignaling. What is nontrivial is the

FIG. 6. Making an XYZ box from three PR boxes. Alice outputs requirement thap,,qxye is nonlocal in the partitiorAB ver-
a=a,, Bob outputsb=bs, and Charles outputs=c, cs. susE. We do not know if this is possible in genejpal.

\CZ
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IV. DISCUSSION AND OPEN QUESTIONS tions. Note, for instance, that the three-way nonlocal corre-
lations of Egs.(27), (29), and (28) cannot be reduced to
In conclusion, we have defined nonsignaling correlationyyo-way nonlocal ones using only local operations. This fol-
boxes and investigated their potential as an informationy,ys from the fact that the outcomes for two out of the three
theoretic resource. Once the structure of the set of suc arties are totally independent of one anothenless the

t)hoxes IS underlsto_od as.tﬁ cothex. p}olytop;g, Itthls cletgr thaﬁutcome of the third party is communicated to them this
ere are analogies with other information-theoretic re-g, 0 genuinely tripartite extremal correlations and bipartite
sources, in particular the resource of shared quantum stat

(with nonlocality taking the place of entanglemenith %i”e”.‘a' C(_)rrelatlons belong jto mequwalent classes._ Are
there inequivalent classes of bipartite extremal correlations?

this in mind, we have shown how various interconversion i d h wo bibartit ¢ b h
between boxes are possible. The set of multipartite boxesijﬂ other words, are there two bipartite extremal boxes suc
that one cannot simulate the other even approximately, no

particular appears very rich. Finally, we furthered the anal- . .
ogy with quantum states by demonstrating how nonlocalitynatter how many copies are available? o
is monogamous, in much the same way that entanglement is Another problem is whether aII_b|part|te and muIyparute
monogamous. We finish with some open questions. correlations can be constructed using PR boxes, as is the case
Nonlocal vertices and Bell inequalitiesVe saw in Sec. for all the extremal boxes presented in this pafaerd thus
Il B 1 that for the two-input two-output polytope there is a also for probabilistic mixtures of themPR boxes could then
one-to-one correspondence between extremal nonlocal corre viewed as the unit of nonlocal correlation, in analogy with
lations and facet Bell inequalitie@ontrivial facets of the the bit, qubit, and ebit, which are the units of classical and
local polytope. One might wonder whether this one-to-one quantum information-theoretic resources.
correspondence holds in general. It appears, however, that Interior points We have only considered conversions be-
for more complicated situations, involving more possible in-tween extremal probability distributions. It would be inter-
puts or outputs, it does not. It would be interesting to invesesting to consider the interior points of the polytope, which
tigate what is the precise relation between nonlocal verticefclude quantum correlations. In particular we would like to
and facet Bell inequalities. This might help understand furfind out if distillation of such mixed correlations is
ther the geometrical structure of nonlocal correlations. possible—i.e., if given a number of copies of a mixed box
Other verticesWe have given a complete characterizationyye can by local operations obtain some number of extremal
of two-input extremal nonlocal boxes in the bipartite casepyyes Note that Tsirelson’s boufitl3] shows that the quan-

and presented some examples in the tripartite case. In g€fyy correlationsQ are a proper subset of the set of all non-
eral, one might also consider extremal boxes involving More;y1jing correlationg. Thus it is impossible to distill cor-

'nplggsr’ iw;;enggtcgn:]iﬁr%ﬁ Tv?are t%artlsr?érate more com Ie)r(elations inQ to extremal correlations. But apart from this,

. ; ylod P€¥e do not know of any constraint on possible distillation of

boxes is by taking products of simpler ones. Suppose Alice .

and Bob have access to two bon% and pl honlocal correfations,
bolXoYo Payb[x, Yy

h for simplicit der that i b L Finally, one could consider distillation in a new context,
where for simplicity we consider that theré dve possible , nara we allow some communication between the parties
inputs andd possible outputs for each box. If Alice inputg

andX, in each of the two boxes and outpiats da, +a, and but account for it at the end of the protodak noted above,

similarly for Bob, they have now produced a nonlocal boxign?gzlg?(;rssggglr%?;nl;’;’iii g?gﬁfreerde(:aw dﬁ&?ﬁ
. . —~0 1 -
with M2 inputs andd? outputs Payxy= Pagbglo¥oPasby X, Yy

where X=MX, +X, and similarly forY. If the two original natively, following Ref.[20], one could introduce a new

boxes were extremal for thd,d) polytope, will the product element:- that of secrecy. Suppose thaF inputs and outputs
2 are considered to be secret and that Alice and Bob have a
be extremal for théM<,d?) polytope? In the case of quan-

tum states, the analogous result of course holds—a produs%Jpply of noisy(that is nonextremalboxes. Can Alice and

of two pure states is itself a pure state. We have been able %Ob distill a supply of extremal boxes, whose inputs and

show that in the case of boxes, the result holds provided thgutputs are qlso s.ecret, via pUb“.C communication?
we restrict ourselves to extremal boxes with the following AS We outlined in the Introduction, nonlocal extremal cor-
property: the output of one party is uniquely determinedrelat'ons_ca” be a very ppwe_rful resource for communication
when the two inputs and the other party’s output are SpecigompleXIty problem_s._Thls will also b_e the case for correla-
fied. This is true for all the vertices presented in this paperfions that can be distilled to these with no or little commu-
Plausibly it is true for all vertices, but this is not proven.  hication. On the other hand, Tsirelson’s bound and results in
InterconversionsWe have so far been able to achieve Communication complexity10] put limits on the power of
only a limited set of interconversions between extremalquantum mechanics as a resource in distributed tasks. A bet-
boxes. This is especially true for the three party case, wherter understanding of the possible interconversions between
there are 46 classes of vertices and we have investigated onfpnlocal correlations might bring an information-theoretic
5 of these. Understanding what kinds of interconversions beexplanation of these limitations.
tween extremal boxes are possible is necessary to appraise Note addedAfter the completion of this work we were
their relative power as an information-theoretic resource. made aware of a work by Tsirels¢B82] that contains some
The motivation is also to answer the general question obf the results presented here, in particular those of Secs. Il A
whether there exist inequivalent types of nonlocal correlaand Il B 1.

022101-10



NONLOCAL CORRELATIONS AS AN INFORMATION-.. PHYSICAL REVIEW A 71, 022101(2005

ACKNOWLEDGMENTS gigue under Grant No. ARC 00/05-251, from the IUAP pro-
We would like to thank Wim van Dam, Andreas Winter, gramme of the Belgian Government under Grant No. V-18,

and Harry Buhrman for useful discussions. We acknowledg@nd from the EU through project RES@rant No. IST-
financial support from the Communauté Francaise de Bel2001-3755%

[1] J. S. Bell, PhysicgLong Island City, N.Y) 1, 195 (1964). [17] D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu,
[2] A. Aspect, NaturgLondon 398 189 (1999. Phys. Rev. Lett.88, 040404(2002.
[3] C. Shannon, iProceedings of the Fourth Berkeley Symposium[18] R. Ahlswede and I. Csiszar, IEEE Trans. Inf. Thea, 225
on Mathematical Statistics and Probabilitgdited by J. Ney- (1998.
man(University of California Press, Berkeley, CA, 196¥ol.  [19] R. Ahlswede and I. Csiszar, IEEE Trans. Inf. The@9, 1121
1, pp. 611-644. (1993.
[4] R. Cleve and H. Buhrman, Phys. Rev. 36, 1201(1997. [20] D. Collins and S. Popescu, Phys. Rev.65, 032321(2002.

[5] E. Kushilevitz and N. NisanCommunication Complexity L2 M. A. Nielsen and I. ChuangQuantum Computation and
(Cambridge University Press, Cambridge, England, 1997 Quantum Information(Cambridge University Press, Cam-

[6] S. Popescu and D. Rohrlich, Found. Phgd, 379 (1994). bridge, England, 2000

[7] 3. . Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. 55} ?hgrﬁgzl%hii?{; ;e:(;/ 'Afg}eoaeszigigog?ﬁ http:/Awww.zib.de/
Rev. Lett. 23, 880 (1969. : “Ihwww.zib.

Optimization/Software/Porta/index.html

[8]5\}5' C'If"sonl’aﬁest' ';]"at_h' Phys4, 8_3(1?80'f - [24] Komei Fukuda, URL http:/ww.cs.mcgill. Cilkuda/soft/
[9] W. van Dam, Ph.D. thesis, University of Oxford, Department cdd home/cdd. html

of Physics (2000, available at http://web.mit.edu/vandam/ [25] W. van Dam(private communication

wwwi/publications. htm _ [26] N. D. Mermin, Phys. Rev. Lett65, 1838(1990.

[10] R. Cleve, W. van Dam, M. Nielsen, and A. Tapp, Lect. NOtES[27] A. V. Belinski and D. N. Klyshko, Phys. Usf86, 653 (1993.
Comput. Sci.1509 61 (1999. [28] G. Svetlichny, Phys. Rev. [35, 3066 (1987.

[11] R. F. Werner and M. M. Wolf, Quantum Inf. Comput, 1  [29] D. M. Greenberger, M. A. Horne, and A. Zeilinger, Bell’s
(200Y. Theorem, Quantum Theory, and Conceptions of the Uniyerse

[12] I. Pitowsky, Quantum Probability, Quantum Logid ecture edited by M. KafatogKluwer Academic, Dordrecht, 1989p.
Notes in Physics Vol. 321Springer, Heidelberg, 1989 69.

[13] B. S. Cirel'son, J. Sov. Math36, 557 (1987). [30] P. Mitchell, S. Popescu, and D. Roberts, e-print quant-ph/

[14] L. J. Landau, Found. Phy<.8, 449(1988. 0202009.

[15] LI. Masanes, e-print quant-ph/0309137. [31] J. Barrett, L. Hardy, and A. Kent, e-print quant-ph/0405101.

[16] A. Fine, Phys. Rev. Lett48, 291(1982. [32] B. S. Tsirelson, Hadronic J. Supp, 329 (1993.

022101-11



