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We propose to use Bragg spectroscopy to measure the excitation spectrum of the Mott-insulator state of an
atomic Bose gas in an optical lattice. We calculate the structure factor of the Mott insulator taking into account
both the self-energy corrections of the atoms and the corresponding dressing of the atom-photon interaction.
We determine the scattering rate of photons in the stimulated Raman transition and show that by measuring this
scattering rate in an experiment, in particular, the excitation gap of the Mott insulator can be determined.
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I. INTRODUCTION

A Bose-Einstein condensate in an optical lattice is a pow-
erful tool to investigate strongly correlated Bose gasesf1,2g.
In particular, the experiment by Greineret al. f3g has shown
that it is possible to achieve a quantum phase transition from
a superfluid to a Mott-insulating phase in this system. The
latter phase transition was predicted to occur in the Bose-
Hubbard model by Fisheret al. f4g, and Jakschet al. f5g
were the first to make the crucial observation that the Bose-
Hubbard model can be applied to bosonic atoms in an optical
lattice. The mean-field phase diagram at zero temperature
was calculated by several authorsf6–8g, however, the
Bogoliubov-like theory for the excitations in both the super-
fluid and the Mott-insulator phases of the gas was developed
more recently by van Oostenet al. f9g.

An important advantage of using atoms in an optical lat-
tice to study the Bose-Hubbard model, is that the system is
free from disorder, which makes it possible to make very
accurate predictions and measurements. A good example of
such a high-precision measurement is Bragg spectroscopy.
This technique has already been used to coherently split a
Bose-Einstein condensate into two momentum components
f10g, to measure the excitation spectrum of a trapped Bose-
Einstein condensatef11g, and to measure the light-shifted
energy levels of an atom in an optical latticef12g. Here we
propose to use Bragg spectroscopy to measure the excitation
spectrum of the Mott-insulator state. In particular, one can in
this way determine the value of the particle-hole gap in the
excitation spectrum and study the behavior of this gap as the
system approaches the quantum critical point. Note that the
excitation spectrum as obtained using Bragg spectroscopy
does not yield what is generally referred to as the Mott gap,
because this gap is associated with single-particle excita-
tions. The value of the particle-hole gap can be obtained
though and is a particularly interesting quantity in the study
of quantum critical phenomena. In addition, this gap is also
very important for the practical application of these systems
to quantum information processing, since the gap determines
the fidelity of the Mott state.

In a Bragg-spectroscopy experiment, two laser beams are
used to make excitations in the system, as shown in Fig. 1sad.
The two lasers both have a large detuning with respect to an

optical transition in the atoms so that spontaneous emission
is suppressed. However, the relative detuning can be very
small. When an atom absorbs a photon from beam 2 and is
stimulated to emit a photon into beam 1, the atom undergoes
a change of momentum"q="k2−"k1 and a change of en-
ergy"v="v2−"v1. In principle any optical transition could
be used, but here we use the same transition that is employed
to create the lattice potential. This means that the magnitude
of the momentum is given by"q=2"kph sinsu /2d, where to a
good approximation"kph=2p" /l is the photon momentum
of both the lasers,l is equal to the wavelength of the lattice
laser light, andu is the angle between the two laser beams.
By varying the angle between the two laser beams, any mo-
mentum between zero and 2"kph can be transferred, and by

FIG. 1. sad Setup for the proposed experiment.sbd Particle and
hole dispersions in units of the tunneling parameter in a one-
dimensional lattice, forU /zt=6. The horizontal arrow indicates ab-
sorption of momentum, the vertical arrow absorption of energy.
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varying the relative detuning between the beams, the amount
of energy that is transferred to the system can be controlled.
Note that in experiments, there is always additional harmonic
confinement present, which causes a shell of superfluid at-
oms around a Mott-insulating coref5g. This means that the
momentum"q has to be chosen such that the corresponding
wavelength is smaller than the size of the core.

Calculating the scattering rate for a given momentum"q
and energy"v involves counting the number of ways in
which the requirements of momentum and energy conserva-
tion can be met. To illustrate this process, we draw in Fig.
1sbd the quasiparticle and quasihole dispersions in the Mott
insulatorf9g, as is common in solid-state physics. The hori-
zontal and vertical arrows in the figure indicate the transfer
of momentum and energy, respectively. Since energy is de-
posited in the system, this scattering rate can be measured in
a trap-loss experiment, or by determining the increase in
temperature of the atoms.

II. THE SCATTERING RATE

To calculate the desired two-photon scattering rate we use
Fermi’s golden rule. This can be expressed asIsq ,vd
=−2ImfPsq ,vdg /", where Psq ,vd is the polarizibility of
the medium. The polarizibility can be written asPsq ,vd
=s"V /2d2xsq ,vd, with V the effective Rabi frequency for
the two-photon process andx the susceptibility. The retarded
susceptibility is given by

xsq,vd = −
V

"
E dxE

0

`

dt8e−isq·x−vt8d

3 kfâ†sx,t8dâsx,t8d,â†s0,0dâs0,0dgl, s1d

with V the volume andâ†sx ,t8d and âsx ,t8d creation and
annihilation operators of the atoms. Because the atoms are in
an optical lattice, we can expand the field operators in terms
of the Wannier states of the lattice, which yields an expres-
sion in terms of creation and annihilation operators for every
lattice site. As mentioned previously, the Hamiltonian of the
system then equals the Bose-Hubbard Hamiltonian with a
tunneling amplitudet, an on-site interaction energyU, and a
chemical potentialm. Using the decoupling approach de-
scribed in Ref.f9g, we can write the atomic propagator in the
Mott-insulator phase as

−
1

"
Gsk,vd =

Zskd
− "v+ + eqpskd

+
1 − Zskd

− "v+ + eqhskd
, s2d

where the probabilitiesZskd and 1−Zskd account for the fact
that an atomic excitation contains both quasiparticle and
quasihole contributions. The notation"v+ is shorthand for
"v+ ij with j↓0. The dispersions for the quasiparticle and
quasihole excitations are given by

eqp,qhskd = − m +
U

2
s2N0 − 1d +

1

2
feskd ± "vskdg , s3d

whereN0 is the filling fraction of the lattice and the function
eskd=−to j=1

d cos2pkj corresponds to the lattice dispersion in

the experimentally relevant case of a regular square lattice.
The momentum"k is here and from now on always written
in units of 2"kph, which means that the first Brillioun zone
runs fromkj =−1/2 to 1/2. The energy"vskd is given by
"vskd=ÎU2+s4N0+2dUeskd+eskd2 and the probability
Zskd is given byZskd=fUs2N0+1d+eskd+"vskdg /2"vskd.

Using the Green’s function in Eq.s2d, we find in general
that x0sq ,vd= tsqdfx+

0sq ,vd+x+
0*s−q ,−vdg, where tsqd is a

geometric factor that involves the appropriate overlap inte-
gral of the relevant Wannier functionsf13g. Denoting inte-
gration over the first Brillouin zone ase1BZ, the contribution
due to the creation of a particle-hole pair is given by

x+
0sq,vd =

1

2
E

1BZ
dk

Psk,k + q,vd
− "v+ + eqpsk + qd − eqhskd

, s4d

and the time-reverse process can be written asx−
0sq ,vd

=x+
0*s−q ,−vd. Note that when evaluating the above integral,

Umklapp processes have to be taken into account. This equa-
tion contains the probabilityPsk ,k +q ,vd for the creation of
a hole with momentumk and a particle with momentumk
+q, which in a lowest-order approximation equalsf1
−ZskdgZsk +qd, and an energy denominator that is associated
with the energy costeqpsk +qd−eqhskd of that process. This
can readily be verified by taking the imaginary part of the
susceptibility, which is proportional toe1BZdkPsk ,k
+q ,vddf"v−eqpsk +qd+eqhskdg as expected from Fermi’s
golden rule. The actual computation of the above integral is
too complicated to do analytically, so that we have resorted
to numerical methods. We have achieved this by calculating
the imaginary part of Eq.s4d, which roughly corresponds to
integrating over the surface in the Brillouin zone where the
energy denominator vanishes. In practice, this amounts to
numerically finding the poles of the expression and deter-
mining their residue. The real part is calculated from the
imaginary part using a Kramers-Kronig relation.

However, the results that one obtains in the lowest-order
approximation do not obey particle conservation. Physically,
a Raman process with momentumq couples to a density
fluctuation rsqd. For zero-momentum transfer,rs0d corre-
sponds to the total number of particles and fluctuations are
impossible due to particle-number conservation. If we com-
pute the imaginary part of Eq.s4d for q=0 we find, however,
a nonzero spectrum, which means that this approach is not
sufficiently accurate. The problem is due to the fact that in
Eq. s2d the bare atomic propagator is not used, but a dressed
propagator which contains a large self-energy correction
given by

"Ssk,vd = 2N0U −
N0sN0 + 1dU2

"v + U + m
. s5d

The first term on the right-hand side is the Hartree-Fock
contribution, which is also present in a Bose-Einstein con-
densate. The second contribution is due to the correlations in
the Mott insulator. Essentially this means that an atom mov-
ing through the Mott-insulating background is dressed by all
the other atoms. As is known from quantum-field theory
f14g, one has to be careful when applying self-energy correc-
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tions to the calculation of the susceptibility, because in gen-
eral these corrections do not obey the required conservation
laws. Using field-theoretical methods, we can derive so-
called Ward identities that show that every self-energy cor-
rection requires a corresponding vertex correction in order to
restore the conservation laws. Physically, this means that if
the atom is dressed, we also have to dress the atom-photon
coupling. Diagrammatically, this is illustrated in Fig. 2. This
situation is analogous to the situation in a superconductor,
where the naive BCS calculation of the electromagnetic re-
sponse is not gauge invariant and a more involved approach
is neededf15g. Using the relevant Ward identityf13g we find
that the lowest-order probability function has to be replaced
by

Psk,k + q,vd =
2"v − eqpsk + qd + eqhskd

"vsk + qd + "vskd

3fZsk + qd − Zskdg. s6d

Note that the probability now vanishes whenq→0, so that
particle conservation is indeed no longer violated. In fact, for
small q and"v just above thresholdP~q2/D0

2, whereD0 is
the gap for particle-hole excitations.

III. RESULTS

In Figs. 3 and 4 the result of a numerical integration of
Eqs. s4d and s6d is shown in two and three dimensions, re-
spectively. Both calculations have been carried out for a

regular square lattice and the momentumq is chosen along a
principal lattice direction. All energies in the following fig-
ures are given in unitszt, wherez is the coordination number
of the lattice.

The imaginary part of Fig. 3 clearly shows singularities
around"v=U. These singularities are due to the fact that
there are saddle points in the dispersion and that a saddle
point in the dispersion causes an integrable singularity in the
density of states. These are so-called van Hove singularities
f16g. It is interesting to see that the van Hove singularities
split up as the momentum is increased, which is caused by
the fact that the saddle-point energy in the direction ofq and
the saddle-point energy in the orthogonal directionssd are
shifted by different amounts. This is also visible in Fig. 4.
However, it is less clear in this case, because the van Hove
singularities are more smeared out in three dimensions. Also,
the opening of the threshold for the two-photon absorption in
the three-dimensional case is far less steep than in the two-
dimensional case. Note that when additional harmonic con-
finement is present, some background signal is expected due
to the superfluid shell around the Mott insulator. To investi-
gate possible collective modes in this system, we determined
higher-order corrections in the random-phase approximation
sRPAd. It can be shown that in RPA the susceptibility is given
by xsq ,vd=x0sq ,vd / f1−2Ux0sq ,vdg. This means that there
is a resonance in the scattering rate when the real part of
x0sq ,vd is equal to 1/2U. However, as can be seen from
Figs. 3 and 4, the real parts in both cases are rather small
compared to 1/U for experimentally relevant values ofU,
which are typical in the order ofU /zt<10 f3g. Therefore,
including the RPA denominator does not qualitatively change
our previous results. Of course, for much larger values ofU
the RPA denominator always becomes important.

In Fig. 5 we plot the imaginary part ofx0, for a range of
values for the coupling constantU /zt, and for a fixed mo-
mentum q=0.10. We see that the threshold behavior be-
comes steeper as we approach the critical value ofUc/zt
<5.83. This steepening is caused by the fact that close to the
quantum critical point, the dispersion stiffens and becomes
almost linear, as illustrated in Fig. 1sbd. We also see that

FIG. 2. Schematic representation ofsad Eq. s4d and sbd
Eq. s6d.

FIG. 3. Realsx08d and imaginarysx09d parts of the susceptibility
for U /zt=10 andq=0.10,0.14,0.18,0.20 along a lattice direction, in
two dimensions. The dotted line in the bottom figure is the result for
q=0.001 multiplied by 250 to show the behavior for smallq.

FIG. 4. Real and imaginary parts of the susceptibility forU /zt
=10 andq=0.10,0.14,0.18,0.20 along a lattice direction, in three
dimensions. The dotted line in the bottom figure is the result for
q=0.001 multiplied by 250 to show the behavior for smallq.
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there remains a nonzero gap whenU=Uc. This is due to the
fact that we are not considering a zero-momentum excitation,
due to the reasons given above. In the inset of Fig. 5, we plot
this gapDq as a function ofU /zt. For largeU the gap grows
linearly with U and forU close toUc, the gap closes more
rapidly. In the case ofq=0 the gap would in our mean-field
approximation close asÎU−Uc when U↓Uc, but for small

nonzeroq it closes asÎU−Uc+hq4, where the factorh is a
positive function ofUc and t.

IV. DISCUSSION

In summary, we have proposed a means of studying Mott
insulators in optical lattices, using the relatively well-known
technique of Bragg spectroscopy. We have presented spectra
that can be measured directly by trap loss or heating mea-
surements. In a recent experiment by Stöferleet al. f17g the
authors use a setup where the laser beams are perfectly coun-
terpropagating, which corresponds to a quasimomentum
transfer of zero. As we have argued above, there should be
no scattering in that case and the signal can only be due to
nonlinear response or due to the fact that the system is inho-
mogeneous and of finite size. We have found that by mea-
suring the threshold behavior of the two-photon scattering
rate at various quasimomenta, it is possible to determine the
gap by extrapolation. We have shown that for a theoretical
description of Bragg spectroscopy on the Mott insulator it is
absolutely essential to dress the photon-atom coupling. As a
result it turns out that although it is common to use the
language of solid-state physics to describe these systems, the
physics is quantitatively, and even qualitatively, very differ-
ent due to the many-body effects.
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