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Inelastic light scattering from a Mott insulator
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We propose to use Bragg spectroscopy to measure the excitation spectrum of the Mott-insulator state of an
atomic Bose gas in an optical lattice. We calculate the structure factor of the Mott insulator taking into account
both the self-energy corrections of the atoms and the corresponding dressing of the atom-photon interaction.
We determine the scattering rate of photons in the stimulated Raman transition and show that by measuring this
scattering rate in an experiment, in particular, the excitation gap of the Mott insulator can be determined.
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I. INTRODUCTION optical transition in the atoms so that spontaneous emission
A Bose-Einstein condensate in an optical lattice is a pow!S Suppressed. However, the relative detuning can be very

erful tool to investigate strongly correlated Bose gd4eg)|. sr_naII. When an atom absorbs a photon from beam 2 and is
In particular, the experiment by Greinet al.[3] has shown stimulated to emit a photon into beam 1, the atom undergoes
that it is possible to achieve a quantum phase transition frort change of momenturhg=7k,-7k, and a change of en-

a superfluid to a Mott-insulating phase in this system. TheEf9Yiw=%w,~fiw,. In principle any optical transition could
latter phase transition was predicted to occur in the Bose?® Used, but here we use the same transition that is employed

Hubbard model by Fisheet al. [4], and Jaksclet al. [5] to create the lattice potential. This means that the magnitude

were the first to make the crucial observation that the Bose®f thé momentum is given byq=2%kp, sin(6/2), where to a
Hubbard model can be applied to bosonic atoms in an opticgJ00d approximatioriky,=277%/\ is the photon momentum
lattice. The mean-field phase diagram at zero temperatur@ both the lasersy is equal to the wavelength of the lattice
was calculated by several authof6—8], however, the laser Ilg_ht, andd is the angle between the two laser beams.
Bogoliubov-like theory for the excitations in both the super-BY varying the angle between the two laser beams, any mo-
fluid and the Mott-insulator phases of the gas was developefi€ntum between zero andZ;, can be transferred, and by
more recently by van Oosteat al. [9]. q,w

An important advantage of using atoms in an optical lat- -
tice to study the Bose-Hubbard model, is that the system is
free from disorder, which makes it possible to make very
accurate predictions and measurements. A good example of
such a high-precision measurement is Bragg spectroscopy.
This technique has already been used to coherently split a )
Bose-Einstein condensate into two momentum components
[10], to measure the excitation spectrum of a trapped Bose-
Einstein condensatfll], and to measure the light-shifted
energy levels of an atom in an optical latticE?]. Here we
propose to use Bragg spectroscopy to measure the excitation
spectrum of the Mott-insulator state. In particular, one can in (@)
this way determine the value of the particle-hole gap in the
excitation spectrum and study the behavior of this gap as the
system approaches the quantum critical point. Note that the
excitation spectrum as obtained using Bragg spectroscopy
does not yield what is generally referred to as the Mott gap,
because this gap is associated with single-particle excita-
tions. The value of the particle-hole gap can be obtained
though and is a particularly interesting quantity in the study
of quantum critical phenomena. In addition, this gap is also

capah /zt

very important for the practical application of these systems k/2kpn
to quantum information processing, since the gap determines
the fidelity of the Mott state. FIG. 1. (a) Setup for the proposed experimeft) Particle and

In a Bragg-spectroscopy experiment, two laser beams argole dispersions in units of the tunneling parameter in a one-
used to make excitations in the system, as shown in F&. 1 dimensional lattice, fotJ/zt=6. The horizontal arrow indicates ab-
The two lasers both have a large detuning with respect to asorption of momentum, the vertical arrow absorption of energy.
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varying the relative detuning between the beams, the amoutihe experimentally relevant case of a regular square lattice.
of energy that is transferred to the system can be controlledche momentuntk is here and from now on always written
Note that in experiments, there is always additional harmonién units of Ziky, which means that the first Brillioun zone
confinement present, which causes a shell of superfluid atuns fromk;=-1/2 to 1/2. The energfiw(k) is given by
oms around a Mott-insulating cof&]. This means that the % w(k)=U%+(4Ny+2)Ue(k)+e(k)> and the probability
momentunv.q has to be chosen such that the corresponding(k) is given byZ(k)=[U(2Ng+ 1)+ e(k) + (k) ]/ 2hw(K).
wavelength is smaller than the size of the core. Using the Green’s function in Eq2), we find in general
Calculating the scattering rate for a given momentm  that y%(q, ) =t(q)[ x2(q, w) + x> (-q,-w)], wheret(q) is a
and energyfw involves counting the number of ways in geometric factor that involves the appropriate overlap inte-
which the requirements of momentum and energy conservayra| of the relevant Wannier functiorid3]. Denoting inte-
tion can be met. To illustrate this process, we draw in Figgration over the first Brillouin zone &gy, the contribution

insulator[9], as is common in solid-state physics. The hori-

zontal and vertical arrows in the figure indicate the transfer 0 1
X+(q:w) = 5

dk P(k,k +q,w)
8z —ho'+ePk+q) - k)’

of momentum and energy, respectively. Since energy is de- (4)
posited in the system, this scattering rate can be measured in
a trap-loss experiment, or by determining the increase imnd the time-reverse process can be writteny3&], »)
temperature of the atoms. =x¥"(-q,-w). Note that when evaluating the above integral,
Umklapp processes have to be taken into account. This equa-
tion contains the probabiliti?(k ,k +q, w) for the creation of
Il. THE SCATTERING RATE a hole with momentunk and a particle with momenturk

To calculate the desired two-photon scattering rate we used which in a lowest-order approximation equald

-, ; -Z(k)]Z(k+q), and an energy denominator that is associated
Fermi's golden rule. This can be expressed 1&g, ) ; )
=—2Im{11(q, )]/, whereT1(q,w) is the polarizibility of ~With the energy cose®(k+q)-e¥k) of that process. This
the medium. The polarizibility can be written d$(q,w) can rea_dl!y be ver.lfled 'by taking t.he imaginary part of the
— (hQ/2)%(q, ), with Q the effective Rabi frequency for susceptibility, which is proportional tof;g,dkP(k,k

— €ap ah i
the two-photon process andthe susceptibility. The retarded *q, ) Aiw=eMk+q)+ k)] as-expected from Ferm|s .
susceptibility is given by golden rule. The actual computation of the above integral is

too complicated to do analytically, so that we have resorted

Vv _— iqxeot’) to numerical methods. We have achieved this by calculating
x(Q,0) = - % dx [ dt'e the imaginary part of Eq4), which roughly corresponds to

0 integrating over the surface in the Brillouin zone where the

x ([a'(x,t")a(x,t"),a’(0,00a(0,0)]), (1) energy denominator vanishes. In practice, this amounts to

_ N a _ numerically finding the poles of the expression and deter-
with V the volume anda’(x,t’) and a(x,t’) creation and  mining their residue. The real part is calculated from the
annihilation operators of the atoms. Because the atoms are Ihaginary part using a Kramers-Kronig relation.

an optical lattice, we can expand the field operators in terms  However, the results that one obtains in the lowest-order
of the Wannier states of the lattice, which yields an expreszpproximation do not obey particle conservation. Physically,
sion in terms of creation and annihilation operators for every; Raman process with momentuncouples to a density
lattice site. As mentioned previously, the Hamiltonian of thef,,ctuation p(q). For zero-momentum transfep(0) corre-
system then equals the Bose-Hubbard Hamiltonian with @,,n4s to the total number of particles and fluctuations are
tunneling amplitude, an on-site interaction energy, and a  jhossible due to particle-number conservation. If we com-
che_mlce}I potentialu. Using _the decouphng approach de- pute the imaginary part of E@4) for q=0 we find, however,
scribed in Ref[9], we can write the atomic propagator in the 3 honzerg spectrum, which means that this approach is not

Mott-insulator phase as sufficiently accurate. The problem is due to the fact that in

1 Z(k) 1-2(k) Eq. (2) the bare atomic propagator is not used, but a dressed
ﬁG(k'w)_—hw++eqp(k) Tt + MK’ (2) gir\?gr?gb?/tor which contains a large self-energy correction
where the probabilitieZ(k) and 1-Z(k) account for the fact No(Nq + 1)U2
that an atomic excitation contains both quasiparticle and 3K, w) = 2NgU — ——2——— (5)
guasihole contributions. The notatidiw®* is shorthand for fiw+U+p

ho+i& with £€| 0. The dispersions for the quasiparticle and

: L . The first term on the right-hand side is the Hartree-Fock
quasihole excitations are given by

contribution, which is also present in a Bose-Einstein con-
U 1 densate. The second contribution is due to the correlations in

P ANK) =~ p + E(ZNO -1+ E[f(k) +hw(k)], (3)  the Mott insulator. Essentially this means that an atom mov-

ing through the Mott-insulating background is dressed by all

whereNj is the filling fraction of the lattice and the function the other atoms. As is known from quantum-field theory
e(k)=—t2?:10032nkj corresponds to the lattice dispersion in [14], one has to be careful when applying self-energy correc-
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FIG. 2. Schematic representation ¢ Eqg. (4 and (b) 3 0.05r
Eq. (6). ®
tions to the calculation of the susceptibility, because in gen- 0 . . .
eral these corrections do not obey the required conservation 0 5 10 15 20
laws. Using field-theoretical methods, we can derive so- haw/zt

called Ward identities that show that every self-energy cor- ) ) o

rection requires a corresponding vertex correction in order to F!G- 4. Real and imaginary parts of the susceptibility bzt
restore the conservation laws. Physically, this means that if 0 andd=0.10,0.14,0.18,0.20 along a lattice direction, in three
the atom is dressed, we also have to dress the atom—photgﬁnens'ons' Th(_a dotted line in the bottom flg_ure is the result for
coupling. Diagrammatically, this is illustrated in Fig. 2. This 4=0.001 multiplied by 250 to show the behavior for smll
situation is analogous to the situation in a superconductor,

where the naive BCS calculation of the electromagnetic retegular square lattice and the momentgns chosen along a
sponse is not gauge invariant and a more involved approadﬁ'inCipm lattice direction. All energies in the fO”OWing flg-
is needed15]. Using the relevant Ward identifit3] we find ~ ures are given in unitgt, wherez is the coordination number
that the lowest-order probability function has to be replacedf the lattice.

by The imaginary part of Fig. 3 clearly shows singularities
. aroundfw=U. These singularities are due to the fact that

P(K.k + ) = 2ho - Pk +q) + eM(k) there are saddle points in the dispersion and that a saddle

’ ' Lok +q) +Zw(k) point in the dispersion causes an integrable singularity in the

density of states. These are so-called van Hove singularities
X[Z(k +q) = Z(k)]. © [16]. It is interesting to see that the van Hove singularities

Note that the probability now vanishes whgr-0, so that Split up as the momentum is increased, which is caused by
particle conservation is indeed no longer violated. In fact, forthe fact that the saddle-point energy in the directioq aind
smallq andw just above threshol@og?/A2, whereA, is ~ the saddle-point energy in the orthogonal diredisprare
the gap for particle-hole excitations. shifted by different amounts. This is also visible in Fig. 4.
However, it is less clear in this case, because the van Hove
singularities are more smeared out in three dimensions. Also,
Ill. RESULTS the opening of the threshold for the two-photon absorption in
, o . the three-dimensional case is far less steep than in the two-
In Figs. 3 and 4 the result of a numerical integration of gimensional case. Note that when additional harmonic con-
Egs.(4) and (6) is shown in two and three dimensions, re- finement is present, some background signal is expected due
spectively. Both calculations have been carried out for &g the superfluid shell around the Mott insulator. To investi-
gate possible collective modes in this system, we determined
0.04 higher-order corrections in the random-phase approximation
=\ (RPA). It can be shown that in RPA the susceptibility is given
by x(q,®)=x%q,»)/[1-2Ux°(q, )]. This means that there
is a resonance in the scattering rate when the real part of
x°(g,w) is equal to 1/2). However, as can be seen from
Figs. 3 and 4, the real parts in both cases are rather small
compared to 1U for experimentally relevant values &f,
which are typical in the order of)/zt=10 [3]. Therefore,

2tx0
o

-0.04

:35 005 including the RPA denominator does not qualitatively change
our previous results. Of course, for much larger valueb of
o . Y . the RPA denominator always becomes important.
0 0 5 10 15 20 In Fig. 5 we plot the imaginary part of,, for a range of

huw 2t values for the coupling constakt/zt, and for a fixed mo-
mentum q=0.10. We see that the threshold behavior be-
FIG. 3. Real(x,) and imaginary(xj) parts of the susceptibility comes steeper as we approach the critical valud&)gft
for U/zt=10 andq=0.10,0.14,0.18,0.20 along a lattice direction, in =5.83. This steepening is caused by the fact that close to the
two dimensions. The dotted line in the bottom figure is the result foquantum critical point, the dispersion stiffens and becomes
g=0.001 multiplied by 250 to show the behavior for snwll almost linear, as illustrated in Fig.(d). We also see that
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0.06 nonzeroq it closes as|U-U.+7q*, where the factom is a
positive function ofU. andt.
0.05f
0.04f IV. DISCUSSION
f§ 0.03 In summary, we have proposed a means of studying Mott
N insulators in optical lattices, using the relatively well-known
0.02¢ technique of Bragg spectroscopy. We have presented spectra
that can be measured directly by trap loss or heating mea-
0.01F surements. In a recent experiment by Stofetlal. [17] the
authors use a setup where the laser beams are perfectly coun-
0 terpropagating, which corresponds to a quasimomentum

0 2 4 6 hw/z 1012 14 transfer of_ zero. As we have argued_ above, there should be
no scattering in that case and the signal can only be due to
FIG. 5. Imaginary part of the susceptibility in a three- NONlinear response or due to the fact that the system is inho-
dimensional lattice for=0.10 along a lattice direction arid/zt ~ Mogeneous and of finite size. We have found that by mea-
=5.83,7,8,9,10. suring the threshold behavior of the two-photon scattering
rate at various quasimomenta, it is possible to determine the
there remains a nonzero gap wHarU.. This is due to the gap by extrapolation. We have shown that for a theoretical
fact that we are not considering a zero-momentum excitationgescription of Bragg spectroscopy on the Mott insulator it is
due to the reasons given above. In the inset of Fig. 5, we plaabsolutely essential to dress the photon-atom coupling. As a
this gapA, as a function olJ/zt For largeU the gap grows result it turns out that although it is common to use the
linearly with U and forU close toU,, the gap closes more language of solid-state physics to describe these systems, the
rapidly. In the case ofj=0 the gap would in our mean-field physics is quantitatively, and even qualitatively, very differ-

approximation close asU-U_ whenU | U, but for small  ent due to the many-body effects.
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